

Analysis of Variance

Inf. Stats

ANOVA — ANalysis Of VAriance

- "generalized t-test"
- compares **means** of more than two groups
- fairly robust
- based on F distribution, compares variance
- two versions
 - single ANOVA compare groups along 1 dim., e.g. school classes
 - two-way ANOVA, etc.
 compare groups along > 1 dim., e.g. school classes and sex

RuG

Analysis of Variance

Inf. Stats

Typical applications

- single ANOVA compare time needed for lexical recognition in healthy adults, patients with Wernicke's aphasia, patients with Broca's aphasia
- two-way ANOVA compare lexical recognition time in male and female in same three groups

Comparing Multiple Means

Inf. Stats

for two groups: t-test

testing at p=0.05 shows significance 1 time in 20 if there is no difference in population mean (effect of chance)

but suppose there are 7 groups, i.e., ${7 \choose 2}=21$ pairs

caution: several tests (on same data) run the risk of finding significance through sheer chance

RuG

2

Phony Significance through Multiple Tests

Inf. Stats

Example: Suppose you run three tests, always seeking a result significant at 0.05. The chance of finding this in one of the three is Bonferroni's **family-wise** α **-level**

$$\alpha_{FW} = 1 - (1 - \alpha)^n$$

$$= 1 - (1 - .05)^3$$

$$= 1 - (.95)^3$$

$$= 1 - .857$$

$$= 0.143$$

to guarantee a family-wise alpha of 0.05, divide this by number of tests

Example: 0.05/3 = 0.017 (set α at 0.017) —note: $0.983^3 \approx 0.95$

ANOVA indicated, takes group effects into account

Analysis of Variance

Inf. Stats

based on F distribution

F distribution —Moore & McCabe, § 7.3, pp.435-445 measures difference between two **variances** (variance = σ^2)

$$F = \frac{s_1^2}{s_2^2}$$

- always positive, since variance positive
- two degrees of freedom interesting, one for s_1 , one for s_2

RuG

5

F-Test vs. F Distribution

Inf. Stats

$$F = \frac{s_1^2}{s_2^2}$$

• used in *F*-test

 H_0 : samples from same distribution ($s_1 = s_2$)

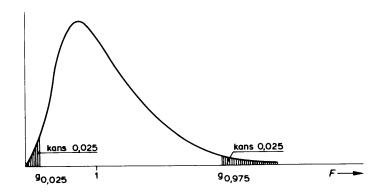
 H_a : samples from diff. distribution ($s_1 \neq s_2$)

- value 1 indicates same variance
- values near 0 or $+\infty$ indicate diff.
- F-test very sensitive to deviations from normal
- ANOVA uses F distribution, but is different ANOVA ≠ F-test!

F Distribution*

Inf. Stats

Critical area for F-distribution at p=0.05



Note symmetry: $P(\frac{s_1^2}{s_2^2}>x)=P(\frac{s_2^2}{s_1^2}<\frac{1}{x})$

RuG

7

F-test*

Inf. Stats

Example: height

group	sample	mean	std. dev.
	size		
boys	16	180cm	6cm
girls	9	168	4

is the difference in std. dev. significant? ($\alpha=0.05$)

examine
$$F = \frac{s_{\text{boys}}^2}{s_{\text{girls}}^2}$$

degrees of freedom:
$$s_{\mbox{boys}}$$
 $16-1$ $s_{\mbox{girls}}$ $9-1$

F-test Critical Area (for 2-Tailed Test)*

Inf. Stats

$$\begin{array}{ll} P(F(15,8)>f) &= \frac{\alpha}{2} = \frac{0.05}{2} = 0.025 \\ P(F(15,8)f)) \\ P(F(15,8)< x) &= \frac{\alpha}{2}(=0.025) \\ &= P(F(8,15)>x') = \frac{\alpha}{2}|x' = \frac{1}{x} \\ &= P(F(8,15)>x') = 0.025|x' = \frac{1}{x} \\ &= P(F(8,15)>\underbrace{3.2}) \text{ (tables)} \\ P(F(15,8)<\underbrace{1}_{3.2}) &= 0.025 \\ P(F(15,8)<\underbrace{0.31}) &= 0.025 \\ \end{array}$$

Reject H_0 if F<0.31 or F>4.1 Here, $F=\frac{6^2}{4^2}=2.25$ (no evidence of diff. in distribution)

