

Statistiek I Sampling

Martijn Wieling and John Nerbonne
CLCG, Rijksuniversiteit Groningen

This lecture

- Reasoning about the population (populatie) using a sample (steekproef)
- Relation between population (mean) and sample (mean)
- Confidence interval (betrouwbaarheidsinterval) for population mean based on sample mean
- Testing a hypothesis (hypothesetoets) about the population using a sample
- One-sided hypothesis vs. two-sided hypothesis
- Statistical significance
- Error types

Introduction

- Selecting a sample from a population includes an element of chance: which individuals are studied?
- Question of this lecture: How to reason about the population using a sample?
- Anwered using the Central Limit Theorem (centrale limietstelling)

Central Limit Theorem

- Suppose we would gather many different samples from the population, then the distribution of the sample means will always be normally distributed
- The means of these samples (\bar{x}) will be the population mean $\left(m_{\bar{x}}=\mu\right)$
- The standard deviation of the sample means (standard error SE, standaardfout) is dependent on the sample size n (steekproefgrootte) and the population standard deviation σ (standaardafwijking): $S E=s_{\bar{x}}=\frac{\sigma}{\sqrt{n}}$

Question 1

Wat is de standaardfout van het gemiddelde?

<

$$
\begin{array}{lllll}
\hline 15 & 1,5 & 0,15 & 0,015 & ?
\end{array}
$$

181a0057f4f80/f7f178bdfe02)
ㅍ
Votes: 86

Reasoning about the population (1)

- Given that the distribution of sample means is normally distributed $N(\mu, \sigma / \sqrt{n})$, having one randomly selected sample allows us to reason about the population
- Requirement: sample is representative (unbiased sample, zuivere steekproef)
- Random selection helps avoid bias

Question 2

Welke willekeurige selectie is een zuivere steekproef om de prestaties bij dit vak te bepalen?

く

20	20	20 studenten in	de ingeschreven voor dit vak	$?$
studenten aanwezig bij dit college	personen op de Vismarkt	Harmoniekantine		

181a0057f4f80/2c1453cb5efb)
Votes: 109

Reasoning about the population (2)

- Given a representative sample:
- We estimate the population mean to be equal to the sample mean (our best guess)
- How certain we are of this estimate depends on the standard error: $\sigma / \sqrt{ } \bar{n}$
- Increasing sample size n reduces uncertainty when reasoning about the population
- Hard work pays off (in exactness), but it doesn't pay of quickly: $\sqrt{(n)}$
- As sample means are normally distributed (CLT), we use the characteristics of the normal distribution in interpreting the sample means with respect to the population

Normal distribution

- We know the probability of an element x having a value close to the mean μ :

$$
\begin{aligned}
& P(\mu-\sigma \leq x \leq \mu+\sigma) \approx 68 \% \quad(34+34) \\
& P(\mu-2 \sigma \leq x \leq \mu+2 \sigma) \approx 95 \% \quad(34+34+13.5+13.5) \\
& P(\mu-3 \sigma \leq x \leq \mu+3 \sigma) \approx 99.7 \% \quad(34+34+13.5+13.5+2.35+2.35)
\end{aligned}
$$

Normal distribution: standard z-scores

- With standardized values: $z=(x-\mu) / \sigma \Rightarrow \mu=0$ and $\sigma=1$

$$
\begin{aligned}
& P(-1 \leq z \leq 1) \approx 68 \% \quad(34+34) \\
& P(-2 \leq z \leq 2) \approx 95 \% \quad(34+34+13.5+13.5) \\
& P(-3 \leq z \leq 3) \approx 99.7 \% \quad(34+34+13.5+13.5+2.35+2.35)
\end{aligned}
$$

Reasoning about the population (3)

- Sample means can be interpreted in two ways:
- Using a confidence interval
- An interval which is likely to contain the true population mean
- Using a hypothesis test
- Tests if a hypothesis about the population is compatible with a sample result

