Analysis of Variance

ANOVA - ANalysis Of VAriance

- "generalized t-test"
- compares means of more than two groups
- fairly robust
- based on F distribution, compares variance
- two versions
- single ANOVA compare groups along 1 dim., e.g. school classes
- multiple ANOVA compare groups along >1 dim., e.g. school classes and sex

$\mathrm{R} u \mathrm{G}$

Analysis of Variance

Typical applications

- single ANOVA
compare time needed for lexical recognition in healthy adults, patients with Wernicke's aphasia, patients with Broca's aphasia
- multiple ANOVA
compare lexical recognition time in male and female in same three groups

Comparing Multiple Means

for two groups: t-test
testing at $p=0.05$ shows significance 1 time in 20 if there is no difference in population mean (effect of chance)
but suppose there are 7 groups, i.e., $\binom{7}{2}=21$ pairs
caution: several tests (on same data) run the risk of finding significance through sheer chance

Phony Significance through Multiple Tests

Example: Suppose you run three tests, always seeking a result significant at 0.05. The chance of finding this in one of the three is Bonferroni's family-wise α-level

$$
\begin{aligned}
\alpha_{F W} & =1-(1-\alpha)^{n} \\
& =1-(1-.05)^{3} \\
& =1-(.95)^{3} \\
& =1-.857 \\
& =0.143
\end{aligned}
$$

to guarantee a family-wise alpha of 0.05 , divide this by number of tests
Example: $0.05 / 3=0.017$ (set α at 0.017) -note: $0.983^{3} \approx 0.95$
ANOVA indicated, takes group effects into account

Analysis of Variance

based on F distribution
F distribution -Moore \& McCabe, § 7.3, pp.435-445
measures difference between two variances (variance $=\sigma^{2}$)

$$
F=\frac{s_{1}^{2}}{s_{2}^{2}}
$$

- always positive, since variance positive
- two degrees of freedom interesting, one for s_{1}, one for s_{2}
$\mathrm{R} u \mathrm{G}$

F-Test vs. F Distribution

$$
F=\frac{s_{1}^{2}}{s_{2}^{2}}
$$

- used in F-test
H_{0} : samples from same distribution ($s_{1}=s_{2}$)
H_{a} : samples from diff. distribution $\left(s_{1} \neq s_{2}\right)$
- value 1 indicates same variance
- values near 0 or $+\infty$ indicate diff.
- F-test very sensitive to deviations from normal
- ANOVA uses F distribution, but is different

ANOVA $\neq F$-test!

F Distribution*

Critical area for F-distribution at $p=0.05$

Note symmetry: $P\left(\frac{s_{1}^{2}}{s_{2}^{2}}>x\right)=P\left(\frac{s_{2}^{2}}{s_{1}^{2}}<\frac{1}{x}\right)$

RuG

F-test*

Example: height

group	sample size	mean	std. dev.
boys	16	180 cm	6 cm
girls	9	168	4

is the difference in std. dev. significant? $(\alpha=0.05)$
examine $F=\frac{s_{\text {boys }}^{2}}{s_{\text {girls }}^{2}}$
degrees of freedom: $s_{\text {boys }} \quad 16-1$
$s_{\text {girls }} \quad 9-1$

F-test Critical Area (for 2-Tailed Test)*

$$
\begin{array}{ll}
P(F(15,8)>f) & =\frac{\alpha}{2}=\frac{0.05}{2}=0.025 \\
P(F(15,8)<f) & =1-0.025 \\
P(F(15,8)<\underline{4.1}) & =0.975 \text { from M\&M, Tbl. E, p.706 } \\
& \text { (no values directly for } \left.P\left(F\left(\mathrm{df}_{1}, \mathrm{df}_{2}\right)>f\right)\right) \\
& =\frac{\alpha}{2}(=0.025) \\
P(F(15,8)<x) & \left.=P\left(F(8,15)>x^{\prime}\right)=\frac{\alpha}{2} \right\rvert\, x^{\prime}=\frac{1}{x} \\
& =P\left(F(8,15)>x^{\prime}\right)=0.025 \left\lvert\, x^{\prime}=\frac{1}{x}\right. \\
& =P(F(8,15)>\underline{3.2}) \text { (tables) } \\
P\left(F(15,8)<\frac{1}{3.2}\right) & =0.025 \\
P(F(15,8)<\underline{0.31}) & =0.025
\end{array}
$$

