Language Technology

Hartmut Fitz

Department of Information Science University of Groningen Fall 2009/10 h.fitz@rug.nl

September 21, 2009

Hartmut Fitz (RUG)

Overview

Part II

- Basic syntactic development
- Learning word categories
- Learning to order words
- Computational modelling
- Psycholinguistics ∞ language technology

Assigning word categories critical for comprehension Temporary ambiguity: The boys who eat fish N

Assigning word categories critical for comprehension Temporary ambiguity: The boys who eat fish by the lake. $$\sf V$$

Assigning word categories critical for comprehension Temporary ambiguity: The boys who eat fish by the lake. V

Global ambiguity: Flying planes made her duck.

Assigning word categories critical for comprehension

Temporary ambiguity: The boys who eat fish by the lake. $$\mathsf{V}$$

Global ambiguity: Flying planes made her duck. V N V

Assigning word categories critical for comprehension

Temporary ambiguity: The boys who eat fish by the lake. $$\mathsf{V}$$

Global ambiguity: Flying planes made her duck. Adj N N

Assigning word categories critical for comprehension

Temporary ambiguity: The boys who eat fish by the lake. $$\mathsf{V}$$

Global ambiguity: Flying planes made her duck. Adj N V

Assigning word categories critical for comprehension

Temporary ambiguity: The boys who eat fish by the lake. $$\mathsf{V}$$

Global ambiguity: Flying planes made her duck. Adj N V

Examples illustrate

- Words can be in multiple classes
- Incremental processing, online assignment
- Non-monotonic: computation and re-computation of meaning

"To understand how X is learned, you first have to understand what X is." (Pinker, 1990)

Major word categories

Nouns	objects, things
Verbs	processes, actions, states
Adjectives	properties of object
Prepositions	relations between objects (e.g., spatial)
Adverbs	modify verbs
Pronoun	substitutes for nouns, marked for person
:	:

Language acquisition

What are word categories?

Yes, but...

Hartmut Fitz (RUG)

Yes, but...

Fuzzy criteria Abstracta (belief), events (earthquake) states (depression), qualities (strength)

Yes, but...

Fuzzy criteria Abstracta (belief), events (earthquake) states (depression), qualities (strength)

Context-dependence

He's staggering/his staggering/ his staggering wealth

Yes, but...

Fuzzy criteria	Abstracta (belief), events (earthquake) states (depression), qualities (strength)
Context-dependence	He's staggering/his staggering/ his staggering wealth
Theory-dependence	No two syntactic theories agree on taxonomy of word classes

Yes, but...

Fuzzy criteria	Abstracta (belief), events (earthquake) states (depression), qualities (strength)
Context-dependence	He's staggering/his staggering/ his staggering wealth
Theory-dependence	No two syntactic theories agree on taxonomy of word classes
Language-dependence	Stative verbs and adjectives difficult to distinguish in Chinese
	Two classes of adjectives in Japanese
	No one-one mapping between languages

Distributional properties

- Structuralism: conceptual (semantic) definitions are vacuous (Palmer, 1971)
- Word categories should be defined by distributional properties
- Words assigned to class based on occurrence in similar syntactic frames (e.g., X is VERB-ing Y)
- ► Today: word categories based on various cues, including
 - phonological and morphological properties of words
 - distributional information
 - semantic features

Distributional properties

- Structuralism: conceptual (semantic) definitions are vacuous (Palmer, 1971)
- Word categories should be defined by distributional properties
- Words assigned to class based on occurrence in similar syntactic frames (e.g., X is VERB-ing Y)
- ► Today: word categories based on various cues, including
 - phonological and morphological properties of words
 - distributional information
 - semantic features

Some psycholinguistic evidence

Some psycholinguistic evidence

 Artificial grammar learning: children can learn non-adjacent dependencies in syntactic frame-like word chunks (Gomez, 2002)

Some psycholinguistic evidence

- Artificial grammar learning: children can learn non-adjacent dependencies in syntactic frame-like word chunks (Gomez, 2002)
- Children can abstract word categories from distributional cues in speech (Gerken, Wilson & Lewis, 2005)

Some psycholinguistic evidence

- Artificial grammar learning: children can learn non-adjacent dependencies in syntactic frame-like word chunks (Gomez, 2002)
- Children can abstract word categories from distributional cues in speech (Gerken, Wilson & Lewis, 2005)
- Children acquire novel verbs more easily when they occur in syntactic frames that are frequent in the input (Childers & Tomasello, 2001)

