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Abstract

Stochastic Attribute Value Grammars
(SAVG) provide an attractive framework
for syntactic analysis, because they allow
the combination of linguistic sophistica-
tion with a principled treatment of am-
biguity. The paper introduces a wide-
coverage SAVG for Dutch, known as
Alpino, and we show how this SAVG can
be efficiently applied, using a beam search
algorithm to recover parses from a shared
parse forest. Unlike previous approaches,
this algorithm does not place strict locality
restrictions on the features used for dis-
ambiguation. Experimental results for a
number of different corpora suggest that
the SAVG framework is applicable for re-
alistically sized grammars and corpora.

1 Introduction

Alpino is a wide-coverage computational ana-
lyzer of Dutch which aims at accurate, full
parsing of unrestricted text, with coverage and
accuracy comparable to state-of-the-art parsers
for English. The SAVG framework is em-
ployed, because it allows linguistic sophistica-
tion in combination with a principled treatment
of pervasive ambiguity. Building on models
proposed by Abney (1997), Johnson et al. (1999),
Osborne (2000), Riezler et al. (2002), among oth-
ers, we show that the SAVG framework can be ap-
plied to realistically sized grammars and corpora.

A typical architecture for disambiguation uses
a probabilistic context-free rule system, where es-
timates of rule probabilities are derived from the
frequency with which rules have been encountered
in collections of parses which have been disam-
biguated by hand. However, this rule frequency
method cannot be used for disambiguating attribute-
value grammar parses. One solution is provided by
Maximum Entropy models, which have been suc-
cessfully applied in a variety fields, including disam-
biguation for attribute-value grammar formalisms
(Abney, 1997; Johnson et al., 1999; Riezler et al.,
2002; Osborne, 2000).

We need to construct a probability distribution p

over a set of parses X which are characterized by
features fi(x) which may encode arbitrary charac-
teristics of parses. We also have a set of sentences
W and a function Y (w) which partitions X into the
set of parses whose yield is w ∈W . The conditional
probability of parse x for sentence w is:

p(x|w; θ) =
exp (

∑
i θifi(x))

∑
y∈Y (w) exp (

∑
i θifi(y))

(1)

The value of fi(x) reflects the frequency of the ith
feature in a given parse x. The parameters θi (which
provide a weight for each feature) can be estimated
efficiently by maximizing the pseudo-likelihood of a
training corpus (Johnson et al., 1999; Malouf, 2002):

L(θ) =
∑

w

p̃(w)
∑

x∈Y (w)

p̃(x|w) log p(x|w; θ) (2)

The empirical probabilities p̃(w) and p̃(x|w) are de-
rived from the training data. Below, we present an
alternative for equation 2 in which a Gaussian prior



on the feature weights is assumed, to prevent over-
training.

An attractive property of maximum entropy mod-
els is that it is possible to integrate distinct but poten-
tially overlapping sources of information, and fea-
tures can be defined to take into account whatever
aspects of parse trees are considered important.

A potential drawback of maximum entropy mod-
els is that equation 2 requires access to all parses
of a given corpus sentence, which is inefficient be-
cause a sentence can have an exponential number
of parses. Two types of solution for this prob-
lem have been proposed. On the one hand, Ge-
man and Johnson (2002); Miyao and Tsujii (2002)
present approaches where training data consists of
parse forests (or feature forests), rather than sets of
parses. Such approaches enforce strong locality re-
quirements on features, whereas in our case features
can be arbitrary properties of parses. Geman and
Johnson (2002) suggest that it is always possible to
localize such arbitrary features in an attribute-value
grammar. For some of the features used in Alpino
this would dramatically complicate the grammar,
and have severe impacts on parsing efficiency. An-
other type of solution, on which our work is based,
is presented in Osborne (2000). Osborne shows that
it suffices to provide training with a representative
sample of Y (w).

A remaining issue is how the model, once it has
been learned from the training data, can be applied
efficiently. In the approaches of Geman and John-
son (2002); Miyao and Tsujii (2002) features are lo-
calized, and therefore an efficient dynamic program-
ming algorithm can be used to extract the best parse
from a parse forest. Below, we define a beam-search
generalization of such an algorithm, and we show
that the algorithm can be used efficiently to recover
the best parse even in the presence of non-local fea-
tures.

