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ABSTRACT. Lexical ambiguity is an important source of inefficiency for wide-coverage HPSG
parsing. In this paper, we propose a lexical analysis filter which removes unlikely lexical cat-
egories. The filter is implemented as a straightforward HMM n-gram POS-tagger, which com-
putes the ’a posteriori’ probability of each lexical category. A lexical category is removed if a
competing lexical category is sufficiently more likely. The novel aspect of our approach is the
fact that the tagger is trained on the output of the parser itself; therefore there is no need for
hand-annotated material. Use of this filter increases the speed of the parser considerably, and
in addition gives rise to an improvement in parsing accuracy.

RÉSUMÉ. L’ambiguı̈té lexicale est une source importante de l’inefficacité de l’analyse syn-
taxique HPSG à large couverture. Dans cette contribution, nous proposons un filtre analy-
seur lexical qui élimine des catégories lexicales improbables. Le filtre est implémenté comme
un étiqueteur markovien (HMM) n-gramme standard, qui calcule la probabilité ’a posteriori’
de chaque catégorie lexicale. Une catégorie lexicale est rejetée, quand celui-ci est en concur-
rence avec des catégories lexicales qui sont suffisamment plus probables. La nouveauté de l’ap-
proche exposée ici consiste à entraı̂ner l’étiqueteur sur la sortie de l’analyseur lui-même ; par
conséquence, on n’a pas besoin de corpus étiquetés manuellement. L’emploi de ce filtre aug-
mente considérablement la rapidité de l’analyseur, et en plus, en améliore la précision.
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1. Introduction

Full parsing of unrestricted text on the basis of a wide-coverage computational
HPSG grammar remains a challenge. In our recent experience in the development of
the Alpino system, a parsing system based on a wide-coverage HPSG for Dutch, we
found that even in the presence of various sophisticated chart parsing and ambiguity
packing techniques, lexical ambiguity in particular has an important effect on parsing
efficiency.

In some cases, a category assigned to a word is obviously wrong for the sentence
the word occurs in. For instance, in a lexicalist grammar the two occurrences of
called in (1) will typically be associated with two distinct lexical categories. The
entry associated with (1-a) will reflect the requirement that the verb combines syntac-
tically with the particle ‘up’. Clearly, this lexical category is irrelevant for the analysis
of sentence (1-b), since no such particle occurs in the sentence.

(1) a. I called the man up
b. I called the man

An effective technique to reduce the number of lexical categories for a given input con-
sists of the application of hand-written rules which check such simple co-occurrence
requirements. Such techniques have been used before, e.g. in the English Lingo HPSG
system [KIE 99]. The drawback of this technique is that it relies on human experts of
the grammar and lexicon, which are bound to make mistakes — in particular if the
grammar and lexicon are in development.

In this paper we extend this filtering component using a part-of-speech (POS) filter.
We consider the lexical categories assigned by the lexical analysis component as POS-
tags, and we use standard POS-tagging techniques in order to remove very unlikely
POS-tags.

In earlier studies, somewhat disappointing results were reported for using taggers
in parsing [WAU 95], [CHA 96], [VOU 98]. Our approach is different from most
previous attempts in a number of ways. These differences are summarized as follows.

Firstly, the training corpus used by the tagger is not created by a human anno-
tator, but rather, the training corpus is labeled by the parser itself. Annotated data
for languages other than English is difficult to obtain. Therefore, this is an important
advantage of the approach. Typically, machine learning techniques employed in POS-
tagging will perform better if more annotated data is available. In our approach, more
training data can be constructed by simply running the parser on more (raw) text. In
this sense, the technique is unsupervised.

For this approach to be feasible, the parser needs to be able to distinguish between
competing parses. In our case, the Alpino parser is complemented by a maximum en-
tropy disambiguation component. The disambiguation component is discussed briefly
in section 2.
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Secondly, the HPSG for Dutch that is implemented in Alpino is heavily lexical-
ist. This implies that (especially) verbs are associated with many alternative lexical
categories. Therefore, reducing the number of categories has an important effect on
parsing efficiency.

Thirdly, the tagger is not forced to disambiguate all words in the input (this has
been proposed before, e.g. in [CAR 96]). In typical cases the tagger only removes
about half of the tags assigned by the dictionary. As we show below, the resulting
system can be much faster, while parsing accuracy increases.