Research questions beyond AGL

- What type of distributional information in natural speech is particularly informative?
- What kinds of distributional cues are infants sensitive to in categorizing words?
- How can distributionally defined categories be integrated into grammatical system?
- Which concrete mechanisms of statistical learning are used? (Building computational models especially useful here)

Frequent frames (Mintz 2003 & 2006)

Basic idea

- Data: corpora of child-directed speech (individual children)
- ► Define frame as ordered triple X W Y: word W in context X Y
- If frame occurs frequently in corpus, this might be caused by some systematic aspect of language
- Likely to reflect some relationship between the W in frame, e.g., joint word category membership
- Measure/examine how predictive frames are for category membership

Multiple categories

Multiple categories

(a) Tom ate fish.(b) Tom ate rabbits.

Syntactic frames: categorize fish and rabbit together

Hartmut Fitz (RUG)

Multiple categories

(a) Tom ate fish.
(b) Tom ate rabbits.
(c) Tom can fish.
(d) *Tom can rabbits.

Syntactic frames: categorize fish and rabbit together

Leads to incorrect generalization

Multiple categories

- (a) Tom ate fish.(b) Tom ate rabbits.(c) Tom can fish.
- (d) *Tom can rabbits.

Syntactic frames: categorize fish and rabbit together

Leads to incorrect generalization

Non-local information

Multiple categories

(a) Tom ate fish.
(b) Tom ate rabbits.
(c) Tom can fish.
(d) *Tom can rabbits.

Syntactic frames: categorize fish and rabbit together

Leads to incorrect generalization

Non-local information

(a) to X to

X likely from same category verb

Multiple categories

(a) Tom ate fish.
(b) Tom ate rabbits.
(c) Tom can fish.
(d) *Tom can rabbits.

Syntactic frames: categorize fish and rabbit together

Leads to incorrect generalization

Non-local information

(a) to X to(b) to quickly X to

X likely from same category verb Split infinitive disrupts frame

Multiple categories

(a) Tom ate fish.
(b) Tom ate rabbits.
(c) Tom can fish.
(d) *Tom can rabbits.

Syntactic frames: categorize fish and rabbit together

Leads to incorrect generalization

Non-local information

(a) to X to(b) to quickly X to

X likely from same category verb Split infinitive disrupts frame

Do these issues undermine usefulness of distributional information?

Procedure

- ▶ 6 corpora selected from CHILDES
- ▶ All frames X W Y are counted (separately by corpus)
- ▶ 45 most frequent frames selected (from one corpus)
 - \blacktriangleright you __ it | the __ and | put __ in | . . .
- W from each occurrence of X W Y in each corpus are recorded and grouped
- Count word types and tokens
- Each frame defines a single category

Evaluation

 \Rightarrow measures proportion of all words grouped together that were grouped correctly

Evaluation

 $\mathsf{Accuracy} = \frac{\mathsf{hits}}{\mathsf{hits} + \mathsf{false alarms}}$

All pairs of tokens compared in each frame-based category

 \Rightarrow measures proportion of all words grouped together that were grouped correctly

 $Completeness = \frac{hits}{hits + misses}$ All pairs compared across all categorized tokens

 \Rightarrow measures degree to which frames group tokens that belong to same word class

Evaluation

 $\mathsf{Accuracy} = \frac{\mathsf{hits}}{\mathsf{hits} + \mathsf{false alarms}}$

All pairs of tokens compared in each frame-based category

 \Rightarrow measures proportion of all words grouped together that were grouped correctly

 $Completeness = \frac{hits}{hits + misses}$ All pairs compared across all categorized tokens

 \Rightarrow measures degree to which frames group tokens that belong to same word class

Coverage: percentage of tokens in corpus categorized by frames

Hartmut Fitz (RUG)

Results

Child	Accuracy		Completeness		Coverage	Categorized
	Frame	Rand	Frame	Rand		
Peter	0.98	0.49	0.06	0.03	48%	6%
Eve	0.98	0.51	0.06	0.03	46%	5%
Nina	0.98	0.48	0.08	0.04	51%	8%
Naomi	0.97	0.48	0.07	0.03	38%	5%
Anne	0.98	0.37	0.08	0.03	54%	4%
Aran	0.97	0.44	0.08	0.04	61%	5%
Mean	0.98	0.46	0.07	0.03	50%	6%

