
Finite State Transducers with Predicates and Identities

Gertjan van Noord and Dale Gerdemann

Abstract. An extension to finite state transducers is presented, in which atomic
symbols are replaced by arbitrary predicates over symbols. The extension is mo-
tivated by applications in natural language processing (but may be more widely
applicable) as well as by the observation that transducers with predicates generally
have fewer states and fewer transitions.

Although the extension is fairly trivial for finite state acceptors, the introduction
of predicates is more interesting for transducers. It is shown how various operations
on transducers (e.g. composition) can be implemented, as well as how the transducer
determinization algorithm can be generalized for predicate-augmented finite state
transducers.

1. Introduction

Finite automata are widely used in natural language processing. We
present an extension to finite automata, in which atomic symbols are
replaced by arbitrary predicates over symbols. Although the extension
is fairly trivial for finite state acceptors, the introduction of predicates
is more interesting for transducers. Below, we show how various oper-
ations on such extended acceptors and transducers can be defined and
implemented. But first the extension is motivated as follows.

1.1. Predicates

In natural language processing, it is often more natural to think of
symbols in terms of predicates or classes. The linguistic principle of
Community dictates that similar segments behave similarly. Predicates
are a means to express this similarity. In computational phonology
it is thus more natural to talk about vowels and consonants rather
than enumerate each of the phonemes in these classes. Phonological
generalizations typically refer to predicates such as fricative, nasal,
voiced and very seldomly to individual phonemes directly. Therefore,
in finite state computational phonology, some have proposed finite
state automata in which transitions are associated with sets of symbols
(Walther, 1999; Bird and Ellison, 1994; Eisner, 1997; Walther, 2000).

As a further piece of motivation for the introduction of predicates,
consider the unknown symbol regular expression operator, typically
written ?, as it is available in some regular expression compilers (Kart-
tunen et al., 1996; van Noord and Gerdemann, 1999). An obvious

c© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

vannoord-gerdemann.tex; 8/05/2003; 15:57; p.1

2

implementation will expand the ? operator into a set of transitions for
each of the symbols in the alphabet Σ. In our proposal, the ? operator
will be expanded into a single transition with an associated predicate
which is true for all symbols; this has the advantage that Σ need not be
explicitly defined. As a consequence, there is no need to assume that
the alphabet is finite. Such considerations become important for appli-
cations with large alphabets, such as the Unicode alphabet. Even larger
alphabets may surface in natural language processing applications in
which the symbols are words. Typical electronic dictionaries have at
least 200K words and even this large size alphabet is not enough to han-
dle unrestricted texts. Realistically, robust syntactic parsing requires an
infinite alphabet.1

Below, we define predicate augmented finite state automata more
precisely; for now it suffices to assume that such automata are similar
to classical finite state automata, except that we have predicates instead
of symbols.

1.2. Notation

The predicates used in this paper are predicates on Σ. So, each pred-
icate π is a total function such that for each σ ∈ Σ, π(Σ) is either
true or false. If π is the characteristic function of the set S ⊆ Σ, i.e.,
S = {σ ∈ Σ|π(σ)}, then in transition diagrams we often write S instead
of π. As usual, if S is a set, then the complement of S is written S.
Moreover, if S is of the form {c}, i.e., a singleton set, then we abbreviate
this predicate simply as c. As a special case, Σ is written as ?. In
transducers, a transition is associated both with an input predicate πd

as well as with an output predicate πr; such a pair of predicates is
written as πd : πr.

Below, we will often refer to states in automata using p, q, and r.
For examples of symbols we use characters from the beginning of the
alphabet in typewriter font such as a, b, c; for sequences of symbols
we use characters w, x, y, z. Typically, we use σ as a variable that takes
a symbol as its value. Examples of predicates are written in small caps,
using characters from the beginning of the alphabet, like a, b, c. A
variable that takes a predicate as its value is written π. A sequence
of predicates is often written using Greek symbols φ, ψ. Finally, note
that the empty sequence is written ε, for either the empty sequence of
symbols or the empty sequence of predicates.

1 If infinite alphabets are allowed, then certain non-regular languages such as
{0, 1, . . .}∗ can be recognized. A similar generalization of regular languages is used
by (Perrin, 1990).

vannoord-gerdemann.tex; 8/05/2003; 15:57; p.2

3

1.3. Identities

Consider the following phonological rule (from (Karttunen, 1991)) in
which an underlying nasal segment N is mapped either to an m (if
followed by a p) or an n:

N → m/ p; elsewhere n

A transducer implementing this phonological rule can be illustrated
as follows:

0

1

2

N

N:n

N:m

{N, p}

N:n

N:m

p

This transducer contains a single start state 0, and two final states,
0 and 1. First consider the cyclic transition on state 0, labeled by the
predicate N, i.e., the predicate which is true of all symbols except the
symbol N. As long as the transducer does not read this special nasal
segment N, it remains in state 0 and simply copies its input. Upon
reading an N, the transducer non-deterministically moves to state 1 or
state 2, writing out an n or m respectively. In the first case, the next
input symbol cannot be a p; in the second case the next input symbol
must be a p.

Note that the transition from state 2 to state 0 simply contains
a p. The idea here is that if the input and output symbol must be
identical, only a single predicate is written for that transition. The
same abbreviation is used for the transition from 1 to 0, as well as
over the looping transition from 0 to 0 with predicate N. The intention
here of course is that every incoming segment which is not equal to N

should be mapped to itself in the output. However, note that this is
quite different from the pair of predicates N : N. The latter would map
an incoming symbol to an arbitrary output symbol, as long as both
symbols are unequal to N.

The example illustrates an important point: if predicates are in-
troduced in transducers, then for typical examples we must also be

vannoord-gerdemann.tex; 8/05/2003; 15:57; p.3

4

able to express the identity of input and output of a transition. In this
example, if there were no way to express the identity between input and
output, then we would be forced to have multiple transitions such as
a:a, b:b, c:c, d:d for all of the relevant symbols; the introduction
of predicates can be exploited in transducers only if identity between
input and output can be expressed as well.

Expressing identity between input and output is crucial. This notion
of identity can be seen as a consequence of the linguistic principle
of Faithfulness: corresponding input and output segments tend to be
identical. A similar argument is expressed in (Gildea and Jurafsky,
1996). Indeed, many interesting transducers are of the type ‘change
all occurrences of α in some specific context into β, and pass on the
rest of the input unaltered’. The various replacement and ‘local ex-
tension’ operators all produce transducers of this kind (Karttunen,
1995; Roche and Schabes, 1995; Karttunen, 1996; Kempe and Kart-
tunen, 1996; Gerdemann and van Noord, 1999a). Identities can be seen
as a limited case of backreferencing. Backreferencing is an extension
of regular expressions widely used in editors, scripting languages and
other tools. A limited version of finite-state calculus backreferences is
discussed in (Gerdemann and van Noord, 1999b).

1.4. Smaller Automata

Another motivation for the introduction of predicates is the observa-
tion that the resulting automata are smaller. The size of automata is
an important problem in practice (Daciuk, 1998; Kiraz, 1999). With
predicates, potentially large sets of transitions are replaced by a single
transition. For example, if an automaton has transitions from state p to
state q over all ASCII symbols except for a symbol a, for which there is
a transition from p to r, then there are 128 transitions leaving p. Using
predicates, there are only two transitions leaving p (one labeled by a
predicate {a}, and one labeled by {a}). But note that similar space
reductions can be achieved using failure transitions and related tech-
niques (Kowaltowski et al., 1993; Kiraz, 1999; Daciuk, 2000; Klarlund,
1998).

