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Preface

These are the course notes for “Computational Semantics for Natural Lan-
guage”, a five lecture course given by Patrick Blackburn and Johan Bos at
NASSLLI 2003, the second North American Summer School in Logic, Lan-
guage and Information, June 17-21, 2003. As you can see, the notes have
four chapters. Each is taken from the book “Representation and Inference for
Natural Language: A First Course in Computational Semantics” by Patrick
Blackburn and Johan Bos, which will soon be published by CSLI Press. The
chapters of the course notes are draft versions of four of the six chapters of
our book. We have omitted from these notes the chapters on propositional
and first-order inference methods, the bibliographical notes and bibliography,
and the appendices.

The goal of the NASSLLI course (and indeed, the book) is to introduce
the basics of natural language semantics—but to do so from a computa-
tional perspective, and to do so in a way that emphasizes the role of infer-
ence. Traditional introductions to formal semantics tend to focus on how
to build semantic representations for natural language expressions. Now, we
also devote a lot attention to this (important) topic: we discuss first-order
logic, lambda calculus, and methods for coping with scope ambiguities in
detail. But we present this material in a non-traditional way. In particular,
we always take care to raise (and answer) the question “How do we make
computational sense of these ideas?” Furthermore, we don’t just discuss
how representations are built: we also discuss (computational) methods for
performing inference, and draw the themes of representation and inference
together. In particular, in the last chapter of these notes we take the reader
on a guided tour of the CURT family. This is a series of simple dialogue
systems which illustrate how tools for building semantic representations can
be combined with inference tools, and why this might be an interesting thing
to do.

iii



iv CONTENTS

Further material of relevance to the course can be found at our website
at www.comsem.org. There you will find all the Prolog source code for the
programs discussed in these notes. You will also find a pointer to the book
“Learn Prolog Now!”, by Patrick Blackburn, Johan Bos, and Kristina Strieg-
nitz. Now, we believe you can get a lot out of this course even if you don’t
know Prolog: the course attempts to make a number of general concepts and
approaches clear, and these are independent of Prolog (and indeed, indepen-
dent of any programming language). Nonetheless, if you do know Prolog, you
will almost certainly gain a deeper understanding of the computational issues
involved (as well as being able to have some fun in the practical sessions).
So we recommend that anyone planning on taking this course should brush
up on rusty Prolog skills—or indeed, consider acquiring them from scratch.
“Learn Prolog Now!” was written with the needs of beginners (indeed, be-
ginners learning Prolog by self study) in mind. If Prolog is new to you, it
may be a good way to start getting to know it.

Well—that’s enough introduction. It’s time to get on with some compu-
tational semantics for natural language. Enjoy the course!

Patrick Blackburn1 Johan Bos
INRIA Lorraine University of Edinburgh
France Scotland
patrick@aplog.org jbos@cogsci.ed.ac.uk

1Patrick Blackburn would like to thank the Langue et Dialogue (Language and Dia-
logue) group at the LORIA research institute in Nancy, France, for covering his travel
costs to Bloomington, Indiana.



Chapter 1

First-Order Logic

First-order logic is the formalism used in this book to represent the meaning
of natural language sentences and to carry out various inference tasks. In
this chapter we introduce first-order logic from a model-theoretic (that is,
semantic) perspective, and write a Prolog program for handling the simplest
of the three inference tasks we shall discuss, the querying task.

In more detail, this is what we’ll do. First, we define the syntax and
semantics of first-order logic. We pay particular attention to the intuitions
and technicalities that lie behind the satisfaction definition, a mathematically
precise specification of how first-order languages are to be interpreted in
models. We then introduce the three inference tasks we are interested in:
the querying task, the consistency checking task, and the informativeness
checking task. All three tasks are defined model-theoretically. Following
this, we write a first-order model checker. This is a tool for handling the
querying task: the model checker takes as input a first-order formula and a
first-order model, and checks whether the formula is satisfied in the model.
By the time we’ve done all that, the reader will have a fairly clear idea of
what first-order logic is, and it becomes profitable to consider more general
issues. So, to close the chapter, we discuss the strengths and weaknesses of
first-order logic as a tool for computational semantics.