Fourthly, whereas in earlier work evaluation was described e.g. in terms of cover-
age (the number of sentences which received a parse), and/or the number of parse-trees
for a given sentence, we have evaluated the system in terms of lexical dependency re-
lations, similar to the proposal in [CAR 98b]. This evaluation measure presupposes
the availability of a treebank, but is expected to reflect much better the accuracy of the
system. In particular, as we will argue below, the coverage measure appears to be a
very misleading evaluation metric for parse accuracy.

In the following section we describe the Alpino wide-coverage parser of Dutch,
with which we performed our experiments. In section 3 we give a description of the
trigram HMM tagger. In section 4 we show how using this tagger as a filter in Alpino
improves the parser’s performance, and in section 5 we consider ideas for future work.

2. Alpino: Wide-coverage Parsing of Dutch

Alpino is a wide-coverage computational analyzer of Dutch which aims at ac-
curate full parsing of unrestricted text. The system is described in more detail in
[BOU 01b]. The grammar produces dependency structures, thus providing a reason-
ably abstract and theory-neutral level of linguistic representation. The dependency
relations encoded in the dependency structures have been used to develop and evalu-
ate both hand-coded and statistical disambiguation methods.

2.1. Grammar

The Alpino grammar is an extension of the successful1 OVIS grammar [NOO 99],
a lexicalized grammar in the tradition of HPSG [POL 94].

The grammar formalism is carefully designed to allow linguistically sophisticated
analyses as well as efficient and robust processing. In contrast to earlier work on HPSG,
grammar rules in Alpino are relatively detailed. However, as pointed out in [SAG 97],

1. The OVIS grammar was part of the language understanding component of a spoken dia-
logue system for public transport information. In a formal evaluation, it was shown to perform
much better than a competing language understanding component based on data-oriented pars-
ing [ZAN 99].



124 TAL. Volume 44 - n◦ 3/2003

by organizing rules in an inheritance hierarchy, the relevant linguistic generalizations
can still be captured. The Alpino grammar currently contains over 350 rules, defined
in terms of a few general rule structures and principles (almost all rules are defined in
terms of a set of 15 different structures, which make use of about 10 different prin-
ciples). The grammar covers the basic constructions of Dutch (including main and
subordinate clauses, (indirect) questions, imperatives, (free) relative clauses, a wide
range of verbal and nominal complementation and modification patterns, and coordi-
nation) as well as a wide variety of more idiosyncratic constructions (appositions,
verb-particle constructions, PP’s including a particle, NP’s modified by an adverb,
punctuation, etc.). The lexicon contains definitions for various nominal types (nouns
with various complementation patterns, proper names, pronouns, temporal nouns, de-
verbalized nouns), various complementizer, determiner, and adverb types, adjectives,
and about 100 verbal subcategorization types. Lexical generalizations are captured by
organizing these lexical definitions in an inheritance network. The lexicon contains
descriptions for more than 100,000 word forms.

The formalism supports the use of recursive constraints over feature-structures
(using delayed evaluation, [NOO 94]). This allowed us to incorporate an analysis of
cross-serial dependencies based on argument-inheritance [BOU 98] and a trace-less
account of extraction along the lines of [BOU 01a].

The Alpino grammar produces dependency structures compatible with the CGN-
guidelines. Within the CGN-project [OOS 00], guidelines have been developed for
syntactic annotation of spoken Dutch [MOO 00], using dependency structures simi-
lar to those used for the German Negra corpus [SKU 97]. The CGN-guidelines are
available from the CGN-website: http://lands.let.kun.nl/cgn.

Below, some of the experiments make use of the Alpino Treebank [Alp02]. The
Alpino Treebank contains hand-corrected syntactic annotations compatible with the
CGN-guidelines for the newspaper (cdbl) part of the Eindhoven corpus [BOO 75].
The annotation consists of dependency structures, rather than phrase-structure trees.

2.2. Robust Parsing

The initial design and implementation of the Alpino parser is inherited from the
system described in [NOO 97], [NOO 99] and [NOO 01]. However, a number of
improvements have been implemented which are described below. The construction
of a dependency structure proceeds in a number of steps. The first step consists of
lexical analysis. In the second step a parse forest is constructed. The third step consists
of the selection of the best parse from the parse forest.