More interesting space reductions can be achieved in the case of
transducers. The introduction of predicates with identity not only leads
to transducers with fewer transitions, but also to transducers that have
fewer states. This observation will be discussed in section 3.7. In sec-
tion 4.2 we show that this space reduction is achieved for linguistically
relevant examples too.

The implementation of various operations is faster for smaller
automata. Although the implementation of some of the relevant op-

vannoord-gerdemann.tex; 8/05/2003; 15:57; p.4

5

erations becomes somewhat more complex, it is our experience that in
almost all cases overall performance improves considerably.

1.5. Determinization of non-functional transducers

We show below that the introduction of predicates has the interesting
effect that certain non-functional transducers can be treated by the
transducer determinization algorithm (Oncina et al., 1993; Reutenauer,
1993; Mohri, 1996; Roche and Schabes, 1995; Roche and Schabes, 1997).
Therefore a larger class of transductions can be implemented efficiently.

1.6. Previous Work

A possible implementation of the question mark operator is the intro-
duction of a special symbol ? in finite state automata.2 This special
symbol is understood as ‘any alphabet symbol not mentioned in the
automaton’, in order to translate examples such as ?-a. This technique
requires that each question mark operator is expanded into the set of
symbols occurring in the regular expression as a whole. This solution
(implemented in a previous version of the FSA Utilities (van Noord and
Gerdemann, 1999) and in xfst, the Xerox regular expression compiler
(Karttunen et al., 1996)) therefore leads to a proliferation of transitions.
For example, the expression (a..z·? − d) would result in an automaton
with 52 transitions: 26 transitions from the initial state to an intermedi-
ate state for each of the letters of the alphabet and 26 transitions from
this intermediate state to a final state for each of the letters except ‘d’,
as well as for ?.3

The idea to allow predicates on transitions instead of symbols is
also mentioned in (Watson, 1999a) and (Watson, 1999b). The details of
this proposal, however, are not given. Apparently, in Watson’s proposal
predicates potentially inspect arbitrary parts of the input, and consume
arbitrary prefixes of the input; the resulting formalism is therefore much
more powerful, and hence various closure and efficiency properties are
not applicable. In contrast, for the type of predicates proposed here,
these attractive properties in fact are applicable, as is shown in the
remainder of the article.

2 Note that in such an implementation, the regular expression operator ? (any
symbol) is not to be confused with the special symbol in automata ? (any symbol
not occurring in the automaton).

3 Here we assume that we are not explicitly representing states which are not
co-accessible, i.e. for which there is no path to a final state.

vannoord-gerdemann.tex; 8/05/2003; 15:57; p.5

6

1.7. Overview

In the next section, predicate-augmented finite state recognizers are in-
troduced, and it is shown how various operators and algorithms can be
generalized. In section 3 predicate-augmented finite state transducers
are introduced. We show that operations such as composition can be
implemented straightforwardly; in addition we show how the transducer
determinization algorithm can be generalized. The generalization leads
to the definition of predicate-augmented finite state transducers with
a bounded queue; the queue is required to be able to treat identities
correctly. It is shown that this device allows a more compact repre-
sentation of some finite-state transductions than the classical model.
In section 5 we discuss some open problems and directions for future
research.

2. Finite State Recognizers with Predicates

2.1. Definition

A predicate-augmented finite state recognizer (pfsr) M is specified by
(Q,Σ,Π, E, S, F) where Q is a finite set of states, Σ a set of symbols, Π
a set of predicates over Σ, E a finite set of transitions Q×(Π∪{ε})×Q.
Furthermore, S ⊆ Q is a set of start states and F ⊆ Q is a set of final
states.

The relation Ê ⊆ Q× Σ∗ ×Q is defined inductively:

1. for all q ∈ Q, (q, ε, q) ∈ Ê,

2. for all (p, ε, q) ∈ E, (p, ε, q) ∈ Ê,

3. for all (q0, π, q) ∈ E and for all σ ∈ Σ, if π(σ) then (q0, σ, q) ∈ Ê

4. if (q0, x1, q1) and (q1, x2, q) are both in Ê then (q0, x1x2, q) ∈ Ê

The language L(M) accepted by M is defined to be {w ∈ Σ∗|qs ∈

S, qf ∈ F, (qs, w, qf) ∈ Ê}.
A pfsr is called ε-free if there are no (p, ε, q) ∈ E. For any given

pfsr there is an equivalent ε-free pfsr. It is straightforward to extend
the corresponding algorithm for classical automata. Without loss of
generality we assume below that pfsr are ε-free.

vannoord-gerdemann.tex; 8/05/2003; 15:57; p.6

7

2.2. Properties

It is clear that in the case of recognizers, the addition of predicates is
of limited theoretical interest. Let M c be a classical finite automaton
(Q,Σ, E, S, F) with Q a finite set of states, Σ a set of symbols, S ⊆ Q
the set of start states, F ⊆ Q the set of final states and E a finite set of
transitions Q×Σ×Q. Furthermore, let s(p, q) be the set of symbols on
transitions from p to q, i.e., s(p, q) = {σ|(p, σ, q) ∈ E}. If M c is such a
(minimal) finite automaton then clearly the equivalent (minimal) pfsr
is given by (Q,Σ, 2Σ, E′, S, F) where E ′ = {(p, s(p, q), q)|(p, s, q) ∈ E}.
The construction in the other direction is similar.

The pfsr device typically is more compact in the number of transi-
tions than an equivalent finite automaton. In the worst case, however,
the number of transitions is the same (if it is the case for all states that
its outgoing transitions have different target states for each symbol). In
the best case, the number of transitions is reduced by a factor of |Σ|.

2.3. Operations on recognizers

Since predicate-augmented finite state recognizers are equivalent to
ordinary finite-state automata, the class of languages defined by psfr is
closed under the the usual regular operations such as union, concate-

nation, Kleene-closure and reversal. From a practical point of view,
however, it is interesting to note that it is trivial to generalize the
corresponding constructions for classical finite state automata (cf. for
instance (Hopcroft and Ullman, 1979)). This means that the various
constructions can be implemented directly, without the need to ex-
pand into ordinary finite automata first, which is impractical for large
alphabets.

2.3.1. Intersection

An important and powerful operation is intersection. In the classical
case, an automaton for the intersection of the languages defined by
two given automata M1 and M2 is constructed by considering the cross
product of states of M1 and M2. A transition ((p1, p2), σ, (q1, q2)) exists
iff the corresponding transition (p1, σ, q1) exists in M1 and (p2, σ, q2)
exists in M2. In the case of pfsr a similar construction can be used,
but instead of requiring that the symbol σ occurs in the corresponding
transitions of M1 and M2, we require that the resulting predicate is the
conjunction of the corresponding predicates in M1 and M2. The same
technique is described in (Walther, 1999).

Given ε-free pfsr M1 = (Q1,Σ,Π, E1, S1, F1) and M2 =
(Q2,Σ,Π, E2, S2, F2), the intersection L(M1) ∩ L(M2) is the language

vannoord-gerdemann.tex; 8/05/2003; 15:57; p.7

8

accepted by M = (Q1 × Q2,Σ,Π, E, S1 × S2, F1 × F2) and E =
{((p1, q1), π1 ∧ π2, (p, q))|(p1, π1, p) ∈ E1, (q1, π2, q) ∈ E2}.