In section 2 we introduce the Alpino grammar,
and describe how dependency relations are used for
evaluation. Section 3 reviews the approach of Os-
borne, and describes how it has been adapted for the
Alpino grammar and corpora. Section 4 describes
which features are defined for disambiguation. Sec-
tion 5 presents the beam search algorithm to recover
the best parse from a parse forest. In section 6 a de-
tailed evaluation of the beam search algorithm and
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Figure 1: Example of CGN dependency structure for
the sentence Cathy zag hen wild zwaaien (Cathy saw
them wave wildly), with the associated set of depen-
dencies used for evaluation.

the full parsing system is presented.

2 Alpino Grammar

The Alpino grammar is a wide-coverage compu-
tational HPSG for Dutch. The grammar takes a
‘constructional’ approach, with rich lexical repre-
sentations and a large number of detailed, con-
struction specific rules (about 500). Both the lex-
icon and the rule component are organized in a
multiple-inheritance hierarchy. There is a large
lexicon (about 100,000 entries, with a number of
additional lexical rules to recognize dates, num-
bers and similar tokens) and a component to
treat unknown words, while lexical ambiguity is
reduced by applying a HMM-filter described in
Prins and van Noord (2004).

Dependency Structures and Evaluation. The
grammar has been augmented to represent depen-
dency structure, based on the guidelines of CGN
(Corpus of Spoken Dutch) (Oostdijk, 2000). An ex-
ample is given in figure 1. The example illustrates
the use of co-indexing to represent control relations.

The output of the parser is evaluated by compar-
ing the generated dependency structure for a cor-
pus sentence to the dependency structure in a tree-
bank annotated with a compatible CGN dependency
structure. For this comparison, we represent the de-
pendency structure as a set of dependency relations.
Comparing these sets, we count the number of re-



lations that are identical in the generated parse and
the stored structure. This approach is very similar
in spirit to the evaluation methodology advocated in
Briscoe et al. (2002), although there are differences
with respect to the actual dependencies (which we
inherit from the CGN guidelines).

Briscoe et al. compute precision and recall on
the basis of sets of dependencies, and f-score can
be used to combine both metrics in a single score.
Because f-score underestimates the importance of
missing dependencies, we prefer to express similar-
ity between dependency structures by concept accu-
racy (generalizing the word accuracy measure used
in speech recognition (Boros et al., 1996)) :

CAi = 1−
Di

f

max(Di
g, D

i
p)

Di
p is the number of relations produced by the parser

for sentence i, Dg is the number of relations in the
treebank parse, and Df is the number of incorrect
and missing relations produced by the parser.

To compute the accuracy of the parser on a cor-
pus, we can compute mean CAi. Given that shorter
sentences are typically much easier, a more informa-
tive measure is the total CA score:

CA = 1−

∑
i D

i
f

max(
∑

i D
i
g,

∑
i D

i
p)

To emphasize the performance of the stochastic
parse selection component, we also define error re-
duction:

CAκ =
CA− baseline CA

best CA− baseline CA

The lower bound baseline CA is the CA obtained
by a model which selects a random parse from the
set of parses. The upper bound best CA is the CA
of an ideal model that always picks the best possi-
ble parse. For most of the experiments below, we
present total CA, error reduction, and the more tra-
ditional f-score.

3 Training the model

The Alpino treebank1 contains dependency struc-
tures of all 7,100 sentences (about 145,000 words)

1http://www.let.rug.nl/˜vannoord/trees/
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Figure 2: Proportion of sentences for which the
parser finds (among all its parses) a fully correct de-
pendency structure, per sentence length.

of the newspaper (cdbl) part of the Eindhoven cor-
pus (Uit den Boogaard 1975).

While the treebank contains correct dependency
structures for the sentences in the corpus, these
structures deliberately abstract away from syntac-
tic details. If we want our disambiguation model to
be sensitive to arbitrary aspects of a parse, then the
training data should contain the full parse of each
sentence as produced by the grammar. To construct
these full parses, we use the grammar to parse a
given sentence of the training corpus, and then select
the parse(s) with the correct dependency structure.

This solution faces two problems. First, the parser
might not in all cases be able to produce a parse
with the correct dependency structure. Figure 2 il-
lustrates this for the Alpino grammar and treebank.
For longer sentences, a considerable proportion can-
not be parsed fully correctly. The second problem
is that, for longer sentences, it might take too long
to find the correct parse even if it exists. This is il-
lustrated in figure 3. For sentences with more than
20 tokens, it becomes unfeasible to enumerate all
parses.

