

Analysis of Variance

Inf. Stats

ANOVA — ANalysis Of VAriance

- "generalized t-test"
- compares means of more than two groups
- fairly robust
- based on F distribution, compares variance
- two versions
 - single ANOVA compare groups along 1 dim., e.g. school classes
 - multiple ANOVA compare groups along > 1 dim., e.g. school classes and sex

RuG

Analysis of Variance

Inf. Stats

1

Typical applications

- single ANOVA compare time needed for lexical recognition in healthy adults, patients with Wernicke's aphasia, patients with Broca's aphasia
- multiple ANOVA compare lexical recognition time in male and female in same three groups

Comparing Multiple Means

Inf. Stats

for two groups: t-test

testing at p = 0.05 shows significance 1 time in 20 if there is no difference in population mean (effect of chance)

but suppose there are 7 groups, i.e., $\binom{7}{2} = 21$ pairs

caution: several tests (on same data) run the risk of finding significance through sheer chance

Phony Significance through Multiple Tests

Inf. Stats

3

Example: Suppose you run three tests, always seeking a result significant at 0.05. The chance of finding this in one of the three is Bonferroni's **family-wise** α -level

 $\alpha_{FW} = 1 - (1 - \alpha)^n$ = 1 - (1 - .05)³ = 1 - (.95)³ = 1 - .857 = 0.143

to guarantee a family-wise alpha of 0.05, divide this by number of tests

Example: 0.05/3 = 0.017 (set α at 0.017) —note: $0.983^3 \approx 0.95$

ANOVA indicated, takes group effects into account

Analysis of Variance

Inf. Stats

based on F distribution

F distribution — Moore & McCabe, § 7.3, pp.435-445

measures difference between two **variances** (variance = σ^2)

$$F = \frac{s_1^2}{s_2^2}$$

- always positive, since variance positive
- two degrees of freedom interesting, one for s_1 , one for s_2

F-Test vs. F Distribution

Inf. Stats

5

$$F = \frac{s_1^2}{s_2^2}$$

• used in F-test

 H_0 : samples from same distribution ($s_1 = s_2$)

 H_a : samples from diff. distribution ($s_1 \neq s_2$)

- value 1 indicates same variance
- values near $0 \text{ or } +\infty$ indicate diff.
- F-test very sensitive to deviations from normal
- ANOVA uses *F* distribution, but is different ANOVA ≠ *F*-test!

F Distribution*

Inf. Stats

F-test*

Inf. Stats

7

Example: height

group	sample size	mean	std. dev.
boys	16	180 cm	6cm
girls	9	168	4

is the *difference* in std. dev. significant? ($\alpha = 0.05$)

examine
$$F = \frac{s_{boys}^2}{s_{girls}^2}$$

degrees of freedom: s_{boys} $\begin{array}{c} 16-1\\ s_{girls} \end{array}$ $\begin{array}{c} 9-1 \end{array}$

F-test Critical Area (for 2-Tailed Test)*

Inf. Stats

P(F(15,8) > f)	$=\frac{\alpha}{2}=\frac{0.05}{2}=0.025$
P(F(15, 8) < f)	= 1 - 0.025
$P(F(15,8) < \underline{4.1})$	= 0.975 from M&M, Tbl. E, p.706
	(no values directly for $P(F(df_1,df_2)>f))$
P(F(15,8) < x)	$=\frac{\alpha}{2}(=0.025)$
	$= P(F(8, 15) > x') = \frac{\alpha}{2} x' = \frac{1}{x}$
	$= P(F(8, 15) > x') = 0.025 x' = \frac{1}{x}$
	= P(F(8, 15) > 3.2)(tables)
$P(F(15,8) < \frac{1}{3.2})$	= 0.025
$P(F(15,8) < \underline{0.31})$	= 0.025

Reject H_0 if F < 0.31 or F > 4.1Here, $F = \frac{6^2}{4^2} = 2.25$ (no evidence of diff. in distribution)