2.3.2. Determinization

An ε-free pfsr is deterministic if there is a single start state, and if for all
states q ∈ Q and symbols σ ∈ Σ there is at most one transition (q, π, q ′)
such that π(σ). If a pfsr M is deterministic then checking whether a
given string w is accepted by M can be implemented efficiently: linear
in w, and independent on the size of M .

A determinization algorithm (Aho et al., 1986; Hopcroft and Ullman,
1979; Johnson and Wood, 1997) maintains subsets of states. Each sub-
set is a state in the deterministic machine. To compute the transitions
leaving a given subset D, a determinization algorithm computes for
each symbol σ ∈ Σ the set of states Q such that p ∈ D, q ∈ Q and
(p, σ, q) ∈ E.

In the case of predicates, however, transitions might overlap. For
example, one transition may be applicable for high vowels, whereas
another transition may be applicable for round vowels. In the deter-
minized pfsr, such overlaps are not allowed. Therefore, we create a
separate transition for high and round vowels, another transition for
vowels which are high but not round, and a third transition for vowels
which are round but not high.

In general, in order to compute the transitions leaving a given subset
D we do as follows. Firstly we compute the function TransD: Π → 2Q,
defined as: TransD(π) = {q ∈ Q|p ∈ D, (p, π, q) ∈ E}. For example,
suppose D = {p}, and suppose we have transitions

E = { (p, π1, q1), (p, π1, q2), (p, π2, q2), (p, π2, q3),
(p, π2, q4), (p, π3, q3), (p, π3, q5)}

In that case:

TransD(π1) = {q1, q2},TransD(π2) = {q2, q3, q4},TransD(π3) = {q3, q5}

Let Π′ be the predicates in the domain of TransD. For each split of
Π′ into two subsets π1 . . . πi and πi+1 . . . πn we have a transition:

(D,π1 ∧ . . . ∧ πi ∧ ¬πi+1 ∧ . . . ∧ ¬πn,TransD(π1) ∪ . . . ∪ TransD(πi))

vannoord-gerdemann.tex; 8/05/2003; 15:57; p.8

9

for the example we obtain the transitions:4

(D, π1 ∧ π2 ∧ π3, {q1, q2, q3, q4, q5})
(D, π1 ∧ π2 ∧ ¬π3, {q1, q2, q3, q4})
(D, π1 ∧ ¬π2 ∧ π3, {q1, q2, q3, q5})
(D, π1 ∧ ¬π2 ∧ ¬π3, {q1, q2})
(D, ¬π1 ∧ π2 ∧ π3, {q2, q3, q4, q5})
(D, ¬π1 ∧ π2 ∧ ¬π3, {q2, q3, q4})
(D, ¬π1 ∧ ¬π2 ∧ π3, {q3, q5})
(D, ¬π1 ∧ ¬π2 ∧ ¬π3, ∅)

2.3.3. Complementation

If the determinizer also maintains the empty subset of states (cf. the
last line in the previous example), then the resulting determinized
automaton is complete: for each state a transition is applicable for
each symbol of the alphabet. This property is important in order to
define complementation. If an automaton M1 with final states F ⊆ Q is
deterministic and complete, then an automaton accepting the language
L(M1) is obtained from M1 simply by replacing F with Q− F .

As usual, the difference operation is defined straightforwardly in
terms of complementation and intersection: if A and B are regular
languages, then A−B is defined as A ∧B.

2.3.4. Minimization

In Hopcroft’s minimization algorithm (Hopcroft, 1971; Aho et al.,
1974) a situation arises very similar to the determinization case. In
this minimization algorithm, a partition of states is repeatedly refined
by considering a pair of state and symbol which might reveal that
an existing subset must be split. Rather than considering a pair of
state and symbol, we consider in the generalization a pair of state and
‘exclusive’ predicate. As in the determinization algorithm we therefore
need to consider all boolean combinations over the predicates present
on a given state. In the actual implementation, we re-use the additional
code required for the determinization algorithm in the implementation
of the minimization algorithm.

The generalized minimization algorithm produces a pfsr that is mini-
mal in the number of states. However, the pfsr is not necessarily unique,
and could also be non-minimal in the number of transitions. This is
caused by the fact that the predicates used in the pfsr might not be
sufficiently general. For example, the language {a, b, c} can be presented

4 An implementation might choose to ignore transitions for which the correspond-
ing predicate is not satisfiable.

vannoord-gerdemann.tex; 8/05/2003; 15:57; p.9

10

with a 2-state automaton with a single transition labeled ∈ {a, b, c},
but e.g. also with a 2-state automaton with two transitions labeled
respectively by ∈ {a, b} and ∈ {c}. Therefore, the minimization of a
pfsr includes a final cleanup step in which for each pair of states p and
q all transitions from p to q with labels π1 . . . πi are combined into a
single transition from p to q with associated label π1 ∨ . . .∨πi. It turns
out that in the case of transducers, the corresponding cleanup operator
is more difficult, as we discuss in section 5.1.

3. Transducers with Predicates and Identities

3.1. Definitions

A predicate-augmented finite state transducer (pfst) M is a tuple
(Q,Σ,Π, E, S, F) withQ a finite set of states, Σ a set of symbols, Π a set
of predicates over Σ. As before, S and F are sets of start states and final
states respectively. E is a finite set Q×(Π∪{ε})×(Π∪{ε})×Q×{0, 1}.
The final component of a transition is used to indicate identities. For
all transitions (p, d, r, q, 1) it must be the case that d = r 6= ε.5

We define the function str from Π ∪ {ε} to 2Σ∗

.

str(ε) = {ε}
str(π) = {σ ∈ Σ|π(σ)}

If π ∈ Π and str(π) is a singleton set, then the transitions
(p, π, π, q, i) where i ∈ {0, 1} are equivalent.

The relation Ê ⊆ Q× Σ∗ × Σ∗ ×Q is defined inductively.

1. for all p: (p, ε, ε, p) ∈ Ê.

2. for all (p, φ, ψ, q, 0) ∈ E, x ∈ str(φ), y ∈ str(ψ): (p, x, y, q) ∈ Ê.

3. for all (p, π, π, q, 1) ∈ E, x ∈ str(π): (p, x, x, q) ∈ Ê.

4. if (q0, x1, y1, q1) and (q1, x2, y2, q) are both in Ê then

(q0, x1x2, y1y2, q) ∈ Ê

The relation R(M) accepted by a pfst M is defined to be {(wd, wr)|qs ∈

S, qf ∈ F, (qs, wd, wr, qf) ∈ Ê}.

5 Note that without loss of generality we assume that there is no separate input
and output alphabet, nor separate sets of predicates for input and output.

vannoord-gerdemann.tex; 8/05/2003; 15:57; p.10

11

3.2. Operations on transducers

It is immediately clear that if Σ is finite, a pfst defines a regular
relation. Therefore, the relations defined by a pfst are closed under
various operations such as union, concatenation, Kleene closure and
composition. From a practical point of view, it is important to note
that it is possible to adapt the constructions for classical transducers
for pfst.

The introduction of predicates over symbols is straightforward for
operations such as union, concatenation, Kleene closure and cross-

product. The identity and composition operations are described now
as follows.

