Sentence generation

Introduction

* Parsing: build all possible logical forms for a given sentence.
* Generation: build all possible sentences given a logical form.

* Logical form: abstract representation of meaning.

An example

e Parsing: John ran fast -->

— run(r), past(r), fast(r), arg1(r,j), name(j,John)

e Generation: run(r), past(r), fast(r), arg1(r,j), name(j,John) -->
— John ran fast

— John ran quickly

This hour’s topics

* Introduction

— Applications

— Chart generation
* Fluency ranking

— Features

— Maximum entropy models

INTRODUCTION

Applications

Checking a grammar: if a grammar is too permissive, using it
with a generator will create ungrammatical sentences.

Paraphrasing: rewriting a (non-fluent) sentence by parsing
the sentence and generating from the resulting semantics.

Sentence fusion: combining the semantics of two (or more
sentences.

Sentence compression: removing non-salient elements of a
sentence.

Machine translation: generating a sentence in a different
language (interlingua or transfer-based MT).

Paraphrasing

Rephrase sentences to make them more fluent.

Rephrase sentences to encode information (watermarking):
Topkara et al., 2005

Improving statistical machine translation using paraphrases:
Callison-Burch et al., 2006

Paraphrasing of questions for user support sites (STEVIN
DAISY project).

Sentence fusion

Marsi & Krahmer 2005: intersection fusion and union fusion
Consider:

— Christina Aguilera has confirmed, in the Amercian magazine Glamour,
that she is pregnant.

— Christina Aguilera has finally asserted what the whole world already
knew: she is expectant.

Union fusion: Christina Aguilera has finally confirmed, in the American
magazine glamour, what the whole world already knew: she is pregnant.

Intersection fusion: Christina Aguilera has confirmed that she is pregnant.
Fuse semantics & generate a sentence from semantics.

Creating more reliable or more extensive news text.

Sentence compression

Compress sentences by removing non-salient constituents.
James Clarke & Mirella Lapata, 2008

The Clinton administration recently unveiled a new means to
encourage brownfields redevelopment in the form of a tax
incentive proposal.

The Clinton unveiled a means to encourage brownfields
redevelopment in a tax incentive proposal.

To go beyond simple word removal generation is required.

Useful in summarization and subtitling

Chart generation

Build a tree bottom-up using lexical items and grammar
rules.

Do not specify positions in lexical items, and let the
grammar decide on allowed word orders.

Keep track of semantics during the generation, and only
allow for items which semantics subsume a part of the goal
semantics.

Higher complexity than chart parsing (exponential rather
than cubic).

FLUENCY RANKING

The need for fluency ranking

A grammar will often allow for more than one surface
sentence (realization) to be generated.

But not every realization is equally fluent.

One example generated with the Alpino chart generator:
— omdat zijn rol toen echt wel uit was gespeeld

— omdat echt wel toen z'n rol was uit gespeeld

— omdat wel zijner rol echt waart uit gespeeld toen

For a set of 7657 sentences from Wikipedia from 5 to 15
words, the average number of realizations, allowing minimal
punctuation was 83.8

So, we need methods to rank realizations, and pick the most
fluent realization.

Surface characteristics

Some influencies can be detected by looking at the
generated sentence, for example:

Archaic words: was/waar, zijn/zijner

Preferred coordination orders: de man en zijn kind/zijn kind
en de man

ldioms: van horen en zeggen/van zeggen en horen

Particles: omdat ik heb opbel/omdat ik hem op bel

Structural characteristics

But some influencies can only be detected by looking at
structure. For example:

Barack Obama won de verkiezingen
de verkiezingen won Barack Obama
Jan bedriegt Marie
Marie bedriegt Jan

14

Subject/direct object-order

top = top
— = smain
su hd objl

Jan bedriegt Marie

15

Features

* We need a framework where we can integrate all kinds of
information.

* |nteresting information for fluency ranking can be modeled
as features:

— Qutput features (generated sentence/surface)
— Process features (derivation tree)

* Features can have arbitrary values, such as frequencies or
scores.