Confidence interval

- Definition: there is an $x \%$ probability that when computing an $x \%$ confidence interval on the basis of a sample, it contains μ
- The confidence interval gives an estimate of plausible values for the population mean
- Consider the following example: You want to know how many hours per week a student of the university spends earning money. The standard deviation σ for the university is $1 \mathrm{hr} / \mathrm{wk}$.
- You collect data from 100 randomly chosen students
- You calculate the sample mean $m=5 \mathrm{hr} / \mathrm{wk}$
- You therefore estimate the population mean $\mu=5 \mathrm{hr} / \mathrm{wk}$ and $S E$ $=1 / \sqrt{100}=0.1 \mathrm{hr} / \mathrm{wk}$
- What is the 95% confidence interval?

Confidence interval

- According to the CLT, the sample means are normally distributed

- 95% of the sample means lie within $m \pm 2$ SE
- (i.e. actually it is $m \pm 1.96 S E$, but we round this to $m \pm 2 S E$)
- With $m=5$ and $S E=0.1$, the 95% confidence interval is $5 \pm 2 \times 0.1=(4.8 \mathrm{hr} / \mathrm{wk}$, $5.2 \mathrm{hr} / \mathrm{wk}$)

Question 3

Wat is het 99.7\%-betrouwbaarheidsinterval van het gemiddelde?

く
$(9,11)(9,12)(8,12) \quad(7,13) \quad ?$

181a0057f4f80/776c6694d464)
Votes: 79

Confidence interval vs. significance test

- The interpretation of a confidence interval is linked to statistical significance
- A 95\% confidence interval based on the sample mean m represents the values for μ for which the difference between μ and m is not significant (at the 0.05 significance threshold)
- A value outside of the confidence interval indicates a statistically significant difference

Hypothesis

- Statistical significance is always assessed in the context of a research question formulated as a hypothesis
- Examples of hypotheses
- Answering online lecture questions is related to the course grade
- Women and men differ in their verbal fluency
- Nouns take longer to read than verbs
- Testing these hypotheses requires empirical and variable data
- Empirical: based on observation rather than theory alone
- Variable: individual cases vary
- Hypotheses can be derived from theory, but also from observations if theory is incomplete

Hypothesis testing (1)

- We start from a research question:

Is answering online lecture questions related to the course grade?

- Which we then formulate as a hypothesis (i.e. a statement): Answering online lecture questions is related to the course grade
- For statistics to be useful, this needs to be translated to a concrete form:

Students answering online lecture questions score higher than those who do not

Hypothesis testing (2)

Students answering online lecture questions score higher than those who do not
-What is meant by this?
All students answering online lecture questions score higher than those who do not?

- Probably not, the data is variable, there are other factors:
- Attention level of each student
- Difficulty of the lecture
- If the questions were answered seriously
- We need statistics to abstract away from the variability of the observations (i.e. unsystematic variation; Field, Chap. 1)
- On average, students answering online lecture questions score higher than those who do not

Testing a hypothesis using a sample

On average, students answering online lecture questions score higher than those who do not

- This hypothesis must be studied on the basis of a sample, i.e. a limited number of students following a course with online lecture questions
- Of course we're interested in the population, i.e. all students who followed a course with online lecture questions
- The hypothesis concerns the population, but it is studied through a representative sample
- Students answering online lecture questions score higher than those who do not (study based on 20 students who answered online lecture questions and 20 who did not)
- Women have higher verbal fluency than men (study based on 20 men and 20 women)
- Nouns take longer to read than verbs
(studied on the basis of 20 people's reading of 20 nouns and verbs)

Question 4

```
Wat is een goed voorbeeld van een concrete, testbare hypothese?
```

く

Zijn vrouwen	Vrouwen zijn taalvaardiger	Taalvaardigheid is gerelateerd
dan	dan mannen.	aan geslacht.

is gerelateerd
aan geslacht.

181a0057f4f80/9cad7728fc15)
Votes: 113

Analysis: when is a difference real?