3.2.1. Identity

The identity relation for a given language L is id(L) = {(w,w)|w ∈ L}.
For a given pfsr M = (Q,Σ,Π, E, S, F), the identity relation is given
by the pfst M ′ = (Q,Σ,Π, E ′, S, F). Note that it would be wrong to
define E′ = {(p, π, π, q, 0)|(p, π, q) ∈ E}. Suppose π is true only of
σ1, σ2. The pair π : π then would be true of the pairs of symbols
{(σ1, σ1), (σ1, σ2), (σ2, σ1), (σ2, σ2)}, whereas identity requires that we
only allow the pairs {(σ1, σ1), (σ2, σ2)}. Another example to stress the
point: the expression identity(?) (‘copy’) is quite different from ?:?

(‘garbage-in garbage-out’). It is therefore necessary to introduce an
identity marker for each of the transitions. The identity of a pfsr M =
(Q,Σ,Π, E, S, F) is given by id(M) = (Q,Σ,Π, E ′, S, F) where E ′ =
{(p, π, π, q, 1)|(p, π, q) ∈ E}.

The operations domain, range and inverse are straightforward. For
a given pfst M = (Q,Σ,Π, E, S, F), we have:

− domain(R(M)) is given by the pfsr M ′ = (Q,Σ,Π, E ′, S, F) where
E′ = {(p, φ, q)|(p, φ, ψ, q, i) ∈ E}.

− range(R(M)) is given by the pfsr M ′ = (Q,Σ,Π, E ′, S, F) where
E′ = {(p, ψ, q)|(p, φ, ψ, q, i) ∈ E}.

− inverse(R(M)) is given by the pfst M ′ = (Q,Σ,Π, E ′, S, F) where
E′ = {(p, ψ, φ, q, i)|(p, φ, ψ, q, i) ∈ E}.

3.2.2. Composition
The composition of two binary relations is R1◦R2 = {(x1, x3)|(x1, x2) ∈
R1, (x2, x3) ∈ R2}. The composition operation is perhaps the most im-
portant operation on transducers. Its implementation is similar to the
intersection operation for recognizers. In the classical case, a transducer
for the composition of two given transducers M1 and M2 is constructed

vannoord-gerdemann.tex; 8/05/2003; 15:57; p.11

12

by considering the cross product of states of M1 and M2. A transi-
tion ((p1, p2), σd, σr, (q1, q2)) exists iff there is some σ such that the
corresponding transition (p1, σd, σ, q1) exists in M1 and (p2, σ, σr, q2)
exists in M2. In the case of pfst a similar construction can be used,
but instead of requiring that the output part of a transition in M1 is
identical to the input part of a transition in M2, we now merely require
that the conjunction of both predicates is satisfiable. In the case of
identities, some further complications arise. The effect of combining
two transitions is defined by means of the function ct that takes two
transitions and returns a new transition:

ct((p1, π1, π1, q1, 1), (p2, π2, π2, q2, 1)) = ((p1, p2), π1 ∧ π2, π1 ∧ π2, (q1, q2), 1)
ct((p1, φ, π1, q1, 0), (p2, π2, π2, q2, 1)) = ((p1, p2), φ, π1 ∧ π2, (q1, q2), 0)
ct((p1, π1, π1, q1, 1), (p2, π2, ψ, q2, 0)) = ((p1, p2), π1 ∧ π2, ψ, (q1, q2), 0)
ct((p1, φ, π1, q1, 0), (p2, π2, ψ, q2, 0)) = ((p1, p2), φ, ψ, (q1, q2), 0)

if satisfiable(π1 ∧ π2)

Note that this function is not defined in case either the input part
of the second transition or the output part of the first transition is ε.
These cases are treated separately in the definition below. Given two
pfst M1 = (Q1,Σ,Π, E1, S1, F1) and M2 = (Q2,Σ,Π, E2, S2, F2), the
relation R(M1) ◦ R(M2) is defined by M = (Q1 × Q2,Σ,Π, E, S1 ×
S2, F1 × F2) where

E = {ct(e1, e2)|e1 ∈ E1, e2 ∈ E2}
∪ {((p1, p2), ε, ψ, (p1, q2), 0)|p1 ∈ Q1, (p2, ε, ψ, q2, 0) ∈ E2}
∪ {((p1, p2), φ, ε, (q1, p2), 0)|p2 ∈ Q2, (p1, φ, ε, q1, 0) ∈ E1}

3.3. Determinization of Transducers

We will call a pfst M deterministic if M has a single start state, if there
are no states p, q ∈ Q such that (p, ε, ψ, q, i) ∈ E, and if for all states p
and symbols σ there is at most one transition (p, πd, ψ, q, i) such that
πd(σ). The transduction of an input string by means of a deterministic
pfst is simple: in going through the input from left to right, you know
exactly in which state you are (so there is no backtracking; alternatively
if a parallel implementation is considered, there is no need to maintain
a number of states linear in the size of the transducer). If a pfst M
is deterministic then computing the transductions of a given string
w as defined by M can be implemented efficiently. This computation
is linear in w, and independent on the size of M . Since w can have
several transductions (unless M is functional), we assume that this
computation constructs a pfsr accepting {w′|(w,w′) ∈ R(M)}.6

6 As is well-known, not all finite-state transductions can be encoded by a deter-
ministic transducer. As an example, a transduction which maps every a to a b if the

vannoord-gerdemann.tex; 8/05/2003; 15:57; p.12

13

In order to extend the determinization algorithm for transducers
(Oncina et al., 1993; Reutenauer, 1993; Mohri, 1996; Roche and Sch-
abes, 1995; Roche and Schabes, 1997), we must extend pfst in such a
way that the output part of a transition is a sequence of predicates. This
extension is described later, but first we illustrate some of the complica-
tions that arise. For the moment we will simply assume that the output
part of a transition contains a sequence of predicates. We first create
an equivalent pfst which has no ε on the domain part of transitions,
using the same technique as described in (Roche and Schabes, 1997,
page 29).7 In the determinization algorithm, local ambiguities such as
those encountered in state 0 in (here, a. . . f are arbitrary predicates
∈ Π):

0

3

2 1

4

a:e

a:f

b:d

a:a
a:a

c:d

are solved by delaying the outputs as far as needed, until these symbols
can be written out deterministically:8

0 1 2

a:ε

b∧¬c:ed

¬b∧c:fd

b∧c:(e∨f)d

3

a:a
a:a

The determinization algorithm for transducers maintains sets of
pairs Q × Π∗. Such a set corresponds to a state in the determinized
transducer. In order to compute the transitions leaving such a set
of pairs P , we compute for each π, TransP (π) = {(q, φψ)|(p, φ) ∈
P, (p, π, ψ, q) ∈ E}. In the example, we can be in states 3 and 4 after

input is of even length, and which maps every a to itself otherwise is a finite-state
transduction, but cannot be encoded deterministically.

7 We represent emissions associated with final states, as they surface in the
determinization algorithm below, using an extra transition with ε as the domain
part. We thus allow transitions (p, ε, ψ, q) only in case q is a final state and there
are no transitions leaving q.

