

groningen

9-2-2016

Statistiek I Sampling

Statistiek I

Martijn Wieling and John Nerbonne CLCG, Rijksuniversiteit Groningen

This lecture

- Reasoning about the **population** (*populatie*) using a **sample** (*steekproef*)
 - Relation between population (mean) and sample (mean)
 - Confidence interval (*betrouwbaarheidsinterval*) for population mean based on sample mean
 - Testing a hypothesis (*hypothesetoets*) about the population using a sample
 - One-sided hypothesis vs. two-sided hypothesis
 - Statistical significance
 - Error types

Introduction

- Selecting a sample from a population includes an element of chance: which individuals are studied?
- Question of this lecture: **How to reason about the population using a sample?**
 - Anwered using the **Central Limit Theorem** (*centrale limietstelling*)

Central Limit Theorem

- Suppose we would gather many different samples from the population, then the distribution of the sample means will **always** be normally distributed
 - The means of these samples ($ar{x}$) will be the population mean ($m_{ar{x}}=\mu$)
 - The standard deviation of the sample means (standard error *SE*, *standaardfout*) is dependent on the sample size *n* (*steekproefgrootte*) and the population standard deviation σ (*standaardafwijking*): $SE = s_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$

Wat is de standaardfout van het gemiddelde?

15 1,5 0,15 0,015 ?

181a0057f4f80/f7f178bdfe02)

 \equiv

<

Votes: 86

>

Reasoning about the population (1)

- Given that the distribution of sample means is normally distributed $N(\mu, \sigma/\sqrt{n})$, having one randomly selected sample allows us to reason about the population
- Requirement: sample is **representative** (unbiased sample, *zuivere steekproef*)
 - Random selection helps avoid bias

Question 2

Welke willekeurige selectie is een zuivere steekproef om de prestaties bij dit vak te bepalen?

<

20 20 20 studenten in ? 20 studenten studenten personen ingeschreven de aanwezig op de Harmoniekantine voor dit vak Vismarkt bij dit college

181a0057f4f80/2c1453cb5efb)

 \equiv

Votes: 109

>

Reasoning about the population (2)

- Given a representative sample:
 - We estimate the population mean to be equal to the sample mean (our best guess)
 - How certain we are of this estimate depends on the standard error: σ/\sqrt{n}
 - Increasing sample size \boldsymbol{n} reduces uncertainty when reasoning about the population
 - Hard work pays off (in exactness), but it doesn't pay of quickly: $\sqrt{(n)}$
 - As sample means are normally distributed (CLT), we use the characteristics of the normal distribution in interpreting the sample means with respect to the population

Normal distribution

• We know the probability of an element x having a value close to the mean μ :

$$\begin{array}{l} P(\mu - \sigma \leq x \leq \mu + \sigma) \approx 68\% \quad \mbox{(34 + 34)} \\ P(\mu - 2\sigma \leq x \leq \mu + 2\sigma) \approx 95\% \quad \mbox{(34 + 34 + 13.5 + 13.5)} \\ P(\mu - 3\sigma \leq x \leq \mu + 3\sigma) \approx 99.7\% \quad \mbox{(34 + 34 + 13.5 + 13.5 + 2.35 + 2.35)} \end{array}$$

Normal distribution: standard z-scores

 $\cdot \,$ With standardized values: $z=(x-\mu)/\sigma \Rightarrow \mu=0$ and $\sigma=1$

$$\begin{array}{ll} P(-1 \leq z \leq 1) \approx 68\% & (\texttt{34+34}) \\ P(-2 \leq z \leq 2) \approx 95\% & (\texttt{34+34+13.5+13.5}) \\ P(-3 \leq z \leq 3) \approx 99.7\% & (\texttt{34+34+13.5+13.5+2.35+2.35}) \end{array}$$

Reasoning about the population (3)

- Sample means can be interpreted in two ways:
 - Using a **confidence interval**
 - An interval which is likely to contain the true population mean
 - Using a hypothesis test
 - Tests if a hypothesis about the population is compatible with a sample result

Confidence interval

- **Definition**: there is an x% probability that when computing an x% confidence interval on the basis of a sample, it contains μ
 - The confidence interval gives an estimate of plausible values for the population mean
- Consider the following example:

You want to know how many hours per week a student of the university spends earning money. The standard deviation σ for the university is 1 hr/wk.