Both problems are addressed in Osborne (2000).
Osborne suggests mapping the accuracy of a given
parse to the probability p̃(x|w) of that parse in the
training data. Thus, rather than adding a parse if
its corresponding dependency structure is correct,
and ignoring a parse otherwise, we add a parse to
the training data with an associated probability that
is determined by the quality of that parse, where
the quality of a parse is given by the concept accu-
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Figure 3: Mean number of parses per sentence
length.

racy of its dependency structure. Thus, if a parse
has a CA of 85%, we add the parse to the training
data marked with a weight of 0.85. Next, each sen-
tence is assigned a weight proportional to the sum
of the weights of its parses. This gives sentences
with higher quality parses more weight than those
for which the parser was unable to find a parse. Fi-
nally, these parse and sentence weights are renor-
malized so that p̃(w) and p̃(x|w) are proper distri-
butions, and the parameters of the model are then
selected to maximize the pseudo-likelihood (2).

Secondly, Osborne suggests that we need not have
access to all parses for a given sentence, but that
an “informative sample” is sufficient. The feature
weights chosen by maximizing (2) depend only on
the expected values of the features in the training
data. So, any sub-sample of the parses in the training
data which yields unbiased estimates of the feature
expectations should result in as accurate a model as
the complete set of parses. In initial experiments, we
simply used the first n parses for a given sentence
(we typically used n = 250, to fit within the con-
straints of a 2Gb core memory system). Since the
order of parses is not randomized, somewhat better
results can be obtained if we collect m >> n sen-
tences (say m = 1000), from which we then take a
random sample of size n. Due to memory problems,
three sentences had to be removed from this corpus.
In total, 3,270,554 parses were found for 7,136 sen-
tences. For 2,614 sentences, the system found the
maximum number of 1,000 parses. The lower bound
baseline CA for this set is 58.52%, and the upper
bound is 88.29%. Note that the upper bound de-
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Figure 4: Error reduction versus the maximum num-
ber of parses per sentence used for training. Results
obtained using ten-fold cross-validation on Alpino
treebank.

pends strongly on the maximum number of parses.
In figure 4 the relative performance of models

is shown for different values of n. The models
all use the same features, feature frequency cutoff,
and prior; details are described below. The result
of Osborne is confirmed that concentrating on the
best parses (results labeled ‘best’) only hurts perfor-
mance. The results labeled ‘no quality’ are obtained
if all best parses are assigned a score of 1, and a ran-
dom selection of other parses is assigned a score of
0.

4 Feature Selection

Feature Templates. In this section, we describe
the features that the disambiguation model uses to
distinguish between parses. These features are orga-
nized by means of feature templates. The templates
are listed in table 1.

Template r1 signals the application of a particu-
lar grammar rule, given by the rule identifier Rule.
The r2 template indicates that the Int’th daughter
of a node constructed by rule RuleM is constructed
by rule RuleD. In template mf, Cat1 and Cat2 are
atomic identifiers for major categories. For noun
phrases, the identifiers represent case marking and
whether the NP is headed by a proper noun, pro-
noun, or common noun. An mf feature indicates that
Cat1 precedes Cat2 in the mittelfeld, i.e., left of the
head in a verb-phrase. This feature is useful, for in-
stance, to learn that, for common noun phrases, the
indirect object tends to precede the direct object.



r1(Rule) 324
r2(RuleM,Int,RuleD) 2679
mf(Cat1,Cat2) 727
f1(Pos) 451
f2(Word,Pos) 2553
dep23(ArgPos,Rel,Pos) 478
dep34(ArgWord,ArgPos,Rel,Pos) 6241
dep35(ArgWord,ArgPos,Rel,Word,Pos) 6880
h1(Ident) 44
misc boolean features 12

Table 1: Feature templates and the number of fea-
tures instantiating this template, for the final model.