2.2.1. Lexical Analysis

The lexicon associates a word or a sequence of words with one or more lexical cat-
egories. Such lexical categories contain information such as part-of-speech, inflection
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as well as a subcategorization frame. For verbs, the lexicon typically hypothesizes
many different lexical categories, differing mainly in the subcategorization frame.

For the words in the following sentence (2), for instance, the lexicon produces
initially a total of 199 lexical categories:

(2) Mercedes
Mercedes

zou
should

haar
her

nieuwe
new

model
model

gisteren
yesterday

hebben
have

aangekondigd
announced

Mercedes should have announced its new model yesterday

Many of those lexical categories are obviously wrong. For example, one of the lexical
categories for hebben is verb(hebben,pl,part sbar transitive(door)). This
lexical category indicates a finite plural verb which requires a separable prefix door,
and which subcategorizes for an SBAR complement. Since door does not occur any-
where in sentence (2), this lexical category will not be useful for this sentence. A filter
containing a number of hand-written rules has been implemented which checks that
such simple co-occurrence conditions hold. For sentence (2), the filter removes 173
lexical categories. The remaining 26 lexical categories are input to the HMM tagger
described below. The tagger (using the default settings) will remove 8 of these. After
the filter has been applied, feature structures are associated with each of the remaining
18 tags. Often, a single tag is mapped to multiple feature structures. The remaining
18 tags give rise to 81 feature structures.

2.2.2. Creating Parse Forests

The Alpino parser takes the set of feature structures found during lexical analy-
sis as its input, and constructs a parse forest: a compact representation of all parse
trees. The Alpino parser is a left-corner parser with selective memoization and goal-
weakening. It is a variant of the parsers described in [NOO 97]. We generalized some
of the techniques described there to take into account relational constraints, which are
delayed until sufficiently instantiated [NOO 94].

2.2.3. Robustness

As described in [NOO 99] and [NOO 01], the parser can be instructed to find all
occurrences of the start category anywhere in the input. In case the parser cannot find
an instance of the start category from the beginning of the sentence to the end, then the
parser produces parse trees for chunks of the input. A best-first search procedure then
picks out the best sequence of such chunks, generally preferring larger chunks over
shorter ones, preferring connected paths over paths with uncovered words, and tak-
ing into account the scores assigned to the chunks by the disambiguation component
(described in the following paragraph).

2.2.4. Unpacking and Parse Selection

The motivation to construct a parse forest is efficiency: the number of parse trees
for a given sentence can be enormous. In addition to this, in most applications the
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objective will not be to obtain all parse trees, but rather the best parse tree. Thus, the
final component of the parser consists of a procedure to select the best parse tree from
the parse forest.

In order to select the best parse tree from a parse forest, we assume a parse evalu-
ation function which assigns a score to each parse. In [BOU 01b] some initial exper-
iments with a variety of parse evaluation functions are described. In the experiments
discussed here, the parse evaluation function consisted of a log-linear model.

Log-linear models were introduced to natural language processing by [BER 96]
and [Del 97], and applied to stochastic constraint-based grammars by [ABN 97] and
[JOH 99]. Given a conditional log-linear model, the probability of a sentence x having
the parse y is:

p(y|x) =
1

Z(x)
exp

(

∑

i

λifi(x, y)

)

Here, each fi(x, y) is a property function which will return the number of times a
specific property i occurs in parse y of sentence x. Each property function has an
associated weight λi (the weights are determined in training). The partition function
Z(x) will be the same for every parse of a given sentence and can be ignored, so the
score for a parse is simply the weighted sum of the property functions fi(x, y).

In the log-linear model employed in our parser, we employed several types of
features corresponding to grammar rules as well as some more idiosyncratic features
indicating complementation / modification, long / short distance dependencies etc.
The model was trained on the sentences of up to 40 words of the Alpino treebank
(about 6000 sentences from the newspaper part of the Eindhoven corpus) 2.