- You collect data from 100 randomly chosen students
- You calculate the sample mean $m=5\,{\rm hr/wk}$
- You therefore estimate the population mean $\mu=5$ hr/wk and SE $=1/\sqrt{100}=0.1$ hr/wk
- What is the 95% confidence interval?

Confidence interval

• According to the CLT, the sample means are normally distributed

- \cdot 95% of the sample means lie within $m\pm$ 2 SE
 - (i.e. actually it is $m\pm$ 1.96 SE, but we round this to $m\pm$ 2 SE)
- With m = 5 and SE = 0.1, the 95% confidence interval is 5 \pm 2×0.1 = (4.8 hr/wk, 5.2 hr/wk)

Wat is het 99.7%-betrouwbaarheidsinterval van het gemiddelde?

(9,11) (9,12) (8,12) (7,13) ?

181a0057f4f80/776c6694d464)

 \equiv

<

Votes: 79

>

Confidence interval vs. significance test

- The interpretation of a confidence interval is linked to statistical significance
- A 95% confidence interval based on the sample mean m represents the values for μ for which the difference between μ and m is not significant (at the 0.05 significance threshold)
 - A value outside of the confidence interval indicates a statistically significant difference

Hypothesis

- Statistical significance is always assessed in the context of a research question formulated as a hypothesis
- Examples of hypotheses
 - Answering online lecture questions is related to the course grade
 - Women and men differ in their verbal fluency
 - Nouns take longer to read than verbs
- Testing these hypotheses requires **empirical** and **variable** data
 - Empirical: based on observation rather than theory alone
 - Variable: individual cases vary
- Hypotheses can be derived from theory, but also from observations if theory is incomplete

Hypothesis testing (1)

- We start from a research question:
 Is answering online lecture questions related to the course grade?
- Which we then formulate as a hypothesis (i.e. a statement): Answering online lecture questions is related to the course grade
- For statistics to be useful, this needs to be translated to a concrete form: Students answering online lecture questions score higher than those who do not

Hypothesis testing (2)

Students answering online lecture questions score higher than those who do not

• What is meant by this?

All students answering online lecture questions score higher than those who do not?

- Probably not, the data is variable, there are other factors:
 - Attention level of each student
 - Difficulty of the lecture
 - If the questions were answered seriously
- We need statistics to abstract away from the variability of the observations (i.e. unsystematic variation; Field, Chap. 1)
- **On average**, students answering online lecture questions score higher than those who do not

Testing a hypothesis using a sample

On average, students answering online lecture questions score higher than those who do not

- This hypothesis **must** be studied on the basis of a **sample**, i.e. a limited number of students following a course with online lecture questions
 - Of course we're interested in the **population**, i.e. all students who followed a course with online lecture questions
- The hypothesis concerns the population, but it is studied through a **representative sample**
 - Students answering online lecture questions score higher than those who do not (study based on 20 students who answered online lecture questions and 20 who did not)
 - *Women have higher verbal fluency than men* (study based on 20 men and 20 women)
 - Nouns take longer to read than verbs (studied on the basis of 20 people's reading of 20 nouns and verbs)

Question 4

Wat is een goed voorbeeld van een concrete, testbare hypothese?

Zijn vrouwen Vrouwen zijn Taalvaardigheid ? taalvaardiger taalvaardiger is gerelateerd dan dan mannen. aan geslacht. mannen?

181a0057f4f80/9cad7728fc15)

 \equiv

<

Votes: 113

>

Analysis: when is a difference real?

