
PPower4 Manual
preliminary version 0.4

Klaus Guntermann
Christian Spannagel

TU Darmstadt
Computer Science Department
Systems Programming Group

guntermann@iti.informatik.tu-darmstadt.de

chrisp@iti.informatik.tu-darmstadt.de

preliminary September 12, 2002

Contents

1 Introduction 3

2 Requirements 3

3 Installation and Usage 3
3.1 Additional entries in your LATEX source . 3
3.2 Invoking PPower4 . 4

4 Simple application 4

5 Transition effects 5
5.1 Between original pages . 5
5.2 Between partial builds of a page . 6

6 Principles of operation 6
6.1 Assigning levels . 7
6.2 Removing items . 7

7 Multiple levels 8

8 Highlighting 8
8.1 Switching to highlight mode . 9
8.2 Switching to build mode . 9

9 Mixed modes 9
9.1 Highlighted chunks during build mode . 9
9.2 Build chunks during highlight mode . 10

10 Backgrounds 10
10.1 Colored backgrounds . 10
10.2 Adding background elements . 11

11 Links to first builds of a page 11

1

12 Incremental/highlighted graphics with MetaPost 12
12.1 Options of multiinclude . 12
12.2 Special pause effects . 12
12.3 mpost processing . 12

13 More tricks 13

14 Files 13

Updated sections with respect to previous version:
Several enhancements and extensions. New: use with vtex and dvipdfm

2

1 Introduction

PPower4 can be used to postprocess documents for presentations created with pdflatex, vlatex or
dvipdfm where parts of a page are to be uncovered step by step during a presentation with Acrobat
Reader. Additional features include displaying parts of a page in any order, removing items from the
page, and inserting fancy transitions or backgrounds.
PPower4 ist not a complete presentation package, though. It is meant as an enhancement for your
favourite presentation package (be it seminar, pdfslide or foiltex). PPower4 should work with each
of them. The main responsibility of PPower4 is to add some dynamic features to your presentation.
Because PPower4 needs to insert special tags into the resulting PDF document it cannot be used with
normal LATEX followed by dvips and distiller (or GhostScript) to create a PDF presentation. But it is
no longer tied to pdflatex only.
PPower4 consists of some style files to be included during processing with the applications mentioned
above and a post processor written in Java.
The current setup provides and describes mostly basic features, which can be used to develop more
comfortable packages and environments. Any contributions in this area are welcome.

2 Requirements

To make use of all features described in this document it is necessary to use Java2 for running the
post processor. Currently kaffe (checked with version 1.0.6) cannot be used.
You can use PPower4 together with pdflatex, vlatex and dvipdfm. If you are using dvipdfm, you
must also have latex to prepare the dvi file.

3 Installation and Usage

– to be extended –
You need to put the style files in a place, where pdflatex, vlatex or latex can find them. According
to the TDS conventions this may be a subdirectory named tex/latex/ppower4/ or tex/latex/misc/
in your (site specific) installation tree (insert your appropriate directory delimiter instead of /, if
needed).
Furthermore you must be able to run Java programs. See the PPower4 home page for links to Java
environments. PPower4 is normally called with a script or batch file, which is operating system
dependent. You find such scripts for Unix and Windows on the PPower4 home page. But you have
to adapt these scripts to your local file system structure. E.g. it is necessary to edit the script to
name the path of the jar file, which contains the PPower4 system and libraries.

