The eurofont package v1.1.3

Rowland McDonnell

rebecca@astrid.u-net.com

30th January 1999

Contents

1 Introduction

1.1 WhatelsedoIneed? . . . . ... .. . ...
1.2 How to install the package —in brief . . . . . .. .. ... ... ..
1.3 How to use the package — a brief introduction . . . . ... ... ..

1.3.1 Options . . . . . .. ..
1.4 Some founts with euro symbols . . . . . ... .. .. ... .....
1.5 How to change what you get — a brief intro . . . . . ... ... ..
1.6 About this package and document . . . . . . ... ... ... L.

2 Installing the eurofont package
2.1 Using Marvosym and Adobe’s Eurofonts . . . . . .. ... ... ..
2.1.1 Using Adobe’s Eurofonts . . . . ... ... ... ......

O O Uk W W

3 All the options
4 Configuring the eurofont package
4.1 The \make...eurocommands. . . . . . . ... ... .....
5 Founts containing euro symbols
5.1 Getting Marvosym or Adobe’s Eurofonts . . . . . . ... ...
5.2 Dvi driver configuration for Adobe’s Eurofonts and the Marvosym
fount . . . ...
5.2.1 Dvi driver configuration lines for Adobe’s Eurofonts
5.2.2  Dvi driver configuration lines for Marvosym . . . . . .
5.3 Metafont founts containing euro symbols . . . . . . . ... ..
6 Potentially useful extra information
6.1 Fount families and series . . . . . . . .. ... ... .. ....
7 How eurofont works — in detail
7.1 The\eurocommand . . . . .. ... ... ... ........
7.2 The \make...eurocommands. . . . . . .. ... .. .....

2.1.2  Using the Marvosym fount . .. ... ... ... ...

7.2.1 \maketexteuro . . . . . . . . . . . ...
7.2.2 \makefakeeuro . . . . . . . . . . i i
7.2.3 \makechinaeeuro . .. . .. .. ... ... . ....

11

13
15

19
20

21
21
23
24

25
25



7.3

7.4

7.5

7.2.4 \makecmeuro . . . . . . . ... ... 30
7.2.5 \makeserifeuro . . . . .. .. ... ... ... 31
7.2.6 \makesanseuro . . . . . . . . . ... 31
7.2.7 \makemonoeuro . . . . . . . . . . ocoiu i 31
7.2.8 \makefakelighteuro . ... . ................ 32
7.2.9 \makefakemediumeuro. . . . . ... .. .. ... ... .. 32
7.2.10 \makefakeheavyeuro . . . .. ... .. .. ... . ..... 32
7.2.11 \makedefaulteuro. . . . . .. ... ... ... .. ..... 32
Other commands to print euro symbols . . . . . .. ... ... .. 32
7.3.1 \chinaeeuro . . . . . . . . .. ... 32
7.3.2 \CMEUTO . . . . . . . i 32
7.3.3 N\EFeuro . . . . . . . . . . ... 33
7.3.4 \ESeuro . . . . . . ... ... 33
7.3.5 Noldeuro . . . . . . . . ... 33
7.3.6 \sanseuro . . . . . . ... 33
7.3.7 \serifeuro . . . . . . . . . ... ..o 34
7.3.8 \monoeuro . . . ... ... e 34
7.3.9 \zpeureuro . . . . . . . . ... 34
7.3.10 \Zpeusseuro . . . . . . . . ... 34
7.3.11 \zpeutteuro . . . . .. . ... ... ... 34
7.3.12 \marvosymeuro . . . . . . . ... ..o 34
7.3.13 \marvosymsanseuro . . . . . . . . ... ee e 35
7.3.14 \marvosymserifeuro . . . .. ... .. ... ... ... .. 35
7.3.15 \marvosymmonoeuro . . . . . . . . . ... 35
7.3.16 \cmrfakeeuro . . . . . . . . . ... 35
7.3.17 \cmssfakeeuro . . . . . . . . . ... 35
7.3.18 \cmttfakeeuro . . . . . . . .. ... 35
7.3.19 \pzcfakeeuro . . . . . . . ... .. ... 36
Commands used to produce faked euro symbols . . . . . . ... .. 36
7.4.1 \fakeheavyeuro . . . . . . .. ... ... .. ... 36
7.4.2 \fakelighteuro . . . . ... ... .. .. .......... 36
7.4.3 \fakemediumeuro . . . . . . .. .. ... ... 37
7.4.4 \EFruleeuro . . . . . . .. .. ... ... .. ... 37
7.4.5 \mediumruleeuronorm. . . . . . . . . . .. ... ... .. 39
7.4.6 \mediumruleeuronmoslant . . . ... .. .. .. .. ..... 39
7.4.7 \mediumruleeurobigslant . .. .. ... .......... 40
7.4.8 \lightruleeuromorm . . . . . . . . . . ........... 40
7.4.9 \lightruleeuronoslant . . . . ... ............ 40
7.4.10 \lightruleeurobigslant . . . . . . . . .. ... .. .. .. 40
7.4.11 \heavyruleeuronorm . . . . . . . . . . .. ... ...... 40
7.4.12 \heavyruleeuronoslant . . . . ... ... ......... 41
7.4.13 \heavyruleeurobigslant. ... .. ... .......... 41
Other supporting commands . . . . . ... .. ... ... ... .. 41
7.5.1 \showfontfamily . . .. ... ... ... . ... ..... 41
7.5.2 \SelectOnWeight . . . . ... ... ... ... .. ..... 41
7.5.3 \EFaddtolist . . ... ... ... .. .. .. ... ... 41
7.5.4 \EFiftexteurocexists. . .. . . .. .. ... ... ..... 42
755 NEF@pmb . . . . . . . ... 42



8 The code itself 42

8.1 List handlingcode . .. .. ... .. . ... ... .. ... 43
8.2 Options . . . . . . . . 44
8.3 A spare command or more? . . . . .. .. ... 47
8.4 Code to fudge a euroif needed . . . . . ... ... ... 48
8.5 Code to use MArvosSym . . . . . . . . ..o 53
8.6 Faking a bold character . . . . ... ... ... ... ... ... 54
8.7 The code to select and print euro symbols . . . . . . .. ... ... 55
8.8 Make euro commands . . . . ... L. 58

1 Introduction

The eurofont package was written to do two complementary jobs: firstly, to auto-
mate the process of using a euro symbol from any source in any fount!; secondly,
to generate a ‘faked’ euro symbol from a C with two lines across it, which can be
used automatically when no suitable real euro symbol exists.

Despite the name, the eurofont package does not itself have a fount containing
euro symbols: it’s meant to help you use founts with euro symbols.

The eurofont package defines two commands meant to be used in documents:
the \euro command which prints a euro symbol, and the \euros{({amount)} com-
mand which prints a euro symbol next to its argument — normally a number — with
a small space in between the two. The particular euro symbol printed depends on
the way eurofont has been set up: the decision made is based on the fount in use at
the time you use the command. The \euros command uses the \euro command
to print the euro symbol, so these commands print the same symbol under the
same circumstances.

There are several ways of controlling which particular euro symbol you get
with any given fount; the idea is that — with a bit of luck — most users won’t need
to do anything more complicated than passing options to eurofont and making
minor changes to the configuration file, eurofont.cfg.

Note for OZIEX users (and perhaps others): throughout this document, I refer
to the standard set of PostScript Type 1 founts (Times, Helvetica, Courier, etc). If,
like me, you use TrueType versions of Times, Palatino, etc., instead of PostScript
Type 1 versions, the difference doesn’t matter.

This is the second public release of the eurofont package; as I had expected, at
least one bug did escape my notice in the first release (it was a problem with the
advice given on configuring dvips). I've fixed the problem reported, but there’s
probably a few more bugs lurking in the package; if you do spot any bugs, have
any trouble with the documentation, you'd like to tell me how to configure the
dvi driver you use (I’d love to hear from Amiga or Archimedes TEX users in
particular), or you'd just like to make a comment or suggestion about the eurofont
package, I'd appreciate an email at: rebecca@astrid.u-net.com.

1.1 What else do I need?

The only thing you must have to use the eurofont package is a working IXTEX2e
installation. This package has only been tested with the June 1998 release of

T am one of the last people in the world to use this spelling of the word to refer to ‘a set of
type in one size and style’.



¥TEX2e, but will probably work correctly with earlier versions. Eurofont will not
work with ¥TEX 2.09.

The eurofont package can be configured to produce useful euro symbols in the
absence of any founts containing real euro symbols, but you will need to edit the
configuration file if you want this; an introduction to configuring this package can
be found in section 1.5 on page 7.

In its default configuration, eurofont expects to find Adobe’s Eurofonts in-
stalled. If you want to avoid these, you can pass the marvosym option to eurofont
and it’ll expect the Marvosym fount instead. Adobe’s Eurofonts have italic, bold,
and bold italic variants which Marvosym lacks.

Both Marvosym and the Eurofonts are PostScript Type 1 founts: you can
use them if you have a PostScript printer, ATM (Adobe Type Manager), or a
PostScript emulator like Ghostscript. Section 5.1 on page 20 has more on these
founts and how to get them.

The eurosym and China2e packages both have euro symbols in Metafont format
which can be used by eurofont. You’ll get eurosym’s euro symbol if you pass
the eurosym option to eurofont — this gives you eurosym’s euro symbol instead
of Adobe’s Eurofonts or Marvosym’s euro symbols, and also replaces the euro
symbols you get with the Computer Modern founts. You will need to edit the
configuration file if you want to use the euro symbol from the China2e fount.

1.2 How to install the package — in brief

1. Run BTEX on eurofont.ins.

2. Put eurofont.sty, eurofont.cfg, and all the files ending in .fd into a
directory on your tex-inputs search path.

3. (optional) Get and install Adobe’s Eurofonts, and/or the marvosym fount,
and/or the China2e package, and/or the EC founts (the T1 encoded re-
working of the original Computer Modern founts), and/or the Eurosym pack-
age. See section 5 on page 19 for details.

4. (optional) If you want to use Adobe’s Eurofont’s, put the zpeu. . .tfm files
into a directory on your tex-fonts search path, and the zpeu. . .vf files into
a directory on your vf (virtual founts) search path.

5. (optional) If you intend to use the marvosym fount, put one of the two files
fmvri8x.tfm into a directory on your tex-fonts search path; put it with the
file fmvr8x.tfm that comes with the marvosym distribution.

6. (optional) Copy the appropriate lines from dvidrive.txt to the appropriate
file on your system to configure your dvi driver to use marvosym and/or
Adobe’s Eurofonts. This procedure is also covered in section 5.2 on page 21.

7. (optional) Modify the file eurofont.cfg as you like.

1.3 How to use the package — a brief introduction
This is how to use eurofont in your document:

\documentclass [adpaper]{article}
\usepackage{eurofont}



\begin{document}
The euro symbol looks like this: \euro. A sum of money can
be written like this: \euros{500}.

\end{document}

The \euro command prints the euro symbol; the \euros command is meant to
be used to typeset a sum of money in euros: it prints the euro symbol to the left
(by default) of its argument, with a small amount of space between the symbol
and the text of the argument. If you give the eurofont package the right option,
the euro symbol will be on the right.

The eurofont package’s default setup assumes that you've got Adobe’s Euro-
fonts installed. If you want use to euro symbols from the Marvosym fount instead,
use the marvosym option:

\usepackage [marvosym] {eurofont}

The next question is: what do you get when you use the \euro or \euros
command? The eurofont package decides which euro symbol to use depending on
the fount in use at the place where the \euro command is encountered. The way
the package is set up initially, you get this:

e All bar one of the ‘standard’ set of PostScript founts get a euro symbol
from one of Adobe’s Eurofonts: Bookman, Times, Palatino, New Century
Schoolbook, and Utopia use Euroserif; Avant Garde, Helvetica, Symbol, and
Zapf Dingbats use Eurosans; and Courier uses Euromono.

e Zapf Chancery (the one exception) uses a euro symbol faked with medium
rules.

e Each of the three Computer Modern text fount families (Computer Mod-
ern Roman, Computer Modern Sanserif, and Computer Modern Typewriter
(cmr, cmss, and cmtt) uses either the appropriate euro symbol from the
matching ‘text companion’ (TC) fount (if installed); or, if the TC founts
appear to be missing, eurofont will print a faked euro symbol instead.

e Everything else gets a euro symbol faked with medium weight rules.

The marvosym option tells eurofont to use the Marvosym fount’s euro symbols in
place of Adobe’s Eurofonts.

The faked euro symbols I refer to above are euro symbols produced by super-
imposing a pair of horizontal lines over a letter ‘C’. The result can be surprisingly
tolerable in some cases.

1.3.1 Options

This is my best guess at the options most new users are likely to want to know
about first, not a full list of all the options — you can find that in section 3 on
page 11.

left This option makes the \euros command print the euro symbol to the left of
its argument, which is normally a number; the \euros command is meant
for typesetting sums of money. This is the default behaviour.



right This option makes the \euros command print the euro symbol to the right
of its argument, which is normally a number; the \euros command is meant
for typesetting sums of money.

marvosym This option tells eurofont to use the Marvosym fount’s euro symbols
for the standard set of PostScript Type 1 founts. The eurofont package
automatically fakes a bold version when needed, and you’ll also get a decent
faked italic/slanted version if your dvi driver can slant a fount.

eurosym This option tells eurofont to use the eurosym package’s euro symbol for
the Computer Modern families and for the standard set of PostScript Type
1 founts. If the eurosym package isn’t available, eurofont complains and all
euro symbols are created using the normal eurofont code for printing faked
euro symbols.

1.4 Some founts with euro symbols

It’s a good idea to get some founts containing the euro symbol. Section 5 on
page 19 has more details of some freely available founts. In brief, the founts with
euro symbols in that I know about are:

Fount Format Notes

Adobe Eurofonts PS Type 1 Seriffed, sanserif, and monospaced all in
upright, italic, bold, and bold italic

Marvosym pfa and pfb only Seriffed, sanserif, and monospaced in
upright medium only

China2e Metafont A single beautiful upright euro symbol

Eurosym Metafont The official euro and an alternative

approach to printing a faked euro

Text Companion Metafont Founts containing extra symbols that
come with the T1 encoded version of the
Computer Modern founts

If you know of other founts containing euro symbols that are used with BTEX do
please let me know and TI’ll add them to this list.

The china2e and marvosym packages come with founts in one shape and weight
only: medium upright. Despite this, the eurofont package will print what looks
like a bold euro symbol from either fount, and can (with a bit of help from your
dvi driver) also manage italic and bold italic euro symbols from marvosym.

The way it works is this: eurofont comes with two tfm files — both called
fmvri8x.tfm — for a slanted version of the Marvosym fount?. This fount doesn’t
really exist, but some dvi drivers can create a slanted fount from an upright one
by leaning it to one side.

Assuming your dvi driver can create a slanted fount (dvips can — see sec-
tion 5.2.2 for more details), this extra tfm file means you can use the Marvosym
fount’s euro symbols with slanted or italic founts: the results you get with this
should be good enough for all practical purposes. Eurofont also has two commands

2Use the tfm file from the original directory if you're using the original version of Marvosym
(the pfa or pfb files from CTAN or the TrueType version from Martin Vogel’s Web site); and
use the tfm file from the yandy folder if you’re using the Y&Y version of Marvosym — either
downloaded from the Y&Y Web site, or the Macintosh version from CTAN.



to print a ‘poor man’s bold’ version of a euro symbol; one of these is used auto-
matically to print bold versions of the Marvosym or China2e euro symbols, which
are missing bold variants. These poor man’s bold commands print six copies of
the requested symbol, each offset from the others by a very small amount in a
hexagonal arrangement. There’s a bit more detail in section 7.5.5 on page 42.

If you want to use the euro symbol from China2e, you could do worse than to
read section 1.5.

1.5 How to change what you get — a brief intro

The eurofont package comes with a configuration file called eurofont.cfg. The
idea is that you can change this file as much as you like to meet your preferences.

But before diving in and changing anything, there are several options that can
change what the package does. There’s a brief description of some of them in
section 1.4 on the preceding page, and section 3 on page 11 tells all.

The basic idea behind eurofont’s \euro command is this: there are several
lists which have their contents defined in the file eurofont.cfg. When you use
the \euro or \euros command, the current fount family is checked against each
list in turn. If the fount family matches an entry in a list, then the command
corresponding to that list is executed. This command prints a particular euro
symbol. The first match you get decides which euro symbol you get: you can’t
get two euro symbols if one fount family is listed in, say, the \chinaelist and
the \seriflist

So, for example, the fount family ptm (Adobe Times) is listed in \seriflist.
If you use the \euro command in the middle of some text typeset in Times, the
command \makeserifeuro is executed, and you get a euro symbol from Adobe’s
Euroserif fount (by default, that is; if you've used the marvosym option, you’ll get
Marvosym’s seriffed euro symbol). I'll explain how to find out the internal fount
family name of each fount in a bit.

The configuration file (eurofont.cfg) contains this by default:

% List contents Corresponding command

%
\EFaddtolist{\userlist}{}% \makeusereuro
\EFaddtolist{\texteurolist}{}/ \maketexteuro
\EFaddtolist{\chinaelist}{}/ \makechinaeeuro
\EFaddtolist{\cmlist}{cmr,cmss,cmtt}’ \makecmeuro
\EFaddtolist{\seriflist}{pbk,pnc,ppl,ptm,put}’ \makeserifeuro
\EFaddtolist{\sanslist}{pag,phv,psy,pzd}% \makesanseuro
\EFaddtolist{\monolist}{pcr}¥ \makemonoeuro
\EFaddtolist{\fakemediumlist}{pzc}/, \makefakemediumeuro
\EFaddtolist{\fakelightlist}{}% \makefakelighteuro
\EFaddtolist{\fakeheavylist}{}% \makefakeheavyeuro

The lists are created at the start of the eurofont package with nothing in them:
the code above tells you the full story about what’s in each list. You can use the
\EFaddtolist command anywhere after the eurofont package has been loaded; you
can use it in individual document preambles if you like, as well as in eurofont.cfg.

Each fount in B TEX belongs to a fount family. For example, Bookman Roman,
Bookman Italic, Bookman Bold, and Bookman Bold Italic are all different founts,
but they belong to the Bookman family. This family has an internal I¥TEX name:



pbk. One way of discovering the name of a fount family is to use eurofont’s
\showfontfamily command in your document: it displays the internal name of
the current fount family on the screen and in the log file.

Before going any further, remember this: each list is a list of fount family
names. If you're using a fount family that’s in a particular list, you get the euro
symbol generated by the command corresponding to that list. Section 6.1 on
page 25 has more notes on KTEX fount families.

If, for example, you don’t like the euro symbol that you get with Computer
Modern Roman, and you’d rather have the euro symbol from China2e with Com-
puter Modern Roman, you can do this by changing two lines. Where the configu-
ration file says this:

\EFaddtolist{\chinaelist}{}
\EFaddtolist{\cmlist}{cmr,cmss,cmtt}

you should change it to this:

\EFaddtolist{\chinaelist}{cmr}
\EFaddtolist{\cmrlist}{cmss,cmtt}

You might have a new PostScript fount that you’d like to use Adobe’s Euroserif
euro symbol with. If that fount is, say, Monotype Joanna (fount family name mjo),
you can do this by adding mjo to the \seriflist:

\EFaddtolist{\seriflist}{pbk,pnc,ppl,ptm,put,mjo}

Or you might be using (say) Bitstream Bernhard Modern (family name bb7)
which you might think doesn’t go well with any of the real euro symbols on offer.
You might prefer a euro symbol faked with light rules in this case. You can get
this by saying:

\EFaddtolist{\fakelightlist}{bb7}

Then again, you might have a fount that has a real euro symbol in it: call
it Adobe Xyzzy (pxy) for the sake of argument. If this fount has been set up
properly for use with ITEX, the euro symbol will be available using the \texteuro
command. Rather than having to use a different command to select the euro
symbol if you're using this fount family, you can say:

\EFaddtolist{\texteurolist}{pxy}

There are mechanisms that allow you to bypass the standard behaviours. You
can, for example, use \newcommand in the configuration file to define any of the
\make. . .euro commands to anything you like. You could, for example, say:

\newcommand{\makesanseuro}
{{\fontfamily{phv}\selectfont\makefakeeuro}}

and all fount families in the \sanseurolist would have a euro symbol faked from
a C in Helvetica with two rules drawn across it.