RuG

^

ANOVA

Inf. Stats

Analysis of Variance (ANOVA) most popular statistical test for numerical data

- several types
 - single "one-way"
 - "two-, three-, ...n-way"
 - multiple ANOVA, "MANOVA", repeated measures
- examines variation
 - "between-groups" —sex, age,...
 - "within-subject", "within-groups" —overall
- automatically corrects for looking at several relationships (like Bonferroni correction)
- uses F test, where F(n, m) fixes n typically at number of groups (less 1), m at number of subjects (data points) (less number of groups)

Example: Gisela Redeker identified three roles for literary book reviews in newspapers *Taalbeheersing* 21(4), 1999, 295-310:

- communicate emotional reactions, subjective opinions
- communicate expert opinion, objective facts
- motivate reading and purchasing of book

She investigated whether different reviewers emphasized different roles: Tom van Deel (*Trouw*), Arnold Heumakers (*de Volkskrant*), and Carel Peeters (*Vrij Nederland*)

stylistic elements indicate one of the three functions, e.g., *ik, maar nee, ben ik bang, lijkt, eerlijk gezegd, ik bedoel,...* indicate **subjective opinions**; logical connectives *want, temeer dat, ...* and quotes indicate an **objective** point of view; etc.

N.b. **validating** link between style and perspectives is important (see Redeker)

RuG

Redeker on Literary Criticism's Functions

Inf. Stats

11

Gisela Redeker investigates role of lit. criticism, asking whether different critics did not differ in the degree to which they emphasize one or another role.

Sample: reviews of the same books (by Hermans, Heijne and Mulisch), all published 1989-92. Similar in length.

Data: relative frequency of, e.g., **reader-oriented elements** (per 1,000 words). We are comparing three averages, asking whether their is a difference.

Because she compared more than two averages ANOVA is needed.

Relative Frequency of Reader-Oriented Elements

Inf Stats

elements		Critic	
	van Deel	Heumakers	Peeters
evocative	12.4	10.8	15.1
questions	3.2	0	6.1
dram.quotes	6.9	12.9	8.2
intensifiers	25.9	30.1	38.2
ref. to reader	3.6	5.7	11.7
Totals	26.0	29.8	39.7

 $H_0: \mu_1 = \mu_2 = \mu_3$

 $H_a: \mu_1 \neq \mu_2 \text{ or } \mu_1 \neq \mu_3 \text{or } \mu_2 \neq \mu_3$

Results: statistically significant difference (p < 0.02)

Similar comparisons for "subjective" style, and "argumentative" style (differences present, not statistically significant)

RuG

13

One-Way ANOVA

Inf. Stats

Question: Are exam grades of **four** groups of foreign students "Nederlands voor anderstaligen" the same? More exactly, are four averages the same?

$$H_0: \ \mu_1 = \mu_2 = \mu_3 = \mu_4$$

$$H_a: \mu_1
eq \mu_2 \text{ or } \mu_1
eq \mu_3 \dots \text{ or } \mu_3
eq \mu_4$$

i.e., alternative: at least one group has different mean

for the question of whether any particular pair is the same, the t-test is appropriate

for testing whether all language groups are the same, pairwise t-tests will *exaggerate* differences (increase the chance of type I error).

we want to apply 1-way ANOVA

Data: Dutch Proficiency of Foreigners

Inf. Stats

Four groups of ten each:

G	ro	u	ns
\sim	ıv	u	\sim

	Eur.	Amer.	Afri.	Asia
	10	33	26	26
	19	21	25	21
	:	i i	:	i
	31	20	15	21
Mean	25.0	21.9	23.1	21.3
Samp. SD	8.14	6.61	5.92	6.90
Samp. Variance	66.22	43.66	34.99	47.57

RuG

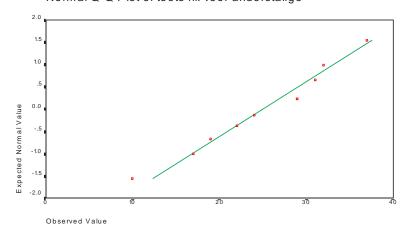
15

Anova Conditions

Inf. Stats

Assumption: normal distribution per group, check with normal quantile plot, e.g., for Europeans (and to be repeated for every group):

Normal Q-Q Plot of toets nl. voor anderstalige

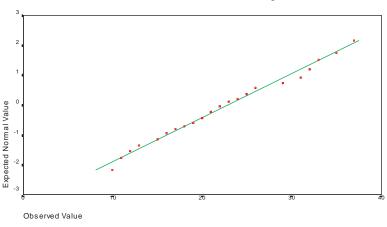


Anova Conditions

Inf. Stats

Normal Quantile plot for all values:

Normal Q-Q Plot of toets nl. voor anderstalige



RuG

17

Anova Conditions

Inf. Stats

ANOVA assumptions:

- normal distribution per subgroup
- same variance in subgroups: least sd > one-half of greatest sd
- independent observations: watch out for test-retest situations!