1.1 First-Order Logic

In this section we discuss the syntax and semantics of first-order logic. That
is, we introduce vocabularies, first-order models and first-order languages ,
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2 CHAPTER 1. FIRST-ORDER LOGIC

and tie these concepts together via the crucial satisfaction definition, which
spells out exactly how first-order languages are to be interpreted in models.
Following this, we introduce two useful extensions of the basic first-order
formalism: function symbols and equality .

Vocabularies

The main goal of this section is to define how first-order formulas (that
is, certain kinds of descriptions) are evaluated in first-order models (that
is, mathematical idealizations of situations). Simplifying somewhat (we’ll be
more precise later), the purpose of the evaluation process is to tell us whether
a description is true or false in a given situation.

We shall soon be able to do this—but we need to exercise a little care.
Intuitively, it doesn’t make much sense to ask whether or not an arbitrary
description is true in an arbitrary situation. Some descriptions and situa-
tions simply don’t belong together. For example, if we are given a formula
(that is, a description) from a first-order language intended for talking about
the various relationships and properties (such as loving , being a robber , and
being a customer) that hold of and between Mia, Honey Bunny, Vincent, and
Yolanda, and we are given a model (that is, a situation) which records infor-
mation about something completely different (for example, which household
cleaning products are best at getting rid of particularly nasty stains) then it
doesn’t really make much sense to evaluate this particular formula in that
particular model. Vocabularies allow us to avoid such problems: they tell us
which first-order languages and models belong together.

Here is our first vocabulary:

{ (love,2),
(customer,1),
(robber,1),
(mia,0),
(honey-bunny,0),
(vincent,0),
(yolanda,0) }

Intuitively, this vocabulary is telling us two important things: the topic
of conversation, and the language the conversation is going to be conducted
in. Let’s spell this out a little.
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First, the vocabulary tells us what we’re going to be talking about. In
the present case, we’re going to be talking about loving (the 2 indicates
that loving is taken to be a two-place relation) and the properties (or 1-
place relations) of being a customer and being a robber . In addition to these
relations we’re going to be talking about four special entities named Mia,
Honey Bunny , Vincent , and Yolanda (the 0s indicate that these are the
names of entities).

Second, the vocabulary also tells us how we can talk about these things.
In the above case it tells us that we will be using a symbol love of arity
2 (that is, a 2-place symbol) for talking about loving, two symbols of arity
1 (customer and robber) for talking about customers and robbers, and
four constant symbols (or names), namely mia, vincent, honey-bunny,
and yolanda for naming certain entities of special interest.

In short, a vocabulary gives us all the information needed to define the
class of models of interest (that is, the kinds of situations we want to describe)
and the relevant first-order language (that is, the kinds of descriptions we
can use). So let’s now look at what first-order models and languages actually
are.

Exercise 1.1.1 Consider the following situation: Vincent is relaxed. The gun rests
on the back of the seat, pointing at Marvin. Jules is driving. Marvin is tense. Devise
a vocabulary suitable for talking about this situation. Give the vocabulary in the
set-theoretic notation used in the text.

First-Order Models

Suppose we’ve fixed some vocabulary. What should a first-order model for
this vocabulary be?

Our previous discussion has pretty much given the answer. Intuitively, a
model is a situation. That is, it is a semantic entity: it contains the kinds
of things we want to talk about. Thus a model for a given vocabulary gives
us two pieces of information. First, it tells us which collection of entities we
are talking about; this collection is usually called the domain of the model,
or D for short. Second, for each symbol in the vocabulary, it gives us an
appropriate semantic value, built from the items in D. This task is carried
out by a function F which specifies, for each symbol in the vocabulary, an
appropriate semantic value; we call such functions interpretation functions .
Thus, in set-theoretic terms, a model M is an ordered pair (D,F ) consist-
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ing of a non-empty domain D and an interpretation function F specifying
semantic values in D.