- Given a testable hypothesis:

Students answering online lecture questions score higher than those who do not

- You collect the final course grade for 20 randomly selected students who answered the online questions and 20 who did not
- Will any difference in average grade (in the right direction) be proof?
- Probably not: very small differences might be due to chance (unsystematic variation)
- Therefore we use statistics to analyze the results
- Statistically significant results are those unlikely to be due to chance

Our first analysis: z-test

- You think that Computer Assisted Language Learning may be effective for young kids
- You give a standard test of language proficiency ($\mu=70, \sigma=14$) to 49 randomly chosen childen who followed a CALL program
- You find $m=74$
- You calculate $S E=\sigma / \sqrt{n}=14 / \sqrt{49}=2$
- 74 is 2 SE above the population mean: at the 97.5 th percentile

Conclusions of z-test

- Group with CALL scored 2 SE above mean (z-score of 2)
- Chance of this is only 2.5%, so very unlikely that this is due to chance
- Conclusion: CALL programs are probably helping
- However, it is also possible that CALL is not helping, but the effect is caused by some other factor
- Such as the sample including lots of proficient kids
- This is a confounding factor (verstorende factor): an influential hidden variable (a variable not used in a study)

Question 5

Welke factor(en) kan/kunnen verstorend zijn voor de CALL resultaten?

Het	Het geslacht van	Het weer van	Het schoolniveau	De
opleidingsniveau	de kinderen	vandaag	van de kinderen	steekproefgrootte

181a0057f4f80/410f64a5227b)
Votes: 107

Importance of sample size

- Suppose we would have used 9 children as opposed to 49, at what percentile would a sample mean of $m=74$ be?
- $S E=\sigma / \sqrt{ } \bar{n}=14 / \sqrt{9} \approx 4.7$
- $m=74$ is less than 1 SE above the mean, i.e. at less than the 84 th percentile
- Sample means of this value are found by chance more than 16% of the time (i.e. likely due to chance): not enough reason to suspect an effect of CALL

Statistical reasoning: two hypotheses

- Rather than one hypothesis, we create two hypotheses about the data:
- The null hypothesis $\left(H_{0}\right)$ and the alternative hypothesis $\left(H_{a}\right)$
- The null hypothesis states that there is no relationship between two measured phenomena (e.g., CALL program and test score), while the alternative hypothesis states there is
- For the CALL example:
- $H_{0}: \mu_{C A L L}=70$ (the population mean of people using CALL is 70)
- $H_{a}: \mu_{C A L L}>70$ (the population mean of people using CALL is higher than 70)
- While $m=74$, suggests that H_{a} is right, this might be due to chance, so we would need enough evidence (i.e. low $S E$) to accept it over the null hypothesis
- Logically, H_{0} is the inverse of H_{a}, and we'd expect $H_{0}: \mu_{C A L L} \leq 70$, but we usually see ' $=$ ' in formulations

Statistical reasoning

$H_{0}: \mu_{C A L L}=70 \quad H_{a}: \mu_{C A L L}>70$

- The reasoning goes as follows:
- Suppose H_{0} is right, what is the chance p of observing a sample with $m=74$?
- To determine this, we convert 74 to a z-score: $z=(m-\mu) / S E=(74-70) / 2=$ 2
- And look up the p-value in a table (or use a stats program): $P(z \geq 2)=0.025$
- The chance of observing a sample this extreme given that H_{0} is true is 0.025
- This is the p-value (measured significance level, overschrijdingskans)
- If H_{0} were correct and kids with CALL experience had the same language proficiency as others, then the observed sample would be expected only 2.5% of the time
- Strong evidence against the null hypothesis

Statistically significant?