• Given a testable hypothesis:

Students answering online lecture questions score higher than those who do not

- You collect the final course grade for 20 randomly selected students who answered the online questions and 20 who did not
- Will any difference in average grade (in the right direction) be proof?
 - Probably not: very small differences might be due to **chance** (unsystematic variation)
- Therefore we use **statistics** to analyze the results
 - **Statistically significant** results are those unlikely to be due to chance

Our first analysis: *z*-test

- You think that Computer Assisted Language Learning may be effective for young kids
- You give a standard test of language proficiency (μ = 70, σ = 14) to 49 randomly chosen childen who followed a CALL program
 - You find m = 74
 - You calculate SE = $\sigma/\sqrt{n} = 14/\sqrt{49} = 2$
 - 74 is 2 SE above the population mean: at the 97.5th percentile

Conclusions of *z***-test**

- Group with CALL scored 2 *SE* above mean (*z*-score of 2)
 - Chance of this is only 2.5%, so very unlikely that this is due to chance
- Conclusion: CALL programs are probably helping
 - However, it is also possible that CALL is not helping, but the effect is caused by some other factor
 - Such as the sample including lots of proficient kids
 - This is a **confounding** factor (*verstorende factor*): an influential **hidden** variable (a variable not used in a study)

Welke factor(en) kan/kunnen verstorend zijn voor de CALL resultaten?

<

 Het
 Het geslacht van
 Het weer van
 Het schoolniveau
 De
 ?

 opleidingsniveau
 de kinderen
 vandaag
 van de kinderen
 steekproefgrootte

 van de ouders

181a0057f4f80/410f64a5227b)

 \equiv

Votes: 107

>

Importance of sample size

- Suppose we would have used 9 children as opposed to 49, at what percentile would a sample mean of m = 74 be?
 - SE = $\sigma/\sqrt{n} = 14/\sqrt{9} pprox 4.7$
 - m = 74 is less than 1 SE above the mean, i.e. at less than the 84th percentile
 - Sample means of this value are found by chance more than 16% of the time (i.e. likely due to chance): not enough reason to suspect an effect of CALL

Statistical reasoning: two hypotheses

- Rather than one hypothesis, we create **two hypotheses** about the data:
 - The null hypothesis (H_0) and the alternative hypothesis (H_a)
 - The null hypothesis states that there is no relationship between two measured phenomena (e.g., CALL program and test score), while the alternative hypothesis states there is
 - For the CALL example:
 - H_0 : $\mu_{CALL} = 70$ (the population mean of people using CALL is 70)
 - H_a : $\mu_{CALL} > 70$ (the population mean of people using CALL is higher than 70)
 - While m = 74, suggests that H_a is right, this might be due to chance, so we would need enough evidence (i.e. low *SE*) to accept it over the null hypothesis
 - Logically, H_0 is the inverse of H_a , and we'd expect H_0 : $\mu_{CALL} \leq 70$, but we usually see '=' in formulations

Statistical reasoning

 H_0 : $\mu_{CALL} = 70$ H_a : $\mu_{CALL} > 70$

- The reasoning goes as follows:
 - Suppose H_0 is right, what is the chance p of observing a sample with m = 74?
 - To determine this, we convert 74 to a z-score: $z = (m \mu)/SE$ = (74 70) / 2 = 2
 - And look up the p-value in a table (or use a stats program): $P(z \geq 2) = 0.025$
 - The chance of observing a sample this extreme given that ${\cal H}_0$ is true is 0.025
 - This is the *p*-value (measured significance level, *overschrijdingskans*)
 - If H_0 were correct and kids with CALL experience had the same language proficiency as others, then the observed sample would be expected only 2.5% of the time
 - Strong evidence **against** the null hypothesis

Statistically significant?

- \cdot We have determined H_0 , H_a and the p-value
- The classical hypothesis test assesses how **unlikely** a sample must be for a test to count as significant
- We compare the p-value against this threshold significance level or α -level
- If the p-value is **lower** than the α -level (usually 0.05, but it may be lower as well), we regard the result as significant
- In sum:
 - The p-value is the chance of encountering the sample, given that the null hypothesis is true
 - The $\alpha\mbox{-level}$ is the threshold for the $p\mbox{-value}$ below which we regard the result as significant
 - I.e. in that case we reject H_0 and assume H_a is true

Wijkt de steekproef significant af van de populatie met alfa=0.05? En alfa=0.01?