3.1 Additional entries in your LATEX source

If you are using pdflatex or vlatex, just can simply include the style files without any option via
the \usepackage command:

\usepackage{pause}
\usepackage{background}
\usepackage{mpmulti}

Make sure that you have got ifpdf.sty and ifvtex.sty from CTAN (these are already included in
a vtex distribution).
If you are using dvipdfm, you have to add the option dvipdfm for the inclusion of pause.sty and
background.sty:

3

\usepackage[dvipdfm]{pause}
\usepackage[dvipdfm]{background}
\usepackage{mpmulti}

If you want the special PPower4 commands to be ignored without changing all the places where the
commands referring to the post processor were used in your source, you can add the option ignore
to the commands including pause.sty and background.sty:

\usepackage[ignore]{pause}
\usepackage[ignore]{background}

3.2 Invoking PPower4

To run PPower4 you need to run the script or batch file. These require at least two arguments,
namely the input file and the name of an output file.
Use different file names for input and output. Depending on your operating system it may be
necessary to supply full path names also for the input and output file names.
The input file is the pdf file which you got running pdftex, vtex or dvipdfm. The output file will be
created by the post processor. If your Acrobat Reader locks the pdf file during display, you should
close it before reprocessing your document with PPower4.
There are some options, which increase the verbosity level of the post processor or switch off com-
pression of the output file. But these are normally not needed and provided mostly for debugging
purposes.

4 Simple application

To build a page incrementally, it is sufficient to insert \pause commands into your document. Take
care to place these commands close to some text, because otherwise the command is likely to insert
additional whitespace. In the PDF file created by pdflatex, vlatex or dvipdfm the spots where you
placed the \pause command are indicated with a small colored rectangle. This rectangle will vanish
in the final version. If you do not want these rectangles to be visible, include the style file pause.sty
with the option nomarkers:

\usepackage[nomarkers]{pause}

After invoking PPower4 you will have a sequence of pages, which contain the partly built contents
of the page and finally the full page contents.
The following example is similar to the text in one of the demo documents. It shows how to build
a nested itemized list step by step just inserting \pause commands. You may wish to configure
itemize to display fancier or colored elements.

\begin{itemize}
\item First one expects to build itemized lists\pause

\begin{itemize}
\item which can be nested\pause

\begin{itemize}
\item even this deep\pause
\end{itemize}

\item back again\pause
\end{itemize}

\item and the end of this list
\end{itemize}

4

Please note, that the \pause to hold on after the inner itemize is located behind the last \item’s
text, not behind the \end{itemize}.
Of course you can also insert a \pause into the text in the middle of a line (if that is reasonable).

What would you expect posing this question?\pause{} An answer.

\pause tries not to interfere with the rest of the text, but as with all commands some care must
be taken. Make sure, that any whitespace surrounding \pause is wanted. Use \pause{} to keep
whitespace after the command like in the last example.

5 Transition effects

Acrobat Reader allows several special effects, when going to a page. This transition is an attribute
of the page, not of the step between the pages. You will always see the same transition effect when
going to that page, be it forward, backward or through any hyperlink.
You will have to decide whether the transition effects will help the audience to follow the presentation
or whether it will distract their attention from the contents.

5.1 Between original pages

For normal usage the effects can be triggered with functions provided by the hyperref package. The
file pagetrans.tex (available from the PPower4 home page, kindly provided by Marc van Dongen)
supports some abbreviations to facilitate using these effects.
The following list has the details, according to the Manual from Adobe:

\Replace This is the default effect: the new page image replaces the old page image instantaneously.
Mostly used to reset the transition mode after a fancy transition.

\Dissolve The old page image “dissolves” in a piecemeal fashion to the new page image.

\HBlinds Multiple lines, evenly distributes accross the page, sweep horizontally to reveal the new
page.

\VBlinds The same as \HBlinds but with vertical lines.

\HOSplit Two lines sweep across the screen revealing the new page image. The lines are horizontal
and move from the center out.

\HISplit The same as \HOSplit, but lines move from the edges in.

\VOSplit The same as \HOSplit, but the lines are vertical.

\VISplit The same as \VOSplit, but the lines move from the edges in.

\OBox A box sweeps from the center out revealing the new page image.

\IBox A box sweeps from the edges inward revealing the new page image.

\Wipe{value} A single line sweeps across the screen from one edge to the other, revealing the new
page image. The argument value is an angle, possible values include 0, 90, 180 and 270.

\pageTransitionGlitter{value} Similar \Dissolve, except the effect sweeps across the image in
a wide band from one side of the screen to the other. The argument value is a direction,
supported values are 0, 270 and 315.