- We have determined H_{0}, H_{a} and the p-value
- The classical hypothesis test assesses how unlikely a sample must be for a test to count as significant
- We compare the p-value against this threshold significance level or α-level
- If the p-value is lower than the α-level (usually 0.05 , but it may be lower as well), we regard the result as significant
- In sum:
- The p-value is the chance of encountering the sample, given that the null hypothesis is true
- The α-level is the threshold for the p-value below which we regard the result as significant
- I.e. in that case we reject H_{0} and assume H_{a} is true

Question 6

Wijkt de steekproef significant af van de populatie met alfa=0.05? En alfa=0.01?

く

$0.05:$	$0.05:$	$0.05:$	$0.05:$	$?$
nee,	nee,	ja, $0.01:$	ja, $0.01:$	
$0.01:$	$0.01:$	ja	nee	ja
nee				

Votes: 87

Visualizing question 6

$m=74(z=2), \mu=70, \sigma=14, n=49, S E=14 / \sqrt{49}=2$

Steps for assessing statistical significance

1. Specify H_{0} and H_{a}
2. Specify the distribution of the sample statistic (e.g., mean) given that H_{0} is true
3. Specify the α-level at which H_{0} will be rejected
4. Determine the value of the statistic (e.g., mean) on the basis of a sample
5. Calculate the p-value using the distribution of the sample statistic and compare to α

- p-value $\leq \alpha$: reject H_{0} (significant result)
- p-value $>\alpha$: do not reject H_{0} (non-significant result)

Critical values

- Critical values: those values of the sample statistic which will result in a rejection of H_{0}
- E.g., if α is set at 0.05 , the critical region is $P(z) \leq 0.05$, i.e. $z \geq 1.65$
- We can transform this to raw values using the z formula

$$
\begin{gathered}
z=(x-\mu) / S E \\
1.65=(x-70) / 2 \\
3.30=x-70 \\
x=73.3
\end{gathered}
$$

- Thus a sample mean larger than 73.3 will result in rejection of H_{0}
- These critical values are automatically calculated by statistical software

One-sided z-test

- The CALL example is a z-test, as it is based on a normal distribution with known μ and σ
- We calculate the sample mean m and the z value based on it: $z=(m-\mu) /(\sigma / \sqrt{n})$
- We obtain the p-value linked with the z-value and compare that with the α-level
- There are different forms of z-tests:
- H_{a} predicts high m : CALL improves language ability
- H_{a} predicts low m : Eating broccoli lowers cholesterol levels

Two-sided z-test

- Sometimes H_{a} might predict not lower or higher, but just different
- For example, you use a statistical test for aphasia in NL developed in the UK
- The developers claim that for non-aphasics, the distribution is $N(100,10)$
- You specify $H_{0}: \mu=100$ and $H_{a}: \mu \neq 100$
- With a significance level α of 0.05 , both very high (2.5% highest) and very low (2.5\% lowest) values give reason to reject H_{0}

Significance and sample size

- Recall our CALL example: $H_{0}: \mu_{C A L L}=70, H_{a}: \mu_{C A L L}>70$
- With a sample of 49 , we have distribution $N(70,14 / \sqrt{49})$
- The sample mean m was 74 at a significance level of $p=0.025$ (i.e. one-tailed)
- This was significant at the α-level of 0.05 , but not 0.01
- If you are certain about $m=74$ and wanted significance at the 0.01α-level, you could ask how large the sample would need to be

Chasing significance

- If you are certain about $m=74$ and wanted significance at the 0.01α-level, you could ask how large the sample would need to be
- An α-level of 0.01 (one-tailed) corresponds to $z=2.33$ (from tables)

$$
\begin{aligned}
z & =(x-\mu) /(\sigma / \sqrt{n}) \\
2.33 & =(74-70) /(14 / \sqrt{n}) \\
2.33 & =4 /(14 / \sqrt{n}) \\
2.33 & =4 \sqrt{n} / 14 \\
(2.33 * 14) / 4 & =\sqrt{n} \\
8.2^{2} & =n \\
n & \approx 67
\end{aligned}
$$

- A sample size of 67 would show significance at the $\alpha=0.01$ level, assuming m stays at 74
- Would it make sense to collect the additional data?