Reject H_{0} if $F<0.31$ or $F>4.1$
Here, $F=\frac{6^{2}}{4^{2}}=2.25$ (no evidence of diff. in distribution)

R u G

ANOVA

Analysis of Variance (ANOVA) most popular statistical test for numerical data

- several types
- single "one-way"
- multiple, i.e., "two-, three-, ...n-way"
- examines variation
- "between-groups" -sex, age,...
_ "within-subject", "within-groups" -overall
- automatically corrects for looking at several relationships (like Bonferroni correction)
- uses F test, where $F(n, m)$ fixes n typically at number of groups (less 1), m at number of subjects (data points) (less number of groups)

One-Way ANOVA to Analyse Function of Reviews

Example: Gisela Redeker identified three roles for literary book reviews in newspapers Taalbeheersing 21(4), 1999, 295-310:

- communicate emotional reactions, subjective opinions
- communicate expert opinion, objective facts
- motivate reading and purchasing of book

She investigated whether different reviewers emphasized different roles: Tom van Deel (Trouw), Arnold Heumakers (de Volkskrant), and Carel Peeters (Vrij Nederland)
stylistic elements indicate one of the three functions, e.g., ik, maar nee, ben ik bang, lijkt, eerlijk gezegd, ik bedoel,... indicate subjective opinions; logical connectives want, temeer dat, ... and quotes indicate an objective point of view; etc.
N.b. validating link between style and perspectives is important (see Redeker)

RuG

Redeker on Literary Criticism's Functions

Gisela Redeker investigates role of lit. criticism, asking whether different critics did not differ in the degree to which they emphasize one or another role.

Sample: reviews of the same books (by Hermans, Heijne and Mulisch), all published 1989-92. Similar in length.

Data: relative frequency of, e.g., reader-oriented elements (per 1, 000 words). We are comparing three averages, asking whether their is a difference.

Because she compared more than two averages ANOVA is needed.

Relative Frequency of Reader-Oriented Elements

elements	Critic		
	van Deel	Heumakers	Peeters
evocative	12.4	10.8	15.1
questions	3.2	0	6.1
dram.quotes	6.9	12.9	8.2
intensifiers	25.9	30.1	38.2
ref. to reader	3.6	5.7	11.7
Totals	26.0	29.8	39.7

$H_{0}: \mu_{1}=\mu_{2}=\mu_{3}$
$H_{a}: \mu_{1} \neq \mu_{2}$ or $\mu_{1} \neq \mu_{3}$ or $\mu_{2} \neq \mu_{3}$
Results: statistically significant difference ($p<0.02$)
Similar comparisons for "subjective" style, and "argumentative" style (differences present, not statistically significant)

RuG

One-Way ANOVA

Question: Are exam grades of four groups of foreign students "Nederlands voor anderstaligen" the same? More exactly, are four averages the same?

$$
\begin{array}{ll}
H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4} \\
H_{a}: & \mu_{1} \neq \mu_{2} \text { or } \mu_{1} \neq \mu_{3} \ldots \text { or } \mu_{3} \neq \mu_{4}
\end{array}
$$

i.e., alternative: at least one group has different mean
for the question of whether any particular pair is the same, the t-test is appropriate for testing whether all language groups are the same, pairwise t-tests will exaggerate differences (increase the chance of type I error).
we want to apply 1-way ANOVA

Data: Dutch Proficiency of Foreigners

Four groups of ten each:

Groups				
	Eur.	Amer.	Afri.	Asia
10	33	26	26	
	19	21	25	21
	\vdots	\vdots	\vdots	\vdots
	31	20	15	21
Mean	25.0	21.9	23.1	21.3
Samp. SD	8.14	6.61	5.92	6.90
Samp. Variance	66.22	43.66	34.99	47.57

Anova Conditions

Assumption: normal distribution per group, check with normal quantile plot, e.g., for Europeans (and to be repeated for every group):

Normal Q-Q Plot of toets nl. voor anderstalige

Anova Conditions

Normal Quantile plot for all values:
Normal Q-Q Plot of toets nl. voor anderstalige

Observed Value
RuG

Anova Conditions

ANOVA assumptions:

- normal distribution per subgroup
- same variance in subgroups: least sd $>$ one-half of greatest sd
- independent observations: watch out for test-retest situations!