The template f1(Pos) represents a word in the
derivation with POS-tag Pos. Template f2 represents
the fact that Word was assigned POS-tag Pos. The
dep23, dep34 and dep35 templates refer to the de-
pendency structure, where Pos, ArgPos are simpli-
fied POS-tags, Rel is a dependency relation (sub-
ject, object, determiner, modifier, . . . ), and Word,
ArgWord are base forms of words. There are about
20 different simplified POS-tags such as noun, verb,
prep, etc. dep23 indicates that a word with POS-
tag Pos has a dependent of type Rel, headed by a
word with POS-tag ArgPos. Such a feature makes
it possible to learn that, typically, verbs have nouns
as objects. The dep34 template explicitly includes
the base form of the head word of the argument.
Such features make it possible to learn that, typi-
cally, prepositional phrases headed by ’of’ are at-
tached to nouns. In the dep35 template the head
word itself is part of the feature too.

The h1 template indicates that the analysis con-
tains a word with a POS-tag proposed by a particu-
lar unknown word heuristic. In addition, there are a
number of boolean features. One such feature indi-
cates whether or not, in a coordinated structure, the
conjuncts are parallel. The heuristic used to deter-
mine parallelism simply is: conjunction is parallel
if each conjunct is constructed by the same rule or
if each conjunct is a lexical entry. Another feature
indicates whether a temporal noun is used adver-
bially or nominally. Three other boolean features are
used to indicate whether in an extraction construc-
tion (wh-question, topicalization, relative clause),
the subject is extracted or not, and whether such an
extraction is local or not. Another boolean feature

cutoff # features F-score CA% CAκ%

- 285,497 78.80 77.69 78.75
1 35,850 78.70 77.59 78.35
2 20,391 78.65 77.53 78.14
3 15,546 78.60 77.49 77.97
5 9,619 78.58 77.47 77.90

10 5,748 78.53 77.40 77.65
20 3,658 78.33 77.21 76.92
50 2,120 78.05 76.94 75.88

Table 2: The effect of removing infrequent fea-
tures. The first column indicates the cutoff thresh-
old. These models use a Gaussian prior with
σ2 = 1000. Results obtained using ten-fold cross-
validation on Alpino treebank.

indicates whether an extraposed relative clause mod-
ifies the closest NP to the left, or not.

Frequency cutoff. The templates generate a po-
tentially huge number of features, which we reduce
by deleting features whose frequency falls below a
cutoff point c. A feature f is relevant for a sen-
tence w in the training data, if there are two parses
y1, y2 ∈ Y (w) such that f(y1) 6= f(y2) (the fre-
quency of that feature must be different for at least
one pair of parses). We take a feature into account if
it is relevant for more than c sentences. The effects
of various cutoffs are given in Table 2. As can be
observed, using a small subset of all available fea-
tures does not hurt performance very much. In the
remaining experiments, we have used a frequency
cutoff of 2.

Prior for feature weights. Ratnaparkhi (1998)
suggests that frequency cutoff might improve mod-
els by reducing over-fitting. However, a more effec-
tive countermeasure against over-fitting is the use of
a penalized likelihood function for parameter esti-
mation (Chen and Rosenfeld, 1999; Johnson et al.,
1999). Rather than maximizing the likelihood (2) to
estimate the parameters θi, we instead maximize a
penalized likelihood:

L′(θ) = L(θ)−
1

2σ2

∑

i

θ2
i

This has the effect of imposing a Gaussian prior dis-
tribution on the parameter values with a mean of



σ2 F-score CA% CAκ% iterations

1 73.41 72.07 57.46 5
10 76.48 75.26 69.52 12

100 78.01 76.89 75.65 30
1000 78.65 77.53 78.14 80

10000 78.42 77.32 77.34 160
100000 77.81 76.72 75.05 250

none 77.52 76.43 73.97 275

Table 3: The effect of Gaussian prior. These models
use frequency cutoff of 2. Results obtained using
ten-fold cross-validation on Alpino treebank.

zero and a variance of σ2, which in turn penalizes
extreme feature values and tends to reduce over-
fitting. The variance σ2 is a smoothing parameter
which sets the relative influence of the likelihood
and prior: larger values of σ2 results in less smooth-
ing of the parameters θi. The results of using a Gaus-
sian prior are given in Table 3. The prior can im-
prove accuracy and in addition often makes training
converge faster. In further experiments, a value of
σ2 = 1000 is assumed.

In summary, a Gaussian prior is used for more ac-
curate models, and a feature frequency cutoff is used
for more compact models.