ANOVA

Inf. Stats

9

Analysis of Variance (ANOVA) most popular statistical test for numerical data

- several types
 - single "one-way"
 - multiple, i.e., "two-, three-, ...n-way"
- examines variation
 - "between-groups" ---sex, age,...
 - "within-subject", "within-groups" overall
- automatically corrects for looking at several relationships (like Bonferroni correction)
- uses F test, where F(n, m) fixes n typically at number of groups (less 1), m at number of subjects (data points) (less number of groups)

Example: Gisela Redeker identified three roles for literary book reviews in news-papers *Taalbeheersing* 21(4), 1999, 295-310:

- communicate emotional reactions, subjective opinions
- communicate expert opinion, objective facts
- motivate reading and purchasing of book

She investigated whether different reviewers emphasized different roles: Tom van Deel (*Trouw*), Arnold Heumakers (*de Volkskrant*), and Carel Peeters (*Vrij Nederland*)

stylistic elements indicate one of the three functions, e.g., *ik, maar nee, ben ik bang, lijkt, eerlijk gezegd, ik bedoel,...* indicate subjective opinions; logical connectives *want, temeer dat, ...* and quotes indicate an objective point of view; etc.

N.b. validating link between style and perspectives is important (see Redeker)

RuG

Redeker on Literary Criticism's Functions

Inf. Stats

11

Gisela Redeker investigates role of lit. criticism, asking whether different critics did not differ in the degree to which they emphasize one or another role.

Sample: reviews of the same books (by Hermans, Heijne and Mulisch), all published 1989-92. Similar in length.

Data: relative frequency of, e.g., **reader-oriented elements** (per 1,000 words). We are comparing three averages, asking whether their is a difference.

Because she compared more than two averages ANOVA is needed.

Inf. Stats

elements	Critic					
	van Deel	Heumakers	Peeters			
evocative	12.4	10.8	15.1			
questions	3.2	0	6.1			
dram.quotes	6.9	12.9	8.2			
intensifiers	25.9	30.1	38.2			
ref. to reader	3.6	5.7	11.7			
Totals	26.0	29.8	39.7			

 $H_0: \ \mu_1 = \mu_2 = \mu_3$

 $H_a: \ \mu_1 \neq \mu_2 \text{ or } \mu_1 \neq \mu_3 \text{ or } \mu_2 \neq \mu_3$

Results: statistically significant difference (p < 0.02)

Similar comparisons for "subjective" style, and "argumentative" style (differences present, not statistically significant)

RuG

One-Way ANOVA

Inf. Stats

13

Question: Are exam grades of **four** groups of foreign students "Nederlands voor anderstaligen" the same? More exactly, are four averages the same?

 $H_0: \ \mu_1 = \mu_2 = \mu_3 = \mu_4$ $H_a: \ \mu_1 \neq \mu_2 \text{ or } \mu_1 \neq \mu_3 \dots \text{ or } \mu_3 \neq \mu_4$

i.e., alternative: at least one group has different mean

for the question of whether any particular pair is the same, the t-test is appropriate

for testing whether all language groups are the same, pairwise t-tests will *exaggerate* differences (increase the chance of type I error).

we want to apply 1-way ANOVA

Data: Dutch Proficiency of Foreigners

Inf. Stats

Four groups of ten each:

	Groups					
	Eur.	Amer.	A fri.	Asia		
	10	33	26	26		
	19	21	25	21		
	:	:	:	:		
	31	20	15	21		
Mean	25.0	21.9	23.1	21.3		
Samp. SD	8.14	6.61	5.92	6.90		
Samp. Variance	66.22	43.66	34.99	47.57		

RuG

Anova Conditions

Inf. Stats

15

Assumption: normal distribution per group, check with normal quantile plot, e.g., for Europeans (and to be repeated for every group):

Anova Conditions

Inf. Stats

Normal Quantile plot for all values:

RuG

Anova Conditions

Inf. Stats

ANOVA assumptions:

- normal distribution per subgroup
- same variance in subgroups: least sd > one-half of greatest sd
- independent observations: watch out for test-retest situations!