Check differences in SD's! (some SPSS "computing")

		Valid	
Variable	Std Dev	N	Label
Europa	8.14	10	
America	6.61	10	
Africa	5.92	10	
Azie	6.90	10	

Is there any significant difference in the means (of the groups being contrasted)?

gebied van afkomst

Take care that boxplots sketch medians, not means.

Sketch of Anova

For any data point $x_{i, j}$

$$
\begin{array}{ccc}
\left(x_{i, j}-\bar{x}\right) & =\left(\bar{x}_{i}-\bar{x}\right)+ & \left(x_{i, j}-\bar{x}_{i}\right) \\
\text { total residue } & =\text { group diff }+\quad \text { "error" }
\end{array}
$$

ANOVA question: is it sensible to include the group $\left(\bar{x}_{i}\right)$?

Two Variances*

Reminder of high-school algebra: $(a+b)^{2}=a^{2}+b^{2}+2 a b$

RuG

Two Variances*

$$
\begin{aligned}
&(a+b)^{2}=a^{2}+b^{2}+2 a b \\
&\left(x_{i, j}-\bar{x}\right)=\left(\bar{x}_{i}-\bar{x}\right)+\left(x_{i, j}-\bar{x}_{i}\right) \\
&\left(x_{i, j}-\bar{x}\right)^{2}=\left(\bar{x}_{i}-\bar{x}\right)^{2}+\left(x_{i, j}-\bar{x}_{i}\right)^{2}+2\left(\bar{x}_{i}-\bar{x}\right)\left(x_{i, j}-\bar{x}_{i}\right)
\end{aligned}
$$

Sum over elements in i-th group:

$$
\begin{array}{r}
\sum_{j=1}^{N_{i}}\left(x_{i, j}-\bar{x}\right)^{2}=\sum_{j=1}^{N_{i}}\left(\bar{x}_{i}-\bar{x}\right)^{2}+\sum_{j=1}^{N_{i}}\left(x_{i, j}-\bar{x}_{i}\right)^{2} \\
+\sum_{j=1}^{N_{i}} 2\left(\bar{x}_{i}-\bar{x}\right)\left(x_{i, j}-\bar{x}_{i}\right)
\end{array}
$$

Two Variances*

Note that this term must be zero:

$$
\sum_{j=1}^{N_{i}} 2\left(\bar{x}_{i}-\bar{x}\right)\left(x_{i, j}-\bar{x}_{i}\right)
$$

Since:

$$
\begin{aligned}
& \sum_{j=1}^{N_{i}} 2\left(\bar{x}_{i}-\bar{x}\right)\left(x_{i, j}-\bar{x}_{i}\right)=2\left(\bar{x}_{i}-\bar{x}\right) \sum_{j=1}^{N_{i}}\left(x_{i, j}-\bar{x}_{i}\right) \text { and } \\
& \sum_{j=1}^{N_{i}}\left(x_{i, j}-\bar{x}_{i}\right)=0
\end{aligned}
$$

Sketch of Anova

$$
\begin{aligned}
& \sum_{j=1}^{N_{i}}\left(x_{i, j}-\bar{x}\right)^{2}=\sum_{j=1}^{N_{i}}\left(\bar{x}_{i}-\bar{x}\right)^{2}+\sum_{j=1}^{N_{i}}\left(x_{i, j}-\bar{x}_{i}\right)^{2} \\
&\left(+\sum_{j=1}^{N_{i}} 2\left(\bar{x}_{i}-\bar{x}\right)\left(x_{i, j}-\bar{x}_{i}\right)=0\right)
\end{aligned}
$$

Therefore:

$$
\begin{array}{lll}
\sum_{j=1}^{N_{i}}\left(x_{i, j}-\bar{x}\right)^{2} & =\sum_{j=1}^{N_{i}}\left(\bar{x}_{i}-\bar{x}\right)^{2} & +\sum_{j=1}^{N_{i}}\left(x_{i, j}-\bar{x}_{i}\right)^{2} \\
\text { SST } & =\begin{array}{c}
\text { ST }
\end{array}
\end{array}
$$