Output features

* Barack Obama won de verkiezingen

— ngram_Im = 64.3 (- log P(w,..w,))

* proper_name verb determiner noun
— ngram_tag = 11.9 (- log P(t,..t))

Derivation tree features

np_det n

/\

determiner(de) noun(det,count,pl)

de verkiezingen

Derivation tree features

determiner(de) noun(det,count,pl)

de verkiezingen

Derivation tree features

determiner(de) noun(det,count,pl)

de verkiezingen

* rl(np_det_ n)—>1

Derivation tree features

np_det n

/\

eterminer(de) noun(det,count,pl)

de verkiezingen

* rl(np_det_ n)—>1

Derivation tree features

np_det n

/\

eterminer(de) noun(det,count,pl)

de verkiezingen

 rl(np _det n)—2>1
* |ds(np_det_n,[determiner(de),noun(det,count,pl)],[]) 2 1

Derivation tree features

np_det n

/\

eterminer(de) noun(det,count,pl)

de verkiezingen

 rl(np _det n)—2>1
* |ds(np_det_n,[determiner(de),noun(det,count,pl)],[]) 2 1
* r1(n_adj n)—=>0

Extracting many features

* |n practice, nearly all features are automatically generated
using feature templates.

* E.g., extract Ids(Node,Daughters,OptParents) for every node
in a derivation tree.

* Most fluency models are huge (hundreds of thousand
features).

Building a model

* We want a model that reflects reality as closely as possible.
 We use a training corpus as a (annotated) ‘sample’ of reality.
* A training corpus consists of:

— Logical forms (contexts)

— For each logical form a set of realizations (events)

— Context and event probabilities.

Coin tossing

p(head) = 0.4, p(tails) = 0.6
Play: 1 Euro

Win (head): get 40 cents
Lose (tail): lose 1 Euro

Fair game? Calculate the expected value!

E(profit) = —1-0.6 + 1.4- 0.4 = —0.04

Expected feature values

e Just asin coin tossing, we can calculate the expected value
of a feature:

* And the expected model feature value:

Zp p(ylz) f(z,y)

* Where xis a context and y an event.

Building a model (2)

The expected value of a given feature in a model can be
constrained to that of the training data:

Es(f) = Es(f)

However, normally there are many possible models given a
set of constraints on expected feature values.

Which one to pick?

The maximum entropy principle

We want to pick the model that has as few assumptions as
possible, other than the feature expectation constraints.

Occam’s Razor: “Of two equivalent theories or explanations,
all other things being equal, the simpler one is to be
preferred”

Given no constraints, only the uniform model has no
assumptions.

We can find the most uniform model by maximizing entropy.
So, we want to find the model that maximizes entropy.

Entropy (Shannon, 1948)

0 0.5 1.0
Pr(X =1)

H(X)=- ZP(%) log p(z;)

1=1

Parametric form

« To be able to learn a model, we add a weight A to every
feature f..

* We can now calculate the probability of a realization (y)
given a logical form (x):

pulylr) = seap(3 Mifie.y)

Zx(x) = Z 6513]9(2 Aifi(z,y))

Yy

Fluency ranking

oS)

score(y|r) =

Fluency ranking

score(y|x) = Zkl(x) 6$F(Z Aifi(z,y))

* |nranking we are not interested in actual probabilities, just

relative order,

Fluency ranking

oS)

score(y|lr) =

* |nranking we are not interested in actual probabilities, just
relative order.

 The normalization factor is constant for an input.

Fluency ranking

score(y|x) = ZX) €$p(; Aifi(z,y))

* |nranking we are not interested in actual probabilities, just
relative order.

 The normalization factor is constant for an input.

Fluency ranking

score(y|x) = ZX) €$p(; Aifi(z,y))

In ranking we are not interested in actual probabilities, just
relative order.

The normalization factor is constant for an input.

e">eMiffn>m

Fluency ranking

score(y|lr) = “ (Z Aifi(T,9))

In ranking we are not interested in actual probabilities, just
relative order.

The normalization factor is constant for an input.

e">eMiffn>m

Fluency ranking

score(y|r) = Z)\ fi(x,y)

In ranking we are not interested in actual probabilities, just
relative order.

The normalization factor is constant for an input.

e">eMiffn>m

Fluency ranking for Dutch

Wide-coverage Alpino grammar and parser for Dutch.
Now includes a chart generator and fluency ranker.
Good coverage of Alpino test-suites.

Also pretty good (but slow) on other data.

Evaluation

Parse 10.000 sentences from Dutch Wikipedia of 5-15
words, and create logical forms.

Generate from logical forms.

Evaluate fluency ranking with 10 fold cross-validation:
— Divide data in 10 parts

— Evaluate 10 times

— 9 folds for training, 1 fold for evaluation

Best match accuracy: how often did the fluency component
pick the best realization?