Adapted from Mintz 2003

- High accuracy due to many single-type categories (e.g., want __ put \rightarrow {to})
 - Accuracy stable for high type-variability

- I High accuracy due to many single-type categories (e.g., want __ put \rightarrow {to})
 - Accuracy stable for high type-variability
- Absolute number of frequent frames per corpus
 - Similar results for relative frame frequencies

- I High accuracy due to many single-type categories (e.g., want __ put \rightarrow {to})
 - Accuracy stable for high type-variability
- Absolute number of frequent frames per corpus
 - Similar results for relative frame frequencies
- Oifferent frame-based categories might belong to bigger class
 - Unification with threshold for lexical overlap (e.g, $\theta = 20\% \rightsquigarrow 0.90$ accuracy, 0.93 completeness)

- Frequent frames induce extremely robust categories
- Low completeness due to frame-based categorization
- ► High coverage from categorizing small percentage of tokens
- Simple and psycholinguistically plausible computations
- Superior to previous models (e.g., Cartwright & Brent '97, Redington, Chater & Finch '98)

Points of criticism

Points of criticism

- ► Frequent-frame categories evaluated against tagged corpora
 - Tagging might not reflect categories children use
 - Tag-sets theory-dependent

Points of criticism

► Frequent-frame categories evaluated against tagged corpora

- Tagging might not reflect categories children use
- Tag-sets theory-dependent
- Not clear how frequent-frame categories integrated into language processor model
 - encapsulated system for categorization only
 - frame-based categories carry no syntactic information

Points of criticism

► Frequent-frame categories evaluated against tagged corpora

- Tagging might not reflect categories children use
- Tag-sets theory-dependent
- Not clear how frequent-frame categories integrated into language processor model
 - encapsulated system for categorization only
 - frame-based categories carry no syntactic information
- Approach has not been validated cross-linguistically
 - e.g., Erkelenz (UvA) shows that frame-based categories align with Dutch categories only 40%-71%

General perspective

Integration

Difficult to integrate statistical learning, psycholinguistic research and tools of computational linguistics:

Computational linguistics	Psycholinguistics
Learning from tagged corpora	Untagged input
Language specific algorithms	Typological viability
Large corpora (WSJ, Brown)	Child-directed speech (CHILDES)
Gold standard evaluation	Developmental data
Strong theoretical assumptions	Explanatory generality

BIG task (Chang, Lieven, Tomasello 2008)

Basic idea

- Incrementally generate sentences from unordered bag of words
- Learner predicts one word at a time using syntactic knowledge
- Recursive task, target word removed from bag of words

BIG task (Chang, Lieven, Tomasello 2008)

Basic idea

- Incrementally generate sentences from unordered bag of words
- Learner predicts one word at a time using syntactic knowledge
- Recursive task, target word removed from bag of words

Evaluation

- Sentence prediction success: target utterance predicted exactly
- Accuracy: percentage success over all utterances in test corpus

Statistical learners

BIG-SPA task suitable to compare statistical learners of syntax:

$$C(w_{n-k}\ldots w_n)$$

NW Ch(w_n)

Bigram Trigram Bigram + Trigram Unigram + BG + TG Backed-off TG Frequency of n-gram $w_{n-k} \dots w_n$ in input (k = 0, 1, 2)Number of word tokens in corpus Choice function for word w_n

$$Ch(w_{n}) = C(w_{n-1}, w_{n})/C(w_{n-1})$$

$$Ch(w_{n}) = C(w_{n-2}, w_{n-1}, w_{n})/C(w_{n-2}, w_{n-1})$$
...
$$Ch(w_{n}) = C(w_{n})/NW + ...$$
TG if > 0, else BG if > 0, else UG

• Split input corpus into training/test set (90%/10%).

- Split input corpus into training/test set (90%/10%).
- Ollect learner statistics from training set.

- Split input corpus into training/test set (90%/10%).
- Ollect learner statistics from training set.
- If o = 0 For each utterance u in test set, create bag of words b.

- Split input corpus into training/test set (90%/10%).
- Ollect learner statistics from training set.
- So For each utterance *u* in test set, create bag of words *b*.
- For each word nw in u: for each word w in b, calculate Choice(w).