8 By ‘writing out deterministically’ we mean writing out with a deterministic
state transition. Such ‘deterministic’ outputs may still in the end be rejected if for
some input, the machine ends in a non-final state.

vannoord-gerdemann.tex; 8/05/2003; 15:57; p.13

14

reading a symbol compatible with a, with pending outputs e and f.
We thus have P = {(3,e), (4, f)}. Therefore, we have:

TransP (b) = {(2,ed)},TransP (c) = {(2, fd)}

Let Π′ be the predicates in the domain of TransP . For each split of Π′

into π1 . . . πi and πi+1 . . . πn we have a proto-transition:

(P, π1 ∧ . . . ∧ πi ∧ ¬πi+1 ∧ . . . ∧ ¬πn,TransP (π1) ∪ . . . ∪ TransP (πi))

In the example, we have the following proto-transitions (we need not
represent the ∅ state):

(P, b ∧ ¬c, {(2,ed)})
(P, ¬b ∧ c, {(2, fd)})
(P, b ∧ c, {(2,ed), (2, fd)})

A transition is created from a proto-transition by removing the
longest common prefix of predicates in the target pairs; this prefix is
the sequence of output predicates of the resulting transition. However,
before we remove this longest common prefix, we first consider possi-
ble simplifications in the sequences of output predicates, by packing
multiple sequences associated with the same target state into a smaller
number of sequences (using disjunction). In particular, two pairs of
target state and predicate sequences (p1, ψ1) and (p2, ψ2) can be com-
bined into a single pair (p, ψ) iff p1 = p2 = p and ψ1 = π1 . . . πi . . . πn,
ψ2 = π1 . . . π

′

i . . . πn and ψ = π1 . . . πi ∨ π
′

i . . . πn. In a proto-transition
this simplification is applied repeatedly until no further simplifications
are possible.

Here, the third proto-transition is simplified into:

(P, b ∧ c, {(2, (e ∨ f)d)})

Moving the longest common prefix into the output part of the label
yields:

(P, b ∧ ¬c : ed, {(2, ε)})
(P, ¬b ∧ c : fd, {(2, ε)})
(P, b ∧ c : (e ∨ f)d, {(2, ε)})

The introduction of predicates thus has the interesting effect that
certain non-functional transducers can be treated by the transducer
determinization algorithm. Assume that b is the predicate {x,y}, c is
the predicate {y,z} and the predicates a, d, e and f are true only of the
symbols a, d, e and f respectively. The equivalent normal transducer
is:

vannoord-gerdemann.tex; 8/05/2003; 15:57; p.14

15

0

3

2 1

4

a:e

a:f

x:d

y:d a:a
a:a

z:d

y:d

This transducer cannot be treated by the transducer determinization
algorithm (that algorithm does allow a limited form of ambiguity, but
only if this ambiguity can be delayed to a final state; here this is
not possible). However, the same transduction can be determinized if
expressed by a pfst:

0 1 2

a:ε

x:ed

z:fd

y:{e, f}d

3

a:a
a:a

If predicates are used, then a larger class of transductions can be
implemented efficiently. A precise classification of this class is beyond
the scope of this paper, but note that the type of ambiguities that
can be implemented in this way is limited to ambiguities that extend
only over a single symbol.9 For instance, a simple example such as the
following cannot be determinized:

9 Of related interest is the approach of (Kempe, 2000). He shows that ambiguous
transductions can be computed efficiently by factorizing an ambiguous transducer
T into a functional transducer T1 and an ambiguous transducer T2 such that T is
equivalent to T1 ◦ T2, and such that T2 contains no ‘failing paths’. In typical cases,
T1 contains meta-symbols which are expanded in T2. This approach is more general
in the sense that these meta-symbols range over sequences of symbols, rather than
single symbols. It is more limited in the sense that identities cannot be expressed.

vannoord-gerdemann.tex; 8/05/2003; 15:57; p.15

16

0 1

2

3

a:b

a:d

a

ε:c

ε:e

3.4. Determinization and identities

To treat identities, we must assume in the definition of proto-transition
that if one of the positively occurring predicates in the boolean com-
bination is associated with an identity, then the resulting predicate
is associated with an identity as well. As an example consider the
following transducer. For simplicity we assume b and c are mutually
exclusive predicates; as before ? is a predicate which is true of all
symbols. Also, we write 〈a〉:〈a〉 for a transition a:a with an associated
identity constraint.

0

4 3 2

1

5 7 6

a:b

a:c

〈?〉:〈?〉 〈?〉:〈?〉

b:b

〈?〉:〈?〉 〈?〉:〈?〉
c:c

Determinization produces:

0 2 3 4 1

a:ε 〈?〉:ε 〈?〉:ε

c:c〈?〉〈?〉c

b:b〈?〉〈?〉b

Outputs associated with an identity are delayed like ordinary out-
puts. Generalizing an idea due to Tamás Gaál and Lauri Karttunen10

transducers with such disconnected identities are interpreted as follows.
During the transduction of a string, a queue is maintained. Each time

10 personal communication

vannoord-gerdemann.tex; 8/05/2003; 15:57; p.16

17

an input symbol is matched by a predicate with an associated identity,
this symbol is enqueued. If a symbol matched by the corresponding
predicate on the output side has to be written, then that symbol is
obtained by a dequeue operation. With this use of a queue, our method
for interpreting a transducer is no longer finite state. The transducer
itself, however, still encodes a regular transduction.

A complication arises in cases like:

0

2

1

3 4

a:c

a:b

d:e

〈?〉:〈?〉
b:b

Determinization yields:

0 3

4

1

2

5

a:ε

〈d〉:ε

〈¬d〉:b〈¬d〉

ε:*

b:b〈d〉b

b:b

What sequence of output predicates should be put on the position
of the *? According to the definitions, we get ce. However, this is
not right because then there is a path 0 → 3 → 4 → 1 which has
an identity on the input side without a corresponding identity on the
output. Embedding such examples would lead to transducers in which
identities are ‘out of sync’. The determinization algorithm is therefore
extended by marking in the output part that the scope of an identity
ends; procedurally such a mark is interpreted as a dequeue operation
which ignores the dequeued value. We write such a mark as 〈〉. In the
example the sequence of outputs X becomes ce〈〉. In the definition of
proto-transition, if at least one of the positively occurring πk has an
associated identity then we append a 〈〉 mark to each of the outputs
TransP (πl) for which πl was not associated with an identity.

vannoord-gerdemann.tex; 8/05/2003; 15:57; p.17

18

3.5. Finite State Transducers with a bounded Queue

We are now ready to define predicate-augmented finite state trans-
ducers with a bounded queue. A predicate-augmented finite state
transducer with queue (qpfst) M is a tuple (Q,Σ,Π, E, S, F) with Q a
finite set of states, Σ a set of symbols, Π a set of predicates over Σ. As
before, S and F are sets of start states and final states respectively. E
is a finite set Q× ((Π ∪ {ε}) × {0, 1}) × ((Π ∪ {λ}) × {0, 1})∗ ×Q.

In a transition, each predicate is associated with a queue marker,
which is one of {0, 1}. On the input side, 1 will imply an enqueue
operation of the symbol matching the predicate; on the output side 1
will imply a dequeue operation of the symbol matching the predicate.
In the input part of the transition, ε can be used as well, in which
case the queue marker must be 0 (input epsilons will be employed to
represent outputs associated with initial and final states). In the output
part of a transition we can have λ instead of a predicate, in order to
represent the explicit dequeue operations motivated earlier. We require
that every λ must have a corresponding queue marker which is 1.