5

http://www.tug.org/applications/hyperref/
http://www-sp.iti.informatik.tu-darmstadt.de/software/ppower4/pagetrans.tex
http://www-sp.iti.informatik.tu-darmstadt.de/software/ppower4/

5.2 Between partial builds of a page

If you want to use transition effects between the partially built pages, the arguments need to be
specified in some extra place, because the PDF file format can contain only one transition effect per
page. But in the initial pdf document created by pdflatex, vlatex or dvipdfm there is only one
page for a sequence of pages in the final document.
To allow different transition effects between partial pages the \pause command has an optional
argument. If there are no other selections made, the transition effect set for the complete page
through hyperref supported selections will be inherited.
Specifying the effects literally each time would be error prone. And you would not have an easy
way of finding out what went wrong, when an intended transition does not appear. Thus pause.sty
defines specific commands which supply the user’s selection to the argument of \pause. Only parts
which must be specified explicitly (like some angles for directions etc.) must still be supplied in the
call. The selected effect is kept for the current page and will be used for all future \pause commands
until another selection is made.
All effects mentioned in the subsection above are also available here. The list is repeated for easier
reference.

\pauseReplace This is the default effect: new page image replaces the old page image instanta-
neously. Mostly used to reset the transition mode after a fancy transition.

\pauseDissolve The old page image “dissolves” in a piecemeal fashion to the new page image.

\pauseHBlinds Multiple lines, evenly distributes accross the page, sweep horizontally to reveal the
new page.

\pauseVBlinds The same as \pauseHBlinds but with vertical lines.

\pauseHOSplit Two lines sweep across the screen revealing the new page image. The lines are
horizontal and move from the center out.

\pauseHISplit The same as \pauseHOSplit, but lines move from the edges in.

\pauseVOSplit The same as \pauseHOSplit, but the lines are vertical.

\pauseVISplit The same as \pauseVOSplit, but the lines move from the edges in.

\pauseOBox A box sweeps from the center out revealing the new page image.

\pauseIBox A box sweeps from the edges inward revealing the new page image.

\pauseWipe{value} A single line sweeps across the screen from one edge to the other, revealing the
new page image. The argument value is an angle, possible values include 0, 90, 180 and 270.

\pauseGlitter{value} Similar \pauseDissolve, except the effect sweeps across the image in a wide
band from one side of the screen to the other. The argument value is a direction, supported
values are 0, 270 and 315.

6 Principles of operation

We have seen, that the \pause commands split the page into sections, which are shown step by step
until the page is completed. We will refer to such a text section as a chunk. But this method does
not yet allow to display the chunks in a different sequence.
Introducing a different build sequence for the chunks adds another dimension to the display process.
Normally processing a document describes the text, which fills a two dimensional page. If we build

6

the page in the same sequence, no additional information is needed. Marking the breaks is sufficient.
Because there are relations between the elements of a page (e. g. the width or height of the entries
in a table) we cannot ignore these preconditions. We still base our page descriptions on the features
provided by TEX. After all we want to take advantage of the excellent formatting capabilities of TEX.
If we tag each chunk with a number, we can build the page in the sequence given by these tags. To
keep compatibility with the initial setup we define that by default the first chunks gets number 1
and that each \pause command increments the current number by 1, which is assigned to the next
chunk.
This means inserting n \pause commands will assign level number 1 to the text before the first
\pause, level number 2 to the text between the first and the second \pause etc. Finally the text
behind the nth \pause will be assigned level number n + 1. When the output pages are created, all
chunks which are tagged with a level number up to the current level will be included for display until
pages for all levels are created.
Placement in any order can now be achieved by assigning a level number explicitly to a chunk. We
explain this in more detail now.