A naive algorithm constructs all possible parse trees, assigns each one a score,
and then selects the best one. Since it is too inefficient to construct all parse trees,
we have implemented the algorithm which computes parse trees from the parse forest
as a best-first search. This requires that the parse evaluation function is extended to
partial parse trees. We implemented a variant of a best-first search algorithm in such
a way that for each state in the search space, we maintain the b best candidates, where
b is a small integer (the beam). If the beam is decreased, then we run a larger risk of
missing the best parse (but the result will typically still be a relatively ‘good’ parse);
if the beam is increased, then the amount of computation increases too. 3

2. The training data did not contain the first 220 sentences which are used for the evaluation
described in section 4.1.
3. Note that this procedure differs from best-first parsing (e.g. [CAR 98a]) since in our case
only the parse selection phase is best-first; the construction of the parse-forest finds all parses.



Reinforcing Parser Preferences 127

3. Using a POS-tagger as a Filter

3.1. Mapping Lexical Categories to POS-tags

As indicated earlier, the wide coverage lexicon for Dutch that we worked with
makes many detailed distinctions. Therefore, there are many different lexical cate-
gories: more than 18,000. In order to use this tagset in a POS-tagger, the lexical
categories are mapped to a (smaller) set of lexical category classes, by ignoring some
of the information present in lexical categories (in particular subcategorization infor-
mation). In the experiments described here, there were 1365 lexical category classes.

The HMM tagger described below finds the best tag for each position in the string,
and then removes competing tags for the same position under certain conditions. The
Alpino lexicon sometimes assigns lexical categories to a sequence of words in the
input. For example, the three words

(3) met
with

betrekking
respect

tot
to

are analyzed as a single preposition. In order to keep the architecture of the tagger
simple, the words that make up such multi-word-units are mapped to separate tags. If
the sequence of words w1 . . . wn is assigned category c, then this category is removed,
and instead for each j, 1 ≤ j ≤ n, we assign a new category (j, c) to word wj . In
example (3) the category (1, preposition) is assigned to met, (2, preposition) is as-
signed to betrekking and (3, preposition) is assigned to tot. Due to this expansion,
the number of lexical category classes increases (in the experiments below) to 2392.
The Alpino lexicon also assigns lexical categories to sequences of words in the case
of named entities (proper names, temporal expressions) and multi-word-units (often
expressions from other languages) such as à priori, up to date, credit card, etc.

3.2. The HMM Tagger

We implemented a variant of the standard trigram HMM tagger, described e.g. in
chapter 10.2 of [MAN 99]: an HMM in which each state corresponds to the previous
two tags, and in which probabilities are directly estimated from a labeled training
corpus. In this model, the relevant probabilities are of two types:

– the probability of a tag given the preceding 2 tags:

P (ti|ti−2ti−1)

– the probability of a word given its tag:

P (wi|ti)
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In determining which tags are unlikely, several techniques are possible. One can
compute the most likely sequence of tags, and remove all tags that are not part of this
sequence, or in general keep the tags that are part of the n best sequences. However,
in order to get good results we need very large n, making for slow processing. The
technique that performed best in our experiments is to compute probabilities for each
tag individually, so that tags assigned to the same word can be compared directly.
Thus, for each word in the sentence, we are interested in the probabilities assigned to
each tag by the HMM. This is similar to the idea described in chapter 5.7 of [JEL 98]
in the context of speech recognition. The same technique is described in [CHA 96].
The a posteriori probability that t is the correct tag at position i is given by:

P (ti = t) = αi(t)βi(t)

where α and β are the forward and backward probabilities as defined in the forward-
backward algorithm for HMM-training; αi(t) is the total (summed) probability of all
paths through the model that end at tag t at position i; βi(t) is the total probability of
all paths starting at tag t in position i, to the end.

Once we have calculated P (ti = t) for all potential tags, we compare these values
and remove tags which are very unlikely. Let s(t, i) = − log(P (ti = t)). A tag t

on position i is removed, if there exists another tag t′, such that s(t, i) > s(t′, i) + τ .
Here, τ is a constant threshold value. Using various values for τ results in different
outcomes with respect to filtering accuracy and remaining ambiguity.