Check differences in SD's! (some SPSS "computing")

		Valid	
Variable	Std Dev	N	Label
Europa	8.14	10	
America	6.61	10	
Africa	5.92	10	
Azie	6.90	10	

Visualizing Anova

Is there any significant difference in the means (of the groups being contrasted)?

Take care that boxplots sketch medians, not means.

Sketch of Anova

Inf. Stats

19

	Groups)
	1	2	3	4 = I	
	Eur.	Amer.	Afri.	Asia	
	:	:	:	:	I - number of groups
	$x_{1,j}$	$x_{2,j}$	$x_{3,j}$	$x_{4,j}$	
	:	:	:	:	
Sample Mean	$\bar{x_1}$	•••	$\overline{x_i}$	• • •	J

For any data point $x_{i,j}$

 $(x_{i,j} - \bar{x}) = (\bar{x}_i - \bar{x}) + (x_{i,j} - \bar{x}_i)$ total residue = group diff + "error"

ANOVA question: is it sensible to include the group (\bar{x}_i) ?

Two Variances*

Inf. Stats

A	AB	A^2
В	B^2	AB

Reminder of high-school algebra: $(a + b)^2 = a^2 + b^2 + 2ab$

RuG

21

Two Variances*

Inf. Stats

$$(a+b)^2 = a^2 + b^2 + 2ab$$

$$(x_{i,j} - \bar{x}) = (\bar{x}_i - \bar{x}) + (x_{i,j} - \bar{x}_i)$$

$$(x_{i,j} - \bar{x})^2 = (\bar{x}_i - \bar{x})^2 + (x_{i,j} - \bar{x}_i)^2 + 2(\bar{x}_i - \bar{x})(x_{i,j} - \bar{x}_i)$$

Sum over elements in *i*-th group:

$$\sum_{j=1}^{N_i} (x_{i,j} - \bar{x})^2 = \sum_{j=1}^{N_i} (\bar{x}_i - \bar{x})^2 + \sum_{j=1}^{N_i} (x_{i,j} - \bar{x}_i)^2 + \sum_{j=1}^{N_i} 2(\bar{x}_i - \bar{x})(x_{i,j} - \bar{x}_i)$$

Two Variances*

Inf. Stats

Note that this term must be zero:

$$\sum_{j=1}^{N_i} 2(\bar{x}_i - \bar{x})(x_{i,j} - \bar{x}_i)$$

Since:

$$\sum_{j=1}^{N_i} 2(\bar{x_i} - \bar{x})(x_{i,j} - \bar{x_i}) = 2(\bar{x_i} - \bar{x})\sum_{j=1}^{N_i} (x_{i,j} - \bar{x_i}) \text{ and}$$
$$\sum_{j=1}^{N_i} (x_{i,j} - \bar{x_i}) = 0$$

RuG

23

Sketch of Anova

Inf. Stats

$$\sum_{j=1}^{N_i} (x_{i,j} - \bar{x})^2 = \sum_{j=1}^{N_i} (\bar{x}_i - \bar{x})^2 + \sum_{j=1}^{N_i} (x_{i,j} - \bar{x}_i)^2 (+ \sum_{j=1}^{N_i} 2(\bar{x}_i - \bar{x})(x_{i,j} - \bar{x}_i) = 0)$$

Therefore:

$$\sum_{j=1}^{N_i} (x_{i,j} - \bar{x})^2 = \sum_{j=1}^{N_i} (\bar{x}_i - \bar{x})^2 + \sum_{j=1}^{N_i} (x_{i,j} - \bar{x}_i)^2$$

SST = SSG + SSE

Anova Terminology*

Inf. Stats

For any data point $x_{i,j}$

$(x_{i,j}-ar{x})$	=	$(ar{x_i}-ar{x})$	+	$(x_{i,j}-ar{x_i})$
total residue	=	group diff	+	"error"
$(x_{i,j}-ar{x})^2$	=	$(ar{x_i}-ar{x})^2$	+	$(x_{i,j}-ar{x_i})^2$
SST		SSG	+	SSE
Total Sum of Squares	=	Group Sum of Squares	+	Error Sum of Squares
and				
DFT		DFG	+	DFE
(n-1)	=	(I-1)	+	(n-I)
Total Degrees of Freedom	=	Group Degrees of Freedom	+	Error Degrees of Freedom