The relation O : ((Π ∪ {λ}) × {0, 1})∗ × Σ∗ × Σ∗ × Σ∗ determines
the effect of the output part of a transition. Its arguments represent
respectively the output sequence of a transition, the (incoming and
outgoing) queues, and the resulting output string. Note that queues are
written from left to right in such a way that an element is enqueued to
the left and dequeued from the right.

1. for all x ∈ Σ∗ we have (ε, x, x, ε) ∈ O

2. if (φ, x0, x, z) ∈ O then for all σ ∈ Σ we have ((λ, 1)φ, x0σ, x, z) ∈ O

3. if (φ, x0, x, z) ∈ O then for all σ ∈ Σ and π ∈ Π such that π(σ) we
have ((π, 1)φ, x0σ, x, σz) ∈ O

4. if (φ, x0, x, z) ∈ O then for all σ ∈ Σ and π ∈ Π such that π(σ) we
have ((π, 0)φ, x0, x, σz) ∈ O

The relation Ê ⊆ Q× Σ∗ × Σ∗ ×Q× Σ∗ × Σ∗ is a relation between
source states, sequences of input symbols, sequences of output symbols,
target states, and source- and target queues. It is defined inductively.

1. for all p ∈ Q, (p, ε, ε, p, ε, ε) ∈ Ê.

2. for each transition (p, (ε, 0), φ, q) ∈ E such that (φ, x0, x, w) ∈ O,

(p, ε, w, q, x0, x) ∈ Ê

3. for each transition (p, (π, 0), φ, q) ∈ E such that π(σ) and

(φ, x0, x, w) ∈ O, (p, σ, w, q, x0, x) ∈ Ê.

vannoord-gerdemann.tex; 8/05/2003; 15:57; p.18

19

4. for each transition (p, (π, 1), φ, q) ∈ E such that π(σ) and

(φ, σx0, x, w) ∈ O, (p, σ, w, q, x0, x) ∈ Ê.

5. if (q0, x1, y1, q1, x0, x1) and (q1, x2, y2, q, x1, x) are both in Ê then

(q0, x1x2, y1y2, q, x0, x) ∈ Ê

The relation R(M) accepted by a qpfst M is defined to be

{(wd, wr)|qs ∈ S, qf ∈ F, (qs, wd, wr, qf , ε, ε) ∈ Ê}.
Such qpfst are generally very powerful. However, the qpfst which

result from the generalized transducer determinization algorithm are
all limited. Not only are these transducers deterministic by construc-
tion, but they are also limited in the way the queue is actually used:
in each case the maximum size of the queue is some constant. And
of course, since the input was a finite-state transducer, the resulting
equivalent qpfst describes a finite-state transduction too. Another way
to characterize this limited use of qpfst is to observe that in such cases
every cyclic path through such a transducer will have identical input
and output queue: the queue is only used in a strictly local sense.

The ordinary transducer determinization algorithm is guaranteed
to terminate only if the input transducer can be determined, i.e., the
transducer must be sub-sequential. A separate algorithm exists to check
a given transducer for subsequentiality (section 5.2). The same termi-
nation property holds for the generalized transducer determinization
algorithm. If the generalized transducer determinization algorithm ter-
minates for a given pfst, then the result is an equivalent deterministic
qpfst. The application of a determinized (potentially non-functional)
qpfst T to a given string w is linear in the size of w, and independent
of the size of T .

3.6. Synchronization

Operations such as composition are defined for pfst. Therefore, we have
implemented an operator which transforms a given bounded qpfst back
into pfst by synchronizing the identities. Of course, the resulting pfst
will generally not be deterministic anymore.

The synchronization is implemented by an algorithm which main-
tains an agenda of ‘synchronous states’ (initialized by the set of start
states). For each state on the agenda minimal synchronous paths are
generated. The target states of these paths are added to the agenda,
and these paths themselves are broken into pieces such that each piece
is synchronous (by introducing transitions with ε on the input or output
side).

vannoord-gerdemann.tex; 8/05/2003; 15:57; p.19

20

0 1

2

3

4

5

6

7

8

9

10

11

12 13

14

a:ε

b:bxxb c:cxxc

b:bxyb c:cxyc

b:bxzb c:cxzc

b:byxb c:cyxc

b:byyb c:cyyc

b:byzb c:cyzc

b:bzxb c:czxc

b:bzyb c:czyc

b:bzzb c:czzc

x:ε

y:ε

z:ε
x:ε

y:ε

z:ε

x:ε

y:ε

z:ε

x:ε

y:ε

z:ε

Figure 1. A minimal subsequential transducer without predicates. The equivalent
minimal transducer employing predicates only has 5 states and 5 transitions.

3.7. Succintness

Predicate-augmented finite state transducers typically require fewer
transitions than classical finite state transducers, by an argument sim-
ilar to that for pfsr. In the case of predicate-augmented pfst with
bounded queue, however, the number of states can often be much
smaller than the number of states in an equivalent, classical, sub-
sequential transducer. Consider again the first example in section 3.4.
Application of our variant of Mohri’s determinization algorithm yields a
transducer of 5 states and 5 transitions, repeated here for convenience:

0 2 3 4 1

a:ε 〈?〉:ε 〈?〉:ε

c:c〈?〉〈?〉c

b:b〈?〉〈?〉b

Suppose we were to expand this example into a classical subse-
quential transducer, then depending on the size of the alphabet, the
resulting transducers would have many more states. The example for

vannoord-gerdemann.tex; 8/05/2003; 15:57; p.20

21

the alphabet {x,y,z} with 15 states and 31 transitions is given in
figure 1; for an alphabet of 26 symbols, the result already has 705
states and 2055 transitions. For an alphabet of 254 symbols, the result
has 64773 states and 193803 transitions. Instead of having two question
marks on the input side in a row, consider similar examples where we
have k such question marks in a row:

0 2 . . . 2 + k 1

a:ε 〈?〉1:ε 〈?〉k:ε

c:c〈?〉1 . . . 〈?〉kc

b:b〈?〉1 . . . 〈?〉kb

In these cases, the minimal qpfst will have 3 + k states. The equiv-
alent minimal subsequential transducer will require 3 + |Σ| + |Σ|2 +
. . .+ |Σ|k states. An analysis of the difference in succintness in terms of
descriptional complexity (e.g. (Dassow et al., 1997)) is beyond the scope
of this article; but this class of examples suggests that there are arbi-
trarily many relations for which the qpfst device requires exponentially
fewer states than subsequential transducers.

4. Practical Considerations

Predicate-augmented finite state automata are fully integrated in ver-
sion 6 of the Fsa Utilities toolbox. The toolbox is freely available from
http://www.let.rug.nl/~vannoord/Fsa/. In addition, some of the
algorithms have been implemented in C++.

4.1. Membership and Non-membership Predicates

In practice, we have mostly assumed that all predicates are of the form
∈ S and /∈ S for arbitrary finite sets of symbols S. The non-membership
predicates are very useful to specify in a compact form large (potentially
infinite) sets of symbols. A boolean combination of membership and
non-membership predicates can always be written in this form, as the
following table shows:

P Q ¬P P ∧Q P ∨Q
∈ S1 ∈ S2 /∈ S1 ∈ S1 ∩ S2 ∈ S1 ∪ S2

∈ S1 /∈ S2 ∈ S1 − S2 /∈ S2 − S1

/∈ S1 ∈ S2 ∈ S1 ∈ S2 − S1 /∈ S1 − S2

/∈ S1 /∈ S2 /∈ S2 ∪ S1 /∈ S1 ∩ S2

vannoord-gerdemann.tex; 8/05/2003; 15:57; p.21

22

In the implementation, any boolean combination of predicates that
occurs is immediately rewritten into this atomic form. Determining
whether a symbol satisfies a predicate is trivial. Determining satisfi-
ability of an atomic formula is trivial too: the only atomic formula
that is not satisfiable is ∈ ∅. The actual computation thus involves
standard operations on sets: membership, union, intersection and differ-
ence. The implementation provides three alternative implementations,
by representing sets as ordered lists, bit vectors or balanced binary
trees.