0.05:	0.05:	0.05:	0.05:	?
nee,	nee,	ja, 0.01:	ja, 0.01:	
0.01:	0.01: ja	nee	ja	
nee				

181a0057f4f80/1f4c29efb276)

 \blacksquare

<

Votes: 87

>

Visualizing question 6

$$m$$
 = 74 ($z=2$), μ = 70, σ = 14, $n=49$, SE = $14/\sqrt{49}$ = 2

Steps for assessing statistical significance

- 1. Specify H_0 and H_a
- 2. Specify the distribution of the sample statistic (e.g., mean) given that H_0 is true
- 3. Specify the lpha-level at which H_0 will be rejected
- 4. Determine the value of the statistic (e.g., mean) on the basis of a sample
- 5. Calculate the p-value using the distribution of the sample statistic and compare to α
 - $\cdot \ p$ -value $\leq lpha$: reject H_0 (significant result)
 - $\cdot \,\, p$ -value > lpha: do not reject H_0 (non-significant result)

Critical values

- Critical values: those values of the sample statistic which will result in a rejection of ${\cal H}_0$
- $\cdot\,\,$ E.g., if lpha is set at 0.05, the critical region is $P(z) \leq 0.05$, i.e. $z \geq 1.65$
- We can transform this to raw values using the z formula

$$egin{aligned} z &= (x-\mu)/SE \ 1.65 &= (x-70)/2 \ 3.30 &= x-70 \ x &= 73.3 \end{aligned}$$

- \cdot Thus a sample mean larger than 73.3 will result in rejection of H_0
- These critical values are automatically calculated by statistical software

One-sided *Z***-test**

- The CALL example is a z-test, as it is based on a normal distribution with known μ and σ
- · We calculate the sample mean m and the z value based on it: $z=(m-\mu)/(\sigma/\sqrt{n})$
 - We obtain the p-value linked with the z-value and compare that with the α -level
- There are different forms of z-tests:
 - H_a predicts high m: CALL improves language ability
 - H_a predicts low m: Eating broccoli lowers cholesterol levels

Two-sided *Z*-test

- Sometimes H_a might predict not lower or higher, but just different
- \cdot For example, you use a statistical test for aphasia in NL developed in the UK
 - The developers claim that for non-aphasics, the distribution is N(100,10)
 - You specify H_0 : $\mu=100$ and H_a : $\mu
 eq 100$
 - With a significance level lpha of 0.05, both very high (2.5% highest) **and** very low (2.5% lowest) values give reason to reject H_0

Significance and sample size

- $\cdot \;$ Recall our CALL example: H_0 : $\mu_{CALL} = 70$, H_a : $\mu_{CALL} > 70$
- \cdot With a sample of 49, we have distribution $N(70, 14/\sqrt{49})$
- $\cdot\,\,$ The sample mean m was 74 at a significance level of p=0.025 (i.e. one-tailed)
 - This was significant at the lpha-level of 0.05, but not 0.01
- If you are certain about m = 74 and wanted significance at the 0.01 α -level, you could ask how large the sample would need to be

Chasing significance

- If you are certain about m = 74 and wanted significance at the 0.01 α -level, you could ask how large the sample would need to be
- \cdot An lpha-level of 0.01 (one-tailed) corresponds to z=2.33 (from tables)

$$egin{aligned} &z=(x-\mu)/(\sigma/\sqrt{n})\ &2.33=(74-70)/(14/\sqrt{n})\ &2.33=4/(14/\sqrt{n})\ &2.33=4\sqrt{n}/14\ &(2.33*14)/4=\sqrt{n}\ &8.2^2=n\ &npprox 67 \end{aligned}$$

- A sample size of 67 would show significance at the α = 0.01 level, assuming m stays at 74
 - Would it make sense to collect the additional data?