What are appropriate semantic values? There’s no mystery here. As
constants are names, each constant should be interpreted as an element of
D. (That is, for each constant symbol c in the vocabulary, F (c)∈ D.) As n-
place relation symbols are intended to denote n-place relations, each n-place
relation symbol R should be interpreted as an n-place relation on D. (That
is, F (R) should be a set of n-tuples of elements of D.)

Let’s consider an example. We shall define a simple model for the vocab-
ulary given above. Let D be {d1, d2, d3, d4}. That is, this four element set is
the domain of our little model.

Next, we must specify an interpretation function F . Here’s one:

F (mia) = d1

F (honey-bunny) = d2

F (vincent) = d3

F (yolanda) = d4

F (customer) = {d1, d3}
F (robber) = {d2, d4}
F (love) = {(d4, d2), (d3, d1)}

Note that every symbol in the vocabulary does indeed have an appropriate
semantic value: the four names pick out individuals, the two arity 1 symbols
pick out subsets of D (that is, properties, or 1-place relations on D) and the
arity 2 symbol picks out a 2-place relation on D. In this model d1 is Mia, d2

is Honey Bunny, d3 is Vincent and d4 is Yolanda. Both Honey Bunny and
Yolanda are robbers, while both Vincent and Mia are customers. Yolanda
loves Honey Bunny and Vincent loves Mia. Sadly, Honey Bunny does not
love Yolanda, Mia does not love Vincent, and nobody loves themselves.

Here’s a second model for the same vocabulary. We’ll use the same do-
main (that is, D = {d1, d2, d3, d4}) but change the interpretation function. To
emphasize that the interpretation function has changed, we’ll use a different
symbol (namely F2) for it.

F2(mia) = d2

F2(honey-bunny) = d1

F2(vincent) = d4

F2(yolanda) = d3
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F2(customer) = {d1, d2, d4}
F2(robber) = {d3}
F2(love) = ∅

In this model, three of the individuals are customers, only one is a robber,
and nobody loves anybody (the love relation is empty).

One point is worth emphasizing. Both models just defined are spe-
cial in the following way: every entity in D is named by exactly one con-
stant. But models don’t have to be like this. Consider the model with
D = {d1, d2, d3, d4, d5} and the following interpretation function F :

F (mia) = d2

F (honey-bunny) = d1

F (vincent) = d4

F (yolanda) = d1

F (customer) = {d1, d2, d4}
F (robber) = {d3, d5}
F (love) = {(d3, d4)}

In this model, not every entity has a name: d3 is anonymous. Moreover,
d1 has two names. But this is a perfectly good first-order model. For a start,
there simply is no requirement that every entity in a model must have a
name; roughly speaking, we only bother to name entities of special interest.
(So to speak, the domain is made up of stars, who are named, and extras,
who are not.) Moreover, there simply is no requirement that each entity in
a model must be named by at most one constant; just as in real life, one and
the same entity may have several names.

Exercise 1.1.2 Once again consider the following situation: Vincent is relaxed.
The gun rests on the back of the seat, pointing at Marvin. Jules is driving. Marvin is
tense. Using the vocabulary you devised in Exercise 1.1.1, present this situation
as a model (use the set-theoretic notation used in the text).

Exercise 1.1.3 Consider the following situation: There are four blocks. Two of
the blocks are cubical, and two are pyramid shaped. The cubical blocks are small and
red. The larger of the two pyramids is green, the smaller is yellow. Three of the blocks
are sitting directly on the table, but the small pyramid is sitting on a cube. Devise
a suitable vocabulary and present this situation as a model (use the set-theoretic
notation used in the text).
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First-Order Languages

Given some vocabulary, we build the first-order language over that vocabulary
out of the following ingredients:

1. All the symbols in the vocabulary. We call these symbols the non-logical
symbols of the language.

2. A countably infinite collection of variables x, y, z, w, . . . , and so on.

3. The Boolean connectives ¬ (negation), ∧ (conjunction), ∨ (disjunc-
tion), and → (implication).

4. The quantifiers ∀ (the universal quantifier) and ∃ (the existential quan-
tifier).

5. The round brackets ) and ( and the comma. (These are essentially
punctuation marks; they are used to group symbols.)

Items 2–5 are common to all first-order languages: the only thing that
distinguishes one first-order language from another is the choice of non-logical
symbols (that is, the choice of vocabulary). The Boolean connectives, inci-
dentally, are named after George Boole, a 19th century pioneer of modern
mathematical logic.