Comparison. The disambiguation model solves
more than 78% of the disambiguation problem (by
ten-fold cross-validation on the Alpino treebank). It
is hard to directly compare these results with others,
due to differences in language, grammar, training
data and test data. Riezler et al. (2002) report error
reductions between 32% and 36%. Osborne (2000)
evaluates the model rather crudely by comparing
how often the model picks out the best possible
parse (ignoring the quality of that parse itself, and
ignoring the number of parses).

5 Recovery of best parse

The construction of a dependency structure on the
basis of some input proceeds in a number of steps.
After lexical analysis, a parse forest is constructed
using a left-corner parser. If no single analysis of
the input is possible, the parser constructs a parse
forest for a sequence of analyses (van Noord, 1997).

From the parse forest, the best parse must be se-

r1: s→ np vp r2: vp→ vp pp r3: np→ n
r4: np→ det n r5: np→ np pp r6: pp→ p np
r7: vp→ v np

l1: a→ ”I” l2: v→ ”see” l3: det→ ”a”

l4: n→ ”man” l5: p→ ”at” l6: n→ ”home”

Figure 5: Sample grammar

lected, based on the disambiguation model described
in the previous section. In order to select the best
parse from a parse forest, we assume a parse evalua-
tion function which assigns a score to each parse.
The parse evaluation function simply applies the
log-linear model described in previous sections, by
counting the frequency of each of the features. The
frequency of each feature is then multiplied with the
corresponding weight, and finally these products are
then all summed to arrive at a number indicating the
(relative) quality of the parse.

A naive algorithm constructs all possible parses,
assigns each one a score, and then selects the best
one. In the approach we take here, a parse is selected
from the parse forest by a best-first search. This re-
quires the parse evaluation function to be extended
to partial parses.

The left-corner parser constructs a parse forest,
using the technique explained in detail in section 4
of van Noord (1997). In this approach, the parse for-
est is a tree substitution grammar, which derives ex-
actly all derivation trees of the input sentence. Each
tree in the tree substitution grammar is a left-corner
spine. An example should clarify this.

Example. Consider the simple grammar and lexi-
con presented in figure 5, where terminals are writ-
ten within double quotes, and each rule is prefixed
by a rule identifier. We use a context-free gram-
mar for ease of exposition, but since we are actually
constructing derivation trees, rather than parse trees,
the technique immediately generalizes for attribute-
value grammars.

The sentence I see a man at home has the two
parse trees and corresponding derivation trees given
in figure 6. The left-corner parser constructs the
parse forest given in figure 7. Such a parse forest
consists of a set of pairs, where each pair is an in-
dex and a set of partial derivation trees (left-corner
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Figure 6: Two parse trees and corresponding deriva-
tion trees for I see a man at home

spines). Each left-corner spine is a tree, where all
non-terminal nodes as well as the left-most terminal
node are rule names, and where all other terminal
nodes are indexes. Full derivation trees can be con-
structed by composing the partial derivation trees to-
gether, with the condition that a node labeled by an
index should be substituted by a partial derivation
tree associated with that index. The index associ-
ated with the start symbol is given (in the example,
the start index is nt0).

Parse recovery. An algorithm which recovers a
derivation tree for a given index is given as follows.
It is closely related to the algorithm presented in
Geman and Johnson (2002) for selecting best parses
from LFG packed representations.

RECOVER(start , indexes)

1 for each i in TOP-SORT(indexes )
2 do for each sub ∈ i .trees

3 do I ← indexes in sub

4 for each j ∈ I

5 do SUBS(j, j .best )
6 if sub is better than i .best

7 then i .best ← sub

8 return start .best

The algorithm first topologically sorts the in-
dexes, where an index i precedes j if a tree asso-

ciated with i is required in a possible derivation tree
for j (line 1). The algorithm iterates over the in-
dexes in this ordering, constructing larger derivation
trees on the basis of derivation trees created earlier.
To create a derivation tree for a specific index i,
the algorithm iterates over all trees associated with i

(line 2). In such a tree, there are a number of nodes
labeled with an index. For each of these, the cor-
responding best derivation tree (discovered in a pre-
vious iteration) is substituted at the corresponding
node (line 5). Then, a score is computed for the re-
sulting tree. This involves mapping the derivation
tree to a full parse tree, counting the occurrences of
all features, multiplying these counts with the corre-
sponding feature weights, and summing the results.
If the new tree has a higher score than the best tree
associated with i so far, then the tree is stored. Fi-
nally, the algorithm returns the best parse associated
with the start node.