Alternatively, you could put a fount in \usereurolist, and you’d get a euro
symbol generated by the \makeusereuro command. This is meant to be defined
by you: by default, it prints a euro symbol faked with medium weight rules and
displays on the screen a message explaining that you should have defined the



\makeusereuro command to do what you want it to do. For example, the following
lines in the configuration file:

\newcommand{\makeusereuro}
{EUR}

will give you ‘EUR’ — the standard international currency abbreviation for the
euro currency unit — for the euro symbol in all fount families listed in the
\usereurolist.

\usereurolist is the first list looked at: if a fount family is listed in the
\usereurolist as well as another list, what you get is the euro symbol produced
by \makeusereuro.

Immediately after \usereurolist is examined, the \euro command looks to
see if a command of the form \<fam>euro exists (where <fam> is the name of
the current fount family). If it does, this command is executed and the \euro
command finishes. For example, assume you’ve designed a euro symbol to match
URW’s Arnold Boecklin fount (family name uab). Let’s say you've written a
command \arnoldboecklineuro to print this symbol. You could say this:

\newcommand{\uabeuro}{\arnoldboecklineuro}

and the \euro command would print your new euro symbol whenever you were
using Arnold Boecklin.

1.6 About this package and document

The original aim of the eurofont package was to provide a trivial interface to allow
one to use the euro symbols from Adobe’s Eurofonts with any fount. The package
has grown a bit since the original idea, which might explain a few things. While
their contributions to the final code might look small, this package couldn’t have
been started (let alone finished) without the help of Donald Arseneau and Stefan
Ulrich (in alphabetical order, in case you're wondering). They provided the list
handling code which is at the heart of the package.

The biggest problem I had with this package was documenting it. I’ve no idea
whether or not the documentation has ‘hit the right note’ — if you’ve any comments
at all to make about the documentation (or the package for that matter), do please
email me and let me know what you think. Comments, suggestions, and bug
reports are all very much welcome. To say that writing the documentation was a
headache is putting it mildly. If you read the documentation from start to finish,
you’ll notice that there’s a certain amount of repetition. This is deliberate, and is
meant to make it easier to use the documentation.

One problem that this package will face is that more and more founts containing
euro symbols will appear as time goes on. With a bit of luck, it’s flexible enough
for you to be able to configure it to deal with these new founts. If not, or if you’ve
had a thought about what might be done with one or more of these new founts,
do please let me know by email — if it’s practical, it would be nice to modify this
package to make it more useful.

2 Installing the eurofont package

The eurofont package proper comes in two files: eurofont.dtx and eurofont.ins.
Running BETEX on eurofont.dtx produces this document, so I’ll assume you’ve



done that. Running IATEX on eurofont.ins generates:

dvidrive.txt Information on configuring dvi drivers to use Adobe’s Eurofonts
and the Marvosym fount.
eurofont.cfg The configuration file: edit this file to change eurofont’s

behaviour.
eurofont.sty The package file proper.
uzmvs.fd ETEX code for selecting the Marvosym fount.
uzpeur.fd ETEX code for selecting Adobe’s Euroserif fount.

uzpeuss.fd ETEX code for selecting Adobe’s Eurosans fount.
uzpeutt.fd ETEX code for selecting Adobe’s Euromono fount.

eurofont.cfgand eurofont.sty should be put in a directory on your tex-inputs
search path: they’re both essential. If you're using either Adobe’s Eurofonts or
the Marvosym fount, read dvidrive.txt. Once you've used it, you can discard
it.

The £d files are only needed if you're using the founts in question. What they’re
for is this: TEX can only typeset text in a particular fount if it has a tfm file
corresponding to that fount to look at. ITEX fd files contain code to select a tfm
file when you ask for a particular fount using IXTEX commands. For example, you
might ask for ‘U encoded Adobe Euroserif in bold italic’. WTEX would then look
at the file uzpeur.fd, and discover that this request corresponded to zpeubi.tfm.

If you intend to use the Marvosym fount, put the file uzmvs. fd into a directory
on your tex-inputs search path. This file is named so that it won’t clash with the
original Marvosym fount definitions: you don’t have to worry about the marvosym
package getting confused because the eurofont package uses the marvosym fount
differently.

If you intend to use Adobe’s Eurofonts, put the three uzpeu...fd files into
a directory on your tex-inputs search path. If you already have files with these
names from a different source, I suggest that you replace the older files with the
fd files that come with eurofont. If this causes any problems, please let me know
by emailing rebecca@astrid.u-net.com.

2.1 Using Marvosym and Adobe’s Eurofonts

How to get these founts is covered in section 5 on page 19. To use them with the
eurofont package, you need to install the appropriate £d files and configure your
dvi driver, as explained above. Assuming you have installed the actual fount files
on your computer, you then need tfm files for these founts: these are the files that
tells TEX exactly what size each letter is, and allows it to produce output with a
given fount.

The eurofont package comes with suitable tfm files for Adobe’s Eurofonts, and
two extra tfm files for the Marvosym fount. Which of these two tfm files you
should use depends on which version of the Marvosym fount you have.

2.1.1 Using Adobe’s Eurofonts

If you intend to use Adobe’s Eurofonts, you should put all 12 files in the
adobeuro/tfmfiles/ directory into a tex-fonts directory. These files should ex-
ist happily alongside any other tfm files generated for Adobe’s Eurofonts: being
generated by afm2tfm, they should be identical to any others you might have. I

10



suggest that you remove any other tfm files you might have for these founts unless
you know that you need to keep them installed. If this advice causes you any
problems, please email me and let me know.

2.1.2 Using the Marvosym fount

The Marvosym fount comes with a tfm file of its own, and the eurofont package
includes two extra tfm files: you should use one of these to allow you access to
a faked italic/slanted version of Marvosym, assuming that your dvi driver can
produce a faked italic by slanting an upright fount. Both dvips and OZIEX can
do this.

If you are using a version of the original Marvosym fount (the origi-
nal pfa or pfb files from CTAN, or the Truetype version from Martin Vo-
gel’s Web site), then you should take the file fmvri8x.tfm from the directory
marvosym/tfmfiles/original, and put it in the same tex-fonts directory as the
file fmvr8x.tfm which came with the marvosym package.

If you are using one of the ATM-compatible versions of the Marvosym fount
from Y&Y (either from Y&Y’s Web site or any of the Mac versions from
CTAN), things are slightly more complicated. In this case, you might be us-
ing the Y&Y supplied tfm file marvosym.tfm to use this fount. If so, leave
marvosym.tfm alone: take the files fmvr8x.tfm and fmvri8x.tfm from the direc-
tory marvosym/tfmfiles/yandy, and put them in the tex-fonts directory which
contains marvosym. tfm. If you have changed the name of the Y&Y supplied tfm
file to fmvr8x.tfm, just add fmvri8x.tfm.

Note that you should not use the file fmvr8x.tfm supplied for the original
Marvosym fount with any of the Y&Y versions of Marvosym, or vice versa: the
founts are very, very similar, but differ in tiny details which affect the metrics file
very slightly. You should therefore use the tfm file supplied with the particular
fount you're using. If you’re not sure of the source of the Marvosym tfm file already
installed on your computer, you might prefer to replace it with the appropriate
version of fmvr8x.tfm supplied with the eurofont package.

The original PostScript version of the Marvosym fount has the PostScript name
Martin Vogels_Symbole, while the Y&Y re-worked version has the PostScript
name Marvosym; this leads to different dvi driver configuration file entries which
should help you avoid any confusion over which version you’ve got.

3 All the options

Here are all of eurofont’s options, presented in no particular order.

left This option makes the \euros command print the euro symbol to the left
of its argument. When you use this option, it’s also passed to the eurosym
package, so that eurosym’s \EUR command will also print the euro symbol to
the left of its argument. This is the default behaviour.

right This option makes the \euros command print the euro symbol to the right
of its argument. When you use this option, it’s also passed to the eurosym
package, so that eurosym’s \EUR command will also print the euro symbol to
the right of its argument.

11



marvosym This option tells eurofont to use the Marvosym fount’s euro symbols
for the standard set of PostScript Type 1 founts. The eurofont package au-
tomatically fakes a bold version when needed, and you’ll also get a decent
faked italic/slanted version if your dvi driver can slant a fount. This op-
tion counteracts the adobeeurofonts option, and can be over-ridden by the
eurosym option.

adobeeurofonts This option tells eurofont to use Adobe’s Eurofonts to supply the
euro symbols for the standard set of PostScript Type 1 founts; this setting
is used by default. This option counteracts the marvosym option, and can
be over-ridden by the eurosym option.

eurosym This option tells eurofont to use the eurosym package’s euro symbol for
the Computer Modern families, and the standard set of PostScript Type 1
founts. If the eurosym package isn’t available, eurofont complains and all
euro symbols are created using the normal eurofont code for printing faked
euro symbols.

noeurosym This option counteracts the eurosym option; if (for example) you have
a configuration file that says \ExecuteOptions{eurosym}, you can tell euro-
font not to use eurosym’s euro symbols, and use the normal founts — typically
Adobe’s Eurofonts and the Text Companion founts. This is the default be-
haviour.

These next four options only affect what you get when you’ve given the eurofont
package the eurosym option. See the eurosym package’s documentation for more
details.

official This option is passed to the eurosym package, and tells it to give you
the official euro symbol.

gen This option is passed to the eurosym package, and tells it to give you a faked
euro symbol.

gennarrow This option is passed to the eurosym package, and tells it to give you
a faked euro symbol with narrow cross-strokes.

genwide This option is passed to the eurosym package, and tells it to give you a
faked euro symbol with wide cross-strokes.

The following three options affect how eurofont produces faked euro symbols.

noslantfakeeuro Eurofont’s faked euro symbols are produced with two rules of
the same length.

normalslantfakeeuro Eurofont’s faked euro symbols are produced with two rules
of slightly different length: the lower rule is the shorter of the two. This is
the default behaviour; it approximates the difference in length of the two
rules in the official euro symbol.

bigslantfakeeuro Eurofont’s faked euro symbols are produced with two rules of
greatly different length: the lower rule is by far the shorter of the two. This
was inspired by the China2e fount’s euro symbol.

And finally, some options which don’t seem to belong with anything else.

12



notextcomp This option tells the eurofont package not to load the textcomp pack-
age; it counteracts the textcomp option. You might want to use this option
if you find that some characters or accents are unexpectedly wrong when
using the eurofont package — this sort of thing can be caused by loading the
textcomp package. See also the fixtieaccent option.

textcomp This option tells the eurofont package to load the textcomp package
(part of the standard IBTEX distribution) if it is available. This package
defines the \texteuro command (amongst other things). Trying to load
textcomp is the default behaviour. One possibly unwanted effect of loading
textcomp is that tie accents are typically messed up if you’re using PostScript
Type 1 founts; the fixtieaccent option can help out with this.

fixtieaccent This option counteracts the nofixtieaccent option: it makes eu-
rofont define the tie accent to work the way it does as standard when the
textcomp package hasn’t been loaded. If you find tie accents no longer work
when using eurofont, you can use either this option or the notextcomp option
to fix things.

nofixtieaccent This option counteracts the fixtieaccent option: it stops eu-
rofont defining the tie accent to work the way it does as standard when the
textcomp package hasn’t been loaded. This is the default behaviour.

debugreport This option tells the eurofont package to print all sorts of debugging
information out when you use its commands. I added this option for my own
benefit, but you might find it useful if you're configuring eurofont in strange
fashions and not getting what you want.

nodebugreport This option tells the eurofont package not to print out any de-
bugging information. This is the default behaviour.

For those who might be interested: the following lines are executed just before
loading the configuration file:

\ExecuteOptions{adobeeurofonts}y, Use Adobe’s Eurofonts
\ExecuteOptions{noeurosym}y, Don’t use eurosym
\ExecuteOptions{left}, Euro symbol on left
\ExecuteOptions{normalslantfakeeuro}}, Fake euros with slight slant
\ExecuteOptions{nodebugreport}’ No debugging reports
\ExecuteOptions{textcompl}’ Load the textcomp package
\ExecuteOptions{nofixtieaccentl}, Don’t modify tie accents

You can therefore over-ride any of these defaults by placing a subsequent
\ExecuteOptions statement in the configuration file. For example, to make the
\euros command place the euro symbol on the right of the sum by default, add:

\ExecuteOptions{right}

to the configuration file, eurofont.cfg.

4 Configuring the eurofont package

There are three main mechanisms for changing the behaviour of eurofont’s \euro
command: passing an option to the eurofont package, adding a fount family name

13



to one of eurofont’s lists, and re-defining the \make... commands used by the
\euro command to print euro symbols. Options have been covered in section 3
on page 11; the other two are covered here.

The eurofont package comes with a configuration file — eurofont.cfg — that’s
meant to be changed to match your preferences. If you want to add a fount
family to a list, or re-define some commands, you can make the changes in the
configuration file. You can also put code to do these jobs in a document file if
you like. Please don’t change eurofont. sty itself, unless you change its name to
something else.

The way the \euro command works is this: when you use the \euro command,
it compares the current fount family name with the contents of a series of lists.
If the current fount family name is in a given list, the command corresponding
to that list is executed. This prints a particular euro symbol, and the \euro
command finishes. If you don’t know what a fount family name is in ETEX, have
a look at section 6.1 on page 25.

The lists are created at the start of the eurofont package, and have fount family
names entered into them by the \EFaddtolist command. There’s more than just
the lists I've mentioned in section 1.5, though. The configuration file contains the
following lines by default:

%

A List contents Corresponding command

%
\EFaddtolist{\userlist}{}% \makeusereuro
\EFaddtolist{\texteurolist}{}/ \maketexteuro
\EFaddtolist{\chinaelist}{}% \makechinaeeuro
\EFaddtolist{\cmlist}{cmr,cmss,cmtt}, \makecmeuro
\EFaddtolist{\seriflist}{pbk,pnc,ppl,ptm,put}’ \makeserifeuro
\EFaddtolist{\sanslist}{pag,phv,psy,pzd}% \makesanseuro
\EFaddtolist{\monolist}{pcr}’% \makemonoeuro
\EFaddtolist{\fakemediumlist}{pzc}/ \makefakemediumeuro
\EFaddtolist{\fakelightlist}{}% \makefakelighteuro
\EFaddtolist{\fakeheavylist}{}% \makefakeheavyeuro

\EFaddtolist{\faketexteurolist}{}

% Put all the standard LaTeX weights (and likely extras)
% into one of the following lists:

\EFaddtolist{\EFlightserieslist}{ul,el,1,ulc,elc,lc,ulx,elx,lx}
\EFaddtolist{\EFmediumserieslist}
{m,mb,db,sb,mc,mbc,dbc,sbc,mx,mbx,dbx,sbx}
\EFaddtolist{\EFboldserieslist}{b,bx,bc}
\EFaddtolist{\EFultraboldserieslist}{eb,ub,ebc,ubc,ebx,ubx}

The point of the configuration file is that you should change it any way you like.
But what do all these lines mean? In brief, what goes on is this: when you use the
\euro command (and remember that the \euro command is used by the \euros
command so this discussion applies to both commands), the current WTEX fount
family name is compared to the contents of each of the lists above, in the order
given, with an extra test I'll mention in a bit. If, for example, you're using New
Century Schoolbook (fount family name pnc), what happens with the default
settings is this:

14



1. \userlist is examined. It’s empty, so no match is found, and the command
continues.

2. This is the extra test mentioned above: a test is made to see if the command
\pnceuro exists (in general, the command \<fam>euro is looked for, where
<fam> is the WTEX fount family name of the current fount). If this command
exists, it’s executed and the \euro command terminates. In this case, the
command doesn’t exist, so the command continues.

3. \texteurolist is examined. It’s empty, so the \euro command continues.
4. \chinaelist is examined. It’s empty, so the \euro command continues.

5. \cmlist is examined. It’s not empty: the current fount family is pnc, but
the list contains cmr, cmss, and cmtt. No match is found, so the \euro
command continues.

6. \seriflist is examined. It’s not empty: the current fount family is pnc,
and the list contains pbk, pnc, ppl, ptm, and put. A match is found, so
\makeserifeuro — the command corresponding to this list — is executed,
which prints a euro symbol from one of Adobe’s Euroserif founts, and the
\euro command finishes.

You might be wondering what the \faketexteuro list is for. If a fount family is
listed in \faketexteuro, the \maketexteuro command will always execute the
\makefakeeuro command to generate a faked euro symbol for that fount family.
It prevents the \euro command from printing a euro symbol using the \texteuro
command. I'm not sure that this is particularly useful, but it seemed like a good
idea at the time.

Another unanswered question is: what happens if the \euro command
has made all its tests and not printed a euro symbol? In this case, the
\makedefaulteuro command is executed. By default, this command executes the
\makefakeeuro command which prints a euro symbol faked with medium weight
rules. You can of course re-define the \makedefaulteuro and \makefakeeuro
commands any way you like.

The \EF. . .serieslist commands are used by the commands that print faked
euro symbols; these commands are slightly more involved than you might think.
T’ll deal with this in detail in a bit.

4.1 The \make...euro commands

It might be that you want to do something that can’t be done conveniently by just
changing which fount families are listed in the lists above. If so, you’ll probably find
it most convenient to play around with the definitions of the various \make. . . euro
commands; please do cut-and-paste the original definitions into the configuration
file and modify them there if you think this will help. I used the \providecommand
command to define all the \make...euro commands so that the definitions in
eurofont.sty won’t have any effect if the commands have been defined earlier.
There’s more detail on what these commands do in section 7 on page 27 and in
the commented source code.

The \euro command works like this: the current fount family name is com-
pared against the contents of a series of lists. If the current fount family is present

15



in a particular list, the command corresponding to that list is executed. The first
match ends the execution of the \euro command: you’ll not get two euro symbols
if the current fount family is in two lists. You can see what I mean in section 7.1
on page 29.

One anomaly is the second test made in the \euro command, directly after
looking in \userlist: this second test doesn’t check for a match in a list, but
instead checks for the existence of a command \<fam>euro, where <fam> is the
current fount family name. If this command exists, it’s executed and the \euro
command ends. For example, if you define:

\newcommand{\pcreuro}{EUR}

every time you use the \euro or \euros command while using Courier — which has
the fount family name pcr — you’ll get ‘EUR’ printed (the standard international
abbreviation for the euro) rather than a euro symbol of any sort.

This table is a partial summary of what goes on:

List name Command executed What you get by default
\userlist \makeusereuro Fakes a euro and prints a warning.
\<fam>euro If it exists, \<fam>euro is executed.
\texteurolist \maketexteuro Prints a euro symbol from the current
fount or a faked euro symbol.
\chinaelist \makechinaeeuro Prints the euro from the China2e fount.
\cmlist \makecmeuro Prints a euro symbol from the current
fount or a faked euro symbol.
\seriflist \makeserifeuro Prints a euro from Adobe Euroserif.
\sanslist \makesanseuro Prints a euro from Adobe Eurosans.
\monolist \makemonoeuro Prints a euro from Adobe Euromono.

\fakelightlist \makefakelighteuro Fakes a euro with light weight rules.
\fakemediumlist \makefakemediumeuro Fakes a euro with medium weight rules.
\fakeheavylist \makefakeheavyeuro Fakes a euro with heavy weight rules.