Understanding significance

- Is it sensible to collect the extra data to "push" a result to significance?
- No. At least, usually not.
- The real result (effect size, effectgrootte) is the difference (4 pt.), nearly 0.3σ
- "Statistically significant" implies that an effect probably is not due to chance, but the effect can be very small
- If you want to know whether you should buy CALL software to learn a language, statistically significant does not tell you this
- This is a two-edged sword, if an effect was not statistically significant, it does not mean nothing important is going on
- You are just not sure: it could be a chance effect

Question 7

Aan welk signficant resultaat hecht

 je de meeste waarde?く

Votes: 84

Misuse of significance

- Garbage in, garbage out: Statistics won't help an experiment with a poor design, or where data was poorly collected
- No significance hunting: Hypotheses should be formulated before data collection and analysis (Field, Ch. 2, "cheating")
- Modern danger: If there are many potential variables, it is likely that a few turn out to be significant
- Specific tests are necessary to correct for this
- Exploring the data may be useful in early stages of the experiment, but only before hypothesis testing

Some remarks about hypothesis testing

- A statistical hypothesis concerns a population about which a hypothesis is made involving some statistic
- Population: all students attending a course using online lecture questions
- Parameter (statistic): course performance
- Hypothesis: avg. performance of students answering online lecture questions is higher
- A hypothesis is always about a population, not a sample!
- Sample statistics include:
- Mean
- Frequency
- (etc.)

Identifying hypotheses

- Alternative hypothesis H_{a} (original hypothesis) is contrasted with null hypothesis H_{0} (hypothesis that nothing out of the ordinary is going on)
- H_{a} : average performance of students answering online lecture questions higher
- H_{0} : answering online lecture questions does not impact performance
- Logically H_{0} should imply $\neg H_{a}$

Possible errors

Of course, you could be wrong (e.g., due to an unrepresentative sample)!

H_{0}	TRUE	FALSE
accepted	correct	type II error
rejected	type I error	correct

- Hypothesis testing focuses on type I errors
- p-value: chance of type I error
- α-level: boundary of acceptable level of type I error
- Type II errors
- β : chance of type II error
- $1-\beta$: power of statistical test
- More sensitive tests have more power to detect an effect and are more useful

Possible errors: easier to remember

Type I error
(false positive)

Type II error
(false negative)

- False positive: incorrect positive (accepting H_{a}) result
- False negative: incorrect negative (not rejecting H_{0}) result

How to formulate the results?

H_{0}	TRUE	FALSE
accepted	correct	type II error
rejected	type I error	correct

- Results with $p=0.06$ are not very different from $p=0.05$, but we need a boundary
- An α-level of 0.05 is low as the "burden of proof" is on the alternative
- If $p=0.06$ we haven't proven H_{0}, only failed to show convincingly that it's wrong
- This is called "retaining H_{0} " (" H_{0} handhaven")

Recap

- In this lecture, we've covered
- the difference between the population and a sample
- how to convert a sample statistic (e.g., mean) to a z-score
- how to calculate a confidence interval
- how to specify a concrete testable hypothesis based on a research question
- how to specify the null hypothesis
- how to determine a representative sample for a given hypothesis
- how to conduct a z-test and use the results to evaluate a hypothesis
- what statistical significance entails
- how to evaluate if a result is statistically signficant given a specific α-level
- the difference between a one-tailed and a two-tailed test
- the different error types
- Experiment yourself: http://eolomea.let.rug.nI/Statistiek-I/HC2 (login with s-nr)
- Next lecture: t-tests

Please evaluate this lecture

Hoe begrijpelijk vond je dit college?

く

Ik	lk	Ik	lk	Ik
begreep	begreep	begreep	begreep	begreep
alles	het	ongeveer de helft	maar een klein helemaal	niets
	meeste	deel		

Votes: 101

Questions?

Thank you for your attention!

http://www.let.rug.nl/nerbonne/teach/Statistiek-I m.b.wieling@rug.nl