In order to be able to guarantee that this search
procedure indeed finds the best parse, a monotonic-
ity requirement should apply to the parse evalua-
tion function. However, instead of relying on such
a requirement (some non-local features discussed in
the previous section would indeed violate this re-
quirement), we implemented a variant of a best-first
search algorithm in such a way that for each state in
the search space, we maintain the b best candidates,
where b is a small integer (the beam). If the beam is
decreased, then we run a larger risk of missing the
best parse (but the result will typically still be a rel-
atively ‘good’ parse); if the beam is increased, then
the amount of computation increases as well. The
definition is presented in figure 8.

The algorithm works in a similar fashion as be-
fore, but instead of keeping track of the single best
parse for each index, we maintain at most b best
parses for each index. Because an index is associ-
ated with a set of trees, the algorithm iterates over
all combinations of sub-trees (line 4), and then sub-
stitutes each one of those sub-trees (line 5). The pro-
cedure ADD will add a given tree t to a set of trees T

if either there are less than b trees in T , or t is better
than at least one of the trees in T . In the latter case,
the worst scoring tree is removed from T .

Comparison. Rather than computing the parse-
forest first, and then compute the best parse from this
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Figure 7: The parse forest of I see a man at home. The parse forest consists of a number of indexes associated
with sets of partial derivation trees. The derivation trees are left-corner spines where all non-terminal nodes
and the left-most terminal node are rule-names. Each of the other terminal nodes is labeled with an index,
indicating that one of the partial derivation trees associated with that index can be plugged in here.

RECOVER-WITH-BEAM(start , indexes)

1 for each i in TOP-SORT(indexes )
2 do for each sub ∈ i .trees

3 do I1 . . . Ik ← indexes in sub

4 for each (t1 . . . tk) ∈
I1. best × . . . × Ik. best

5 do for i← 1 to k

6 do SUBS(Ii, ti)
7 ADD(b,best ,sub.best )
8 return best element of start .best

Figure 8: algorithm RECOVER-WITH-BEAM

forest, one might attempt to apply the disambigua-
tion component immediately during parsing. First
note, though, that a naive application of this idea is
problematic for attribute-value grammars. Even if a
particular component of a parse has a very low score,
it might be that attribute value constraints, enforced
by the context of that component parse, will rule out
all competing, better scoring parses. Therefore, we
should only eliminate a candidate component parse,
if there are better parses with the same span and
the same attribute-value structure. But if the parser
builds a parse-forest, and uses packing, then it will
in such cases continue parsing with a single parse
anyway.

In Nederhof (2003) two types of algorithm are
discussed to find the best parse. The first type of
algorithm is closely related to Dijkstra’s algorithm
to find the shortest path in a directed graph; its
application to probabilistic context-free grammars
is known as Knuth’s algorithm. It consists of an
agenda-driven, chart parsing algorithm in which the
agenda is ordered in such a way that promising items

are processed before others. This type of algorithm
is applicable provided the scores are superior. This
roughly implies that:

• the score of a parse is equal or lower than the
score of each of its components

• if a component c1 has a higher score than c2,
then it should be the case that all parses which
contain c1 have a higher score than all corre-
sponding parses which have c2 instead of c1.

Both conditions are not applicable. The first condi-
tion is violated because the maxent feature weights
are logits rather than log probabilities, and so can
be either positive or negative. The second condition
is violated, in general, since we allow various non-
local features.

The second type of algorithm discussed by Neder-
hof is closely related to the Viterbi algorithm, and to
the DAG-SHORTEST-PATHS algorithm as described
in Cormen et al. (1990), as well as to the algorithm
for finding the best parse in a parse forest presented
in Geman and Johnson (2002). This type of algo-
rithm works provided the second condition above
applies. Our algorithm can be described as a gen-
eralization of the second type. The generalization
consists in allowing the b best candidates for each
component, to compensate for the effect of global
features which violate condition 2 above.