3.3. Smoothing

In order to estimate the probability of a (potentially unseen) trigram, we take into
account the probability of the bigram and unigram as well. Thus, the trigram model
takes into account lower order models, assigning weights to each of the models to
express their relative importance. This idea, known as linear interpolation, is a well-
known method for combining models (see for instance [MAN 99]). By adjusting the
weights, which together sum up to one, we can put the emphasis on the model that
uses a greater context, while at the same time not ignoring the information provided
by models that are simpler, but for which more data is available. We interpolate a uni-,
bi- and trigram model by means of the following formula (where λ1, λ2 and λ3 are the
three respective weights, and P ∗(X) is the probability of some n-gram X computed
directly from the training data frequency counts):

P (t3|t1, t2) = λ3P
∗(t3|t1, t2) + λ2P

∗(t3|t2) + λ1P
∗(t3)

The weights are computed using the notion of n-gram diversity, an idea described
by Collins ([COL 99], borrowing from [BIK 97]). In order to compute the weight for
a trigram t1t2t3, we take the diversity and frequency of the bigram t1t2 into account.
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The diversity of an n-gram is the number of different tags that appear in the position
following this n-gram in the training data. If the trigram starts with a low-diversity
bigram, the weight associated with the trigram can be large: the probability of the
bigram being followed by an unexpected tag is small, and if this does happen, it is
likely to be a significant event. If on the other hand the bigram is of a high diversity,
the trigram should receive a small weight.

When we have the count and diversity figures available for bigrams, the weight
λ3 for a trigram t1t2t3 can be derived as follows, using a constant c to regulate the
importance of diversity in this computation:

λ3 =

{

0 if count(t1t2) = 0
count(t1t2)

count(t1t2)+c×diversity(t1t2)
if count(t1t2) > 0

We found that differences in the value used for c resulted in only small variations
in performance. In the experiments described in following sections a value of c=7 was
used.

3.4. Training the Tagger

The probabilities which are used in the HMM tagger are directly estimated from
a labeled training corpus. Perhaps the most interesting aspect of our approach is the
fact that the training corpus is constructed by the parser. Training the tagger therefore
implies running the parser on a large set of example sentences, and collecting the
sequences of lexical category classes that were used by what the parser believed to be
the best parse. 4

Of course, the training set thus produced contains errors, in the sense that the parser
is not always able to pick out the correct parse and as a consequence might not have
chosen the correct sequence of lexical category classes. Therefore, the POS-tagger
strictly speaking does not learn ‘correct’ lexical category class sequences, but rather
the tagger learns which sequences are favored by the parser.

In our experiments discussed below, we used as our corpus up to four years of
Dutch daily newspaper text. It should be noted, though, that from this large text
collection, we only used ‘easy’ sentences. Sentences with more than 22 words are
ignored, as well as sentences that take longer than 20 seconds of CPU time, and sen-
tences for which the parser is not able to find a full parse. Under these conditions,

4. A reviewer suggests to use the Alpino Treebank corpus to train a baseline version of the
tagger — however this is not possible because the treebank does not contain part-of-speech
tags. Although Dutch corpora have been manually tagged in the past, we cannot use manually
annotated material because the tag sets that were used in the past are quite different from the set
of lexical category classes used in the Alpino lexicon.
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model accuracy (%)
unigram 87.23
bigram 94.03
trigram 94.69

Table 1. Stand-alone tag filter accuracy using different models

parsing a week of newspaper text takes somewhere between 15 and 20 hours of CPU
time on standard hardware.5

3.5. Stand-alone Results

We experimented with the use of uni-, bi- and trigram models. The models were
trained on about 45 months (∼2 million sentences, ∼24 million words) of annotated
text from Dutch daily newspapers, and the filter was applied in a stand-alone setup
to a random selection of 10% of the sentences of the Alpino Treebank which contain
at most 40 words. Thus, these 604 sentences were parsed by Alpino, and for each
sentence the sequence of lexical category classes used by what the parser believed to
be the best parse is deemed to be the gold standard.

In table 1 the accuracy is listed for the bigram and trigram model; as a baseline we
also provide the unigram model. These percentages are obtained if for each position
in the input only a single tag is allowed to survive.

In figure 1 we display accuracy levels for different amounts of ambiguity after
filtering. The different levels of ambiguity are the result of using different threshold
settings in the filter; a lower threshold means more tags will be considered bad and
be removed. If the threshold value increases, then accuracy and ambiguity approach
100% (at which point all tags survive, including the correct ones).