What happens when you use the \euro command is that each list is considered in
turn, starting with the \userlist. If the fount family being used at that point in
the document is in that list, a euro symbol is generated by the specified command
and that’s the end of the command. If the fount family being used isn’t in the first
list, the next list is looked at and so on. If this explanation is less than crystal
clear, you might find it useful to read section 7.1 on page 29.

If each list has been checked and the current fount family hasn’t been found
in any of them, the \makedefaulteuro command is executed. This produces a
faked euro symbol: the eurofont package has commands to make these by drawing
two rules over a letter C; they can be surprisingly acceptable particularly if made
with a sanserif fount.

A brief description of what each of the \make. . .euro command does is:

\makefakeeuro This command doesn’t correspond to a list, but is used by the
\makedefaulteuro command and other parts of the eurofont package. What
it does is this: it first checks to see if the command \<fam>fakeeuro exists,
where <fam> is the current BTEX fount family name. If this command exists,
it’s executed; if not, the current fount family name is checked against (in
this order) the \fakelightlist, \fakemediumlist, and \fakeheavylist.
If there’s a match, it executes \makefakelighteuro, \makefakemediumeuro,

16



or \makefakeheavyeuro (depending on which list had the match). If it finds
no match, it executes \makefakemediumeuro.

The \makefake. ..euro commands produce euro symbols faked by placing
a pair of rules over a letter ‘C’.

For example, if you were using Zapf Chancery, which has an internal I TEX
fount family name of pzc, and \makefakeeuro were executed, the first test
would be to see if \pzcfakeeuro existed. Since eurofont does define this
command, it exists, and is executed.

\makeusereuro Meant to be defined by you; by default, this command gener-
ates an on-screen warning and executes the \fakemediumruleeuro command
which prints a euro symbol faked with medium rules.

\maketexteuro This command executes the \texteuro command if these three
conditions are met: the current ITEX fount family is not listed in the
\faketexteurolist, the \texteuro command exists (it’s defined by the
textcomp package which eurofont tries to load by default), and the fount defi-
nition file ts1<fam>. fd exists (where <fam> is the current K TEX fount family
name — this fd file will normally exist if the fount does have a euro sym-
bol available). If these conditions are not met, it executes \makefakeeuro
instead of \texteuro.

The \texteuro command, defined by textcomp, prints a euro symbol from
the current fount, assuming everything’s working right; the \makefakeeuro
command prints a euro symbol faked by placing two rules over a letter ‘C’.

\makechinaeeuro This command prints the euro symbol from the China2e fount.
If the current fount series is listed as light or medium by being in ei-
ther \EFlightserieslist or \EFmediumserieslist you’ll get the straight
China2e euro symbol; if the current fount series is listed as bold or ultra bold
by being in either \EFboldserieslist or \EFultraboldserieslist you'll
get a faked bold China2e euro symbol. If the current fount series isn’t listed
in any of these lists, you’ll get a straight China2e euro symbol.

The \makechinaeeuro command checks for the china2e package: if it’s miss-
ing, you’ll get a warning message and a faked euro symbol.

\makecmeuro This command normally has the same effect as \maketexteuro:
it executes the \texteuro command if the three conditions are met (see
above, in the \maketexteuro entry on page 17); otherwise, it executes
\makefakeeuro — this command fakes a euro symbol from a C over-printed
with two rules. This behaviour can be changed using an option: if you've
passed the eurosym option to eurofont, the \makecmeuro command prints
FEurosym’s euro symbol instead.

\makeserifeuro This command normally prints a euro symbol from one of
Adobe’s Euroserif founts (medium, italic, bold, or bold italic). If you've
passed the marvosym option to eurofont, you’ll get a seriffed euro symbol
from the Marvosym fount instead. Since Marvosym doesn’t have real bold
euro symbols, you'll get a faked bold euro symbol if the current fount series
is listed in \EFboldserieslist or \EFultraboldserieslist (as with the
\makechinaeeuro command).

17



If you’ve passed the eurosym option to eurofont, you’ll get a euro symbol
generated by eurosym’s \euro command: this option over-rides both the
marvosym option and the default adobeeurofonts option.

The commands \makeserifeuro, \makesanseuro, and \makemonoeuro are
very similar.

\makesanseuro This command normally prints a euro symbol from one of Adobe’s
Eurosans founts (medium, italic, bold, or bold italic). If you’'ve passed
the marvosym option to eurofont, you’ll get a sanserif euro symbol from
the Marvosym fount instead. Since Marvosym doesn’t have real bold euro
symbols, you’ll get a faked bold euro symbol if the current fount series
is listed in \EFboldserieslist or \EFultraboldserieslist (as with the
\makechinaeeuro command).

If you've passed the eurosym option to eurofont, you’ll get a euro symbol
generated by eurosym’s \euro command: this option over-rides both the
marvosym option and the default adobeeurofonts option.

The commands \makeserifeuro, \makesanseuro, and \makemonoeuro are
very similar.

\makemonoeuro This command normally prints a euro symbol from one of Adobe’s
Euromono founts (medium, italic, bold, or bold italic). If you’ve passed the
marvosym option to eurofont, you’ll get a monospaced euro symbol from
the Marvosym fount instead. Since Marvosym doesn’t have real bold euro
symbols, you’ll get a faked bold euro symbol if the current fount series
is listed in \EFboldserieslist or \EFultraboldserieslist (as with the
\makechinaeeuro command).

If you’ve passed the eurosym option to eurofont, you’ll get a euro symbol
generated by eurosym’s \euro command: this option over-rides both the
marvosym option and the default adobeeurofonts option.

The commands \makeserifeuro, \makesanseuro, and \makemonoeuro are
very similar.

\makefakelighteuro First checks to see if the command \<fam>fakeeuro ex-
ists (where <fam> is the name of the current fount family); if so, it ex-
ecutes \<fam>fakeeuro (as with \makefakeeuro). If not, it executes
\fakelighteuro — this gives you a euro symbol faked with light rules.

The particular weight (or thickness) of these rules varies depending on which
\EF...serieslist the current fount series is in: the rules are lightest if the
current fount series is listed in \EFlightserieslist, progressively heav-
ier if listed in \EFmediumseries and \EFboldseries, and heaviest if listed
in \EFultraboldseries. If the current fount series isn’t listed in any of
these lists, you get the rules you'd get if the current series were listed in
\EFmediumseries.

This command is very similar to the commands \makefakemediumeuro and

\makefakeheavyeuro.

\makefakemediumeuro First checks to see if the command \<fam>fakeeuro ex-
ists (where <fam> is the name of the current fount family); if so, it ex-
ecutes \<fam>fakeeuro (as with \makefakeeuro). If not, it executes

18



\fakemediumeuro — this gives you a euro symbol faked with medium weight
rules.

The particular weight (or thickness) of these rules varies depending on which
\EF...serieslist the current fount series is in: the rules are lightest if the
current fount series is listed in \EFlightserieslist, progressively heav-
ier if listed in \EFmediumseries and \EFboldseries, and heaviest if listed
in \EFultraboldseries. If the current fount series isn’t listed in any of
these lists, you get the rules you'd get if the current series were listed in
\EFmediumseries.

This command is very similar to the commands \makefakemediumeuro and
\makefakeheavyeuro.

\makefakeheavyeuro First checks to see if the command \<fam>fakeeuro ex-

ists (where <fam> is the name of the current fount family); if so, it ex-
ecutes \<fam>fakeeuro (as with \makefakeeuro). If not, it executes
\fakeheavyeuro — this gives you a euro symbol faked with heavy rules.

The particular weight (or thickness) of these rules varies depending on which
\EF...serieslist the current fount series is in: the rules are lightest if the
current fount series is listed in \EFlightserieslist, progressively heav-
ier if listed in \EFmediumseries and \EFboldseries, and heaviest if listed
in \EFultraboldseries. If the current fount series isn’t listed in any of
these lists, you get the rules you'd get if the current series were listed in
\EFmediumseries.

This command is very similar to the commands \makefakemediumeuro and
\makefakeheavyeuro.

\makedefaulteuro This command normally prints a faked euro symbol generated

5

with the \makefakeeuro command.

If you’ve passed the eurosym option to eurofont, the \makedefaulteuro
command prints a euro symbol generated by eurosym’s \euro command.
Otherwise, the \makedefaulteuro command prints a faked euro symbol
generated with the \makefakeeuro command.

For the curious: eurofont defines the \ESeuro command to be whatever
eurosym defined the \euro command to be. Eurofont can then define the
\euro command to be something else, but eurosym’s \euro code is still
accessible by using the \ESeuro command.

Founts containing euro symbols

This section was written in October 1998: 1 know that there are founts other
than the ones I've noted below that contain euro symbols, but these are the only
ones I know of that are convenient to use with ITEX. As far as I know, the founts
currently included with ‘euro compatible’ versions of MS-Windows and the MacOS
have a euro symbol that is close to the official euro symbol. This doesn’t match
the fount it’s included with in most cases. It seems to me that there is nothing
to be gained by using these euro symbols with I¥TEX. I expect this situation will
change in time, and matching euro symbols are designed for more founts.

19



Aside from the Text Companion founts which accompany the EC founts (the
relatively new T1 encoded versions of the standard Computer Modern founts used
by IATEX- I think they are included with all recent KTEX distributions), Metafont
euro symbols are included in two other founts available from CTAN: China2e,
which has a single very lovely euro symbol; and Eurosym, which has the official
euro symbol. You can find out how to get all of these in section 5.3 on page 24.

The euro symbols in the Text Companion founts were designed before the final
official euro symbol was decided on, and might be considered a bit eccentric by
some.

I know of two sets of PostScript Type 1 founts containing euro symbols:
Adobe’s Eurofonts, a set of 12 founts providing seriffed, sanserif, and monospaced
euro symbols in medium upright, italic, bold, and bold italic version; and the Mar-
vosym fount, which has three euro symbols, very similar to the medium upright
seriffed, sanserif, and monospaced euro symbols from Adobe.

Your TEX system’s documentation should tell you if you can use PostScript
Type 1 founts. Typically, you need either: a PostScript printer or PostScript
interpreter on your computer such as Ghostscript; or Adobe Type Manager (ATM)
installed on your computer and a dvi driver (such as OZIEX’s) which can take
advantage of this.

5.1 Getting Marvosym or Adobe’s Eurofonts
Adobe’s Eurofonts are available (October 1998) in a Mac version from here:

ftp://ftp.adobe.com/pub/adobe/type/mac/all/eurofont.sea.hqgx
ftp://ftp-pac.adobe.com/pub/adobe/type/mac/all/eurofont.sea.hqgx

Textures users on Macs should also download these files from CTAN:

systems/mac/textures/contrib/IdealFonts/EuroDefs.sit.hgx
systems/mac/textures/contrib/IdealFonts/README. IF

You should still download Adobe’s Eurofonts separately.
Adobe’s Eurofonts are available (October 1998) in a version suitable for MS-
Windows PCs and Unix from here:

ftp://ftp.adobe.com/pub/adobe/type/win/all/eurofont.exe
ftp://ftp-pac.adobe.com/pub/adobe/type/win/all/eurofont.exe

These files are self-extracting archives on MS-Windows computers which can be
decompressed on Unix computers with the unzip command.

The Marvosym fount is available from CTAN in pfb and pfa versions, and I
gather these versions won’t work with ATM. There are also Mac versions based
on the Y&Y re-working of Marvosym mentioned below — a Truetype version and
a Mac PS Type 1 version that will work with ATM.

The Marvosym fount and package are (October 1998) in this location at CTAN:
site (October 1998):

/fonts/psfonts/marvosym/

A version which is apparently ATM compatible (implying the original version
from CTAN isn’t) is available from here:

http://www.YandY.com/download/marvosym.zip

20



Note that the metrics for this version of Marvosym are slightly different to the
original; to use this version of Marvosym with eurofont, you should re-name the
file marvosym.tfm to fmvr8x.tfm and put it on your tex-fonts path.

Martin Vogel’s Web page contains a TrueType version of Marvosym, in a for-
mat suitable for MS-Windows computers:

http://wuw.fh-bochum.de/fbl/vogel/marvosym.html

5.2 Dvi driver configuration for Adobe’s Eurofonts and the
Marvosym fount

This section contains information on how to configure dvips and OZIEX to use
Adobe’s Eurofonts and the Marvosym fount. I believe that pdfTEX can use dvips
entries.

You might find it useful to refer to the file dvidrive.txt that is created by
running WTEX on eurofont.ins: dvidrive.txt contains a plain text version of
this dvi driver configuration information, so you can cut and paste the lines you
need to the appropriate file on your computer.

If you have any problems with this information, or if you have information on
how to configure other dvi drivers, please let me know by email.

5.2.1 Dvi driver configuration lines for Adobe’s Eurofonts

This section contains information for configuring dvi drivers to use these PostScript
Type 1 founts; what you need to do is add the given lines to a file so that your
dvi driver knows which PostScript Type 1 fount file (and so on) corresponds to
a particular tfm file in a dvi file. In the case of dvips, the file you add lines
to is typically called psfonts.map. In the case of OZIEX, you will normally add
lines to the Default configuration file — if you also use dvips, you’ll add lines to
psfonts.map as well.

Note that versions of dvips before v5.83 have trouble doing partial fount down-
loading with Adobe’s Eurofonts. Because of this, I have listed the dvips psfont.map
entries with ‘<<’ and with ‘<’: the ‘<<’ entries prevent dvips attempting to do par-
tial fount downloading with that particular fount.

The ‘<<’ syntax does not work with all versions of dvips; it does work with
dvips v5.78, but doesn’t work with v5.70. If you're using a pre ‘<<’ dvips, you
should use the entries with ‘<’ and don’t use partial fount downloading with any
document containing Adobe’s Eurofonts; passing the -jO switch to dvips will
prevent it from doing partial fount downloading if this is normally turned on.

I’ve asked the author of dvips when the ‘<<’ syntax was first introduced, and
he can’t remember.

I am told that pdfTEX can do partial fount downloading using Adobe’s Euro-
fonts.

Eurofont configuration lines for MS-Windows and Unix The following
lines were supplied by Stefan Ulrich <ulrich@cis.uni-muenchen.de>, who tells
me that you need to re-name the PFB files pfb.

If these lines work with computers other than those running MS-Windows and
Unix, please let me know so I can change the documentation to suit.

The following entries are for dvips v5.78 and possibly some other versions:

21



zpeurs EuroSans-Regular <<_1 .pfb

zpeubs EuroSans-Bold <<_1B_____ .pfb
zpeuris EuroSans-Italic <<_11_____ .pfb
zpeubis EuroSans-BoldItalic <<_1BI____.pfb
zpeurt EuroMono-Regular <<_2______ .pfb
zpeubt EuroMono-Bold <<_2B_____ .pfb
zpeurit EuroMono-Italic <<_2T_____ .pfb
zpeubit EuroMono-BoldItalic <<_2BI____.pfb
zpeur EuroSerif-Regular <LK_3______ .pfb
zpeub  EuroSerif-Bold <<_3B_____ .pfb
zpeuri EuroSerif-Italic <<_3I_____ .pfb
zpeubi EuroSerif-BoldItalic <<_3BI____.pfb

The following entries are for dvips v5.70 or earlier, probably dvips v5.79 and
above, and pdfTEX. Since that I don’t use pdfTEX, this suggestion might not work
— please let me know if you have any problems.

zpeurs EuroSans-Regular <1 _____ .pfb
zpeubs EuroSans-Bold <_1B_____ .pfb
zpeuris EuroSans-Italic <_1I_____ .pfb
zpeubis EuroSans-BoldItalic <_1BI____.pfb
zpeurt EuroMono-Regular < 2 _____ .pfb
zpeubt EuroMono-Bold <_2B_____ .pfb
zpeurit EuroMono-Italic <_2I_____ .pfb
zpeubit EuroMono-BoldItalic <_2BI____.pfb
zpeur  EuroSerif-Regular <_3______ .pfb
zpeub  EuroSerif-Bold <_3B_____ .pfb
zpeuri EuroSerif-Italic <_3I_____ .pfb
zpeubi EuroSerif-BoldItalic <_3BI____.pfb

Eurofont configuration lines for Macs Macintosh psfonts.map entries for
dvips v5.78 and possibly some other versions:

zpeur  EuroSerif-Regular <<EuroSerReg
zpeuri EuroSerif-Italic <<EuroSerIta
zpeub  EuroSerif-Bold <<EuroSerBol
zpeubi EuroSerif-BoldItalic <<EuroSerBolIta
zpeurs EuroSans-Regular <<EuroSanReg
zpeuris EuroSans-Italic <<EuroSanIta
zpeubs EuroSans-Bold <<EuroSanBol
zpeubis EuroSans-BoldItalic <<EuroSanBolIta
zpeurt EuroMono-Regular <<EuroMonReg
zpeurit EuroMono-Italic <<EuroMonIta
zpeubt EuroMono-Bold <<EuroMonBol

zpeubit EuroMono-BoldItalic <<EuroMonBolIta

Macintosh psfonts.map entries for dvips v5.70 or before, probably dvips v5.79
and above, and pdfTEX. Since that I don’t use pdfTEX, this suggestion might not
work — please let me know if you have any problems.

zpeur  EuroSerif-Regular <EuroSerReg
zpeuri EuroSerif-Italic <EuroSerIta
zpeub  EuroSerif-Bold <EuroSerBol
zpeubi EuroSerif-BoldItalic <EuroSerBollta
zpeurs EuroSans-Regular <EuroSanReg

22



zpeuris EuroSans-Italic <EuroSanIta

zpeubs EuroSans-Bold <EuroSanBol
zpeubis EuroSans-BoldItalic <EuroSanBolIta
zpeurt EuroMono-Regular <EuroMonReg
zpeurit EuroMono-Italic <EuroMonIta
zpeubt EuroMono-Bold <EuroMonBol

zpeubit EuroMono-BoldItalic <EuroMonBolIta

OZIEX config file entries: these lines are normally added to the Default config
file in OZIEX’s Configs folder. These lines should work with any version of OZIEX
from at least version 1.7 onwards. Please let me know if you have any problems.

zpeur EuroSerif-Regular "Euro Serif" nil

zpeuri EuroSerif-Italic "Euro Serif" nil i
zpeub EuroSerif-Bold "Euro Serif" nil b
zpeubi EuroSerif-BoldItalic "Euro Serif" nil bi
zpeurs  EuroSans-Regular "Euro Sans" nil

zpeuris EuroSans-Italic "Euro Sans" nil i
zpeubs EuroSans-Bold "Euro Sans" nil b
zpeubis EuroSans-BoldItalic "Euro Sans" nil bi
zpeurt  EuroMono-Regular "Euro Monospace" nil

zpeurit EuroMono-Italic "Euro Monospace" nil i
zpeubt EuroMono-Bold "Euro Monospace" nil b
zpeubit EuroMono-BoldItalic "Euro Monospace" nil bi

5.2.2 Dvi driver configuration lines for Marvosym

I have been greatly confused while trying to work out how to configure dvi drivers
to use Marvosym. I think I’ve got it right, but I can’t test on anything but my
Mac. I'd appreciate an email if you find that any of the information below turns
out to be wrong.

There are two versions of the Marvosym out there in network land: the original,
and a version that’s been re-worked by Y&Y. As far as I can work out, the Y&Y
version of Marvosym has identical glyphs to the original, and differs in that it
works properly with ATM and has better hinting. This means that the new version
should render better at low and medium resolutions. In other words, I think the
Y&Y version is better than the original. The metrics for the two versions are very
slightly different to each other, so you should make sure you’re using the tfm file
that came with the version of the Marvosym fount that you're using.

Dvips psfonts.map entries for the original Marvosym fount:

fmvr8x Martin_Vogels_Symbole <marvosym.pfb
fmvri8x Martin_Vogels_Symbole " .167 SlantFont" <marvosym.pfb

Dvips psfonts.map entries for the Y&Y ‘ATM compatible’ re-worked Mar-
vosym fount:

fmvr8x  Marvosym <marvosym.pfb
fmvri8x Marvosym " .167 SlantFont" <marvosym.pfb

I have assumed that all dvi drivers that can use PostScript Type 1 founts can
also produce fake italic founts by slanting an upright version. Because of this, 1
have made no provision for dvi drivers that can’t do this. If you have a dvi driver
that can’t fake an italic, please let me know and I’ll modify the eurofont package
to take this into account, probably by adding another option and writing a new
fd file.