Results

Random selection 0.012
N-gram language model 0.390

Maximum entropy model 0.522

Accuracy

0.5

0.49

0.48

0.47

0.46

0.45

0.44

0.43

0.42

0.41

0.4

Learning curve

Folds

31

Revisiting subject/direct object

e Surface-based model ranking:

— [Marie]obj1 bedriegt [Jan]sy

— [Jan]sy bedriegt [Marie]obj1
* Maxent ranking:

— [Jan]su bedriegt [Marie]obj1

— [Marie]opbj1 bedriegt [Jan]sy

32

Conslusion

* The Alpino parsing/generation system for Dutch:

http://www.let.rug.nl/vannoord/alp/Alpino/

e Questions?

http://www.let.rug.nl/vannoord/alp/Alpino/
http://www.let.rug.nl/vannoord/alp/Alpino/

Chart generation algorithm outline

Initialize the agenda with lexical items that subsume parts of
the goal semantics.

Process an item on the agenda:

— Find all grammar rules that have the category of the current
item as a daughter. Try to fill in all daughters with this item
and (if required) another item from the chart where the
combined semantics subsume (parts of) the goal semantics.
Put all possible completions of rules with this item as items

on the agenda.
— Put the item on the chart.
Repeat step 2 until the agenda is empty.

4. Find all items with the start symbol, having the goal
semantics.

Chart generation (example)

e John ran fast

* run(r), past(r), fast(r), arg1(r,j), name(j,John)

Chart generation (example)

Lexicon:
John np(x) X: name(x,John)
ran vp(X,y) run(x), past(x), argl(x,y)
fast adv(x) fast(x)
quickly adv(x) fast(x)
Grammar:
S(X) -> np(y), vp(%X,Y)

Vp(X,yY) -> Vp(X,y), adv(x)

John np(j) name(j,John)
2 ran vp(ry) run(r), past(r), argl(r,x)
3 fast adv(x) fast(x)

4 quickly adv(x) fast(x)

5(1,2)

John

ran

fast

quickly

John ran

np(j)

vp(ry)

adv(x)

adv(x)

s(r)

name(j,John)

run(r), past(r), argl(r,x)

fast(x)

fast(x)

run(r), past(r), argl(r,j),
name(j,John)

5(1,2)

6(2,3)

John

ran

fast

quickly

John ran

ran fast

np(j)

vp(ry)

adv(x)

adv(x)

s(r)

vp(ry)

name(j,John)

run(r), past(r), arg1(r,x)
fast(x)

fast(x)

run(r), past(r), argl(r,}j),

name(j,John)

run(r), past(r), argl(r,j),
fast(r)

5(1,2)

6 (2,3)

7 (2,4)

John

ran

fast

quickly

John ran

ran fast

ran quickly

np(j)

vp(ry)

adv(x)

adv(x)

s(r)

vp(ry)

vp(ry)

name(j,John)

run(r), past(r), argl(r,x)

fast(x)

fast(x)

run(r), past(r), argl(r,j),
name(j,John)

run(r), past(r), argi(r,j),
fast(r)

run(r), past(r), argl(r,j),
fast(r)

5(1,2)

6 (2,3)

7(2,4)

8(1,6)

John

ran

fast

quickly

John ran

ran fast

ran quickly

John ran fast

np(j)

vp(ry)

adv(x)

adv(x)

s(r)

vp(ry)

vp(ry)

s(r)

name(j,John)

run(r), past(r), argl(r,x)

fast(x)

fast(x)

run(r), past(r), argl(r,j),
name(j,John)

run(r), past(r), argl(r,j),
fast(r)

run(r), past(r), argl(r,j),
fast(r)

run(r), past(r), argi(r,j),
name(j,John), fast(r)

5(1,2)

6 (2,3)

7(2,4)

8(1,6)

9(1,7)

John

ran

fast

quickly

John ran

ran fast

ran quickly

John ran fast

Jon ran quickly

np(j)

vp(ry)

adv(x)

adv(x)

s(r)

vp(ry)

vp(ry)

s(r)

s(r)

name(j,John)

run(r), past(r), argl(r,x)

fast(x)

fast(x)

run(r), past(r), argl(r,j),
name(j,John)

run(r), past(r), argl(r,j),
fast(r)

run(r), past(r), argl(r,j),
fast(r)

run(r), past(r), argi(r,j),
name(j,John), fast(r)

run(r), past(r), argl(r,j),
name(j,John), fast(r)