The accuracy of the trigram model is lower than one might expect. In the literature,
HMM trigram taggers yield accuracy levels of more than 96%. Of course, these results
are hard to compare because of differences in the tag set and corpora that were used.
For instance, the LOB corpus is tagged with a tagset consisting of 170 different tags
[GAR 87]. The Wall Street Journal corpus is tagged with a tagset of only 48 tags
[MAR 93]. The most important difference, however, is the nature of the test data in
the current setup. It turns out that in many cases where the tagger and the test set
disagree, the tagger actually improves upon the test set. An example illustrates this;
consider the utterance:

(4) . . . van
. . . of

die
the

jongen
young-animals[pl]/boy[sg]

bij
near

de
the

doodskist. . .
coffin. . .

5. We heavily exploited a cluster of about 120 Linux PCs, at the High Performance Computing
Center of the University of Groningen.
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Figure 1. Stand-alone tag filter accuracy versus ambiguity for bigram and trigram
model, using different threshold settings ranging from τ=0 to τ=25. The model is
trained on 45 months of newspaper data

The Dutch word jongen is ambiguous between a singular noun reading boy and a
plural noun reading young-animals. The first reading is much more frequent than the
second reading. For some reason, the tag corresponding to the (infrequent) second
reading was used by the parser in its best parse of the sentence and as a consequence
this tag ended up in the test set. The HMM model quite rightly learned a preference
for the frequent reading and assigned the correct tag.

3.6. Larger Amounts of Training Data

Given that the training data is produced automatically, the most straightforward
manner of improving the tagger might be to use larger amounts of training data. In a
typical language modeling situation, this is a severely limited solution since the data
has to be manually annotated first. We experimented with using increasing amounts
of training data. The results are shown in figure 2. To be able to contrast filtering
accuracy with the number of months of training data, the filter was set to remove all
but the best scoring tag for each word, thereby removing all ambiguity.
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Figure 2. Stand-alone tag filter accuracy using increasing amounts of training data
and removing all but the single best tag for each word

This graph shows that the n-gram model performs better when trained on more
data, the trigram model gaining relatively more than the bigram model. It must be
noted though that after about 40 weeks of training data the accuracy does not improve
significantly anymore.

4. Using the Filter in the Parser

4.1. Experimental Results

The results so far have been stand-alone filtering results. As the filter is meant to
be used to disambiguate the lexical analysis of the Alpino parser, we will now present
parsing results and show how these are improved by the incorporation of the filter.

The filter was trained on more than 40 months of newspaper data annotated by
the parser. Next, the parser was run on the first 220 sentences of the cdbl corpus,
which is the newspaper part of the Eindhoven corpus; syntactic annotations of these
sentences are available as part of the Alpino Treebank [Alp02]. From those sentences,
four sentences were removed due to the fact that the parser without the tag filter ran
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Figure 3. Distribution of sentence length in the Alpino test set (in number of words)

out of memory. The test set thus contains 216 sentences (4295 words). In figure 3 we
provide a histogram of the distribution of sentence lengths.

Figure 4 plots the accuracy versus the mean CPU time spent by the parser per
sentence. The different points on the graph are the result of using different threshold
levels in the filter: using a low threshold, many tags are marked as bad, and thus
only a small number of tags remain, leading to very fast parsing (as shown on the left
hand side of the graph). Higher accuracy can be attained by using a higher threshold,
removing a smaller number of tags and at the cost of a decrease in speed.

It becomes clear from this graph that use of the filter leads to an increase in ac-
curacy. More importantly, parsing times are greatly reduced. The best performance
using the filter is achieved with mean CPU time of about 14 seconds per sentence,
while the parser running without the filter requires on average almost a minute of
CPU time per sentence.

Given the large variation in CPU times, it is somewhat misleading if we only con-
sider the mean CPU time per sentence. In figure 5 we display the differences in effi-
ciency in a different way. For a given amount of CPU time, the proportion of sentences
that are parsed within that amount of time are plotted. In the plot, three variants are
compared. In the first variant no tag filter was used. In the second variant we use the
tag filter with the threshold value τ=4.25 which happened to produce the highest ac-
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Figure 4. Parsing results in terms of parser accuracy and mean CPU time, using the
filter with different threshold settings ranging from τ=0 to τ=15, and using no filter

curacy (cf. figure 4). In the third variant we use the tag filter with the threshold value
τ=2; this produces the most efficient parser with at least the accuracy of the variant
without the tagger.