23



Note for Macintosh users A Mac version of the Marvosym fount has been
created in PostScript Type 1 and TrueType versions. It uses the Y&Y names as
above, and these lines are be needed for dvips’s psfonts.map file:

fmvr8x  Marvosym <Marvo
fmvri8x Marvosym " .167 SlantFont" <Marvo

And these lines for OZIEX’s default config file:

fmvr8x Marvosym Marvosym nil
fmvri8x  Marvosym Marvosym nil i

If a version of the original Marvosym fount is ever released for Macs, these
lines will be needed for dvips’s psfonts.map file:

fmvr8x Martin_Vogels_Symbole <MartiVogSym
fmvri8x Martin_Vogels_Symbole " .167 SlantFont" <MartiVogSym

And these lines for OZIEX’s default config file:

fmvr8x MartiVogSym "Martin Vogels Symbole" nil
fmvri8x  MartiVogSym "Martin Vogels Symbole" nil i

5.3 Metafont founts containing euro symbols

The three Metafont sources of euro symbols that I know of are the Text Companion
founts, the China2e fount, and the Eurosym fount. If you know of others, I'd
appreciate an email to tell me about them.

The current (October 1998) version of INTEX is set up to work with the rela-
tively new T1 (and T'S1) encoded versions of the usual Computer Modern founts.
If you don’t have the ‘European Computer Modern’ and ‘Text Companion’ founts
— otherwise known as the EC and TC founts — it might be a good idea to get
them now: the TS1 encoded Text Companion founts are the ones containing euro
symbols.

If the above paragraph doesn’t make much sense to you, you can find out if
your IATEX has access to the European Computer Modern and Text Companion
founts by K TEXing this file:

\documentclass{article}
\usepackage [T1]{fontenc}
\usepackage{textcomp}
\begin{document}

Hello world. \texteuro.
\end{document}

If you get no error messages, you have access to both the European Computer
Modern (EC) and Text Companion (TC) founts.

If not, you can get these founts, as well as the Eurosym and China2e founts
and packages, from these locations at your nearest CTAN site:

/fonts/ec/
/fonts/eurosym/
/macros/latex/contrib/supported/china2e/

24



6 Potentially useful extra information

Most of the ideas in the eurofont package are not my own invention, and are doc-
umented elsewhere. KTEX’s fount selection scheme, for example, is documented
in the file fntguide.tex which is part of the standard IBTEX distribution. The
file simple-nfss.tex kept in the info/ directory at CTAN is also useful.

If you're interested in understanding the details of the source code, you’ll
probably find it useful to read clsguide.tex (also part of the standard IBTEX
distribution), as well as Leslie Lamport’s ‘WTEX, a document preparation sys-
tem’, 2nd edition, Addison-Wesley. Donald Knuth’s ‘The TEXbook’, also pub-
lished by Addison-Wesley, is probably essential reading. Goosens, Mittlebach,
and Samarin’s ‘The I¥TEX Companion’, published by Addison-Wesley, is appar-
ently a useful source of documentation on the internals of IXTEX; I've found the
commented IATEX source code an adequate substitute for this book.

6.1 Fount families and series

TEX 2 comes with a way of selecting founts called the New Fount Selection
Scheme (NFSS). Each fount you use is specified by five things: encoding, family,
series, shape, and size. A typical specification is 0T1/ptm/m/n at 12pt. This
means an 0T1 encoded version of ptm (Adobe Times) family, m (medium) series,
n (normal upright roman) shape, in a size of 12pt. The point of the NFSS is to
take a particular fount specification — like 0T1/ptm/m/n at 12pt — and work out
which tfm file should be used.

This job is essential, because as far as TEX is concerned, a tfm file is a fount:
without a tfm file, you get no letters on the page. A tfm file is just a list of sizes of
each letter and things like that; the actual letter shapes are kept elsewhere. The
dvi driver needs to know which tfm file corresponds to which ‘real’ fount, which
is what dvips’s psfonts.map is for.

What the NFSS does is add a high-level interface to let you select a particular
tfm file without having to deal with any of the awkward details — XTEX has always
had some sort of interface to allow this sort of thing, but the NFSS is much better
than earlier efforts, and much, much easier to set up for a new set of founts.

The precise details of exactly which tfm file is to be used for each fount spec-
ification are contained in the various fd files installed on your computer (they’re
kept somewhere on the tex-inputs path). otlptm.fd, for example, is consulted
in the above example. It says that ptm7t.tfm should be used for 0T1/ptm/m/n
at all sizes. This doesn’t mean that you can only get Adobe Times in one size,
because TEX will scale the fount to the appropriate size — the instruction to do
this is included in the £4d file.

You might be wondering what an encoding is. Well, when you type information
into a computer, each character you type is given a number and this number
is stored in memory: this number ‘is’ the character you have just typed. The
relationship between the characters and numbers is called an encoding. ASCII
encoding, for example, says that the letter ‘A’ has the number 65; ‘B’ has the
number 66, and so on. In the case of INTEX, you have two encodings: the input
encoding — which is used to translate the input file into TEX’s internal encoding
(which you can forget about for now); and the output encoding, which is used
to create the dvi file. For example, a Mac user might type an ¢ (number 194)
into a tex file. Assuming that he’d said \usepackage [applemac]{inputenc},

25



that would result in the appropriate character appearing in the dvi file. This
character would be represented in the dvi file by a number 246 if you were using
a T1 encoded fount at that point. If you were using an 0T1 encoded fount, it
would be represented by a combination of character number 128 (umlaut) placed
over character number 111 (the letter o). There are many other output and input
encodings that are commonly used. It is, for example, common to use ASCII
input encoding, so you have to type \"{o} to get 6. KTEX usually sorts out all
the details for you so you don’t have to think about encodings that often.

From the point of view of configuring the eurofont package, you can probably
ignore encodings. The two most common text fount encodings used with IXTEX
are 0T1 and T1: the original 7-bit standard encoding and the newer 8-bit standard
encoding respectively.

What eurofont is most interested in is the fount family name. This comes
after the encoding: 0T1/ptm, and is usually a three letter abbreviation like ptm
for Adobe Times. The full explanation of the naming scheme is presented in
the fontname documentation®. In brief, the first letter of this family usually
indicates the firm that made the fount. Adobe is indicated by a ‘p’ (for PostScript,
because Adobe created PostScript). The next two letters indicates the name of
the fount. Times is indicated by ‘tm’. Not all fount families follow this pattern:
the Computer Modern families pre-date the fontname naming scheme, so (for
example) the Computer Modern Sanserif family has the name ‘cmss’. And some
fount families named according to the fontname scheme have very strange names.
The Adobe Euroserif family has the name ‘zpeur’, the letter z being a prefix
meaning ‘bizarre’.

There’s effectively an unlimited range of fount family names. One way of
finding out what the name is of a particular fount family is using eurofont’s
\showfontfamily command in your document: it’ll print the current fount family
on the console and in the log file. For example, if you IXTEX this file:

\documentclass{article}
\usepackage{otherfont}), A fictitious package to select a fount
\usepackage{eurofont}
\begin{document}
Blah blah blah
\showfontfamily
\end{document}

You’ll get a message in the log file and the terminal output telling you what the
fount family used to typeset ‘Blah blah blah’ is.

Another way of finding out a particular fount family name is this: files for
using different founts with IXTEX — such as times.sty — tend to contain lines like:

\renewcommand{\sfdefault}{phv}
\renewcommand{\rmdefault}{ptm}
\renewcommand{\ttdefault}{pcr}

This means that the phv (Adobe Helvetica) family is used for \sffamily, the ptm
family (Adobe Times) family is used for \rmfamily, and the pcr family (Adobe
Courier) is used for \ttfamily. This means you can find out which fount family
is used by examining the package file you use to select it.

3 Available from CTAN: /info/fontname/

26



If you're interested in the details of producing faked euro symbols, the fount
series becomes relevant. The normally available fount series are just different
weights:

ul  ultra light sb  semi bold

el extra light b bold

1 light bx  bold extended
m  normal (medium) | eb  extra bold
mb  medium bold ub  ultra bold

db  demi bold

Of these, only two are selectable with normal commands. \bfseries, for exam-
ple, selects the bx (bold extended) series; and \mdseries selects the m (normal
‘medium’ weight). Most fount families come in two different weights only. No
normal founts are available in the range of weights just listed, although Multiple
Master founts (those with a weight design axis) can be used in any number of
different weights over almost any range. If you have produced a Multiple Master
fount setup that gives you access to the full standard range of INTEX fount series,
you are clearly mad?* and equally clearly don’t need me to explain anything about
the NFSS.
If you want to select something like ultrabold, one way is to say:

\fontseries{ub}\selectfont

A complication is that some fount families have condensed versions, and this
has to be indicated by the fount series too. This means that the list of ‘standard’
series can be extended to include:

ulc  ultra light condensed dbc  demi bold condensed
elc extra light condensed sbc  semi bold condensed
lc light condensed be bold condensed

mc  normal (medium) condensed | ebc  extra bold condensed
mbc  medium bold condensed ubc  ultra bold condensed

Likewise, a fount family might have extended version of some weights (Computer
Modern Roman’s Bold Extended is an example of this), so the ‘standard’ list of
series must also include variants like ulx for ultra light extended. This is only
relevant to eurofont when it’s asked to create a faked euro symbol: it has to know
which series are bold (or whatever) to decide what thickness lines to draw across
the C.

7 How eurofont works — in detail

This section is not meant to be a replacement for the rest of the documentation
for TpXnical people. The idea is that this is an intermediate step between the
usual user documentation and the rather eccentrically-commented source code —
it’s probably a good idea to read the earlier parts of this document before digging
in to this section.

The eurofont package provides two commands meant to be used in docu-
ments for generating a euro symbol: \euro which just prints a euro symbol, and

4And probably called something like Melissa or Sebastian

27



\euros{(amount)} which prints a euro symbol (generated by the \euro command)
next to the argument of the command, with a small space between the two. The
euro symbol is to the left of the argument by default: if you pass the right option
to the eurofont package, the euro symbol is printed to the right of the argument
of the command.

The \euros command uses the \euro command to generate the euro symbol,
so everything that applies to the \euro command also applies to the \euros
command.

I see the package code as being in several main parts: the code for handling
the lists, the \euro command and supporting \make... commands, the other
commands for selecting and printing euro symbols, and the code to construct fake
euro symbols. This is an entirely arbitrary division; I mention it in the hope that
it might explain the way I’ve divided up this part of the documentation.

Note that the \make...euro commands are all meant to be called directly
by the \euro command; the idea is to give you a ‘top level’ set of commands to
modify in the configuration file any way you like, while still allowing access to
any of the euro symbols the eurofont package is set up to work with by default:
the \make. . .euro commands are all defined in terms of other commands, and it’s
these other commands that do the job of actually printing a euro symbol. You
might, for example, change the \makechinaeeuro command to print ‘EUR’:

\newcommand{\makechinaeeuro}{EUR}

and use entries in the \chinaeeuro list to select this, rather than the euro symbol
I intended. Even so, the ‘lower level’ command \chinaeeuro will be unaffected:
it will still produce the euro symbol from the China2e fount, and you will still be
able to use it. For example, you might say:

\newcommand{\pgyeuro}{\chinaeeuro}

to get a euro symbol from the China2e fount with Adobe Goudy (family name
pgy)

A point that might be useful to know is this: the eurofont package doesn’t
define the \euro command when it’s loaded using the \usepackage{eurofont}
command. What happens is that eurofont defines the \EFeuro command to begin
with: \EFeuro is just eurofont’s \euro command under a different name. The
eurofont package arranges for the \euro command that you use in your docu-
ment to be created later. The way it’s done is this: eurofont adds some code to
the \AtBeginDocument hook. This code uses TEX’s \let command to make the
\euro command identical to \EFeuro at the \begin{document} command. Imme-
diately before this, the code added by eurofont uses TEX’s \1let command again to
make the \oldeuro command identical to the \euro command. This means that
eurofont’s definition of \euro will over-ride any earlier definitions, while saving
any earlier definitions for you to use. This might also explain strange behaviour
you encounter if trying to re-define \euro yourself in a document preamble. It’s
probably best to do something like this:

\documentclass{whateveryouwant}
\usepackage{eurofont}

\newcommand{\myeuro}{Some code}
\AtBeginDocument{\let\euro\myeuro}

28



\begin{document}

The eurosym package is a special case: if you pass the eurosym option to eurofont,
eurofont uses \let to make the \ESeuro command identical to eurosym’s \euro
command just after eurofont has loaded eurosym. This \ESeuro command appears
in eurofont’s code in various places: remember that it’s defined to be whatever the
eurosym package defined the \euro command to be.

7.1 The \euro command

The \euro command works like this: it looks at the current fount family (I shall
call this <fam> for now — ptm for Adobe Times, cmr for Computer Modern Roman,
and so on), and performs the following sequence of tests:

If <fam> is in \userlist, \makeusereuro

else
if \<fam>euro exists, \<fam>euro
else
if <fam> is in \texteurolist, \maketexteuro
else

if <fam> is in \chinaelist, \makechinaeeuro

else

if <fam> is in \cmlist, \makecmeuro

else
if <fam> is in \serifeurolist, \makeserifeuro
else

if <fam> is in \sanseurolist, \makesanseuro

else

if <fam> is in \monoeurolist, \makemonoeuro

else
if <fam> is in \makefakelighteurolist, \makefakelighteuro
else

if <fam> is in \makefakemediumeurolist, \makefakemediumeuro
else
if <fam> is in \makefakeheavyeurolist, \makefakeheavyeuro
else \makedefaulteuro
fi fi fi fi fi fi fi fi fi fi fi

In other words, it first looks to see if the current fount family is listed in the
\usereurolist. If it is, it executes the \usereuro command and finishes. If not,
it looks to see if a command \<fam>euro exists. For example, if you're typesetting
with Adobe Times at that point (family name ptm), it’ll look for the \ptmeuro
command. If this command exists, it is executed and the \euro command finishes.
If not, it looks to see if the current fount family is in the \texteurolist. If it is, the
\texteuro command is executed, and the \euro command finishes. This continues
to the final test: if the current fount family is in the \makefakeheavyeurolist,
the \makefakeheavyeuro command is executed, and the \eurocommand finishes.
If it’s got to the end of the tests and no match has been found, the \defaulteuro
command is executed.

It’s up to you to define the \makeusereuro and \<fam>euro commands. All the
other \make. . .euro commands may be re-defined as you see fit, but are defined
by the eurofont package to produce euro symbols.

29



7.2 The \make...euro commands

What each of these commands does by default is this:

7.2.1 \maketexteuro

Executes either the \texteuro command or the \makefakeeuro command. The
\texteuro command is normally defined by the textcomp package (part of the
standard IMTEX distribution) to print a euro symbol from the T'S1 encoded com-
plement to the current fount. This TS1 encoded complement often does not exist,
and even if it does exist, it usually (October 1998) does not have a euro symbol.
The \makefakeeuro command is described in section 7.2.2. The eurofont package
tries to load the textcomp package by default; see section 3 on page 11 for more
details.

The decision on whether to execute \texteuro or \makefakeeuro is made like
this: the \texteuro command is executed if these three conditions are met: 1) the
current fount family is not listed in \faketexteurolist, 2) the textcomp package
has been loaded, and 3) that the fount definition file ts1<fam>.£fd exists (where
<fam> is the current fount family name). That £d file is the thing that tells BTEX
where to find the symbol asked for in the \texteuro command defined by the
textcomp package: if it doesn’t exist, the current fount family certainly doesn’t
have a euro symbol available in the expected place.

The decision isn’t foolproof: there’s no way that TEX can check for the exis-
tence of a real glyph in a fount (the matter is complicated greatly by virtual founts
and ‘missing glyph’ rule boxes), so \maketexteuro’s checks mustn’t be relied on.

7.2.2 \makefakeeuro

This command first checks to see if the command \<fam>fakeeuro exists, where
<fam> is the name of the current fount family; if this command exists, it’s executed.
If not, \makefakeeuro then checks for the presence of the current fount family
name in (in this order) \EFfakelightlist, \EFfakemediumlist, and \EFfake-
heavylist. If it finds a match, it executes the corresponding \makefake. . .euro
command; these are explained below. If it finds no match, it executes the
\makefakemediumeuro command. \makefakeeuro doesn’t appear directly in the
definition of the \euro command.

7.2.3 \makechinaeeuro

Executes the \chinaeeuro command, which prints a fake bold euro symbol created
from the China2e fount’s euro symbol if the current \fontseries is listed in the
\EFboldserieslist or the \EFultraboldserieslist, and a straight euro symbol
from the China2e fount otherwise. The \chinaeeuro command is described in
section 7.3.1 on page 32.

7.2.4 \makecmeuro

If you’ve given the eurosym option to the eurofont package and the eurosym package
has been loaded successfully, \makecmeuro executes the \ESeuro command which
prints the specified eurosym euro symbol, as described in section 7.2.4. Otherwise,
the \cmeuro command is executed, which gives you either a euro symbol from

30



the text companion founts, or a faked euro symbol; this faked euro symbol is
made with light rules for Computer Modern Roman and medium weight rules for
Computer Modern Sanserif and Typewriter. The \cmeuro command is described
in section 7.3.2 on the following page.

7.2.5 \makeserifeuro

This executes the \serifeuro command, described in section 7.3.7 on page 34.
By default, \serifeuro executes the \zpeureuro command, described in sec-
tion 7.3.9 on page 34, which prints a euro symbol from Adobe’s Euroserif fount. If
you have given the marvosym option to eurofont and you have not used the eurosym
option, the \serifeuro command will instead execute the \marvosymserifeuro
command, described in section 7.3.14 on page 35: this will try to print a ser-
iffed euro symbol from the Marvosym fount. If the current fount series is in
\EFboldserieslist or \EFultraboldserieslist, you'll get a faked bold euro
from the Marvosym fount. The default setup assumes that your dvi driver can
print a faked italic version of the Marvosym fount.

If you've given the eurosym option to the eurofont package and the eurosym
package has been loaded successfully, the \serifeuro command prints the spec-
ified eurosym euro symbol by executing the \ESeuro command. The \ESeuro
command is described in section 7.3.4 on page 33.

7.2.6 \makesanseuro

This executes the \sanseuro command, described in section 7.3.6 on page 33.
By default, \sanseuro executes the \zpeusseuro command, described in sec-
tion 7.3.10 on page 34, which prints a euro symbol from Adobe’s Eurosans fount. If
you have given the marvosym option to eurofont and you have not used the eurosym
option, the \sanseuro command will instead execute the \marvosymsanseuro
command, described in section 7.3.13 on page 35: this will try to print a
sanserif euro symbol from the Marvosym fount. If the current fount series is
in \EFboldserieslist or the \EFultraboldserieslist, you'll get a faked bold
euro from the Marvosym fount. The default setup assumes that your dvi driver
can print a faked italic version of the Marvosym fount.

If you've given the eurosym option to the eurofont package and the eurosym
package has been loaded successfully, the \sanseuro command prints the specified
eurosym euro symbol by executing the \ESeuro command.

7.2.7 \makemonoeuro

This executes the \monoeuro command, described in section 7.3.8 on page 34.
By default, \monoeuro executes the \zpeutteuro command, described in sec-
tion 7.3.11 on page 34, which prints a euro symbol from Adobe’s Euroserif fount. If
you have given the marvosym option to eurofont and you have not used the eurosym
option, the \monoeuro command will instead execute the \marvosymmonoeuro
command, described in section 7.3.14 on page 35: this will try to print a
monospaced euro symbol from the Marvosym fount. If the current fount series
is in \EFboldserieslist or \EFultraboldserieslist, you'll get a faked bold
euro from the Marvosym fount. The default setup assumes that your dvi driver
can print a faked italic version of the Marvosym fount.