- Split input corpus into training/test set (90%/10%).
- Ollect learner statistics from training set.
- So For each utterance *u* in test set, create bag of words *b*.
- For each word nw in u: for each word w in b, calculate Choice(w).
- Add w with highest Choice(w) to newu.

- Split input corpus into training/test set (90%/10%).
- Ollect learner statistics from training set.
- So For each utterance *u* in test set, create bag of words *b*.
- For each word nw in u: for each word w in b, calculate Choice(w).
- Solution Add w with highest Choice(w) to *newu*.
- **(** Remove *nw* from *b*, repeat until $b = \emptyset$.

- Split input corpus into training/test set (90%/10%).
- Ollect learner statistics from training set.
- So For each utterance *u* in test set, create bag of words *b*.
- For each word nw in u: for each word w in b, calculate Choice(w).
- Solution Add w with highest Choice(w) to *newu*.
- Remove *nw* from *b*, repeat until $b = \emptyset$.
- If newu = u, increment SPA count by 1.

Typologically-different corpora

12 corpora from CHILDES:

Cantonese, Croatian, English, Estonian, French, German, Hebrew, Hungarian, Japanese, Sesotho, Tamil, Welsh

Four common word orders:

SVO (English), SOV (Japanese), VSO (Welsh), No dominant order (Hungarian)

Rigid (less rigid) word order:

English, French, Cantonese (German, Japanese, Croatian, Hungarian, Tamil)

Argument omission: Japanese, Cantonese

Rich morphology: Croatian, Estonian, Hungarian

BIG-SPA results

Adult-Adult

Adapted from Chang, Lieven & Tomasello, 2008

Hartmut Fitz (RUG)

A psycholinguistically motivated learner

Adjacency-prominence learner

$C(w_{n-1}, w_n) \\ P(w_a, w_b)$	Frequency of bigram $w_{n-1}w_n$ Frequency that word w_a occurred before w_b in an
$Pair(w_a, w_b)$	Frequency that words w_a , w_b occurred together in same sentence in any order
Length	Number of words in bag-of-word
Adjacency Prominence	$Ch_{adj}(w_n) = C(w_{n-1}, w_n) / Pair(w_{n-1}, w_n)$ $Ch_{pro}(w_n) = \sum_{w_b} P(w_n, w_b) / Pair(w_n, w_b)$ where w_b are all the words in bag (except w_n)

Adjacency-Prominence

Hartmut Fitz (RUG) Langu

 $Ch(w_n) = Length \times Ch_{adi}(w_n) + Ch_{pro}(w_n)$

Comparison

Sentence production constrained by syntactic & semantic factors

- Syntactic constraints: Adjacency statistics (normalized bigram)
- Semantic constraints: Prominence statistics (more prominent message components tend to be produced earlier)

Adjacency-prominence learner achieves significantly higher score than any other learner:

SPA 46% (48994 utterances across corpora, Adult-Adult)

BIG-SPA task does not require gold standard for syntax

- BIG-SPA task does not require gold standard for syntax
- Can be used for typologically-different languages

- BIG-SPA task does not require gold standard for syntax
- Can be used for typologically-different languages
- Allows comparison of learning algorithms in theory-neutral way

- BIG-SPA task does not require gold standard for syntax
- Can be used for typologically-different languages
- ► Allows comparison of learning algorithms in theory-neutral way
- Allows to detect typological biases of particular algorithms

- BIG-SPA task does not require gold standard for syntax
- Can be used for typologically-different languages
- Allows comparison of learning algorithms in theory-neutral way
- Allows to detect typological biases of particular algorithms
- Helps to integrate psycholinguistic modelling and methods from computational linguistics

References

- Chang, F., Lieven, E., and Tomasello, M. (2008). Automatic evaluation of syntactic learners in typologically-different languages. *Cognitive Systems Research*, *9*, 198–213.
- Gerken, L., Wilson, R., and Lewis, W. (2005). 17-month-olds can use distributional cues to form syntactic categories. *Journal of Child Language*, 32, 249–268.
- Gómez, R. (2002). Variability and detection of invariant structure. *Psychological Science, 13*, 431–436.
- Mintz, T. (2003). Frequent frames as a cue for grammatical categories in child directed speech. *Cognition*, *90*, 91–117.
- Redington, M., Chater, N., and Finch, S. (1998). Distributional information: A powerful cue for acquiring syntactic categories. *Cognitive Science*, 22(4), 425–469.