

Course Subject Matter, Goals Organization Practical Applications Scientific Applications

Language Technology Introduction

John Nerbonne

CLCG, Rijksuniversiteit Groningen

KIB.TST03 Fall, 2009

Course Subject Matter, Goals Organization Practical Applications Scientific Applications

Overview

Course Subject Matter, Goals

Organization

- Practical Applications
- Scientific Applications

Speech and Language Technology

- "Language" half of "Taal- en Spraaktechnologie" (Language and Speech Technology").
- Focus on APPLICATIONS of computational linguistics
 - practical and commercial applications, where one attempts to do something practically useful
 - but also scientific applications, where one applies technology in order to satisfy scientific curiosity
 - ... and naturally, points of overlap!

Computational Linguistics

aka "Natural Language Processing"- study of language from a computational perspective

- recognizing language vs. non-language, which language
- indexing, organizing and storing language data
- analyzing language with respect to structure
 - left is past tense of leave
 - The Eindhoven CEO is subject of the sentence The Eindhoven CEO refused comment on the rumor that SONY had contacted him.
 - The old men and women might be analyzed as AMBIGUOUS, i.e. potentially having two different structures
- classifying texts wrt subject matter, authorship, ...
- generating appropriate language given information
- summarizing texts
- translating Dutch texts into English

. . .

Focus on Application

- CL beyond the "talking dog" stage, i.e. beyond the stage where "it's neat that you can get computers to do that"
- Little focus on the underlying technology, e.g. how does a part-of-speech tagger work
- More focus on what to you ask when you apply CL
 - EVALUATION, ASSESSMENT, VALIDATION
- Sketch of variety of areas
- Attention to application of practical and of scientific interest.

Requirements

- Six 2-hr. lectures, Mon. 13:15-15
- Website http://www.let.rug.nl/nerbonne/teach/ling-tech/ & Nestor (under course name)
 - Weekly readings, some exam questions
- One 2-hr. examination preparation session, Thurs. Oct. 8
- One 3-hr. exam, Mon., Oct. 26, 9:00 am, Examenhal
- One 3-hr. resit exam, Thurs. Jan. 14, Examenhal

Possible NL Applications

Mode: speech, print, handwriting

Task: recognize, generate, understand, converse, translate, index, correct, search (retrieve), language learning

Medium/Locale: (mobile) telephone, PC, automobile, toys, factory floor, PDA

 $\textbf{Application} \in \textbf{Mode} \times \textbf{Task} \times \textbf{Medium}$

Falling price of hardware, growing demand (Information Highway),...

Natural Language Interfaces in 1980's

- Natural Language Interfaces (NLIs) to DBs favorite 1980's application target
- Little or no commercial, practical use

Why were NLIs popular?

- Excellent research vehicle
- PC interfaces still clunky, mostly command-line based
 - GUIs hadn't become established

Turing Test

"Turing Test"

- test intelligence via NL fluency
- disputed value as intelligence test
 - evidence (Moore, 1987)? OR
 - sufficient proof (Turing, 1950)?
 - insufficient?—Searle (1984) and others
 - too hard—French (1990), Shieber (1993/4)

What does the Turing test test?

CORE (for NLI)

- Iinguistic knowledge
- immediate discourse context
- odmain knowledge

others

- intentional models or task models
- common sense models
- user modeling
- flexibility (learning, robustness)
- knowledge of likely errors

All plusses for research vehicle!

Loebner Prize Competition

A "Turing Competition"

- Computer Museum, Boston
- Naive judges distinguish programs, people
- No professional entries
- Some judges fooled!
- ELIZA tactics most successful

Probably no value

-Shieber, Comm. of ACM, 1993/94

NLI's: From Lab to Market

NLI as Product Prototype, Motivation

- expressive
- concise
- no training in programming
- no familiarity needed with particular data structures and program organization

1970's development—Intellect, Ladder, etc.

Intelligence is marketable!

Later NLI's

Motivation for NLIs

- expressive
 Problem: linguistic knowledge
- concise
 Problem: contextual resolution
- no training in programming
 Problem: incompleteness
 Androutsopoulos: "most frequent complaint"
- no familiarity needed with particular data structures and program organization

Problem: no automation, standardization of domain mapping

Moral: good research vehicles may be poor products

Graphical User Interfaces

NLIs were overtaken by GUIs

- Iess expressive
- equally concise
- "habitable" (Schneiderman)
- automated domain mapping (without information hiding, reformulation)

NLI/GUI—Perrault & Grosz, 1988

"NLIs superior to GUIs in some applications", where

- nonintuitive encoding
- complex information
- complex problem-solving

But:

- nonintuitive encodings need translations for any interface
- complexity raises the stakes—in postponed comparison

A few commercially successful NLIs (late '80's

- very expensive
- limited deployment personnel, sales dbs
- ATIS (US) / OVIS (NL)

Cost/benefit vis-à-vis GUIs very unfavorable

Large problem: eroding motivation given success of GUI's

NLI's: What went wrong?

- Too little attention to EVALUATION
 - How well does software accomplish the task it was designed for (technology specific)?
 - How many words are known/unknown to the system? How many word senses?
 - How many sentences are parsed correctly? (needs further refinement)
 - Note that these questions can be answered per module irregardless of application
- Too little attention to ASSESSMENT
 - How well is software suited to solving a particular problem (application specific)?
 - How many users obtain the information they seek?
 - If a user does not obtain the information sought, has he otherwise benefited from using the system?

Later developments

Seeking ecological niches away from GUIs

- with speech in tasks w. hands/eyes busy
 - address book in auto navigation system
- remote from graphics terminals telephony
- handicapped support

Access to textual information

• See KLM's question-answering system (developed by Q-Go)

Newer NLP applications

- Lots of NLP in Google, other IR
- MT: Systran, Google Translate
 - Software localization
- Grammar checkers, spell-checkers (now context sensitive)
- Controlled English (Boeing et al.) monitoring comprehensibility of technical documentation
- Text-to-Speech for dyslectics *inter alia* Fluency, Kurzweil, Nuance, ...
- Text clipping services
- CALL
- OCR correction (Xerox)

Applying NLP—Summarizing

- Even if the technology is good, applying it is tricky
- Evaluation, assessment essential
- Lots of current attempts

Applications in Pure Science?

Non-CL examples

- Astronomy relied on optics (the telescope) from the Renaissance on, biology later (on the microscope)
- Archaeology, paleontology rely on carbon dating
- Linguistics relies on audio recording, signal processing (electrical engineering)
- Anthropology uses techniques from population genetics to model diffusion of culture

CL Applications in other Sciences

- Psycholinguistics wants estimates of frequency, not just for words, but also for constructions. This requires automatic processing.
- Psychology and psycholinguistics builds models of processing and learning of such complexity that computational simulation plays a role in checking plausibility, consistency.
- Given how complex language is, computational processing sensible in order to allow more general probes and measures
 - pronunciation differences in dialects, foreign accents
 - syntactic differences in languages, varieties
 - probing languages and varieties for indication of historical relatedness
 - examples in course!

Measuring scientific success

- VALIDATING a proposed measure involves showing that it indeed measures what it purports to
 - showing that a measure of syntactic complexity indeed predicts processing difficulties