The system also supports the addition of various application-specific
predicate sets. There are various possibilities here. For instance, predi-
cates could be expressed in terms of type hierarchies as in (Carpenter,
1992). Another possibility is a predicate module in which predi-
cates are membership tests of regular languages. A syntax component
could be implemented by a pfsr in which predicates describe words.
These predicates themselves might be implemented by finite automata
over character strings. If predicates get complicated, the efficiency of
checking such predicates may become important.

4.2. Smaller Transducers

The operations on predicate-augmented finite state recognizers and
transducers discussed here have been fully implemented and integrated
in a finite state toolkit. Although the implementation of these oper-
ations is more involved than for normal automata it turned out that
the introduction of predicates has improved performance considerably,
because automata are smaller.

For example, consider the soundex algorithm expressed as a regular
expression, presented at the Xerox web-site.11 The soundex algorithm
maps proper names to four-letter codes, where ‘similar’ names are as-
signed the same code. This algorithm can be used to match names that
are misspelled, for instance due to poor handwriting or voice trans-
mission; similar problems occur in historical archives. A description of
the algorithm and some historical remarks are given in (Knuth, 1998).
The compilation of the soundex regular expression yields a transducer
with 1217 transitions. By design, the soundex algorithm treats vari-
ous classes of characters identically. Using predicates for each of these
classes yields a transducer with 198 transitions. The construction is four
times faster as well. Depending on how predicates are implemented,
running the resulting transducer might be slower. In our experiments
these effects were not noticeable.

11 http://www.rxrc.xerox.com/research/mltt/fst/fsexamples.html

vannoord-gerdemann.tex; 8/05/2003; 15:57; p.22

23

0

1

2

3

〈e〉:〈e〉

e:ε

〈{a,i,o,u}〉:e〈{a,i,o,u}〉
ε:e

e:e

〈{a,e,i,o,u}〉:ε

a:a〈{a,e,i,o,u}〉a

〈{a,e}〉:e〈{a,e,i,o,u}〉〈{a,e}〉

ε:e〈{a,e,i,o,u}〉

e:e〈{a,e,i,o,u}〉

Figure 2. A minimal transducer with predicates implementing the phonological rule
e → a/ C a. The equivalent minimal transducer without predicates has 24 states
and 620 transitions.

The observation that the use of predicates generally leads to
transducers with fewer states can be observed in practically relevant
examples as well. Consider the following hypothetical phonological rule:

e → a/ C a

This rule indicates that an e should be mapped to an a if it is fol-
lowed by a consonant and an a. Assuming an alphabet consisting of
5 vowels and 21 consonants, the corresponding minimal transducer for
this example consists of 24 states and 620 transitions. If predicates are
used, the resulting automaton only has 4 states and 10 transitions (cf.
figure 2).

5. Future Work

5.1. Minimization

The minimization algorithm for transducers (Mohri, 1994; Mohri, 2000)
can be applied to a bounded qpfst without modifications. The trans-
ducer minimization algorithm consists of two steps. In the first step,
all output symbols are moved into preceding transitions as much as is
possible. This is done by computing for each state the longest common
prefix of the outputs associated with all paths from that state to a

vannoord-gerdemann.tex; 8/05/2003; 15:57; p.23

24

final state. The second step of the transducer minimization algorithm
consists of the application of ordinary recognizer minimization to the
resulting transducer, temporarily treating the labels as atomic symbols.

The application of the transducer minimization algorithm to a
bounded qfst might result in a qpfst with identities in which the output
has to be produced before the corresponding input symbol has been
observed. The queue-mechanism can be generalized to treat such cases
as well. We use an implementation of queues described in (Sterling and
Shapiro, 1994, page 299) in which an element can be dequeued before
it is enqueued. The output is a variable temporarily; obviously this
requires output to be buffered. We implemented this both in C++ as
well as in Prolog.

However, applying the transducer minimization algorithm in this
way does not neccessarily produce a minimal qpfst. One problem is
that in the transducer minimization algorithm, the final step consists
of an application of the recognizer minimization algorithm in such a
way that the labels of the transducer are temporarily treated as un-
analyzable atoms. This works in the case of ordinary transducers, but
is not good enough for our purposes. The following example illustrates
this particular problem.

0 1

〈a〉:〈a〉

〈a〉:〈a〉

〈b〉:〈b〉

〈{a,b}〉:〈{a,b}〉

〈a〉:〈a〉

The transduction implemented by this transducer is simply the
identity relation over Σ∗. However, the application of the transducer
minimization algorithm will produce an identical transducer, rather
than the minimal one.

In the implementation in the Fsa Utilities we have constructed a
variety of heuristics, which includes a generalization of the transducer
minimization algorithm, in order to reduce the size of deterministic
transducers. In most practical cases, the heuristics produce a minimal
transducer.

5.2. Subsequentiality and Bi-machines

Recall that the transducer determinization algorithm is guaranteed to
terminate only in case the input transducer can be determinized, i.e.,

vannoord-gerdemann.tex; 8/05/2003; 15:57; p.24

25

the transducer describes a subsequential transduction. Therefore, it is
important to implement an algorithm which checks for this property.
We are working on an algorithm to check subsequentiality of a given
pfst, based on the algorithm presented in (Roche and Schabes, 1997).
We have adapted the algorithm proposed in (Roche and Schabes, 1997)
since it fails to treat certain types of transducer correctly; we intend to
provide details somewhere else.

A further natural extension is the generalization of bi-machines and
the related algorithms to the case of predicates.

Acknowledgements

This research was partly carried out within the framework of the PI-
ONIER Project Algorithms for Linguistic Processing, funded by NWO
(Dutch Organization for Scientific Research) and the University of
Groningen. We are grateful to Gosse Bouma, Jan Daciuk, Rob Mal-
ouf, Mark-Jan Nederhof, Bruce Watson, Franck Thollard and Markus
Walther for comments.

References

Aho, A. V., J. E. Hopcroft, and J. D. Ullman: 1974, The Design and Analysis of
Computer Algorithms. Addison-Wesley.

Aho, A. V., R. Sethi, and J. D. Ullman: 1986, Compilers. Principles, Techniques
and Tools. Addison Wesley.

Bird, S. and T. M. Ellison: 1994, ‘One-Level Phonology: Autosegmental Repre-
sentations and Rules as Finite Automata’. Computational Linguistics 20(1),
55–90.

Carpenter, B.: 1992, The Logic of Typed Feature Structures. Cambridge University
Press, New York.

Daciuk, J.: 1998, ‘Incremental Construction of Finite-state Automata and Transduc-
ers, and their Use in the Natural Language Processing’. Ph.D. thesis, Technical
University of Gdańsk.