6.1 Assigning levels

For the assignment of a level number to a chunk we introduce the command \pauselevel. The
argument of \pauselevel can set the level to number n with \pauselevel{=n}.
Absolute level numbers can make it difficult to insert additional building steps. To overcome this
problem we allow also to increase the level number by n using \pauselevel{=+n}. Similarly
\pauselevel{=-n} will decrease the level number by n. If you use the relative setting, you must
take into account, that the preceding \pause will have updated the current level already.
Of course several chunks can be assigned the same level number. They will appear together.
Because it is tedious to set the level explicitly, e. g. for writing from right to left, \pauselevel also
supports to set the increment or decrement value for all subsequent \pause commands. At the
beginning of each page the incrementing value is +1.
To set the level number to 11 and count down with subsequent \pause commands you would use the
command \pauselevel{=11 -1}. Note that while the whitespace between =11 and -1 is required,
there must be no whitespace between the = and the subsequent + and -.
It will not be possible to decrement the level number below 1. If you try, the corresponding chunk
will show up already in the first page part.
To have material, which is added by the output routine of TEX for the bottom of a page, appear
already on the first version of a page use the sequence \pause\pauselevel{=1} at the end of your
text for the page.
Currently see leveldemo.tex for some examples.
The maximum level number can be quite large, but it is recommended to make the range not too
wide, because otherwise building the pages may take some time.

6.2 Removing items

Setting the level number n for a chunk will include the chunk in all pages displayed with highest level
number larger or equal to n. To make a chunk vanish we need to specify a maximum level number
m. Then the chunk will only be included in all pages starting from level 1 or any specified level n
until maximum level number m.
The maximum level number is specified after a colon in the \pauselevel command. You can specify
the level absolutely as number m with \pauselevel{:m}. If you want to specify it relative to the cur-
rent level number with an distance of m use \pauselevel{:+m}, similarly use \pauselevel{:-m}
for negative distance. The latter will only be reasonable, if the the current level reduced by n given
in =-n is not smaller than m; otherwise the text will never appear.

7

http://www-sp.iti.informatik.tu-darmstadt.de/software/ppower4/beta/leveldemo.tex

Caveat: the relative numbers will always refer to the current level, which is possibly incremented
from a previous \pause command.
As with the = argument there must be no white space between : and a following + or -. But between
different specifications at least one space is required.
Example:

... \pause\pauselevel{=3 :5}\textcolor{red}{at}\pause ...

will show the text “at” only in levels 3 to 5.

7 Multiple levels

It may be necessary, to have a chunk appear at level x, vanish at a level y (y > x) and have it reappar
at level z (z > y). To achieve this, the level specification for a chunk can include multiple ranges.
These ranges are separated by a comma.
Example:

... \pause\pauselevel{=3 :5, =8 :10}\textcolor{red}{at}%
\pause ...

will show the text at in levels 3 to 5 and in levels 8 to 10.

8 Highlighting

Sometimes it is helpful not to build a page incrementally, but to highlight the chunks and move the
highlighted area through the page. Changing the color on a page can be done by the post processor,
if it has instructions what and how to change.
To achieve large flexibility highlighting is handled as follows: First you mark all text to be highlighted
with a special color. If you do not need the selected color for other purposes, you may pick one of
the standard colors. Otherwise you should define a new color. Then you have to declare, in what
color items of the selected color should be presented in normal mode and in highlighted mode. This
declaration has the form
\pausecolors{textcolor}{normalcolor}{highlightcolor}
It is possible to replace more than one color this way. All replacements are cumulated and are done in
one step. Processing in one step avoids unexpected results if one color is created from one highlight
color replacement and modified by another. It is also possible to replace a color by itself in either
normal or highlight mode. Obviously selecting all three colors the same is not reasonable.
Examples:

... \pausecolors{red}{gray}{magenta}%
We highlight only \textcolor{red}{one} word ...

The word “one” will show up in color gray on all normal pages and in color magenta on the highlighted
page.

... \pausecolors{red}{gray}{magenta}%
\pausecolors{blue}{gray}{cyan}%
We \textcolor{blue}{can} highlight also \textcolor{red}{more}
words. ...