RuG

25

Note that

 $\frac{(x_{i,j}-\bar{x})^2}{n-1}$ is a variance, and likewise SST/DFT SSG/DFG (=MSG) & SSE/DFE (=MSE)

In ANOVA, we compare MSG (variance betwee groups) and MSE (variance within groups), i.e. we measure

$$F = \frac{MSG}{MSE}$$

If this is large, differences between groups overshadow differences within groups

Two Variances*

Inf. Stats

 $H_0: \ \mu_1 = \mu_2 = \mu_3 = \mu_4$

ANOVA: calculate MSG (σ^2 between groups) and MSE (σ^2 within groups), i.e. we measure

$$F = \frac{MSG}{MSE}$$

If this is large, differences between groups overshadow differences within groups

RuG

27

Two Variances*

Inf. Stats

1. estimate **pooled variance** of population (MSE)

$$\begin{array}{rcl} \frac{\sum_{i \in G} dF_i \cdot s_i^2}{\sum_{i \in G} dF_i} & = & \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2 + (n_3 - 1)s_3^2 + (n_4 - 1)s_4^2}{(n_1 - 1) + (n_2 - 1) + (n_3 - 1) + (n_4 - 1)} \\ & = & \frac{9 \cdot 66.22 + 9 \cdot 43.66 + 9 \cdot 34.99 + 9 \cdot 47.57}{9 + 9 + 9 + 9} \\ & = & \frac{595.98 + 392.94 + 314.91 + 428.13}{36} = 48.11 \end{array}$$

estimates variance in groups (using dF), aka within-groups estimate of variance

2. suppose H_0 true

- (a) then group have sample means μ , variance $\sigma^2/10$, (& sd $\sigma/\sqrt{10}$)
- (b) 4 means, 25.0, 21.9, 23.1, 21.3, where s = 1.63, $s^2 = 2.66$
- (c) s^2 estimate of $\sigma^2/10$, i.e., $10 \times s^2$ is estimate of $\sigma^2 (\approx s^2 = 26.6)$
- (d) this is **between-groups** variance (MSG)

Interpreting Estimates via ${\cal F}$

Inf. Stats

if H_0 true, then we have two variances:

- between-groups estimate s_b^2 (26.6) and
- within-groups estimate s_w^2 (48.11)

and their ratio $\frac{s_b^2}{s_w^2}$ follows an F distribution with (|groups| - 1)dF from s_b^2 (3), (n - 4)dF from s_w^2 (36)

in this case, $\frac{26.62}{48.11} = 0.55$

P(F(3, 30) > 2.92) = 0.05, (see tables), so no evidence of nonuniform behavior

ANOVA Summary

Inf. Stats

29

Summary to-date (exam results for NL voor anderstalige)

Source	dF	SS	MSS	F
between-g	3	79.9	26.6	F(3,36) = 0.55
within-g	36	1731.9	48.1	
Total	39	1811.8		

 $P(F(3, 30) > \underline{2.92}) = 0.05$, (see tables)

so no evidence of nonuniform behavior

SPSS Summary

Inf. Stats

	Variable	NL_NIVO	toets	nl.	voor	anderstalige
Ву	Variable	GROUP	gebied	l var	n afko	omst

Analysis of Variance

		Sum of	Mean	F	F
Source	D.F.	Squares	Squares	Ratio	Prob.
Between Groups	3	79.9	26.6	.55	.65
Within Groups	36	1731.9	48.1		
Total	39	1811.8			

RuG

31

Other Questions

Inf. Stats

ANOVA has H_0 : $\mu_1 = \mu_2 = \ldots = \mu_n$

But sometimes particular **contrasts** important —e.g., are Europeans better (in learning Dutch)?