31



If you've given the eurosym option to the eurofont package and the eurosym
package has been loaded successfully, the \sanseuro command prints the specified
eurosym euro symbol by executing the \ESeuro command.

7.2.8 \makefakelighteuro

If the command \<fam>fakeeuro exists (where <fam> is the name of the cur-
rent fount family), execute it. Otherwise, execute the \fakelighteuro command,
which prints a euro symbol faked from a letter C with two light rules printed
over it; you can find out more about this in section 7.4.2 on page 36. The
\makefakelighteuro command is unaffected by the eurosym option.

7.2.9 \makefakemediumeuro

If the command \<fam>fakeeuro exists (where <fam> is the name of the cur-
rent fount family), execute it. Otherwise, execute the \fakemediumeuro com-
mand, which prints a euro symbol faked from a letter C with two light rules
printed over it; you can find out more about this in section 7.4.3 on page 37. The
\makefakemediumeuro command is unaffected by the eurosym option.

7.2.10 \makefakeheavyeuro

If the command \<fam>fakeeuro exists (where <fam> is the name of the cur-
rent fount family), execute it. Otherwise, execute the \fakeheavyeuro command,
which prints a euro symbol faked from a letter C with two light rules printed
over it; you can find out more about this in section 7.4.1 on page 36. The
\makefakeheavyeuro command is unaffected by the eurosym option.

7.2.11 \makedefaulteuro

Executes the \makefakeeuro command. This usually prints a euro faked with
medium weight rules. See section 7.2.2 on page 30 for more details.

7.3 Other commands to print euro symbols
7.3.1 \chinaeeuro

This prints the euro symbol from the China2e fount. There is only one euro
character available, in the upright shape and medium weight only. This command
uses the \SelectOnWeight command to print either a China2e euro symbol in its
natural state (for light and medium weights), or a ‘poor man’s bold’ version for
bold and ultra bold weights.

The \SelectOnWeight command is described in section 7.5.2 on page 41.

7.3.2 \cmeuro

The \cmeuro command executes the \texteuro command to print a euro symbol
from the TS1 encoded complement of the current fount if these three conditions
are met: 1) the current fount family is not in the \faketexteurolist; 2) the
command \texteuro exists; and 3) the file ts1<fam>.fd exists, where <fam> is
the name of the current fount family. If all three conditions are not met, \cmeuro

32



executes the \makefakeeuro command to print a faked euro symbol; this command
is described in section 7.2.2 on page 30.

7.3.3 \EFeuro

This is the name under which the \euro command is defined originally; the eu-
rofont package adds some code to the standard IXTEX \AtBeginDocument hook
that makes the \euro command equivalent to the \EFeuro command (using the
primitive TEX \let command). This code added to the \AtBeginDocument hook
is executed, unsurprisingly, at the \begin{document} command. It’s best not to
use the \EFeuro command yourself unless you have a particular need to, but if
you're writing a class or package file that uses eurofont, you might have such a
need.

The \EFeuro command is identical to the \euro command, but they are dif-
ferent commands. If you want to change the \euro command in your document,
you should do so after the \begin{document} command. One suggestion on how
to do this is in section 7 on page 28. This way of re-defining the \euro command
means you still have access to eurofont’s original \euro command under the name
\EFeuro. The \EFeuro command shouldn’t be used directly in a TEX document.
It’s not that anything terrible will happen if you do, just that BTEX convention
states that commands with mixed-case names are meant for use by class and pack-
age writers only, and it seemed right to me to add this restriction to the \EFeuro
command.

7.3.4 \ESeuro

If you tell the eurofont package to load the eurosym package, eurofont makes the
\ESeuro command identical to the \euro command defined by eurosym. This
means that eurosym’s \euro command is still available as \ESeuro, even though
eurofont re-defines the \euro command to be something completely different. It’s
probably best not to use the \ESeuro command unless you have no choice in the
matter, as is often the case when writing package files.

In case you’re wondering, the \ESeuro command will be the same as the
\oldeuro command if eurofont has loaded eurosym.

7.3.5 \oldeuro

The eurofont package adds another bit of code to the \AtBeginDocument hook:
this code not only sets the \euro command to be whatever \EFeuro has been
defined as (as mentioned in section 7.3.3), but just before that, the code sets the
\oldeuro command to be whatever the \euro command was at that instant. This
means that any package which has defined a \euro command has not wasted its
effort: its command is still available as \oldeuro.

As mentioned above, the \ESeuro command will be the same as the \oldeuro
command if eurofont has loaded eurosym.

7.3.6 \sanseuro

Depending on what you've asked for in the options to the eurofont package, this
command executes one of three commands. By default, or if you’ve used the
adobeeurofonts option, it executes \zpeusseuro; if you've used the marvosym

33



option, it executes \marvosymsanseuro; and if you've used the eurosym option
(which over-rides the other two), it executes \ESeuro.

The \zpeusseuro command is described in section 7.3.10; the \marvosymsans-
euro is described in section 7.3.13 on the following page; and the \ESeuro com-
mand is described in section 7.3.4 on the previous page.

7.3.7 \serifeuro

Depending on what you’ve asked for in the options to the eurofont package, this
command executes one of three commands. By default, or if you’ve used the
adobeeurofonts option, it executes \zpeureuro; if you’'ve used the marvosym
option, it executes \marvosymserifeuro; and if you’ve used the eurosym option
(which over-rides the other two), it executes \ESeuro.

The \zpeureuro command is described in section 7.3.9; the \marvosymserif-
euro is described in section 7.3.14 on the next page; and the \ESeuro command
is described in section 7.3.4 on the preceding page.

7.3.8 \monoeuro

Depending on what you’ve asked for in the options to the eurofont package, this
command executes one of three commands. By default, or if you’ve used the
adobeeurofonts option, it executes \zpeutteuro; if you’ve used the marvosym
option, it executes \marvosymmonoeuro; and if you've used the eurosym option
(which over-rides the other two), it executes \ESeuro.

The \zpeutteuro command is described in section 7.3.9; the \marvosymmono-
euro is described in section 7.3.15 on the following page; and the \ESeuro com-
mand is described in section 7.3.4 on the previous page.

7.3.9 \zpeureuro

This command prints a euro symbol from one of Adobe’s four Euroserif founts
(Roman, Italic, Bold, or Bold Italic). The selection is done using BTEX’s usual
fount selection mechanism.

7.3.10 \zpeusseuro

This command prints a euro symbol from one of Adobe’s four Eurosans founts
(Roman, Italic, Bold, or Bold Italic). The selection is done using BTEX’s usual
fount selection mechanism.

7.3.11 \zpeutteuro

This command prints a euro symbol from one of Adobe’s four Euromono founts
(Roman, Italic, Bold, or Bold Italic). The selection is done using BTEX’s usual
fount selection mechanism.

7.3.12 \marvosymeuro{(char)}

This command is used by \marvosymserifeuro (and friends) to print a euro
symbol from the Marvosym fount. Like the \chinaeeuro command, it uses the
\SelectOnWeight command — covered in section 7.5.2 on page 41 — to print a

34



normal euro symbol for medium and light weight founts, and produces a ‘poor
man’s bold’ version when you’re using a bold or ultra bold fount.

The \marvosymeuro command takes a single argument, which is the num-
ber of the character to be printed: 99 for the sanserif euro symbol, 100 for the
monospaced euro symbol, and 101 for the seriffed euro symbol.

7.3.13 \marvosymsanseuro

The \marvosymsanseuro command prints a sanserif euro symbol from the Mar-
vosym fount by executing \marvosymeuro{99}.

7.3.14 \marvosymserifeuro

The \marvosymsanseuro command prints a seriffed euro symbol from the Mar-
vosym fount by executing \marvosymeuro{101}.

7.3.15 \marvosymmonoeuro

The \marvosymsanseuro command prints a monospaced euro symbol from the
Marvosym fount by executing \marvosymeuro{1003}.

7.3.16 \cmrfakeeuro

This command creates a euro symbol faked with light rules, using the \fakelight-
euro command which is described in section 7.4.2 on the next page. Note that the
\euro command will execute \<fam>fakeeuro (where <fam> is the current fount
family) if it’s asked to fake a euro symbol using any of the \makefake. ..euro
commands. This means that you need to re-define \cmrfakeeuro if you want to
change the sort of faked euro symbol you get with Computer Modern Roman; just
putting cmr in (say) \fakemediumlist won’t do the job.

7.3.17 \cmssfakeeuro

This command creates a euro symbol faked with medium rules, using the \fake-
mediumeuro command which is described in section 7.4.3 on page 37. Note that the
\euro command will execute \<fam>fakeeuro (where <fam> is the current fount
family) if it’s asked to fake a euro symbol using any of the \makefake...euro
commands. This means that you need to re-define \cmssfakeeuro if you want
to change the sort of faked euro symbol you get with Computer Modern Sanserif;
just putting cmss in (say) \fakelightlist won’t do the job.

7.3.18 \cmttfakeeuro

This command creates a euro symbol faked with medium rules, using the \fake-
mediumeuro command which is described in section 7.4.3 on page 37. Note that the
\euro command will execute \<fam>fakeeuro (where <fam> is the current fount
family) if it’s asked to fake a euro symbol using any of the \makefake...euro
commands. This means that you need to re-define \cmttfakeeuro if you want to
change the sort of faked euro symbol you get with Computer Modern Typewriter;
just putting cmtt in (say) \fakelightlist won’t do the job.

35



7.3.19 \pzcfakeeuro

This command creates a euro symbol faked with medium rules, using the
\fakemediumeuro[-0.1ex] command. The optional argument lowers the height
of the cross-strokes by 0.1 ex to match the C in Zapf Chancery.

Note that the \euro command will execute \<fam>fakeeuro (where <fam>
is the current fount family) if it’s asked to fake a euro symbol using any of
the \makefake...euro commands. This means that you need to re-define
\pzcfakeeuro if you want to change the sort of faked euro symbol you get with
Zapf Chancery; just putting pzc in (say) \fakelightlist won’t do the job.

7.4 Commands used to produce faked euro symbols
7.4.1 \fakeheavyeuro [(lift)] [(slant corr)]

This is one of three similar commands: this command prints a euro symbol faked
with heavy rules. It’s executed by the \euro command if the current fount family
is in the \fakeheavylist. It takes two optional arguments: the first one, [{lift)],
lifts the cross-strokes of the faked euro symbol by the specified length; the default
length is Opt. The second optional argument, [{slant corr)], is a percentage
factor by which the nominal slant of the fount is multiplied by before calculating
the horizontal position of the rules. Its default value is 100 (i.e., multiply the slant
by 100/100 = 1); this argument never has any effect on upright founts because
they have no slant.

If you pass one optional argument to \fakeheavyeuro, it is interpreted as
being the [(lift)] argument.

\fakeheavyeuro is defined to be one of these three:

Option Command
noslantfakeeuro \heavyruleeuronoslant
normalslantfakeeuro \heavyruleeuronorm
bigslantfakeeuro \heavyruleeurobigslant

The optional argument to \fakeheavyeuro is passed as the first argument (rule
lift) to the given \heavyruleeuro... command; it’s 0ex by default. The second
argument (slant correction factor) to the \heavyruleeuro... command is left
blank, so it defaults to 100. See section 7.4.4 on the following page for more about
this.

This command was written for the sake of symmetry more than anything else;
I would be surprised if anyone found a real use for it.

7.4.2 \fakelighteuro [(lift)] [(slant corr)]

This is one of three similar commands: this command prints a euro symbol faked
with light rules. It’s executed by the \euro command if the current fount family
is in the \fakelightlist. It takes two optional arguments: the first one, [{lift)],
lifts the cross-strokes of the faked euro symbol by the specified length; the default
length is Opt. The second optional argument, [{slant corr)], is a percentage
factor by which the nominal slant of the fount is multiplied by before calculating
the horizontal position of the rules. Its default value is 100 (i.e., multiply the slant
by 100/100 = 1); this argument never has any effect on upright founts because
they have no slant.

36



If you pass one optional argument to \fakeheavyeuro, it is interpreted as
being the [(lift)] argument.

\fakelighteuro is defined by the options in eurofont to be one of these three;
\lightruleeuronorm by default.

Option Command
noslantfakeeuro \lightruleeuronoslant
normalslantfakeeuro \lightruleeuronorm
bigslantfakeeuro \lightruleeurobigslant

The optional argument to \fakelighteuro is passed as the first argument (rule
lift) to the given \lightruleeuro... command; it’s Oex by default. The second
argument (slant correction factor) to the \lightruleeuro... command is left
blank, so it defaults to 100. See section 7.4.4 for more about this.

7.4.3 \fakemediumeuro [{lift)] [(slant corr)]

This is one of three similar commands: this command prints a euro symbol faked
with light rules. It’s executed by the \euro command if the current fount family is
in the \fakemediumlist. It takes two optional arguments: the first one, [{lift)],
lifts the cross-strokes of the faked euro symbol by the specified length; the default
length is Opt. The second optional argument, [(slant corr)], is a percentage
factor by which the nominal slant of the fount is multiplied by before calculating
the horizontal position of the rules. Its default value is 100 (i.e., multiply the slant
by 100/100 = 1); this argument never has any effect on upright founts because
they have no slant.

If you pass one optional argument to \fakeheavyeuro, it is interpreted as
being the [(lif¢t)] argument.

\fakemediumeuro is defined by the options in eurofont to be one of these three;
\lightruleeuronorm by default.

Option Command
noslantfakeeuro \mediumruleeuronoslant
normalslantfakeeuro \mediumruleeuronorm
bigslantfakeeuro \mediumruleeurobigslant

The optional argument to \fakemediumeuro is passed as the first argument (rule
lift) to the given \mediumruleeuro. .. command; it’s 0 ex by default. The second
argument (slant correction factor) to the \mediumruleeuro... command is left
blank, so it defaults to 100. See section 7.4.4 for more about this.

7.4.4 \EFruleeuro

The command generates a euro symbol from a ‘C’ with a pair of rules drawn on
top of it. \EFruleeuro is not meant to be used in documents directly; if you need
it, you should follow the eurofont package’s example and use it in the definition of
a new command to generate a euro symbol. The \mediumruleeuronorm command
and others show you a way of doing this.

\EFruleeuro has six arguments:

\EFruleeuro
{(backshift %age)Y{(top rule width %age)}{(bottom rule width %age)}

37



{(rule thickness)}{(rule vertical spacing)}{(rule vertical offset)}
{(slant correction factor %age)}

The first three arguments are numbers which are interpreted as a percentage
of the width of a letter ‘C’ in the current fount. The next three arguments are
normal I#TEX lengths. The final argument is another number that’s interpreted as
a percentage: it’s the percentage by which the nominal slant of a fount (as specified
in the tfm file) is multiplied by before working out the horizontal position of the
cross-strokes of a faked euro symbol; if this slant correction factor argument is left
blank, it defaults to 100 (multiply by 100/100 = 1, so it has no effect), which is
what it should be most of the time. This slant correction factor never has any
effect on upright founts, since they have a slant of 0.

The {(rule vertical offset)} and {(slant correction factor %age)} arguments are
needed because the letters as printed are sometimes not quite what the metrics
files would have you believe.

The way the whole thing works is this: the \EFruleeuro command begins by
putting a letter ‘C’ on the page. It then backs up by <backshift>, and draws
the two rules. Each rule is <rule thickness> thick, and the centre lines of the
rules are separated by a vertical distance of <rule spacing> (if this dimension is
0 pt, the rules are printed on top of each other and it appears that you only have
one rule printed). The top rule has a horizontal length of <top rule width>, and
the bottom rule has a horizontal length of <bottom rule width>. The rules are
positioned half-way up the ‘C’, plus <rule vertical offset>; this parameter is
needed because some letters have metrics that don’t quite tie up with reality. For
example, the C in Zapf Chancery is actually lower than the metrics would suggest,
so eurofont’s calculations go awry and a ‘hand-correction’ of -0.1ex needs to be
applied. The following code is executed by eurofont’s \pzcfakeeuro command:

\EFruleeuro{110}{80}{72}{0.04ex}{0.27ex}{-0.1ex}{}

This creates a euro symbol faked from a ‘C’ with a pair of horizontal rules drawn
across it.

These rules have their left-hand edge 110% of the width of the C to the left of
the right-hand edge of the C. The top rule has a width of 80% of the width of the
C; the bottom rule has a width of 72% of the width of the C.

The rules are 0.04 ex thick, and the distance between the centre lines of the
rules is 0.27ex. The centre line of the pair of rules is usually half way up the C
according to the fount metrics; in this case, these rules are shifted down from this
position by 0.1 ex.

If the C used by \EFruleeuro is an italic C, the code to place the rules takes
this into account: it shifts the rules an appropriate amount to the right. The rules
are also staggered slightly to match the slant of the C — rather than put both rules
directly above each other at the specified position (taking the italic correction into
account), the top rule is placed a touch to the right and the bottom rule a touch
to the left.

And this brings me on to the final parameter: the slant correction factor.
This is needed because some founts have italic or oblique versions in which the
slant angle specified in the fount metrics file doesn’t match the real slant of the
printed letters. I have no idea why this is the case, but I do know that it means
that \EFruleeuro’s careful calculations to place the rules correctly produce ugly

38



results when working with these slanted founts. This slant correction factor is
the percentage by which the slant parameter is scaled by. If the rules are being
printed too far to the left (so that they protrude out the back of the C too far),
you might try something like this:

\EFruleeuro{110}{80}{72}{0.04ex}{0.27ex}{0ex}{200}

which works very well with Adobe Optima — the line above tells the command to
work on the basis that the slant is twice as great as specified in the metrics file.
Since the fontinst-generated tfm file has the slant as 11° (1° less than in the afm
file due to rounding errors), and the slant I measured is 21°, you can see that this
should work well; if you have this fount youself, you will see that it does indeed
work very well.

On the other hand, Bitstream Optima has a specified slant of 10°, but a mea-
sured slant of 5°. This means the rules are placed too far to the right, so they
don’t protrude out the back of the C far enough. The obvious thing to try in this
case is:

\EFruleeuro{110}{80}{72}{0.04ex}{0.27ex}{0ex}{50}

which is a definite improvement but far from perfect. This is because the italic C
in this fount is positioned further to the left than expected for reasons which are
rather involved. There’s no easy and good way to deal with this without adding
yet another parameter to the \EFruleeuro command, which I decided wasn’t
justified. In the case of Bitstream Optima, you might prefer the results you get
with a slant correction factor of 25% or perhaps even 0%.

A final note: in an attempt to reduce the Byzantine complexity of the
\EFruleeuro command to manageable levels, I have assumed that the cross-
strokes do not extend beyond the right-hand limit of the letter ‘C’ which they’re
printed over. This shouldn’t cause any problems unless you do something strange.

7.4.5 \mediumruleeuronorm{(lift)}{(slant corr)}

This command uses the \SelectOnWeight command (see section 7.5.2 on page 41)
to print a faked euro symbol intended to match a medium weight fount family like
Times: thicker rules are used for bolder founts in the family, and thinner rules
are used for lighter founts in the family. The two rules drawn across the C have
slightly different lengths, approximately the same as in the official euro symbol.

\mediumruleeuronorm takes two arguments: the first, the length {{lift)},
raises the cross-stroke rules by the specified amount from their default position
half way up the ‘C’; and the second, the number {(slant corr)}, is interpreted
as the percentage by which the specified slant of the current fount is multiplied
before calculating the horizontal position of the cross-strokes. See the explana-
tion of \EFruleeuro in section 7.4.4 on page 37 for a fuller description of these
parameters with examples.