The word “can” will show up in color gray on all normal pages and in color cyan on the highlighted
page, while the word “more” will be highlighted using magenta on the same highlighted page and be
in the same gray color on all other pages.

8

The color mapping specifications take effect for the full page, no matter in which chunk they are
specified. They are kept for all following pages. To reset all color mappings you can use the command
\pausecolorreset.
Please note that highlighting affects not only text material, but also some graphics. Namely everyting
on the page which is created with PDF commands will be subject to color modifications if the same
color model and the same color values are used. An exception are e.g. any embedded jpeg pictures.
We have not covered how to specify when highlighting should be used yet.
Highlighting parts of a page temporarily is similar to building a page incrementally. This means that
we can use the chunk as the basic unit for highlighting. If a color replacement definition is available,
when pages are built incrementally, the newly displayed chunks are subject to highlighting. That
means, that the color replacements are activated for them.

8.1 Switching to highlight mode

But we introduce also a special highlight mode. In this mode the level number which is assigned to
a chunk does not name the level, when a chunk appears, but the level when a chunk is highlighted.
In addition the ending level, when a chunk disappears during the incremental build for a page, gives
the level, when highlighting ends. If no ending level is specified, the chunk will be highlighted only
in one level.
Use the command \pausehighlight to switch from incremental build mode to highlight mode for a
page. This mode is kept for all following pages until you switch back to build mode explicitly.

8.2 Switching to build mode

If you switched to highlight mode for your pages, you may want to come back to incremental build
mode. This is done with the command \pausebuild. This mode is kept for all following pages until
you switch back to highlight mode explicitly. Build mode is selected, when PPower4 starts.
If a color replacement definition is available in this mode, the newly displayed chunks are subject to
highlighting and the color replacements are activated for them.

9 Mixed modes

It may be necessary to have single chunks in highlight mode also on pages which are processed in
build mode and vice versa.

9.1 Highlighted chunks during build mode

If a chunk should be visible from the very beginning on a page, which is presented in build mode, it
can be tagged with the word highlight in the level assignment. Then it will be highlighted in the
level(s) indicated by the command \pauselevel. Note that automatic highlighting of the chunk on
first appearance, which is normally done in build mode, is suppressed for these chunks.
If you just want the chunk to be highlighted on the level, which is assigned to it by default, it is
sufficient to specify \pauselevel{highlight}.
Example:

... \pause\pauselevel{highlight =2 :5}%
Text highlighted in levels 2 to 5.\pause ...

The highlight tag is ignored in highlight mode.

9

9.2 Build chunks during highlight mode

If a chunk should appear only in selected levels, although highlight mode is active, you must tag
the chunk with the word build. Note that automatic highlighting of the chunk on first appearance,
which is normally done in build mode, is suppressed for these chunks.
Example:

... \pause\pauselevel{build =2 :5}%
Text visible only in levels 2 to 5, not highlighted at all.%
\pause ...

... \pause\pauselevel{build =2 :5, =3}%
Text visible only in levels 2 to 5, highlighted in level 3
only.\pause ...

The build tag is ignored in build mode.

10 Backgrounds

There are several background effects supported by PPower4. Some of these effects will at first occur
after PPower4 has been invoked, some of them can already be viewed in the file created by pdflatex,
vlatex or dvipdfm. The first ones refer to colored backgrounds, the latter ones to adding background
elements.

10.1 Colored backgrounds

The overall impression of a presentation can be enhanced by using color. First the definition of a col-
ored background can help. When this was initially taken into consideration for PPower4, background
coloring was not supported for pdftex. In the meantime recent versions of pdftex.def (versions
0.02t and up) support also the \pagecolor command to apply a monochrome background.
Unfortunately this definition interferes with the background processing of PPower4. The background
applied by \pagecolor from pdftex.def cannot be removed or replaced by the post processor. It is
part of the page. It may even be hard to make a chunk from it without any additional page material.
But if you want just one monochrome background for all your pages, using it is absolutely easy,
because you do not need to load any additional style files.
On the other hand one has to take into consideration, that delaying the background insertion to post
processing time may lead to unreadable documents before application of the post processor, if the
foreground color of the text is indistinguishable from the default background color.
The following background selections are available through the style file background.sty. Use this
file preferably, if you want multi color backgrounds.