Anova Terminology*

For any data point $x_{i, j}$

$\left(x_{i, j}-\bar{x}\right)$	$=$	$\left(\bar{x}_{i}-\bar{x}\right)$	+	$\left(x_{i, j}-\bar{x}_{i}\right)$
total residue	$=$	group diff	+	"error"
$\left(x_{i, j}-\bar{x}\right)^{2}$	$=$	$\left(\bar{x}_{i}-\bar{x}\right)^{2}$	+	$\left(x_{i, j}-\bar{x}_{i}\right)^{2}$
SST		SSG	+	SSE
Total Sum of Squares	$=$	Group Sum of Squares	+	Error Sum of Squares
and				
DFT		DFG	+	DFE
$(n-1)$	$=$	$(I-1)$	+	$(n-I)$
Total Degrees of Freedom	$=$	Group Degrees of Freedom	+	Error Degrees of Freedom

RuG

Variances are Mean Squared Differences to Mean

Note that

$$
\begin{array}{rr}
\frac{\left(x_{i, j}-\bar{x}\right)^{2}}{n-1} & \text { is a variance, and likewise } \\
\text { SST/DFT } & \text { SSG/DFG }(=M S G) \quad \& \quad \text { SSE/DFE }(=M S E)
\end{array}
$$

In ANOVA, we compare MSG (variance betwee groups) and MSE (variance within groups), i.e. we measure

$$
F=\frac{M S G}{M S E}
$$

If this is large, differences between groups overshadow differences within groups

Two Variances*

$H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}$
ANOVA: calculate MSG (σ^{2} between groups) and MSE (σ^{2} within groups), i.e. we measure

$$
F=\frac{M S G}{M S E}
$$

If this is large, differences between groups overshadow differences within groups

RuG

Two Variances*

1. estimate pooled variance of population (MSE)

$$
\begin{aligned}
\frac{\sum_{i \in G} d F_{i} \cdot s_{i}^{2}}{\sum_{i \in G} d F_{i}} & =\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}+\left(n_{3}-1\right) s_{3}^{2}+\left(n_{4}-1\right) s_{4}^{2}}{\left(n_{1}-1\right)+\left(n_{2}-1\right)+\left(n_{3}-1\right)+\left(n_{4}-1\right)} \\
& =\frac{9 \cdot 66.22+9 \cdot 43.66+9.34 .99+9 \cdot 47.57}{9+9+9+9} \\
& =\frac{595.98+392.94+314.91+428.13}{36}=48.11
\end{aligned}
$$

estimates variance in groups (using $d F$), aka within-groups estimate of variance
2. suppose H_{0} true
(a) then group have sample means μ, variance $\sigma^{2} / 10$, (\& sd $\sigma / \sqrt{10}$)
(b) 4 means, 25.0, 21.9, 23.1, 21.3, where $s=1.63, s^{2}=2.66$
(c) s^{2} estimate of $\sigma^{2} / 10$, i.e., $10 \times s^{2}$ is estimate of $\sigma^{2}\left(\approx s^{2}=26.6\right)$
(d) this is between-groups variance (MSG)

Interpreting Estimates via F

if H_{0} true, then we have two variances:

- between-groups estimate s_{b}^{2} (26.6) and
- within-groups estimate $s_{w}^{2}(48.11)$
and their ratio $\frac{s_{b}^{2}}{s_{w}^{2}}$ follows an F distribution with
(|groups| - 1) dF from $s_{b}^{2}(3)$,
$(n-4) d F$ from $s_{w}^{2}(36)$
in this case, $\frac{26.62}{48.11}=0.55$
$P(F(3,30)>2.92)=0.05$, (see tables), so no evidence of nonuniform behavior

R u G

ANOVA Summary

Summary to-date (exam results for NL voor anderstalige)

Source	$d F$	$S S$	$M S S$	F
between-	3	79.9	26.6	$\mathrm{~F}(3,36)=0.55$
within-g	36	1731.9	48.1	
Total	39	1811.8		
$P(F(3,30)>$	$\underline{2.92})$	$=0.05$, (see tables)		

so no evidence of nonuniform behavior

SPSS Summary

Variable By Variable	NL_NIVO GROUP	toets nl. voor anderstalige gebied van afkomst			
		Analysis of Variance			
		Sum of	Mean	F	F
Source	D.F.	Squares	Squares	Ratio	Prob.
Between Groups	3	79.9	26.6	. 55	. 65
Within Groups	36	1731.9	48.1		
Total	39	1811.8			

RuG

Other Questions

$$
\text { ANOVA has } H_{0}: \mu_{1}=\mu_{2}=\ldots=\mu_{n}
$$

But sometimes particular contrasts important -e.g., are Europeans better (in learning Dutch)?