6 Experimental Results

Beam Search. In table 4 the effect of various val-
ues for b is presented for a number of different tree-
banks. In the first columns, we list the results on a
random sample of sentences from the treebank of up
to fifteen words. In the next few columns, we list
the result on a random sample of sentences from the



beam ≤ 15 ≤ 30 all

F-score CA% CPU out F-score CA% CPU out F-score CA% CPU out

1 90.88 90.33 0.66 0 87.47 86.69 0.23 0 85.71 84.82 0.14 0
2 91.08 90.62 0.72 0 87.84 87.08 0.28 0 86.06 85.18 0.18 0
4 91.17 90.71 0.79 0 87.94 87.19 0.37 0 86.23 85.36 0.28 0
8 91.39 90.85 0.87 0 88.07 87.32 0.50 0 86.37 85.49 0.39 0

16 91.39 90.85 0.98 0 88.13 87.37 0.70 0 86.49 85.60 0.56 0
32 91.39 90.85 1.17 0 87.96 87.11 1.04 1 86.21 84.87 0.90 4
∞ 91.39 90.85 1 0 84.60 80.16 1 32 77.99 69.59 1 74

Table 4: Effect of beam-size on accuracy and efficiency of parse selection. Sentences from random 10% of
Alpino Treebank. The left part of the table displays results for sentences up to 15 words; the central part for
sentences up to 30 words; and the right part for all sentences. We normalize the parse selection times with
respect to the variant with b =∞ (CPU=1), ignoring sentences for which the algorithm ran out of memory.

treebank of up to thirty words. In the final columns,
a random sample of the treebank is used without a
restriction on sentence length. Per column, we list
the F-score, concept accuracy, CPU requirements,
and the number of sentences for which the parser
could not find an analysis due to memory limitations
(in such cases the accuracy obviously is dropped too,
since no correct result is constructed). As can be
seen from the table, increasing the beam size slightly
improves results, but for larger values memory prob-
lems cause a severe drop of accuracy. Also, the
beam can remain rather small. This is probably due
to the fact that most of our features are rather local
in nature, as well as to the fact that the basic units
of the parse forest are relatively large in size. Cur-
rently, Alpino uses b = 4 by default.

Full System. In table 5, the accuracy of the full
system on the Alpino treebank is given in the first
row, using ten-fold cross-validation. The accuracy is
much higher than in tables 2 and 3, because we are
not limited anymore to the maximum of 1000 parses
per sentence. Error reduction on the Alpino treebank
is lower for the full system than reported in those
earlier tables, because in the full system the POS-
tagger of Prins and van Noord (2004) is employed
to reduce lexical ambiguities, which solves many of
the ‘easy’ disambiguation decisions.

The Alpino treebank is, strictly speaking, a devel-
opment set on which we optimized both the gram-
mar and lexicon somewhat, as well as the various

tuning parameters for training (frequency cut-off,
Gaussian prior, beam size). Therefore, we provide
results on two other test sets as well (using the model
trained on the Alpino treebank). To this end, we an-
notated the first 500 sentences of the Trouw 2001
newspaper, as found in the TwNC newspaper cor-
pus.2 Another test set consists of all the Dutch ques-
tions from the CLEF Question Answering competi-
tion. As can be seen in the table, the results on these
test sets are even better. A potential explanation is
the fact that these sets are easier because of shorter
mean sentence length.

Note that in these experiments, all sentences re-
ceive at least one analysis (except for one sentence
of the Alpino set, for which the parser ran out of
memory), because if no single analysis of the input
is possible, a sequence of partial analyses will be
constructed.

Wide coverage parsing is understood here in
the sense that not only the parser should produce
some parse for arbitrary, free, input text, but more-
over should produce the correct or mostly correct
parse. We suggest our results warrant the conclusion
that the SAVG framework is applicable for wide-
coverage parsing in this sense. Recently, Alpino has
indeed been used for wide-coverage parsing in the
context of question answering, word-sense disam-
biguation, pronoun resolution, preparation of train-
ing material for enhanced POS-tagging and cor-

2http://wwwhome.cs.utwente.nl/˜druid/
TwNC/TwNC-main.html



corpus sents length F-sc CA% CAκ%

Alpino 7136 19.7 85.78 84.66 72.30
CLEF 446 11.3 90.99 88.68 74.04
Trouw 500 17.0 88.94 87.86 80.51

Table 5: Accuracy on development set and test sets
for full system. The table lists the number of sen-
tences, mean sentence length, F-score, CA and error
reduction.

pus linguistics (Villada Moirón, 2004; Prins, 2004;
Bouma, 2003; Bouma, 2004).
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