4.2. Discussion

It is perhaps surprising that the use of the filter can actually improve the accuracy
of the overall parser. One important reason is related to the strategy of the parser
described earlier. The parser always prefers a single parse over a sequence of partial
parses. Although this strategy implements a fairly natural tendency, it turns out that in
the context of very unlikely lexical categories the strategy implies that very unlikely
full parses are constructed e.g. for elliptical utterances. As an example, consider:

(5) In
cash[V+imp]/in[Prep]

Amsterdam
Amsterdam

vanavond
tonight

Cash Amsterdam tonight!
In Amsterdam - tonight
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Figure 5. Comparison of proportion of sentences that receive a parse within given
amount of CPU time

This sentence is naturally analyzed as an elliptical utterance, consisting of two parts:
a prepositional phrase in Amsterdam followed by an adverbial. However, the word
in can also be used as a verb. In this particular case, the parser can create a full parse
in which in is indeed analyzed as an imperative verb form. In the integrated system,
the POS-filter will filter out the possibility that in is a verb. As a result, no full parse
is possible. In this particular case, the resulting parse (consisting of two parts) will be
better than the unlikely single parse. In many cases, improvements of the integrated
parser are due to similar phenomena.

The coverage of a parser can be defined as the proportion of sentences which
receive a full parse. It can be argued that coverage is actually not a very useful metric
for parser evaluation. The fact that the parser finds a full parse for a given sentence
is only relevant if that parse is in some sense correct. But one important reason that
the use of a lexical analysis filter improves parsing accuracy is given by the reduction
of coverage. If the parser has many different lexical categories to choose from, then
often it is able to find a full parse (albeit a ridiculous one). However, if the parser is
forced to work with a limited set of lexical categories it becomes much harder to find
such a full parse. In the majority of cases, however, the resulting partial parse is much
closer to the gold standard. In figure 6 coverage and accuracy are plotted for different
threshold settings.
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Figure 6. Coverage (proportion of sentences that receive a full parse) and accuracy
for different threshold settings

5. Conclusions and Future Work

In this article we have proposed a simple technique to incorporate an n-gram POS-
tagger in the lexical analysis phase of a wide-coverage parser. Since the POS-tagger
does not need any human annotated data, the proposal is easily adaptable to other
parsing systems. In our experiments, we found that the use of the tagger greatly re-
duced parsing times, and in addition gave rise to an increase of parsing accuracy. We
showed that the accuracy increase was at least partly caused by the specific approach
to robustness implemented in our system. More generally, the effect on accuracy of
the incorporation of a POS-tagger as proposed in this article is dependent on the qual-
ity of the baseline system. We believe, however, that the positive effect on parsing
efficiency is less dependent on the particularities of the baseline system. If the tech-
nique proposed in this article is applied to other wide-coverage parsing systems, we
do expect important improvements in parsing efficiency.

In general, a model such as an HMM can be enriched by including more informa-
tion in a single state. For example, in the case of n-gram models a single state could
be made to represent three, instead of two, previous tags. The already small difference
between the performance of the bigram and the trigram tagger (see figure 1) suggest
that this is not likely to give much improvement. Perhaps a better way of extending the
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states is by adding information that is more linguistically informed. This is feasible,
because during the construction of training material, the full parse tree is available.

Based on frequent errors made by the filter we have experimented with adding
specific contextual information that humans would find helpful in making the relevant
distinctions. So far, this gives a small improvement in accuracy; the question remains
how much and what kind of contextual information can be added effectively. Since
there is no bound on the amount of training material that we can produce for the tagger,
sparse data may be less of a problem in our setup.

Acknowledgements

This research was carried out within the framework of the PIONIER Project Algo-
rithms for Linguistic Processing, funded by NWO (Dutch Organization for Scientific
Research) and the University of Groningen. The article is an extended and revised
version of [PRI 01]. We would like to thank Mark-Jan Nederhof and the anonymous
reviewers for helpful comments.