\pagecolor{color} Monochrome background in the selected color.

\hpagecolor[color1]{color2} Background color changing horizontally from color1 to color2 or,
if the optional argument is missing, background color fading to brighter variant starting with
color2.

\vpagecolor[color1]{color2} Color of background changing vertically from color1 to color2
or, if the optional argument is missing, background fading to brighter variant starting with
color2.

The selected colors must have been defined for LATEX. One can refer to the colors predefined by
color.sty or add new colors with \definecolor. For changing colors both color definitions must
be in the same color model (rgb, cmyk, or gray).

10

http://www.tug.org/applications/pdftex/pdftex.def

Backgrounds are kept for subsequent pages until redefined.
A one color vertically fading background is created with

\definecolor{bgblue}{rgb}{0.04,0.39,0.53}
\vpagecolor{bgblue}

Similarly the following definition creates a horizontally fading background with explicit selection of
colors.

\definecolor{bgmag}{rgb}{0.7,0.39,0.7}
\definecolor{bgmaglight}{rgb}{0.95,0.83,0.95}
\hpagecolor[bgmag]{bgmaglight}

10.2 Adding background elements

If you want to add elements like pictures to the background, you have to install the eso-pic package
first. This package will be automatically included by the background.sty style file.
You must tell the background.sty style file that you want to add elements to the background with
the option bgadd:

\usepackage[bgadd]{background}

After that you can add whatever you want to the background; the elements will be added to the top
left corner of the slides:

\bgadd{\includegraphics[width=2cm]{myimage.jpg}}

You can add an element with a displacement from the top left corner like in the following example:

\bgadd{\vspace{1cm}\hspace{2cm}May 2002}

To put an element to the center of a slide, use the \bgaddcenter command:

\bgaddcenter{\includegraphics[width=2cm]{myimage.jpg}}

A slide will contain all elements added with the \bgadd command together. You can remove the
background elements with the command \bgclear.

11 Links to first builds of a page

When page references are inserted into a document, these will lead you to the complete page. This
strategy is fine, if one wants to go back in a presentation and show again a previously shown page.
But in some cases one would also need a link to the first partial build of the destination page.
Because the partial builds are inserted by the post processor it must take care of these references.
Of course these references cannot be defined completely by pdftex.
Managing links to initial page frames is supported by pp4link.sty. This style file relies on hyperref.sty
and introduces the following commands:

\toptarget{name}

defines a name for a target to hyperlink to the first partial page. Then using

\toplink{name}{text}

makes text the active link to the target. To support links forward and backward it is necessary to
run pdflatex, vlatex or latex twice. name must consist entirely of letters. Digits or any other
characters are not allowed in a name.
If you have several pages with the same page number in your document, referring to the a first link
of such a page is not defined. The link may take you to any of the pages with this number after
postprocessing.

11

12 Incremental/highlighted graphics with MetaPost

With our extension to the Xfig to MetaPost converter you can create easily incremental graphics.
The different depths of Xfig’s figure will result in separate frames which are overlaid to build the
complete figure. The figure will be built stuffing levels into frames decreasing the depth. Because
it may be necessary to use overlaying also in one frame, frames will be built from contiguous depth
values. If you want to start a new frame, just leave at least one level without any items in Xfig.
With the macro \multiinclude (from mpmulti.sty) all frames are inserted into the document and
by default a \pause is inserted between the frames.

