Towards Surface Realisation from Discourse Representation Structures

Valerio Basile

Computational Linguistics In the Netherlands

20 January 2012
Overview

- Problem definition
 - Open-domain, robust Surface Realisation
- Proposed solution
 - Discourse Representation Theory
 - Stochastical semantic-based Surface Realisation
 - The Groningen Meaning Bank
- A baseline system
- Conclusion
Natural Language Generation

What is Natural Language Generation?
- automatically producing a text
- input = conceptual description
- written, descriptive, in English

Macro planning → Micro planning → Surface realisation → Physical presentation
Surface Realisation

Macro planning

Micro planning

Surface realisation

Physical presentation

Mapping the output of the content planning component into a text (words, punctuation symbols, structure, ...).

- Depends on the input representation format
- Syntax-based vs. Semantics-based
Goal

A Surface Realisation system that...

- uses only semantics, rather than syntax
- generates full texts, rather than sentences
- generates open-domain text, rather than domain-specific
- is in principle language-independent

What does the input for such system look like?
Discourse Representation Structures

Discourse Representation Structures from Discourse Representation Theory are a suitable input for Surface Realisation.

- Formal theory of meaning
- Language-neutral
- Many linguistic phenomena

David Bowie grew up in Kent. He played the saxophone. He was a singer in London Bands.
Towards Surface Realisation from Discourse Representation Structures

Discourse Representation Structures

- Recursive structure
 - Representing subordination, negation, coordination, ...
 - Scope of referring expressions
- Extensions
 - Presuppositions
 - Rhetorical relations

David Bowie grew up in Kent. He played the saxophone. He was a singer in London Bands.
Stochastic Semantics-based SR

Is there enough information in semantic representations to produce grammatically correct surface forms?
The Groningen Meaning Bank

- Multi-layer annotated linguistic resource.
 - tokenization, CCG derivations, thematic roles, word senses, named entities, semantics (DRSs), rhetorical relations
- Automatically annotated, manual corrections
- 70K documents, 1.3M sentences, 31M tokens, first stable release: 1,000 documents (GMB 1.0)

The Groningen Meaning Bank allows us to automatically evaluate Surface Realisation:

1. Use DRSs from GMB as input
2. Compare the output with the original text, e.g. with BLEU score
Towards Surface Realisation from Discourse Representation Structures

The Groningen Meaning Bank

Document 3281 of 4000, ID: 14 / 0209 Go!

size: 7 sentences, 131 tokens
last processed: 12 January 2012, 16:45:06
C&C tools/Boxer revision: 2108

http://gmb.let.rug.nl
From DRS to graph

- DRSs are recursive
- Machine learning systems don’t work well with recursive structures
- We need to transform DRSs into flat structures for ML
- Straightforward translation from DRS to graph with two distinct sets of arcs, for argument structure and discourse structure
From DRS to graph

“Latvia reestablished its independence in 1991 following the breakup of the Soviet Union.”
Input representation format - tuples

“Latvia reestablished its independence in 1991 following the breakup of the Soviet Union.”

x5 referent-0 k7 s0 1 [the]
x5 concept-0 breakup k7 2 [breakup]
x5 of-0 x6 k7 3 [of]
e3 referent-0 k7 s0 0 []
e3 agent-0 x0 k7 1 []
e3 event-0 reestablish k7 2 [reestablished]
e3 patient-0 x2 k7 3 []
e3 in-0 x4 k7 4 [in]
e3 follow-0 x5 k7 5 [following]
x6 referent-0 k7 s0 1 [the]
x6 named-loc soviet_union k7 2 [Soviet Union]
x4 day-1 XX k7 0 []
x4 month-1 XX k7 0 []
x4 referent-0 k7 s0 0 []
x4 year-1 1991 k7 1 [1991]
x2 referent-0 k7 s0 0 []
x2 of-0 x1 k7 1 [its]
x2 concept-0 independence k7 2 [independence]
x1 attribute-0 neuter k7 0 []
x1 referent-0 k7 s0 0 []
x0 referent-0 k7 s0 0 []
x0 named-per latvia k7 1 [Latvia]
A baseline system

- No discourse structure, only argument structure
- No morphology (use symbols)
- Based on SVM
- Problem: partial order / total order of arcs
Future works

This is preliminary work, lots of challenges are ahead.

- Which ML technique is the best for this task?
- Generating rhetorical relations and complete texts with negations, coordinations, implications (AKA taking discourse structure into account)
- Morphology and word order
Thanks!

Towards Surface Realisation from Discourse Representation Structures

presupposition(k0, k2)

k0: x1
person(x1)

k2: x3, e4
thing(x3)
thank(e4)
Agent(e4, x3)
Theme(e4, x1)