Distinguish (in reporting results):

- prior contrasts
questions asked before data collected and analyzed
- post-hoc (posterior) questions
questions after collection and analysis
"data-snooping" is exploratory, cannot contribute to hypothesis testing

Prior Contrasts

Questions asked before collection and analysis -e.g., are Europeans better (in learning Dutch)?

Another formulation:

$$
\begin{aligned}
& \text { is } H_{a}: \quad \mu_{\text {Eur }} \neq\left(\mu_{\mathrm{Am}}=\mu_{\mathrm{Afr}}=\mu_{\mathrm{Asia}}\right) \\
& \text { where } H_{0}: \mu_{\mathrm{Eur}}=\left(\mu_{\mathrm{Am}}+\mu_{\mathrm{Afr}}+\mu_{\mathrm{Asia}}\right)
\end{aligned}
$$

Reformulation:

$$
0=-\mu_{\mathrm{Eur}}+0.33 \mu_{\mathrm{Am}}+0.33 \mu_{\mathrm{Afr}}+0.33 \mu_{\mathrm{Asia}}
$$

SPSS requires this (reformulated) version

RuG

Prior Contrasts in SPSS

- (the mean of) every group gets a coefficient
- sum of coefficients is zero
- a t-test is carried out, \& two-tailed p value is reported (as usual)

| | | Eur | Am. | Afr. Azie | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Contrast | 1 | -1.0 | .3 | .3 | .3 |

No significant difference here (of course)
Note: prior contrasts are legitimate as hypothesis tests as long as they are formulated before collection and analysis

Post-hoc Questions

Assume H_{0} rejected: which means are distinct?
Data-snooping problem: in large set, some distinctions are likely to be stat. significant But we can still look (we just cannot claim to have tested the hypothesis)

We are asking whether $m_{1}-m_{2}$ is significantly larger, we apply a variant of the t-test
The relevant sd is $\sqrt{\overline{M S E / n}}$ (differences among scores), but there's a correction since we're looking at half the scores in any one comparison.

SD in Post-hoc ANOVA Questions

Inf. Stats
N.B. SD (among diff. in groups i and j):

$$
\operatorname{sd}_{\delta}=\sqrt{\frac{\mathrm{MSE} \times \frac{N_{i}+N_{j}}{N}}{N_{i}+N_{j}}}=\sqrt{\frac{48.1 \times \frac{10+10}{40}}{10+10}}=\sqrt{\frac{\frac{48.1}{2}}{20}}=\sqrt{\frac{24.05}{20}}=4.9 / \sqrt{20}
$$

and the t value is calculated as p / c where p is the desired significance level and c is number of comparisons.

For pairwise comparisons, $c=\binom{I}{2}$

Post-hoc Questions in SPSS

Inf. Stats
SPSS Post-Hoc "Bonferroni" searches among all groupings for statistically significant ones.

- - - - O N E W A Y

-but in this case there are none (of course)
$\mathrm{R} u \mathrm{G}$

How to Win at ANOVA

Inf. Stats

Note ways in which F ratio increases (becomes more significant)

$$
F=\frac{M S G}{M S E}
$$

1. MSG increases, differences in means grow larger
2. MSE decreases, overall variation grows smaller

Two Models for Grouped Data

$$
\begin{aligned}
& x_{i, j}=\mu+\epsilon_{i, j} \\
& x_{i, j}=\mu+\alpha_{i}+\epsilon_{i, j}
\end{aligned}
$$

First model

- no group effect
- each datapoint represents error (ϵ) around a mean (μ)

Second model

- real group effect
- each datapoint represents error (ϵ) around an overall mean (μ) combined with a group adjustment (α_{i})

ANOVA: is there sufficient evidence for α_{i} ?
RuG