12.1 Options of multiinclude

The optional keyword parameter pause of \multiinclude can be used to specify another command
to be inserted between the frames. Furthermore the optional keyword parameter graphics can be
used to forward optional parameters to the command \includegraphics, e. g. to scale all frames.
Furthermore there are keywords start and end, which can specify the starting and/or ending number
for the includes. The default for start is 0 and for end it is 1 000 000. But including will stop silently,
if after the first frame no more overlays can be found.
To use Xfig’s output in pdflatex you will have to specify, that the extensions with numbers should
be treated as Metapost graphics files using \DeclareGraphicsRule. To avoid this you can rename
the files basename.0 . . . basename.<n> to basename-0.mps . . . basename-<n>.mps. The option
format=mps will switch to this naming scheme. Make sure that you rename all the files created by
mpost properly.
If you have other graphics files in a different format, which \includegraphics can handle, just
rename the files according to the naming scheme shown above and specify the extension using the
option format.

12.2 Special pause effects

If you want some of these frames also to disappear at a certain level, you will need a clever strategy
and an option to insert something else than just \pause. It is best to assign the highest depths
to those frames, which need special level assignments. All other frames, which need to appear just
according to their regular depth should follow.
Now assign levels ranges to the first special frames with \pauselevel. This is done easily with
a command to replace the \pause between the frames. We will make use of a counter and insert
different \pauselevel commands depending on the value of the counter, which is incremented each
time. The following example can give you an idea of the operation:

\newcount\pausecount % counter for the iterations
\pausecount=0 % initialize
\def\mypause{\ifcase\pausecount % depending on the counter

\pauselevel{=-1 :+2}\or % level for first frame (actually 0)
\pauselevel{=-1 :+3}\or % level for second frame
\pauselevel{=-1}\else % level for third frame
\relax\fi % all other levels no assignment
\pause % but all will have the \pause
\advance\pausecount1\relax} % and increment the counter

12.3 mpost processing

To include the MetaPost graphics into your document, you have to convert the MetaPost files to
PostScript first. This is done with mpost. Notice that if you are using vlatex you must ensure that

12

http://www-sp.iti.informatik.tu-darmstadt.de/software/xfig/

the PostScript files created by mpost are self-contained PostScript files (EPSF). That means that
there must be a font definition part at the beginning of the PostScript files. Otherwise vlatex will
complain that there are undefined names.
You can tell mpost to create self-contained PostScript (EPSF) by adding the line

prologues:=2;

at the beginning of the MetaPost file. If you have created the MetaPost file from a fig file with
fig2dev, you can tell fig2dev to add this line by using the option -p 2 (make sure to use a version
of fig2dev which is newer than the one from a default Xfig 3.2.3d!).
In contrast if you are using dvipdfm, you must ensure that the included PostScript file is not self-
contained; the MetaPost file must not have the line described above, or invoke fig2dev without the
option -p 2. pdftex can use the default version and the self-contained one.

13 More tricks

If you need to show different texts in the same space at different levels, you must hide the width of
one of the texts for TEX. Normally it is advisable to hide the shorter text and have the longer text
be used in page breaking.
Example:

... \pause \pauselevel{=3 :8}\rlap{2}%
\pause \pauselevel{=9}8\pause ...

The number 2 will appear in level 3 and stay until level 8. From level 9 the number 8 will take the
same place.
– more to come – (e.g. inserting \pause commands into the preamble of a table, see the demo for
now)

14 Files

The post processor is selfcontained in one jar archive, which needs to be called in a Java Runtime
Environment.
Additionally you need the style files to be present during formatting.
– to be extended –

13

	Introduction
	Requirements
	Installation and Usage
	Additional entries in your LaTeX source
	Invoking PPower4

	Simple application
	Transition effects
	Between original pages
	Between partial builds of a page

	Principles of operation
	Assigning levels
	Removing items

	Multiple levels
	Highlighting
	Switching to highlight mode
	Switching to build mode

	Mixed modes
	Highlighted chunks during build mode
	Build chunks during highlight mode

	Backgrounds
	Colored backgrounds
	Adding background elements

	Links to first builds of a page
	Incremental/highlighted graphics with MetaPost
	Options of multiinclude
	Special pause effects
	mpost processing

	More tricks
	Files