Understanding significance

- Is it sensible to collect the extra data to "push" a result to significance?
 - No. At least, usually not.
- \cdot The real result (effect size, effectgrootte) is the difference (4 pt.), nearly 0.3 σ
- "Statistically significant" implies that an effect probably is not due to chance, but the effect can be very small
 - If you want to know whether you should buy CALL software to learn a language, statistically significant does not tell you this
 - This is a two-edged sword, if an effect was not statistically significant, it does not mean nothing important is going on
 - You are just not sure: it could be a chance effect

Aan welk signficant resultaat hecht je de meeste waarde?

-	p =	p =	p =	p =	?
	0.049	0.049	0.005	0.005	
	met	met n =	met n =	met n =	
	n=100	100000	100	100000	

181a0057f4f80/c86ed0529ac2)

<

>

Misuse of significance

- **Garbage in, garbage out**: Statistics won't help an experiment with a poor design, or where data was poorly collected
- **No significance hunting**: Hypotheses should be formulated before data collection and analysis (Field, Ch. 2, "cheating")
 - Modern danger: If there are many potential variables, it is *likely* that a few turn out to be significant
 - Specific tests are necessary to correct for this
 - Exploring the data may be useful in early stages of the experiment, but only before hypothesis testing

Some remarks about hypothesis testing

- A statistical hypothesis concerns a population about which a hypothesis is made involving some statistic
 - Population: all students attending a course using online lecture questions
 - Parameter (statistic): course performance
 - Hypothesis: avg. performance of students answering online lecture questions is higher
- A hypothesis is always about a population, not a sample!
- Sample statistics include:
 - Mean
 - Frequency
 - (etc.)

Identifying hypotheses

- Alternative hypothesis H_a (original hypothesis) is contrasted with null hypothesis H_0 (hypothesis that nothing out of the ordinary is going on)
 - H_a : average performance of students answering online lecture questions higher
 - H_0 : answering online lecture questions does not impact performance
- \cdot Logically H_0 should imply $eg H_a$

Possible errors

Of course, you could be wrong (e.g., due to an unrepresentative sample)!

H_0	TRUE	FALSE
accepted	correct	type II error
rejected	type I error	correct

- Hypothesis testing focuses on type I errors
 - *p*-value: chance of type I error
 - α -level: boundary of acceptable level of type I error
- Type II errors
 - β : chance of type II error
 - 1β : power of statistical test
 - More sensitive tests have more power to detect an effect and are more useful

Possible errors: easier to remember

- \cdot False positive: incorrect positive (accepting H_a) result
- \cdot False negative: incorrect negative (not rejecting H_0) result

How to formulate the results?

H_0	TRUE	FALSE
accepted	correct	type II error
rejected	type l error	correct

- · Results with p = 0.06 are not very different from p = 0.05, but we need a boundary
 - An $\alpha\text{-level}$ of 0.05 is low as the "burden of proof" is on the alternative
- $\cdot \,$ If p=0.06 we haven't proven H_0 , only failed to show convincingly that it's wrong
 - This is called "retaining H_0 " (" H_0 handhaven")

Recap

- In this lecture, we've covered
 - the difference between the population and a sample
 - how to convert a sample statistic (e.g., mean) to a z-score
 - how to calculate a confidence interval
 - how to specify a concrete testable hypothesis based on a research question
 - how to specify the null hypothesis
 - how to determine a representative sample for a given hypothesis
 - how to conduct a *z*-test and use the results to evaluate a hypothesis
 - what statistical significance entails
 - how to evaluate if a result is statistically significant given a specific α -level
 - the difference between a one-tailed and a two-tailed test
 - the different error types
- Experiment yourself: http://eolomea.let.rug.nl/Statistiek-I/HC2 (login with s-nr)
- \cdot Next lecture: t-tests

Please evaluate this lecture

Hoe begrijpelijk vond je dit college?

181a0057f4f80/1628acd281d9)

<

Votes: 101

>

Ξ

Thank you for your attention!

http://www.let.rug.nl/nerbonne/teach/Statistiek-I m.b.wieling@rug.nl