Daciuk, J.: 2000, ‘Experiments with Automata Compression’. In: M. Daley, M. G.
Eramian, and S. Yu (eds.): Conference on Implementation and Application of
Automata CIAA’2000. London, Ontario, Canada, pp. 113–119, University of
Western Ontario.

Dassow, J., G. Paun, and A. Salomaa: 1997, ‘Grammars with Controlled Deriva-
tions’. In: G. Rozenberg and A. Salomaa (eds.): Handbook of Formal Languages
Vol.2 Linear Modeling: Background and Application. Springer, pp. 101–154.

Eisner, J.: 1997, ‘Efficient Generation in Primitive Optimality Theory’. In:
35th Annual Meeting of the Association for Computational Linguistics and
8th Conference of the European Chapter of the Association for Computational
Linguistics. pp. 313–320.

Gerdemann, D. and G. van Noord: 1999a, ‘Transducers from Rewrite Rules with
Backreferences’. In: Ninth Conference of the European Chapter of the Association
for Computational Linguistics. Bergen Norway.

vannoord-gerdemann.tex; 8/05/2003; 15:57; p.25

26

Gerdemann, D. and G. van Noord: 1999b, ‘Transducers from Rewrite Rules with
Backreferences’. In: Ninth Conference of the European Chapter of the Association
for Computational Linguistics. Bergen Norway, pp. 126–133.

Gildea, D. and D. Jurafsky: 1996, ‘Learning Bias and Phonological-Rule Induction’.
Computational Linguistics 22(4), 497–530.

Hopcroft, J. E.: 1971, ‘An n log n algorithm for minimizing the states in a finite
automaton’. In: Z. Kohavi (ed.): The Theory of Machines and Computations.
Academic Press, pp. 189–196.

Hopcroft, J. E. and J. D. Ullman: 1979, Introduction to Automata Theory, Languages
and Computation. Addison Wesley.

Johnson, J. H. and D. Wood: 1997, ‘Instruction Computation in Subset Construc-
tion’. In: D. Raymond, D. Wood, and S. Yu (eds.): Automata Implementation.
Springer Verlag, pp. 64–71. Lecture Notes in Computer Science 1260.

Karttunen, L.: 1991, ‘Finite-state Constraints’. In: Proceedings International Confer-
ence on Current Issues in Computational Linguistics. Universiti Sains Malaysia,
Penang, pp. 23–40.

Karttunen, L.: 1995, ‘The Replace Operator’. In: 33th Annual Meeting of the
Association for Computational Linguistics. M.I.T. Cambridge Mass., pp. 16–23.

Karttunen, L.: 1996, ‘Directed Replacement’. In: 34th Annual Meeting of the
Association for Computational Linguistics. Santa Cruz, pp. 108–115.

Karttunen, L., J.-P. Chanod, G. Grefenstette, and A. Schiller: 1996, ‘Regular Expres-
sions for Language Engineering’. Natural Language Engineering 2(4), 305–238.
http://www.rxrc.xerox.com/research/mltt/fst/articles/jnle-97/rele.html.

Kempe, A.: 2000, ‘Factorization of Ambiguous Finite-State Transducers’. In: CIAA
2000. Fifth International Conference on Implementation and Application of
Automata. Preproceedings. London, Ontario, Canada, pp. 157–164.

Kempe, A. and L. Karttunen: 1996, ‘Parallel Replacement in the Finite-State Cal-
culus’. In: Proceedings of the 16th International Conference on Computational
Linguistics (COLING). Copenhagen, Denmark, pp. 622–627.

Kiraz, G. A.: 1999, ‘Compressed Storage of Sparse Finite-State Transducers’. In:
O. Boldt, H. Jürgensen, and L. Robbins (eds.): Workshop on Implementing
Automata WIA99 - Pre-Proceedings. Potsdam.

Klarlund, N.: 1998, ‘Mona & Fido: The Logic-Automaton Connection in Practice’.
In: Computer Science Logic, CSL ’97. LNCS 1414.

Knuth, D. E.: 1998, The Art of Computer Programming, Volume 3, Sorting and
Searching. Addison Wesley, second edition edition.

Kowaltowski, T., C. L. Lucchesi, and J. Stolfi: 1993, ‘Minimization of Binary Au-
tomata’. In: First South American String Processing Workshop. Belo Horizonte,
Brasil.

Mohri, M.: 1994, ‘Compact Representations by Finite-State Transducers’. In: 32th
Annual Meeting of the Association for Computational Linguistics. New Mexico
State University, pp. 204–209.

Mohri, M.: 1996, ‘On some applications of finite-state automata theory to natu-
ral language processing’. Natural Language Engineering 2, 61–80. Originally
appeared in 1994 as Technical Report, institut Gaspard Monge, Paris.

Mohri, M.: 2000, ‘Minimization Algorithms for Sequential Transducers’. Theoretical
Computer Science 234, 177–201.

Oncina, J., P. Garćıa, and E. Vidal: 1993, ‘Learning subsequential transducers
for pattern recognition interpretation tasks’. IEEE Transactions on Pattern
Analysis and Machine Intelligence 15, 448–458.

vannoord-gerdemann.tex; 8/05/2003; 15:57; p.26

27

Perrin, D.: 1990, ‘Finite Automata’. In: J. van Leeuwen (ed.): Handbook of Theoret-
ical Computer Science. Volume B: Formal Models and Semantics. Elsevier and
the MIT Press, pp. 1–57.

Reutenauer, C.: 1993, ‘Subsequential Functions: Characterizations, Minimization,
Examples’. In: Proceedings of the International Meeting of Young Computer
Scientists. Berlin, Springer. Lecture Notes in Computer Science.

Roche, E. and Y. Schabes: 1995, ‘Deterministic Part-of-speech Tagging with Finite-
state Transducers’. Computational Linguistics 21(2), 227–253.

Roche, E. and Y. Schabes: 1997, ‘Introduction’. In: E. Roche and Y. Schabes (eds.):
Finite-State Language Processing. Cambridge, Mass: MIT Press.

Sterling, L. and E. Shapiro: 1994, The Art of Prolog. Cambridge Mass.: MIT Press.
Second Edition.

van Noord, G. and D. Gerdemann: 1999, ‘An Extendible Regular Expression Com-
piler for Finite-state Approaches in Natural Language Processing’. In: O. Boldt,
H. Juergensen, and L. Robbins (eds.): Workshop on Implementing Automata;
WIA99 Pre-Proceedings. Potsdam Germany.

Walther, M.: 1999, ‘One-Level Prosodic Morphology’. Technical Report 1, In-
stitüt für Germanistische Sprachwissenschaft, Philipps-Universität Marbug.
cs.CL/9911011.

Walther, M.: 2000, ‘Finite-State Reduplication in One-Level Prosodic Morphology’.
In: First Conference of the North American Chapter of the Association for
Computational Linguistics. Seattle, pp. 296–302.

Watson, B. W.: 1999a, ‘Implementing and Using Finite Automata Toolkits’. In: A.
Kornai (ed.): Extended Finite State Models of Language. Cambridge University
Press, pp. 19–36.

Watson, B. W.: 1999b, ‘The OpenFIRE Initiative’. In: J. Aoe (ed.): Proceedings
of the International Conference on Computer Processing of Oriental Languages.
Tokushima, Japan, pp. 421–424.

vannoord-gerdemann.tex; 8/05/2003; 15:57; p.27