7.4.6 \mediumruleeuronoslant{(lift)}{(slant corr)}

This command uses the \SelectOnWeight command (see section 7.5.2 on page 41)
to print a faked euro symbol intended to match a medium weight fount family like
Times: thicker rules are used for bolder founts in the family, and thinner rules are

39



used for lighter founts in the family. The two rules drawn across the C have the
same length.

\mediumruleeuronoslant takes two arguments: the first, the length {(lift)},
raises the cross-stroke rules by the specified amount from their default position half
way up the ‘C’; and the second, the number {(slant corr)}, is interpreted as the
percentage by which the specified slant of the current fount is multiplied before
calculating the horizontal position of the cross-strokes. See the explanation of
\EFruleeuro in section 7.4.4 on page 37 for a fuller description of these parameters
with examples.

7.4.7 \mediumruleeurobigslant{(lift)}{(slant corr)}

This command uses the \SelectOnWeight command (see section 7.5.2 on the
next page) to print a faked euro symbol intended to match a medium weight fount
family like Times: heavier rules are used for bolder founts in the family, and lighter
rules are used for lighter founts in the family. The two rules drawn across the C
have quite different lengths, following the example of the China2e euro symbol.

\mediumruleeurobigslanttakes two arguments: the first, the length {(lift)},
raises the cross-stroke rules by the specified amount from their default position half
way up the ‘C’; and the second, the number {(slant corr)}, is interpreted as the
percentage by which the specified slant of the current fount is multiplied before
calculating the horizontal position of the cross-strokes. See the explanation of
\EFruleeuro in section 7.4.4 on page 37 for a fuller description of these parameters
with examples.

7.4.8 \lightruleeuronorm{(lift)}{(slant corr)}

This command behaves the same as \mediumruleeuronorm (see section 7.4.5 on
the previous page), but uses lighter rules meant to match a fount family like
Computer Modern Roman.

7.4.9 \lightruleeuronoslant{(lift)}{(slant corr)}

This command behaves the same as \mediumruleeuronoslant (see section 7.4.6
on the preceding page), but uses lighter rules meant to match a fount family like
Computer Modern Roman.

7.4.10 \lightruleeurobigslant{(lift)}{(slant corr)}

This command behaves the same as \mediumruleeurobigslant (see section 7.4.7),
but uses lighter rules meant to match a fount family like Computer Modern Ro-
man.

7.4.11 \heavyruleeuronorm{(lift)}{(slant corr)}

This command behaves the same as \mediumruleeuronorm (see section 7.4.5 on
the preceding page), but uses heavier rules that aren’t likely to match anything
but a few display founts.

40



7.4.12 \heavyruleeuronoslant{(lift)}{(slant corr)}

This command behaves the same as \mediumruleeuronoslant (see section 7.4.6
on page 39), but uses heavier rules that aren’t likely to match anything but a few
display founts.

7.4.13 \heavyruleeurobigslant{(lift)}{(slant corr)}

This command behaves the same as \mediumruleeurobigslant (see section 7.4.7
on the preceding page), but uses heavier rules that aren’t likely to match anything
but a few display founts.

7.5 Other supporting commands
7.5.1 \showfontfamily

This command displays the current fount family name on the console, and also
notes the same information in the log file. It’s meant to be used if you're config-
uring eurofont, but aren’t sure what a particular fount family name is.

If you don’t know what a fount family name is in BTEX, have a look at sec-
tion 6.1 on page 25.

7.5.2 \SelectOnWeight {(light)}{(medium)}{(bold)}{(ultrabold)}

This command takes four arguments: the first is executed if the current fount

series is listed in \lightserieslist; the second if the current fount series is in

the \mediumserieslist; the third if it’s in the \boldserieslist; and the fourth

if it’s in the \ultraboldserieslist. If the current fount series isn’t listed in any

of these lists, the second argument (used for medium weight founts) is executed.
A typical use of \SelectOnWeight is this:

\newcommand{\mediumruleeuronorm} [2]{%

\SelectOnWeight,
{\EFruleeuro{110}{80}{72}{0.04ex}{0.27ex}{#1}{#2}}}, light
{\EFruleeuro{110}{803}{72}{0.07ex}{0.27ex}{#1}{#2}}), medium
{\EFruleeuro{110}{80}{72}{0. 14ex}{0.27ex}{#1}{#2}}/, bold
{\EFruleeuro{110}{80}{72}{0.18ex}{0.27ex}{#1}{#2}}/ ultra bold
}

This defines the \mediumruleeuro command so that it’ll print one of four different
faked euro symbols, depending on the weight of the current fount: lighter weight
founts get a euro symbol faked with lighter rules; the heavier the fount, the heavier
the rules. If the fount series isn’t in any of the lists, you get the rules used for the
medium weight series.

Section 4 on page 13 shows what’s in the four different \EF...serieslist
commands by default.

7.5.3 \EFaddtolist{(list name)}{(items to add)?}

This command takes two arguments: the first argument is the name of a list (which
must have already been defined as a TEX command), and the second argument is
a comma delimited list of items to add to the list. For example:

\EFaddtolist{\sanslist}{pag,phv,psy,pzd}

41



adds four items to the list called \sanslist. The list ends up containing the given
items with a special delimiter to make it easier to examine the list using TEX code.
A check is made to ensure that each item is unique: if you tried to put (say) ptm
(Adobe Times) onto the list twice, you’d only end up with one instance of ptm in
the list. No warnings are made when this happens.

7.5.4 \EFiftexteuroexists{(if true)}{(if false)}

This command takes two arguments. It’s used by \maketexteuro and \cmeuro
like this:

\EFiftexteuroexists{\texteuro}{\makefakeeuro}}

What happens is that three tests are made: if the current fount family is not listed
in the \faketexteurolist, the \texteuro command exists, and a TS1 encoded
fd file exists for the current fount family, then the first argument is executed
(\texteuro in this example). If any of these tests fails, then the second argument
(\makefakeeuro in this example) is executed.

The idea is that if there’s a good chance that the \texteuro command will
print something useful, then the first argument is executed; the second argument
is executed otherwise.

The \texteuro command is defined by the standard IXTEX textcomp package
which eurofont tries to load by default. The TS1 encoded f4d file searched for is
tsi<fam>.fd, where <fam> is the name of the current fount family.

7.5.5 \EF@pmb{(text)}

This command, not meant to be used in documents, is one of the two commands
the eurofont package uses to print faked bold characters. What it does is print six
copies of its argument, each copy offset from the others by a small amount in a
hexagonal arrangement. The other command to do this job, \EF@pmsb, is identical
except that it uses a slightly smaller vertical offset to produce better results with
the Marvosym euro symbols.

This fakery is no substitute for a real bold symbol, but it’s much better than
the ‘poor man’s bold’” used in the TeXbook and the standard KTEX bm package.
The eurofont package’s \EF@pmb command produces tolerable results over the full
range ['ve tested it: sizes from 5pt to 90 pt; whereas the alternative three copy
poor man’s bold doesn’t work at all well at large sizes. Thanks are due to Donald
Arseneau for suggesting a six copy method.

If you’re interested, the actual code can be found in section 8.6 on page 54.

8 The code itself

To the interested reader: the code below grew rather than being designed and
constructed according to a plan. This is reflected in the curious structure and
eccentric comments; the comments were written for the chap who wrote the code,
rather than anyone else. There’s a fair bit of redundant code left (commented out)
and quite a lot of debugging reports and development notes left in — these are me
talking to myself, so don’t be worried if you see something inexplicable.

One problem with the documented code is that the visual formatting I used
means that quite a lot of lines are longer than 72 characters, so they won’t fit

42



\ifEF@debugreport
\EF@debugrep

\EF@checkiflisted

within the normal width of the text. There are therefore rather a lot of overfull
\hboxes below. I can’t see any easy way round this, so I have cheated and set
\hfuzz to a large value to suppress the warnings.

Say ‘hello’ to the nice BTEX program. Who am I, and what do I need? This
package might work with any version of BTEX2¢, but I've only tested it with
the June 1998 release. For best results, you need the ec founts andthe textcomp
package (part of recent NTEXs).

1 \NeedsTeXFormat{LaTeX2e}[1998/06/01]
2 \ProvidesPackage{eurofont}[1999/01/30 v1.1.3 A package for using euro
3 symbols]

Get all these defined before loading the config file which might want to use
them.

4 \def\userlist{}

5 \def\texteurolist{}

6 \def\chinaelist{}

7 \def\cmlist{}

8 \def\seriflist{}

9 \def\sanslist{}

10 \def\monolist{}

11 \def\fakemediumlist{}

12 \def\fakelightlist{}

13 \def\fakeheavylist{}

14 \def\faketexteurolist{}

15 % begin with list of what’s light, medium, bold, and ultra bold
16 \def\EFlightserieslist{}

17 \def\EFmediumserieslist{}

18 \def\EFboldserieslist{}

19 \def\EFultraboldserieslist{}

Flag and command to allow option switching of debugging reports

20 \newif\ifEFQ@debugreport
21 \EF@debugreportfalse), Debugging reports off by default
22 \def\EF@debugrep#1{\ifEF@debugreport\typeout{eurofont: #1}\fi}

8.1 List handling code
Needed by the config file etc., which is why it’s here.

\EFaddtolist{\listname}{comma delimited list of items to add}
\EF@checkiflisted{item}{\listname}
this sets \ifEF@listed to true or false

Code from Stefan Ulrich <ulrich@cis.uni-muenchen.de>:

23 \newif\ifEF@listed

24 %

25 \def\EF@checkiflisted#1#2{), check if element #1 is in list #2
26 \EF@listedfalse},

27 \edef\thiselem{#1}), changed to edef from def RJMM 1/9/98

28 \1let\@@elt\@elt’ Save \@elt (in case this command is executed
29 % somewhere strange)

43



\EFaddtolist

\EF@addtolist

\EF@addMember

\EF@rightappenditem

30 \def\Q@elt##1{\def\testelem{##1}/,
31 \ifx\thiselem\testelem\EF@listedtrue\fi}},
32 #2\1let\@elt\@@elt}), execute list and restore \@elt

33 \newcommand{\EFaddtolist}[2]{/% #1 = list name;

34 % #2 = comma-delimited list of items to add
35 % \typeout{elements to add: #2}J, debugging code; retain

36 %  \expandafter’’’% this seems redundant

37 \EF@addtolist#2, :#1\end}

38 \def\EF@addtolist#1,#2:#3\end{) #3 is the list now

39 \def\@tempcmda{#21}7

40 \ifx\@tempcmda\Qempty

41 \EF@debugrep{Last elem: #1}\relax’ if #2 is empty, do this.

42 \EFQaddMember{#1}{#31}7 if #2 is empty, do this
43 \else

44 \EF@debugrep{elem: #1}\relax), if #2 is not empty, do this
45 \EF@addMember{#1}{#3}% if #2 is not empty, do this
46 % \expandafter’// this seems redundant

47 \EF@addtolist#2:#3\end\fi}), if #2 is not empty, do this

48 \newcommand{\EF@addMember} [2] {%

49 %h% add #1 only if it isn’t yet in the list

50 %h% it surely would be more efficient without the check...
51 {\EF@checkiflisted{#1}{#2}\relax), to suppress space

52 \ifEF@listed

53 \EF@debugrep{#1 already in the list}\relax

54 \else

55 \EF@debugrep{adding #1 to \string #2}\relax,

56 \EF@rightappenditem{#1}{#2}\fi}}

57 \newtoks\EFQtokb), token list register for temp use

58 \newcommand{\EF@rightappenditem} [2]7%

59 {\@temptokena={\Qelt{#1}}\EFQtokb=\expandafter{#2}

60 \xdef#2{\the\EFQtokb\the\@temptokena}}}), change the list globally

End Stefan’s bit

8.2 Options

Some options: select between Adobe’s Eurofonts (typographically better) or the
Marvosym fount for \serifeuro, \sanseuro, and \monoeuro.

61 \newif\ifEFO@marvosym\EF@marvosymfalse), Adobe Eurofonts by default
62 \newif\ifEF@eurosym\EFQeurosymfalse)y Don’t use eurosym by default
63 \newif\ifEFQtextcomp\EFQtextcomptrue), Load the textcomp package if

64 % possible (by default)

65 \newif\ifEF@fixtieaccent\EF@fixtieaccentfalse), Don’t re-define tie
66 % accent by default

67 %

44



68 \DeclareOption{marvosym} {\EF@marvosymtrue}

69 \DeclareOption{adobeeurofonts}{\EF@marvosymfalse}
70 %

71 \DeclareOption{eurosym} {\EFQeurosymtrue}

72 \DeclareOption{noeurosym}{\EFQeurosymfalse}

73 %

74 \DeclareOption{debugreport}{\EF@debugreporttrue}

75 \DeclareOption{nodebugreport}{\EF@debugreportfalse}
76 %

77 \DeclareOption{notextcomp}{\EFQ@textcompfalse}

78 \DeclareOption{textcomp}{\EFQ@textcomptrue}

79 %

80 \DeclareOption{fixtieaccent}{\EF@fixtieaccenttruel}
81 \DeclareOption{nofixtieaccent}{\EF@fixtieaccentfalse}

\fakelighteuro These commands were defined in the options: they’re used by \makefake-
\fakemediumeuro mediumeuro, \makefakelighteuro, and \makefakeheavyeuro commands later
\fakeheavyeuro on.

They all take two optional arguments:

\fake...euro[lift] [slant correction factor]

The first argument is a normal dimension; the second is a percentage. Default val-
ues are 0 pt and 100 respectively. The lift is the amount by which the cross-strokes
are raised above the nominal vertical centre line of the C; the slant correction fac-
tor is the factor by which the nominal slant of an italic or oblique C is multiplied
by before working out where to put the cross-strokes. Some founts have metrics
that disagree with reality quite wildly in terms of the specified italic angle. If the
cross-strokes are too far to the right in the case of slanted versions of a fake euro,
this second optional argument should be set to something less than 100 (50 or 25
are good values to try to begin with); if the cross-strokes are too far to the left,
this second optional argument should be set to something more than 100 to begin
with (200 is a good value to try to begin with).

82 \newcommand*{\fakelighteuro}[1] [Oex]{\def\EF@tmprlift{#1}\Q@fakelighteuro}
83 \newcommand*{\fakemediumeuro} [1] [Oex] {\def\EFQtmprlift{#1}\@fakemediumeuro}
84 \newcommand*{\fakeheavyeuro}[1] [Oex]{\def\EF@tmprlift{#1}\@fakeheavyeuro}

\@fakelighteuro These commands are the ones that change depending on which sort of slant you
\@fakemediumeuro want on the rules; it’s done like this so you can effectively have two optional
\@fakeheavyeuro arguments for the \fake...euro commands, which is awkward to arrange us-
ing \newcommand. These commands are meant to be called only from the three

\fake. . .euro commands above.

85 \DeclareOption{noslantfakeeuro} {%

86 \def\EFQ@fakeslant{0}/, in case anyone’s interested

87 \newcommand*{\@f akemediumeuro} [1] [100]

88 {\mediumruleeuronoslant{\EF@tmprlift}{#1}}
89 \newcommand*{\@fakelighteuro}[1] [100]

90 {\lightruleeuronoslant{\EF@tmprlift}{#1}}
91 \newcommand*{\@fakeheavyeuro}[1] [100]

92 {\heavyruleeuronoslant{\EF@tmprlift}{#1}}}
93 \DeclareOption{normalslantfakeeuro} {7

94 \def\EFQ@fakeslant{1}/), in case anyone’s interested

95 \newcommand*{\@f akemediumeuro}[1] [100]

45



96 {\mediumruleeuronorm{\EFQtmprlift}{#1}}
97 \newcommand*{\@fakelighteuro}[1] [100]

98 {\lightruleeuronorm{\EF@tmprlift}{#1}}

99 \newcommand*{\@fakeheavyeuro}[1] [100]

100 {\heavyruleeuronorm{\EF@tmprlift}{#1}}}

101 \DeclareOption{bigslantfakeeuro} {%

102 \def\EFQ@fakeslant{2}/), in case anyone’s interested

103 \newcommand*{\@f akemediumeuro}[1] [100]

104 {\mediumruleeurobigslant{\EFQ@tmprlift}{#1}}
105 \newcommand*{\@fakelighteuro}[1] [100]

106 {\lightruleeurobigslant{\EF@tmprlift}{#1}}
107 \newcommand*{\@fakeheavyeurol}[1] [100]

108 {\heavyruleeurobigslant{\EF@tmprlift}{#1}}}

The \euros command was more-or-less stolen from eurosym.sty: The Euro
Symbol Package for IWTEX by Henrik Theiling <theiling@coli.uni-sb.de>,

http://www.coli.uni-sb.de/ theiling
\ProvidesPackage{eurosymbol}
[1998/08/06 v1.1 European currency symbol ‘‘Euro’’]

109 \DeclareOption{left}{\PassOptionsToPackage{left}{eurosym}y,

110 \DeclareRobustCommand{\euros}[1]{\euro\nobreak\,#1}}

111 \DeclareOption{right}{\PassOptionsToPackage{right}{eurosym}y,

112 \DeclareRobustCommand{\euros}[1] {#1\nobreak\, \euro}}

113 \DeclareOption{official}{\PassOptionsToPackage{official}{eurosym}}
114 \DeclareOption{gen}{\PassOptionsToPackage{gen}{eurosym}}

115 \DeclareOption{gennarrow}{\PassOptionsToPackage{gennarrow}{eurosym}}
116 \DeclareOption{genwide}{\PassOptionsToPackage{genwide}{eurosym}}

117 %

118 \ExecuteOptions{adobeeurofonts}’ Use Adobe’s Eurofonts by default
119 \ExecuteOptions{noeurosym} Don’t use eurosym by default

120 \ExecuteOptions{left} Euro symbol on left by default

121 \ExecuteOptions{normalslantfakeeuro}}, Fake euros with slight slant by default
122 \ExecuteOptions{nodebugreport}) No debugging reports by default

123 \ExecuteOptions{textcomp}/ Load the textcomp package by default

124 \ExecuteOptions{nofixtieaccent}), Don’t re-define the tie accent by
125 % default

126 \InputIfFileExists{eurofont.cfg}{}%

127 {\PackageWarningNoLine{eurofont}/,

128 {I can’t find the eurofont.cfg configuration file.\MessageBreak
129 Perhaps something is wrong with this installation?\MessageBreak
130 The \protect\euro\space command will work with default settings}’
131 \EFaddtolist{\userlist}{}

132 \EFaddtolist{\texteurolist}{}

133 \EFaddtolist{\chinaelist}{}

134 \EFaddtolist{\cmlist}{cmr,cmss,cmtt}

135 \EFaddtolist{\seriflist}{pbk,pnc,ppl,ptm,put}

136 \EFaddtolist{\sanslist}{pag,phv,psy,pzd}

137 \EFaddtolist{\monolist}{pcr}

138 \EFaddtolist{\fakemediumlist}{pzc}

139 \EFaddtolist{\fakelightlist}{}

140 \EFaddtolist{\fakeheavylist}{}

141 %

142 \EFaddtolist{\faketexteurolist}{}

46



The following lists are used to decide which thickness line should be used for
producing faked euro symbols. demibold and semibold are in the medium list
because I reckon it’s better to have a line that’s a touch too light than too heavy.
143 \EFaddtolist{\EFlightserieslist}{ul,el,1,ulc,elc,1lc,ulx,elx,1x}

144 \EFaddtolist{\EFmediumserieslist}{m,mb,db,sb,mc,mbc,dbc,sbc,mx,mbx,dbx,sbx}
145 \EFaddtolist{\EFboldserieslist}{b,bx,bc}

146 \EFaddtolist{\EFultraboldserieslist}{eb,ub,ebc,ubc,ebx,ubx}

147 %

148 % And two non-standard series:

149 %

150 \EFaddtolist{\EFultraboldserieslist}{xb,ebd}

151 }

Note: the stuff above should include more-or-less everything in the default
config file.