Distinguish (in reporting results):

- prior contrasts questions asked before data collected and analyzed
- post-hoc (posterior) questions questions after collection and analysis "data-snooping" is exploratory, cannot contribute to hypothesis testing

Prior Contrasts

Inf. Stats

Questions asked **before** collection and analysis —e.g., are Europeans better (in learning Dutch)?

Another formulation:

is H_a : $\mu_{\text{Eur}} \neq (\mu_{\text{Am}} = \mu_{\text{Afr}} = \mu_{\text{Asia}})$ where H_0 : $\mu_{\text{Eur}} = (\mu_{\text{Am}} + \mu_{\text{Afr}} + \mu_{\text{Asia}})$

Reformulation:

$$0 = -\mu Eur + 0.33\mu Am + 0.33\mu Afr + 0.33\mu Asia$$

SPSS requires this (reformulated) version

RuG

Prior Contrasts in SPSS

Inf. Stats

33

- (the mean of) every group gets a coefficient
- sum of coefficients is zero
- a t-test is carried out, & two-tailed p value is reported (as usual)

		Eur	Am.	Afr.	Azie			
Contrast	1	-1.0	.3	.3	.3			
			Po	ooled V	ariance	Esti	mate	
		Value	e s	. Error	T Va	lue	D.F.	T Prob.
Contrast	1	-2.9	4	2.53	-1.	15	36	.260

No significant difference here (of course)

Note: prior contrasts are legitimate as hypothesis tests as long as they are formulated **before** collection and analysis

Post-hoc Questions

Assume H_0 rejected: which means are distinct?

Data-snooping problem: in large set, **some** distinctions are **likely** to be stat. significant

But we can still look (we just cannot claim to have tested the hypothesis)

We are asking whether $m_1 - m_2$ is significantly larger, we apply a variant of the t-test

The relevant sd is $\sqrt{MSE/n}$ (differences among scores), but there's a correction since we're looking at half the scores in any one comparison.

RuG

SD in Post-hoc ANOVA Questions

Inf. Stats

N.B. SD (among diff. in groups i and j):

$$\mathsf{sd}_{\delta} = \sqrt{\frac{\mathsf{MSE} \times \frac{N_i + N_j}{N}}{N_i + N_j}} = \sqrt{\frac{48.1 \times \frac{10 + 10}{40}}{10 + 10}} = \sqrt{\frac{\frac{48.1}{2}}{20}} = \sqrt{\frac{24.05}{20}} = 4.9/\sqrt{20}$$

and the t value is calculated as p/c where p is the desired significance level and c is number of comparisons.

For pairwise comparisons, $c = {I \choose 2}$

Post-hoc Questions in SPSS

SPSS Post-Hoc "Bonferroni" searches among **all** groupings for statistically significant ones.

---- ONEWAY ----Variable NL_NIVO toets nl. voor anderstalige By Variable GROUP gebied van afkomst Multiple Range Tests: Modified LSD (Bonferroni) test w. signif. level .05 The difference between two means is significant if MEAN(J)-MEAN(I) >= 4.9045 * RANGE * SQRT(1/N(I) + 1/N(J))with the following value(s) for RANGE: 3.95 - No two groups significantly different at .05 level Homogeneous Subsets (highest \& lowest means not sig. diff.) Group Azie America Africa Europa Mean 21.3 21.9 23.1 25.0

-but in this case there are none (of course)

RuG

How to Win at ANOVA

Inf. Stats

37

Inf. Stats

Note ways in which F ratio increases (becomes more significant)

$$F = \frac{MSG}{MSE}$$

- 1. MSG increases, differences in means grow larger
- 2. MSE decreases, overall variation grows smaller

Two Models for Grouped Data

Inf. Stats

$$egin{array}{rll} x_{i,j}&=&\mu+\epsilon_{i,j}\ x_{i,j}&=&\mu+lpha_i+\epsilon_{i,j} \end{array}$$

First model

- no group effect
- each datapoint represents error (ϵ) around a mean (μ)

Second model

- real group effect
- each datapoint represents error (ϵ) around an overall mean (μ) combined with a group adjustment (α_i)

ANOVA: is there sufficient evidence for α_i ?

39

Next: Two-way ANOVA