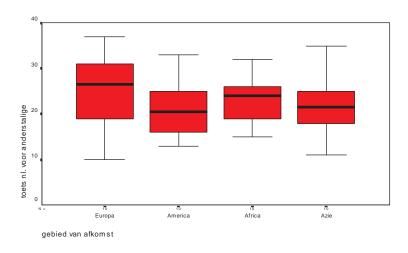
Check differences in SD's! (some SPSS "computing")

		Valid	
Variable	Std Dev	N	Label
Europa	8.14	10	
America	6.61	10	
Africa	5.92	10	
Azie	6.90	10	

Visualizing Anova

Inf. Stats

Is there any significant difference in the means (of the groups being contrasted)?



Take care that boxplots sketch **medians**, not **means**.

RuG

19

Sketch of Anova

Inf. Stats

	Groups				
	1 2 $3 4 = I$				
	Eur.	Amer.	Afri.	Asia	
	:	:	:	:	}
	$x_{1,j}$	$x_{2,j}$	$x_{3,j}$	$x_{4,j}$	
	:	:	:	:	
Sample Mean	$ar{x_1}$		$ar{x_i}$		J

I – number of groups

For any data point $x_{i,j}$

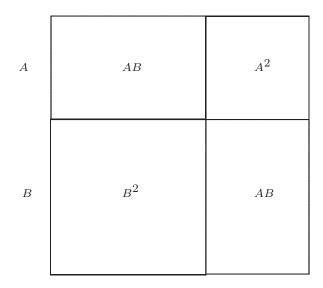
$$(x_{i,j}-\bar{x})=(\bar{x}_i-\bar{x})+(x_{i,j}-\bar{x}_i)$$
 total residue $=$ group diff $+$ "error"

ANOVA question: is it sensible to include the group $(\bar{x_i})$?

Two Variances*

Inf. Stats

Reminder of high-school algebra: $(a + b)^2 = a^2 + b^2 + 2ab$



RuG

Two Variances*

Inf. Stats

$$(a+b)^{2} = a^{2} + b^{2} + 2ab$$

$$(x_{i,j} - \bar{x}) = (\bar{x}_{i} - \bar{x}) + (x_{i,j} - \bar{x}_{i})$$

$$(x_{i,j} - \bar{x})^{2} = (\bar{x}_{i} - \bar{x})^{2} + (x_{i,j} - \bar{x}_{i})^{2} + 2(\bar{x}_{i} - \bar{x})(x_{i,j} - \bar{x}_{i})$$

Sum over elements in *i*-th group:

$$\sum_{j=1}^{N_i} (x_{i,j} - \bar{x})^2 = \sum_{j=1}^{N_i} (\bar{x}_i - \bar{x})^2 + \sum_{j=1}^{N_i} (x_{i,j} - \bar{x}_i)^2 + \sum_{j=1}^{N_i} 2(\bar{x}_i - \bar{x})(x_{i,j} - \bar{x}_i)$$

Two Variances*

Inf. Stats

Note that this term must be zero:

$$\sum_{j=1}^{N_i} 2(\bar{x}_i - \bar{x})(x_{i,j} - \bar{x}_i)$$

Since:

$$\sum_{j=1}^{N_i} 2(ar{x}_i - ar{x})(x_{i,j} - ar{x}_i) = 2(ar{x}_i - ar{x}) \sum_{j=1}^{N_i} (x_{i,j} - ar{x}_i)$$
 and

$$\sum_{j=1}^{N_i} (x_{i,j} - \bar{x_i}) = 0$$

RuG

23

Sketch of Anova

Inf. Stats

$$\sum_{j=1}^{N_i} (x_{i,j} - \bar{x})^2 = \sum_{j=1}^{N_i} (\bar{x}_i - \bar{x})^2 + \sum_{j=1}^{N_i} (x_{i,j} - \bar{x}_i)^2$$

$$(+ \sum_{j=1}^{N_i} 2(\bar{x}_i - \bar{x})(x_{i,j} - \bar{x}_i) = 0)$$

Therefore:

$$\begin{array}{lcl} \sum_{j=1}^{N_i} (x_{i,j} - \bar{x})^2 & = & \sum_{j=1}^{N_i} (\bar{x}_i - \bar{x})^2 & + & \sum_{j=1}^{N_i} (x_{i,j} - \bar{x}_i)^2 \\ \mathrm{SST} & = & SSG & + & SSE \end{array}$$