152 \ProcessOptions

If requested (as it is by default), load textcomp.sty if it exists; this conditional
code and subsequent checking for textcomp. sty should allow eurofont.sty to work
with old or OT1-only B TEXs.

153 \ifEFQtextcomp\IfFileExists{textcomp.sty}{\RequirePackage{textcomp}}{}\fi
If the textcomp package is going to be loaded, it’ll be loaded by now, so now

is the time to re-define the tie accent (if this has been asked for):

154 \ifEF@fixtieaccent \DeclareTextAccentDefault{\t}{OML}\fi

155 \ifEFQeurosym}

even if eurosym can’t be loaded, ensure that some sort of euro is printed:
156 \def\euro{\makefakeeuro}
Load eurosym if asked and if possible

157 \IfFileExists{eurosym.sty}{\RequirePackage{eurosym}}{%

158 \PackageError{eurofont}{I can’t find the eurosym packagel’

159 {You’ve used the eurosym option; this requires the eurosym package
160 which doesn’t appear to be installedl}}’

Save eurosym’s \euro as \ESeuro; if eurosym couldn’t be loaded, \euro is still
defined as \makefakeeuro (see above), so a sort of \euro symbol will be printed

161 \let\ESeuro\euro
162 \fi

8.3 A spare command or more?

\showfontfamily

163 \newcommand{\showfontfamily}{
164\typeout{**********************************}

165 \typeout{* \protect\showfontfamily:

166 \space\space\space\space\space\space

167 \space\space\space\space\space\space

168 \space\space\space*}

169 \typeout{*\space\space\space\space\space\space
170 \space\space\space\space\space\space
171 \space\space\space\space\space\space

172 \space\space\space\space\space\space

47



\EF@crossstrokes

173 \space\space\space\space\space\space

174 \space\space\spacex*}

175 \typeout{* The current font family is: \f@family\space *}
176 \typeout{*\space\space\space\space\space\space

177 \space\space\space\space\space\space
178 \space\space\space\space\space\space

179 \space\space\space\space\space\space

180 \space\space\space\space\space\space

181 \space\space\space*}

182 \typeout {Hkskskskskskkkkokokokkokkokokokokkok koo sk ek ok
183 }

8.4 Code to fudge a euro if needed

The author commands to generate faked euro symbols now select one of four
weights of cross-stroke to match light, medium, bold, and ultrabold. This should
do.

Arguments as noted; this is the command that draws the horizontal strokes for a
fake euro symbol.
184 \def\EFQcrossstrokes#1#2#3#4#5#6#7#8#9{/,

185 % #1 = width of C

186 % #2 = height of C

187 % #3 = depth of C

188 % #4 = back shift as percentage of #1

189 % #5 = strokelen as percentage of #1

190 % #6 = strokelen of bottom rule as percentage of #1
191 % #7 = thickness of cross-strokes

192 % #8 = centre line spacing of cross-strokes

193 % #9 = extra rule 1lift

194 % Need to lift cross strokes by 1/2 (height C - height cross-strokes)
195 %

196 % N.B. slanted founts are an interesting thingy.

197 % The metrics often lie about the slant, so \EF@slantcorr is a
198 ), percentage to multiply the slant/point figure from the tfm file by.
199 % Start out by ensuring that it exists:

200 \@ifundefined{EF@slantcorr}{\def\EF@slantcorr{100}}{}%

201 % \fontdimenl is slant per point (in points).

202 \@tempdima=#8Y

203 % \typeout{rule spacing = \the\@tempdimaly,

204 \@tempdima=\fontdimeni\font?

205 % \typeout{slant per point = \the\O@tempdimalj,

206 % now apply fudge factor:

207 \@tempdima=0.1\@tempdimay,

208 \@tempdima=\EF@slantcorr\Q@tempdimay

209 \@tempdima=0.1\@tempdimay,

210 % (the eccentric multiplication is to reduce rounding error and
211 % reduce the risk of the dimen getting too big)

212 \edef\@tempcmda{\strip@pt\Q@tempdimal},

213 % \typeout{fudged slant per point/points = \@tempcmdal}%

214 % \@tempdima=#1%

215 \@tempdima=#2J, Changed from width #1 to height #2

216 \@tempdima=\@tempcmda\@tempdimay,

217 % \typeout{Width of C = #1}J,

48



218 %
219 %

\typeout{Height of C = #2}}
\typeout{slant in points (for C) = \the\O@tempdimaly,

220 \@tempdima=0.5\@tempdimay,

221 %
222 %
223 %
224 %
225 %
226 %
227 %

\typeout{half slant in points (for C) = \the\Otempdimalj,

% now apply fudge factor:

\@tempdima=0.1\@tempdima,

\@tempdima=\EF@slantcorr\Q@tempdimay,

\@tempdima=0.1\@tempdimay,

% (the eccentric multiplication is to reduce rounding error and
% reduce the risk of the dimen getting too big)

228 \edef\EF@slantC{\the\Q@tempdimal}

229 %
230 %
231 %
232 %
233 %
234 %
235 %

\typeout{final half slant in points (for C) = \EF@slantCl}},

\EF@slantC is now 1/2 the slant of a C;
need this for shifting back and forth

Now calculate horizontal offset between rules
\@tempcmda is still the fudged slant per point/points, so...

236 \@tempdimb=#8), centre line spacing of rules
237 \@tempdimb=\Q@tempcmda\@tempdimb

238 \@tempdimb=0.5\@tempdimb?,

239 \edef\EF@rulehoffset{\the\@tempdimb}

240 %
241 %
242 %
243 %
244 %,
245 %
246 %
247 %
248 %
249 %
250 %
251 %
252 %
253 %
254 %
255 %
256 %
257 %
258 %
259 %
260 %
261 %
262 %
263 %
264 %
265 %
266 %
267 %
268 %

below is the old, mad, and incorrect (?) calc
\begin{madness}

\@tempdima=#2

\@tempdima=100\@tempdima

\advance\@tempdima by0.5pt\@settopoint\@tempdima
\edef\@tempcmda{\strip@pt\Q@tempdimaly,
\@tempdima=100pt7%

\divide\@tempdima by\@tempcmda,
\edef\@tempcmda{\strip@pt\Q@tempdimaly,
\@tempdima=#8Y%

\@tempdima=\@tempcmda\@tempdima,
\@tempdimb=\EF@slantC,

\@tempdimb=2\0@tempdimb}, since \EF@slantC is actually 1/2 slantC
\edef\@tempcmda{\strip@pt\Q@tempdimb}y,
\@tempdima=\Q@tempcmda\@tempdimay,
\@tempdima=0.5\@tempdima’,

yA

\edef\EF@rulehoffset{\the\Q@tempdimaly,

\end{madness}
\typeout{\protect\EF@rulehoffset\space = \EF@rulehoffset},

\EF@ruleoffset is now 1/2 the horizontal offset between rules;
need this for shifting back and forth even more.

269 \@tempdima=#1% \
270 \@tempdima=0.01\@tempdimaj \
271 \@tempdima=#4\Q@tempdima, } move back to add cross-strokes

49



272 \kern-\@tempdimay, /

273 \kern\EF@slantC, / Slant correction forward for italic
274 % 1ift = (height C - depth C - rule gap - rule thickness)/2 + offset
275 % Note that ‘rule gap’ is the distance between the centre lines of
276 %, the rules, not the gap between them

277 \@tempdima=#27, \

278 \advance\@tempdima by-#3Y% \

279 \advance\Q@tempdima by-#87 \ calc lift of cross-strokes
280 \advance\@tempdima by-#77% /

281 \@tempdima=0.5\@tempdima, /

282 \advance\@tempdima by#97 /

283 % 0.17ex was 1/2 height c/s; height 0.07ex; spacing 0.2ex

284 \@tempdimc=#8Y \ calc cross-stroke spacing

285 \advance\Q@tempdimc by-#7}, /

286 \raisebox{\@tempdima}{%

287 \vbox{/ \

288 \@tempdimb=#1% \ \

289 \@tempdimb=0.01\@tempdimb } calc width of cross-stroke
290 \@tempdimb=#5\@tempdimby, / \

291 \hbox{\kern\EF@rulehoffset, \ top rule

292 \vbox{\hrule width\@tempdimb height#7}}/ \

293 \nointerlineskip } draw cross-strokes
294 \vskip\@tempdimcy / (using \@tempdima/b/c from above)
295 \@tempdimb=#1% \ /

296 \@tempdimb=0.01\@tempdimb?, } calc width of cross-stroke
297 \@tempdimb=#6\Q@tempdimbY, / /

298 \hbox{\kern-\EF@rulehoffset’ /

299 \vbox{\hrule width\@tempdimb height#7}}}}), bottom rule

300 \@tempcnta=#47, \

301 \advance\@tempcnta by-#57% (aha!) \

302 \@tempdima=#17, \

303 \@tempdima=0.01\@tempdima \ move forward to end of C
304 \@tempdima=\Q@tempcnta\@tempdimay, /

305 \kern\@tempdimay, /

306 % shift by slant amount /

307 \kern-\EF@slantCy /  slant correction

308 }

309 %

\EF@fakeeurobase This command contains the letter that’s used as the base to fake a euro symbol —
it’s used by the \EFruleeuro command.

310 \providecommand\EF@fakeeurobase{C}

\EFruleeuro The internal command to generate faked euro symbols; meant to be used in config
files and things if the user wants to create new sorts of fake euro symbols.

311 \def\EFruleeuro#1#2#3#4#5#6#7{{% Confine defs to \EFruleeuro

312 % #1 = percentage of width of C that back shift of
313 % rules is; 110 usually

314 % #2 = percentage of width of C that width of

315 % top rules is

316 % #3 = percentage of width of C that width of

317 % bottom rule is

318 % #4 = rule thickness (dimen)

319 % #5 = rule spacing (dimen)

50



extra rule lift (dimen)

320 % #6

321 % #7 = slant fudge factor (percentage); this is used to
322 % scale the slant per point dimension from the tfm
323 % file; it’s often wrong in terms of the C glyph

324 \settowidth{\@tempdima}{\EFQ@fakeeurobasel},

325 \settoheight{\@tempdimb}{\EF@fakeeurobase}’

326 \settodepth{\@tempdimc}{\EFQ@fakeeurobasel}

327 \edef\EFQ@Cwidth{\the\@tempdimal}},

328 \edef\EF@Cheight{\the\@tempdimb}y,

329 \edef\EFQ@Cdepth{\the\@tempdimcl}},

330 \advance\@tempdimb by\@tempdimc?,

331 % \edef\totalCheight{\the\Q@tempdimb}%\totalCheight is height+depth of C
332 % \typeout{\protect\EF@Cwidth\space = \EFQCwidthl/,

333 % \typeout{\protect\EF@Cheight\space = \EFQCheightl/,

334 % \typeout{\protect\EF@Cdepth\space = \EF@Cdepth}/

335 % First job: deal with slant fudge

336 \def\EF@slantcorr{#7}%

337 \ifx\EF@slantcorr\Q@empty\def\EF@slantcorr{100}\fi%

338 %, Ensure that \EF@slantcorr is 100 (%) if not specified. This

339 J, parameter is used by \EFQcrossstrokes

340 \def\EF@backshift{#1}), percentage of \EF@Cwidth that back shift is
341 \@tempdimb=0.01\@tempdimaj, swapped these two lines;

342 \@tempdimb=\EF@backshift\@tempdimb}, dimen can get too big otherwise
343 % \Q@tempdimb now = length of shift back to add cross-strokes

344 %, Note that this ignores the italic corrections. Is this right?
345 % (ignoring italic correction seems to be right; but... The

346 % introduction of the horizontal offset to the rules might not be
347 %, right to ignore; it seems suitable in tests, but? Since the amount
348 % should always be small, I’1l ignore it for now - dealing with it is
349 % awkward and the offset *should* help things fit together better.)
350 % \Q@tempdima now = width of C

351 % typeset the faked euro

352 %

353 % Assumption: that the cross-strokes don’t extend to the right of the
354 % C (allows the width calculations to be a bit simpler than they
355 % otherwise would be).

356 %

357 % \@tempdima = width of C; \@tempdimb = \EF@backshift x width of C
358 % \typeout{\the\@tempdima\space = width of C}%

359 % \typeout{\the\@tempdimb\space = \protect\EF@backshift x width of C}J
360 % Following line: make box = largest of (\@tempdima,\@tempdimb)

361 \ifdim\@tempdimb>\@tempdima\@tempdima=\@tempdimb\fi%

362 \makebox [\@tempdima] [r]%

363 {\EF@fakeeurobase\EFQcrossstrokes{\EFeCwidth}{\EF@Cheight}{\EF@Cdepth}’

364 {\EF@backshift H{#2}{#3}{#4}{#5}{#6}}%
365 }}
\SelectOnWeight if the current fount series:
is in the 1light list, do #1; else
if it’s in the medium list, do #2; else
if it’s in the Dbold list, do #3; else
if it’s in the wultrabold list, do #4; else
do #2

366 \def\SelectOnWeight#1#2#3#4{/,

51



\mediumruleeuronorm
\mediumruleeuronoslant
\mediumruleeurobigslant

\lightruleeuronorm
\lightruleeuronoslant
\lightruleeurobigslant

367 \EFQcheckiflisted{\f@series}{\EFlightserieslist},

368 \ifEF@listed\EF@debugrep{SelectOnWeight lightl}#1%

369 \else

370 \EFQcheckiflisted{\f@series}{\EFmediumserieslist}}
371 \1fEF@listed\EF@debugrep{SelectOnWeight mediuml}#27
372 \else

373 \EF@checkiflisted{\f@series}{\EFboldserieslist}

374 \ifEF@listed\EF@debugrep{SelectOnWeight bold}#3J,

375 \else

376 \EF@checkiflisted{\f@series}{\EFultraboldserieslist},
377 \1fEF@listed\EF@debugrep{SelectOnWeight ultrabold}#4/,
378 \else\EF@debugrep{SelectOnWeight default to medium}%
379 #2J,

380 \fi\fi\fi\fi}

This is the standard command for faking a euro symbol. It selects one of four
weights of cross-stroke depending on the current fount series.
The light and ultra bold weights are fairly arbitrary.

381 \providecommand*{\mediumruleeuronorm} [2] {\EF@debugrep{medium rule euro norm}’
382 \SelectOnWeight

383 {\EFruleeuro{110}{80}{72}{0.04ex}{0.27ex}{#1}{#2}}7 light

384 {\EFruleeuro{110}{80}{72}{0.07ex}{0.27ex{#1}{#2}}), medium

385 {\EFruleeuro{110}{80}{72}{0. 14ex}{0.27ex}{#1}{#2}} bold

386 {\EFruleeuro{110}{80}{72}{0.18ex}{0.27ex}{#1}{#2}}), ultra bold - new numbers
387 }

388 \providecommand*{\mediumruleeuronoslant} [2] {\EF@debugrep{medium rule euro noslant}}
389 \SelectOnWeight¥

390 {\EFruleeuro{110}{80}{80}{0.04ex}{0.27ex}{#1}{#2}}), light

391 {\EFruleeuro{110}{80}{80}{0.07ex}{0.27ex}H{#1}{#2}}), medium

392 {\EFruleeuro{110}{80}{80}{0.14ex}{0.27ex}H{#1}{#2}}), bold

393 {\EFruleeuro{110}{80}{803}{0.18ex}{0.27ex}{#1}{#2}}% ultra bold

394 }

395 \providecommand*{\mediumruleeurobigslant}[2] {\EF@debugrep{medium rule euro bigslantl}
396 \SelectOnWeight

397 {\EFruleeuro{110}{80}{60}{0.04ex}{0.27ex}{#1}{#2}}), light

398 {\EFruleeuro{110}{80}{60}{0.07ex}{0.27exH{#1}{#2}}), medium

399 {\EFruleeuro{110}{80}{603}{0.14ex}{0.27ex}{#1}{#2}}% bold

400 {\EFruleeuro{110}{80}{60}{0.18ex}{0.27ex}H{#1{#2}}), ultra bold

401 }

A complementary command for faking a euro with lighter cross-strokes; suitable
for founts like Computer Modern Roman.

402 \providecommand*{\lightruleeuronorm} [2] {\EF@debugrep{light rule euro norm}%
403 \SelectOnWeight

404 {\EFruleeuro{110}{80}{72}{0.02ex}{0.27ex}{#1}{#2}}7 light

405 {\EFruleeuro{110}{80}{72}{0.04ex}{0.27ex}{#1}{#2}}), medium

406 {\EFruleeuro{110}{80}{72}3{0.07ex}{0.27ex}{#13{#2}}% bold

407 {\EFruleeuro{110}{80}{72}{0.14ex}{0.27ex}{#1}{#2}}, ultra bold

408 }

409 \providecommand*{\lightruleeuronoslant}[2]{\EF@debugrep{light rule euro noslant}}
410 \SelectOnWeight¥

411 {\EFruleeuro{110}{80}{80}{0.02ex}{0.27ex}{#1}{#2}}), light

412 {\EFruleeuro{110}{80}{80}{0.04ex}{0.27ex}{#1}{#2}}), medium

413 {\EFruleeuro{110}{80}{80}{0.07ex}{0.27ex}{#1}{#2}}% bold

52



\heavyruleeuronorm
\heavyruleeuronoslant
\heavyruleeurobigslant

\EF@mvs

\marvosymeuro

414 {\EFruleeuro{110}{80}{80}{0. 14ex}{0.27ex}{#1}{#2}}), ultra bold

415 }

416 \providecommand*{\lightruleeurobigslant} [2] {\EF@debugrep{light rule euro bigslantl}/
417 \SelectOnWeight¥

418 {\EFruleeuro{110}{80}{60}{0.02ex}{0.27ex}{#1}{#2}}7 light

419 {\EFruleeuro{110}{80}{60}{0.04ex}{0.27ex}H{#1}{#2}}), medium

420 {\EFruleeuro{110}{80}{60}{0.07ex}{0.27ex}H{#1}{#2}}), bold

421 {\EFruleeuro{110}{80}{60}{0. 14ex}{0.27ex}{#1}{#2}}), ultra bold

422 }

A complementary command for faking a euro with heavy cross-strokes; it seemed
inevitable after the other two. I'm not sure that there’s any particular sense to
the bold and ultra bold values in this case.

I'm still not completely happy with this, but it’s much better now.