6. References

[ABN 97] ABNEY S. P., “Stochastic attribute-value grammars”, Computational Linguistics,
vol. 23, 1997, p. 597–618.

[Alp02] “The Alpino Treebank 1.0”, University of Groningen, 11 2002, CDROM; also avail-
able via http://www.let.rug.nl/˜vannoord/trees/.

[BER 96] BERGER A., DELLA PIETRA S., DELLA PIETRA V., “A maximum entropy ap-
proach to natural language processing”, Computational Linguistics, vol. 22, num. 1, 1996,
p. 39–72.

[BIK 97] BIKEL D. M., MILLER S., SCHWARTZ R., WEISCHEDEL R., “Nymble: a high-
performance learning name-finder”, Proceedings of ANLP-97, 1997, p. 194–201.

[BOO 75] DEN BOOGAART P. C. U., Woordfrequenties in geschreven en gesproken Neder-
lands, Oosthoek, Scheltema & Holkema, Utrecht, 1975, Werkgroep Frequentie-onderzoek
van het Nederlands.

[BOU 98] BOUMA G., VAN NOORD G., “Word order constraints on verb clusters in German
and Dutch”, HINRICHS E., NAKAZAWA T., KATHOL A., Eds., Complex Predicates in
Nonderivational Syntax, p. 43–72, Academic Press, New York, 1998.

[BOU 01a] BOUMA G., MALOUF R., SAG I., “Satisfying Constraints on Adjunction and Ex-
traction”, Natural Language and Linguistic Theory, vol. 19, 2001, p. 1–65.

[BOU 01b] BOUMA G., VAN NOORD G., MALOUF R., “Wide Coverage Computational Anal-
ysis of Dutch”, DAELEMANS W., SIMA’AN K., VEENSTRA J., ZAVREL J., Eds., Compu-
tational Linguistics in the Netherlands, CLIN 2000, Amsterdam, 2001, Rodopi, p. 45–59.

[CAR 96] CARROLL J., BRISCOE E., “Apportioning Development Effort in a Probabilistic LR
Parsing System through Evaluation”, Proceedings of the ACL SIGDAT Conference on Em-
pirical Methods in Natural Language Processing, University of Pennsylvania, Philadelphia,



138 TAL. Volume 44 - n◦ 3/2003

PA, 1996, p. 92–100.

[CAR 98a] CARABALLO S. A., CHARNIAK E., “New Figures of merit for best-first proba-
bilistic chart parsing”, Computational Linguistics, vol. 24, num. 2, 1998.

[CAR 98b] CARROLL J., BRISCOE T., SANFILIPPO A., “Parser Evaluation: A Survey and a
New Proposal”, Proceedings of the first International Conference on Language Resources
and Evaluation (LREC), Granada, Spain, 1998, p. 447–454.

[CHA 96] CHARNIAK E., CARROLL G., ADCOCK J., CASSANDRA A., GOTOH Y., KATZ

J., LITTMAN M., MCCANN J., “Taggers for Parsers”, Artificial Intelligence, vol. 85,
num. 1-2, 1996.

[COL 99] COLLINS M., “Head-Driven Statistical Models for Natural Language Parsing”, PhD
thesis, University of Pennsylvania, Philadelphia, Pennsylvania, 1999.

[Del 97] DELLA PIETRA S., DELLA PIETRA V., LAFFERTY J., “Inducing features of random
fields”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, 1997,
p. 380–393.

[GAR 87] GARSIDE R., LEECH G., SAMPSON G., The Computational Analysis of English: A
Corpus-Based Approach, Longman, 1987.

[JEL 98] JELINEK F., Statistical Methods for Speech Recognition, MIT Press, 1998.

[JOH 99] JOHNSON M., GEMAN S., CANON S., CHI Z., RIEZLER S., “Estimators for
Stochastic “Unification-based” Grammars”, Proceedings of the 37th Annual Meeting of
the ACL, College Park, Maryland, 1999, p. 535–541.

[KIE 99] KIEFER B., KRIEGER H.-U., CARROLL J., MALOUF R., “A Bag of Useful Tech-
niques for Efficient and Robust Parsing”, Proceedings of the 37th Meeting of the ACL,
College Park, MD, 1999, p. 473–480.
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