Anova Terminology*

Inf. Stats

For any data point $x_{i,j}$

Total Degrees of Freedom = Group Degrees of Freedom + Error Degrees of Freedom

RuG

25

Variances are Mean Squared Differences to Mean

Inf. Stats

Note that

$$\frac{(x_{i,j}-\bar{x})^2}{n-1}$$
 is a variance, and likewise SST/DFT SSG/DFG (=MSG) & SSE/DFE (=MSE)

In ANOVA, we compare MSG (variance betwee groups) and MSE (variance within groups), i.e. we measure

$$F = \frac{MSG}{MSE}$$

If this is large, differences between groups overshadow differences within groups

Two Variances*

Inf. Stats

$$H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$$

ANOVA: calculate MSG (σ^2 between groups) and MSE (σ^2 within groups), i.e. we measure

$$F = \frac{MSG}{MSE}$$

If this is large, differences between groups overshadow differences within groups

RuG

27

Two Variances*

Inf. Stats

1. estimate **pooled variance** of population (MSE)

$$\begin{array}{lcl} \frac{\sum_{i \in G} dF_i \cdot s_i^2}{\sum_{i \in G} dF_i} & = & \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2 + (n_3 - 1)s_3^2 + (n_4 - 1)s_4^2}{(n_1 - 1) + (n_2 - 1) + (n_3 - 1) + (n_4 - 1)} \\ & = & \frac{9 \cdot 66 \cdot 22 + 9 \cdot 43 \cdot 66 + 9 \cdot 34 \cdot 99 + 9 \cdot 47 \cdot 57}{9 + 9 + 9 + 9} \\ & = & \frac{595 \cdot 98 + 392 \cdot 94 + 314 \cdot 91 + 428 \cdot 13}{36} = 48.11 \end{array}$$

estimates variance in groups (using dF), aka within-groups estimate of variance

- 2. suppose H_0 true
 - (a) then group have sample means μ , variance $\sigma^2/10$, (& sd $\sigma/\sqrt{10}$)
 - (b) 4 means, 25.0, 21.9, 23.1, 21.3, where $s=1.63, s^2=2.66$
 - (c) s^2 estimate of $\sigma^2/10$, i.e., $10 \times s^2$ is estimate of $\sigma^2 (\approx s^2 = 26.6)$
 - (d) this is **between-groups** variance (MSG)

Interpreting Estimates via F

Inf. Stats

if H_0 true, then we have two variances:

- between-groups estimate s_b^2 (26.6) and within-groups estimate s_w^2 (48.11)

and their ratio $\frac{s_b^2}{s_w^2}$ follows an F distribution with (|groups|-1)dF from s_b^2 (3), (n-4)dF from s_w^2 (36)

in this case, $\frac{26.62}{48.11} = 0.55$

P(F(3,30) > 2.92) = 0.05, (see tables), so no evidence of nonuniform behavior

RuG

29

ANOVA Summary

Inf. Stats

Summary to-date (exam results for *NL voor anderstalige*)

Source	dF	SS	MSS	F
between-g	3	79.9	26.6	F(3,36) = 0.55
within-g	36	1731.9	48.1	
Total	39	1811.8		

$$P(F(3,30) > \underline{2.92}) = 0.05$$
, (see tables)

so no evidence of nonuniform behavior

SPSS Summary

Inf. Stats

Variable	NL_NIVO	toets nl. voor anderstalige
By Variable	GROUP	gebied van afkomst

Analysis of Variance

		Sum of	Mean	F	F
Source	D.F.	Squares	Squares	Ratio	Prob.
Between Groups	3	79.9	26.6	.55	.65
Within Groups	36	1731.9	48.1		
Total	39	1811.8			

RuG

31

Other Questions

Inf. Stats

ANOVA has
$$H_0$$
: $\mu_1 = \mu_2 = \ldots = \mu_n$

But sometimes particular **contrasts** important —e.g., are Europeans better (in learning Dutch)?