423 \providecommand*{\heavyruleeuronorm} [2] {\EF@debugrep{heavy rule euro norm}j
424 \SelectOnWeight¥

425 {\EFruleeuro{110}{80}{72}{0.14ex}{0.27ex}{#1}{#2}}), light

426 {\EFruleeuro{110}{80}{72}{0.18ex}{0.27ex{#1}{#2}}), medium

427 {\EFruleeuro{110}{80}{72}{0.22ex}{0.30ex}H{#1}{#2}}), bold

428 {\EFruleeuro{110}{80}{72}{0.26ex}{0.33ex}{#1}{#2}}), ultra bold

429 }

430 \providecommand*{\heavyruleeuronoslant}[2] {\EF@debugrep{heavy rule euro noslant}y,
431 \SelectOnWeight

432 {\EFruleeuro{110}{80}{80}{0. 14ex}{0.27ex}{#1}{#2}}7 light

433 {\EFruleeuro{110}{80}{80}{0.18ex}{0.27exH{#1}{#2}}), medium

434 {\EFruleeuro{110}{80}{803}{0.22ex}{0.30ex}{#1}{#2}}% bold

435 {\EFruleeuro{110}{80}{80}{0.26ex}{0.33ex}{#1}{#2}}), ultra bold

436 }

437 \providecommand*{\heavyruleeurobigslant} [2] {\EF@debugrep{heavy rule euro bigslant}}
438 \SelectOnWeight¥

439 {\EFruleeuro{110}{80}{60}{0. 14ex}{0.27ex}{#1}{#2}}7 light

440 {\EFruleeuro{110}{80}{60}{0.18ex}{0.27ex}H{#1}{#2}}), medium

441 {\EFruleeuro{110}{80}{60}{0.22ex}{0.30ex}H{#1}{#2}}), bold

442 {\EFruleeuro{110}{80}{60}{0.26ex}{0.33ex}{#1}{#2}}), ultra bold

443 }

8.5 Code to use marvosym

Code to use marvosym fount; needs faked italic tfm (and dvi driver able to fake
an italic)

444 \def\EF@mvs{\fontencoding{U}\fontfamily{zmvs}\fontseries{m}\selectfont}

Note that the \mbox is now redundant; leave it in in case \EF@pmb changes
again

445 \providecommand{\marvosymeuro} [1]{%
446 \EF@debugrep{marvosymeuro}y,

447 \SelectOnWeight¥

448 {\EF@mvs\char#1}}, light

449 {\EF@mvs\char#1}J, medium

53



\marvosymserifeuro
\marvosymsanseuro
\marvosymmonoeuro

\EF@pmbshift

450 {\mbox{\EF@pmsb{\EF@mvs\char#1}}}/, bold
451 {\mbox{\EF@pmsb{\EF@mvs\char#1}}}/, ultra bold
452 }

453 \providecommand

454 {\marvosymserifeuro}{\EF@debugrep{marvosymserifeuro}\marvosymeuro{101}}
455 \providecommand

456 {\marvosymsanseuro}{\EF@debugrep{marvosymsanseuro}\marvosymeuro{99}}
457 \providecommand

458 {\marvosymmonoeuro}{\EF@debugrep{marvosymmonoeuro}\marvosymeuro{100}}

8.6 Faking a bold character

Original comments: \EF@pmb fakes bold; modified from the TEXbook

I don’t pretend to understand it all, but this seems to do the job better, and
ensures that the width taken by the box is the width taken by the printed glyphs.
This is used by \marvosymeuro Original code:

\def\EFQpmb#1{\makebox{\setbox\@tempboxa=\hbox{#1}%
\kernOem\copy\@tempboxa\kern-\wd\@tempboxa
\kern.025em\raise.0216em\copy\@tempboxa\kern-\wd\@tempboxa
\kern.025em\box\@tempboxa }}

This code produces a better faked bold; the idea of using a hexagonal ar-
rangement was suggested by Donald Arseneau. You can probably tell I wrote the
\EF@pmb macro myself :-) I might move to an octagonal arrangement later on.

Marvosym complicates matters; a vertical shift of 0.866 x 0.020em makes
the horizontal strokes collide when you fake a bold Marvosym euro symbol. The
solution is to move away from a regular hexagon and use a smaller vertical shift.

So now there’s two commands: \EF@pmb for normal fake bold, and \EF@pmsb
(semi bold) for the Marvosym euro symbols. It’s only slightly less heavy than the
usual version.

\EF@pmb 459 \newlength{\EF@pmbshift}
\EFQ@pmsb 460 %

461 \newcommand{\EF@pmsb} [1]{/

462 \EF@debugrep{EF@pmsbl}’

463 \EF@pmbshift=0.020em}, as was

464 \hbox{%

465 \rlap{#1}%

466 \kernO.5\EF@pmbshifty

467 \raisebox{0.50\EF@pmbshift} [0pt] [Opt]1{\rlap{#1}}%
468 \raisebox{-0.50\EF@pmbshift} [0pt] [Opt]{\rlap{#1}}/
469 \kern1\EF@pmbshifty

470 \raisebox{0.50\EF@pmbshift} [0pt] [Opt]1{\rlap{#1}}%
471 \raisebox{-0.50\EF@pmbshift} [Opt] [Opt]{\rlap{#1}}/
472 \kernO.5\EF@pmbshifty

473 #1}}

474 %,

475 \newcommand{\EF@pmb} [1]{%

476 \EF@debugrep{EF@pmb}/,

54



\EFiftexteuroexists

\zpeutteuro
\zpeureuro
\zpeusseuro

477 \EF@pmbshift=0.020em}, as was

478 \hbox{%

479 \rlap{#1}%

480 \kernO.5\EF@pmbshift}

481 \raisebox{0.866\EF@pmbshift} [0pt] [Opt]{\rlap{#1}}/
482 \raisebox{-0.866\EF@pmbshift} [0pt] [Opt]{\rlap{#1}}V
483 \kerni\EF@pmbshift},

484 \raisebox{0.866\EFepmbshift} [0pt] [Opt]{\rlap{#1}}/
485 \raisebox{-0.866\EF@pmbshift} [0pt] [Opt]{\rlap{#1}}¥
486 \kernO.5\EF@pmbshift}

487 #13}}

8.7 The code to select and print euro symbols

But better yet: add a pair of options: ‘adobeeurofont’ or ‘marvosym’. The
marvosym option will set up \monoeuro (etc) to use marvosym glyphs; the
adobeeurofont option (default) will set \monoeuro (etc) to use adobe glyphs.
Do this, and add documentation on fiddling with \userlist (etc) so you can
use both
\texteuro is a problem: this command is here to help.

if <fam> is in \faketexteurolist, #2,
else
if \texteuro is defined and TSi<fam>.fd exists #1,
else #2
fi fi

488 \def\EFiftexteuroexists#1#2{}

489 \EFQ@checkiflisted{\f@family}{\faketexteurolist}

490 \ifEF@listed#2,

491 \else

492 \ifx\texteuro\@undefined#2y, if \texteuro doesn’t exist, #2 and finish
493 \else},

494 \IfFileExists{ts1\f@family.fd}%

495 {#13}), if tsi<fam>.fd exists, #1. Can’t usefully test for glyph existing
496 {#2}), if tsi<fam>.fd doesn’t exist, #2 and finish

497 \fi\fi}

Define these for \monoeuro etc., to use. Note that the command names are such
that if you happen to be in zpeutt and say \euro, you'll get \zpeutteuro executed
straight away. I don’t have to list these fount families in \seriflist etc.

498 \providecommand{\zpeutteuro}{\EF@debugrep{zpeutteuro}’

499 {\fontencoding{U}\fontfamily{zpeutt}\selectfont el}}

500 \providecommand{\zpeureuro}{\EF@debugrep{zpeureuro}y,

501 {\fontencoding{U}\fontfamily{zpeur}\selectfont e}}

502 \providecommand{\zpeusseuro}{\EF@debugrep{zpeusseuro}y,

503 {\fontencoding{U}\fontfamily{zpeuss}\selectfont e}}

Use either marvosym or Adobe’s Eurofonts for serif/sans/mono lists
These might have already been defined in the cfg file; don’t want to over-ride
those definitions, so \providecommand them.

95



\monoeuro
\serifeuro
\sanseuro

\makeusereuro

\chinaeeuro

It’s not safe to assume that either Adobe’s Eurofonts or the Marvosym fount
are in fact installed, but I don’t see any easy way of finding out the truth of the
matter. I suspect it’s best to leave it up to the user to get the configuration right.
Careful with that documentation, Eugene.

504 \1fEF@marvosym

505 \providecommand{\monoeuro}{\EF@debugrep{monoeuro}{\marvosymmonoeuro}}
506 \providecommand{\serifeuro}{\EF@debugrep{serifeuro}{\marvosymserifeuro}}
507 \providecommand{\sanseuro}{\EF@debugrep{sanseuro}{\marvosymsanseuro}}
508 \else

509 \providecommand{\monoeuro}{\EF@debugrep{monoeuro}\zpeutteuro}

510 \providecommand{\serifeuro}{\EF@debugrep{serifeuro}\zpeureuro}

511 \providecommand{\sanseuro}{\EF@debugrep{sanseuro}\zpeusseuro}

512 \fi

Slightly more involved code for \makeusereuro: make it issue a warning if it’s
not user defined.

513 \providecommand{\makeusereuro}

514 {\EF@debugrep{makeusereuro}\makefakemediumeuroy

515 %

516 \PackageWarningNoLine{eurofont}{%

517 You have tried to use the \protect\makeusereuro\space command

518 to\MessageBreak print a euro symbol, but you have not defined

519 the\MessageBreak \protect\makeusereuro\space command. This has

520 probably happened in\MessageBreak the \protect\euro\space command. I
521 shall print a faked euro symbol\MessageBreak for now}}

I have some misgivings about faking a bold from this euro symbol; it’s a beautiful
glyph which doesn’t really deserve this sort of abuse.

Removed the anomalous parameter from definition of \chinaeeuro. What was
I thinking of?

And finally... Test for the existence of china2e.sty, and assume that China2e’s
not been installed if the package file is missing. I’d rather test for the existence of
the tfm file, but I don’t know how: if you know, I’d appreciate an email explaining
how.

522 \DeclareFontFamily{0T1}{chin}{}

523 \DeclareFontShape{0T1}{chin}{m}{n}{<-> chinal0O}{}

524 %

525 \providecommand{\chinaeeuro}{’

526 \IfFileExists{china2e.sty}}

527 {\EF@debugrep{chinaeeurol}j,

528 \SelectOnWeight

529 {{\usefont{0T1}{chin}{m}{n}\char255}}}, light

530 {{\usefont{0T1}{chin}{m}{n}\char255}}), medium

531 {\mbox{\EF@pmb{\usefont{0T1}{chin}{m}{n}\char255}}}% bold
532 {\mbox{\EF@pmb{\usefont{0T1}{chin}{m}{n}\char255}}}% ultra bold
533 }

534 {\EF@debugrep{chinaeeuro - we have a problem}%

535 \PackageWarning{eurofont}{J

536 The \protect\euro\space command

56



\cmrfakeeuro
\cmssfakeeuro
\cmttfakeeuro

\makefakeeuro
\makefakeheavyeuro
\makefakemediumeuro
\makefakelighteuro

537 is trying to print a euro symbol\MessageBreak

538 from the China2e fount, but I can’t find the file\MessageBreak
539 china2e.sty.\MessageBreak\MessageBreak

540 I’m assuming that you’ve not got the China2e font\MessageBreak
541 installed, so I’m printing a faked euro instead\MessageBreakl},
542 \makefakeeuro}}

543 \providecommand{\cmrfakeeuro}{’,

544 \EF@debugrep{\protect\cmrfakeeuro}\fakelighteuro}
545 %

546 \providecommand{\cmssfakeeuro}{’

547 \EF@debugrep{\protect\cmssfakeeuro}\fakemediumeuro}
548 %

549 \providecommand{\cmttfakeeuro}{%

550 \EF@debugrep{\protect\cmttfakeeuro}\fakemediumeuro}

If \<fam>fakeeuro exists, do \<fam>fakeeuro; else \fakelighteuro, \fake-
mediumeuro, or \fakeheavyeuro depending).

\providecommands again so that these definitions can be over-ridden in the
config file

551 \providecommand{\makefakemediumeuro}{\EF@debugrep{makefakemediumeurol}y,
552 \@ifundefined{\f@family fakeeurol}{\fakemediumeuroly,

553 {\csname\f@family fakeeuro\endcsname}}

554 %

555 \providecommand{\makefakelighteuro}{\EF@debugrep{makefakelighteurol}y,
556 \@ifundefined{\f@family fakeeuro}{\fakelighteurol}/

557 {\csname\f@family fakeeuro\endcsnamel}}

558 %

559 \providecommand{\makefakeheavyeuro}{\EF@debugrep{makefakeheavyeurol}y,
560 \@ifundefined{\f@family fakeeuro}{\fakeheavyeuro}y

561 {\csname\f@family fakeeuro\endcsname}}

562 %

563 \providecommand{\makefakeeuro}{\EF@debugrep{makefakeeurol}y

564 \@ifundefined{\f@family fakeeurol}{/,

565 % if \<fam>fakeeuro doesn’t exist, do this:

566 \EF@checkiflisted{\f@family}{\fakelightlist}\relax

567 \ifEF@listed \makefakelighteuro

568 \else

569 \EF@checkiflisted{\f@family}{\fakemediumlist}\relax
570 \ifEF@listed \makefakemediumeuro

571 \else

572 \EF@checkiflisted{\f@family}{\fakeheavylist}\relax
573 \ifEF@listed \makefakeheavyeuro

574 \elseY, If <fam>’s not listed,

575 \makefakemediumeuro}, print medium faked euro
576 \fi \fi \fi

577 T

578 % If \<fam>fakeeuro does exist, execute it:
579 {\csname\f@family fakeeuro\endcsname}}

This turned into a heavy bummer. Re-wrote the faking code to push the top
rule to the right and the bottom rule to the left when the fount slants.

o7



\pzcfakeeuro

\maketexteuro
\cmeuro

\makecmeuro
\makedefaulteuro
\makeserifeuro
\makesanseuro
\makemonoeuro

\makechinaeeuro

580 \providecommand{\pzcfakeeuro}{\EF@debugrep{pzcfakeeuro}’
581 % \Q@tempdima=lex’, you what?

582 % commented out until I find out what I thought I was doing
583 \fakemediumeuro[-0.1lex]}

8.8 Make euro commands

Can’t just \let one equal to the other because of the debugging reports.

584 \providecommand{\maketexteuro}{\EF@debugrep{maketexteurol}y,
585 \EFiftexteuroexists{\texteuro}{\makefakeeurol}}

586 %

587 \providecommand{\cmeuro}{\EF@debugrep{cmeurol}y,

588 \EFiftexteuroexists{\texteuro}{\makefakeeurol}}

If the eurosym option’s been specified, switch to eurosym’s version of the euro
for: the Computer Modern families, serifeuro, sanseuro, and monoeuro, and the
default euro.

This is the only place where these euro commands are defined; use \provide-
command so they can be over-ridden by the config file.

589 \1fEFQ@eurosym
590 \EF@debugrep{Using eurosym’s euro command}

591 \providecommand{\makecmeuro} {\EF@debugrep{makecmeuro; ESeuro}\ESeuro}
592 \providecommand{\makedefaulteuro}{\EF@debugrep{makedefaulteuro; ESeuro}\ESeuro}
593 \providecommand{\makeserifeuro} {\EF@debugrep{makeserifeuro; ESeuro}\ESeuro}
594 \providecommand{\makesanseuro}  {\EF@debugrep{makesanseuro; ESeuro}\ESeuro}
595 \providecommand{\makemonoeuro}  {\EF@debugrep{makemonoeuro; ESeuro}\ESeuro}
596 \else

597 \EF@debugrep{Not using eurosym’s euro command}

598 \providecommand{\makecmeuro} {\EF@debugrep{makecmeuro F\cmeuro}

599 \providecommand{\makedefaulteuro}{\EF@debugrep{makedefaulteuro}\makefakeeuro}
600 \providecommand{\makeserifeuro} {\EF@debugrep{makeserifeuro J}\serifeuro}
601 \providecommand{\makesanseuro}  {\EF@debugrep{makesanseuro }\sanseuro}

602 \providecommand{\makemonoeuro}  {\EF@debugrep{makemonoeuro  }\monoeuro}

603 \fi

This command needs a test to detect the existence of the china2e tfm file before
trying to use the fount

604 \providecommand{\makechinaeeuro}
605 {\EF@debugrep{makechinaeeuro}\chinaeeuro}

Note: \makecmeuro+\maketexteuro could have identical definitions, since
\makefakeeuro will call \<fam>euro if it exists before trying the generic fake
euro code. (much later) Does anyone know what I mean by this?

If \f@family is in \userlist, \makeusereuro
else
if \<fam>euro exists, \<fam>euro
else

o8



if \f@family is in \texteurolist, \maketexteuro
else
if \@family is in \chinaelist, \makechinaeeuro
else
if \f@family is in \cmlist, \makecmeuro
else
if \f@family is in \serifeurolist, \makeserifeuro
else
if \f@family is in \sanseurolist, \makesanseuro
else
if \f@family is in \monoeurolist, \makemonoeuro
else
if \f@family is in \makefakemediumeurolist, \makefakemediumeuro
else
if \f@family is in \makefakeheavyeurolist, \makefakeheavyeuro
else
if \f@family is in \makefakelighteurolist, \makefakelighteuro
else \makedefaulteuro
fi fi fi fi fi fi fi fi fi fi fi

\makecmeuro:

\texteuro if:
not in \faketexteurolist and TSi1<fam>.fd and \texteuro exist,
\makefakeeuro otherwise

\maketexteuro

\texteuro if:
not in \faketexteurolist and TSi1<fam>.fd and \texteuro exist,
\makefakeeuro otherwise

This is it... The \relaxes are in there just to suppress unwanted spaces and
let me use the visual formatting in the command that I wanted to.

\EFeuro
606 \DeclareRobustCommand{\EFeuro}{\EF@debugrep{start EFeuro:
607 \f@encoding/\f@family/\f@series/\f@shapel}’
608 \EFQcheckiflisted{\f@family}{\userlist}\relax
609 \ifEFQ@listed\EFQ@debugrep{EFeuro makeuser euro}\makeusereuro

610 \else
611 \@ifundefined{\f@family euro}{\@tempswatrue}), test for \<fam>euro
612 {\EF@debugrep{EFeuro \f@family euro}\relaxj, do \<fam>euro

613 \Otempswafalse\csname\f@family euro\endcsnamel}\relax’ do \<fam>euro
614 \if@tempswa), if \<fam>euro doesn’t exist, do the next test

615 \EF@checkiflisted{\f@family}{\texteurolist}\relax

616 \ifEF@listed \EF@debugrep{EFeuro texteuro}\maketexteuro

617 \else

618 \EF@checkiflisted{\f@family}{\chinaelist}\relax

619 \ifEF@listed \EF@debugrep{EFeuro China2e eurol}\makechinaeeuro
620 \else

621 \EF@checkiflisted{\f@family}{\cmlist}\relax

622 \ifEF@listed \EF@debugrep{EFeuro cm euro}\makecmeuro

623 \else

624 \EF@checkiflisted{\f@family}{\seriflist}\relax

99



625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642

\ifEFQ@listed \EF@debugrep{EFeuro serif eurol}\makeserifeuro
\else
\EF@checkiflisted{\f@family}{\sanslist}\relax
\ifEFQ@listed \EF@debugrep{EFeuro sans euro}\makesanseuro
\else
\EFQcheckiflisted{\f@family}{\monolist}\relax
\ifEF@listed \EF@debugrep{EFeuro mono euro}\makemonoeuro
\else
\EF@checkiflisted{\f@family}{\fakelightlist}\relax
\ifEF@listed \EF@debugrep{EFeuro fake light euro}\makefakelighteuro
\else
\EF@checkiflisted{\f@family}{\fakemediumlist}\relax
\ifEFQ@listed \EF@debugrep{EFeuro fake med eurol}\makefakemediumeuro
\else
\EF@checkiflisted{\f@family}{\fakeheavylist}\relax
\ifEFQlisted \EF@debugrep{EFeuro fake heavy eurol}\makefakeheavyeuro
\else \EF@debugrep{EFeuro default euro}\makedefaulteuro
\fi \fi \fi \fi \fi \fi \fi \fi \fi \fi \fi}

Now then. . . eurofont’s euro-generating command is defined as \EFeuro to begin
with. That’s so that it can be defined without clashing with anything else (with
luck). The following code is to try and ensure that the \euro command used in
the document is what eurofont wants it to be. If eurosym’s been loaded, its \euro
command is saved as \ESeuro just after its been loaded, and if any command called
\euro exists at all, it’s renamed \oldeuro at the \begin{document} command.

Yes,

that does mean that \ESeuro and \oldeuro can end up identical if you've

loaded the eurosym package.

643 \AtBeginDocument{’,

644 %
645 %
646 %
647 %
648 %

\@ifpackageloaded{eurosym}{\let\ESeuro\euro}{}), save eurosym’s \euro
No: this is redundant to an extent. If the eurosym option has been
specified, \ESeuro has already be \let to \euro. Best to leave it
at that, I think: any already-defined \euro command will be saved

as \EFoldeuro anyway.

649 \let\oldeuro\euroy, save the previous \euro command (if one exists)
650 \let\euro\EFeuro}/, make the \euro command be \EFeuro come what may

651 \endinput

60