Distinguish (in reporting results):

- prior contrasts questions asked before data collected and analyzed
- post-hoc (posterior) questions
 questions after collection and analysis
 "data-snooping" is exploratory, cannot contribute to hypothesis testing

Prior Contrasts

Inf. Stats

Questions asked **before** collection and analysis —e.g., are Europeans better (in learning Dutch)?

Another formulation:

is
$$H_a$$
: $\mu_{\text{Eur}} \neq (\mu_{\text{Am}} = \mu_{\text{Afr}} = \mu_{\text{Asia}})$

where
$$H_0: \mu_{\text{Eur}} = (\mu_{\text{Am}} + \mu_{\text{Afr}} + \mu_{\text{Asia}})$$

Reformulation:

$$0 = -\mu_{\text{Eur}} + 0.33\mu_{\text{Am}} + 0.33\mu_{\text{Afr}} + 0.33\mu_{\text{Asia}}$$

SPSS requires this (reformulated) version

RuG

33

Prior Contrasts in SPSS

Inf. Stats

- (the mean of) every group gets a coefficient
- sum of coefficients is zero
- a t-test is carried out, & two-tailed p value is reported (as usual)

Eur Am. Afr. Azie Contrast 1
$$-1.0$$
 .3 .3 .3

Pooled Variance Estimate

Value S. Error T Value D.F. T Prob.

Contrast 1 -2.9 2.53 -1.15 36 .260

No significant difference here (of course)

Note: prior contrasts are legitimate as hypothesis tests as long as they are formulated **before** collection and analysis

Post-hoc Questions

Inf. Stats

Assume H_0 rejected: which means are distinct?

Data-snooping problem: in large set, some distinctions are likely to be stat. significant

But we can still look (we just cannot claim to have **tested** the hypothesis)

We are asking whether $m_1 - m_2$ is significantly larger, we apply a variant of the t-test

The relevant sd is $\sqrt{\mathsf{MSE}/n}$ (differences among scores), but there's a correction since we're looking at half the scores in any one comparison.

RuG

35

SD in Post-hoc ANOVA Questions

Inf. Stats

N.B. SD (among diff. in groups i and j):

$$\mathrm{sd}_{\delta} = \sqrt{\frac{\mathrm{MSE} \times \frac{N_i + N_j}{N}}{N_i + N_j}} = \sqrt{\frac{48.1 \times \frac{10 + 10}{40}}{10 + 10}} = \sqrt{\frac{\frac{48.1}{2}}{20}} = \sqrt{\frac{24.05}{20}} = 4.9/\sqrt{20}$$

and the t value is calculated as p/c where p is the desired significance level and c is number of comparisons.

For pairwise comparisons, $c=\binom{I}{2}$

Post-hoc Questions in SPSS

Inf. Stats

SPSS Post-Hoc "Bonferroni" searches among all groupings for statistically significant ones.

Variable NL_NIVO toets nl. voor anderstalige By Variable GROUP gebied van afkomst

Multiple Range Tests: Modified LSD (Bonferroni) test w. signif. level .05

The difference between two means is significant if $\mbox{MEAN(J)-MEAN(I)} >= 4.9045 * \mbox{RANGE} * \mbox{SQRT(1/N(I)} + 1/N(J)) \\ \mbox{with the following value(s) for RANGE: 3.95} \\ \mbox{- No two groups significantly different at .05 level}$

Homogeneous Subsets (highest \& lowest means not sig. diff.)

Group Azie America Africa Europa

Mean 21.3 21.9 23.1 25.0

—but in this case there are none (of course)

37

How to Win at ANOVA

Inf. Stats

Note ways in which F ratio increases (becomes more significant)

$$F = \frac{MSG}{MSE}$$

- 1. MSG increases, differences in means grow larger
- 2. MSE decreases, overall variation grows smaller

Two Models for Grouped Data

Inf. Stats

$$x_{i,j} = \mu + \epsilon_{i,j}$$

 $x_{i,j} = \mu + \alpha_i + \epsilon_{i,j}$

First model

- no group effect
- each datapoint represents error (ϵ) around a mean (μ)

Second model

- real group effect
- each datapoint represents error (ϵ) around an overall mean (μ) combined with a group adjustment (α_i)

ANOVA: is there sufficient evidence for α_i ?

39

Next: Two-way ANOVA