So, suppose we’ve chosen some vocabulary. How do we mix these ingredi-
ents together? That is, what is the syntax of first-order languages? First of
all, we define a first-order term τ to be any constant or any variable. (Later in
this section, when we introduce function symbols, we’ll see that some first-
order languages allow us to form more richly structured terms than this.)
Roughly speaking, terms are the noun phrases of first-order languages: con-
stants can be thought of as first-order analogs of proper names, and variables
as first-order analogs of pronouns.

What next? Well, we are then allowed to combine our ‘noun phrases’ with
our ‘predicates’ (that is, the various relation symbols in the vocabulary) to
form atomic formulas:

If R is a relation symbol of arity n, and τ1, . . . , τn are terms, then
R(τ1, · · · , τn) is an atomic (or basic) formula.
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Intuitively, an atomic formula is the first-order counterpart of a natu-
ral language sentence consisting of a single clause (that is, what traditional
grammars call a simple sentence). The intended meaning of R(τ1, · · · , τn) is
that the entities named by the terms τ1, · · · , τn stand in the relation (or have
the property) named by the symbol R. For example

love(pumpkin,honey-bunny)

means that the entity named pumpkin stands in the relation denoted by
love to the entity named honey-bunny—or more simply, that Pumpkin
loves Honey Bunny. And

robber(honey-bunny)

means that the entity named honey-bunny had the property denoted by
robber—or more simply, that Honey Bunny is a robber.

Now that we know how to build atomic formulas, we can define more com-
plex descriptions. The following inductive definition tells us exactly which
well formed formulas (or wffs , or simply formulas) we can form.

1. All atomic formulas are wffs.

2. If φ and ψ are wffs then so are ¬φ, (φ ∧ ψ), (φ ∨ ψ), and (φ→ ψ).

3. If φ is a wff, and x is a variable, then both ∃xφ and ∀xφ are wffs. (We
call φ the matrix of such wffs.)

4. Nothing else is a wff.

Roughly speaking, formulas built using ¬ correspond to natural language
expressions of the form it is not the case that . . . ; for example, the formula

¬love(pumpkin,honey-bunny)

means It is not the case that Pumpkin loves Honey-Bunny, or more simply,
Pumpkin does not loves Honey-Bunny. Formulas built using ∧ correspond to
natural language expressions of the form . . . and . . . ; for example

(love(pumpkin,honey-bunny) ∧ love(vincent,mia))

means Pumpkin loves Honey-Bunny and Vincent loves Mia. Formulas built
using ∨ correspond to expressions of the form Either . . . or . . . ; for example
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(love(pumpkin,honey-bunny) ∨ love(vincent,mia))

means Either Pumpkin loves Honey-Bunny or Vincent loves Mia. Formulas built
using → correspond to expressions of the form If . . . then . . . ; for example

(love(pumpkin,honey-bunny) → love(vincent,mia))

means If Pumpkin loves Honey-Bunny then Vincent loves Mia.
First-order formulas of the form ∃xφ and ∀xφ are called quantified for-

mulas. Roughly speaking, formulas of the form ∃xφ correspond to natural
language expressions of the form Some. . . (or Something . . . , or Somebody
. . . , and so on). For example

∃xlove(x,honey-bunny)

means Someone loves Honey-Bunny. Formulas of the form ∀xφ correspond to
natural language expressions of the form All . . . (or Every . . . , or Everything
. . . , and so on). For example

∀xlove(x,honey-bunny)

means Everyone loves Honey-Bunny. And the quantifiers can be combined to
good effect:

∃x∀ylove(x,y)

means Someone loves everybody, and

∀x∃ylove(x,y)

means Everybody loves someone.
In what follows, we sometimes need to talk about the subformulas of

a given formula. The subformulas of a formula φ are φ itself and all the
formulas used to build φ. For example, the subformulas of

¬∀yperson(y)

are person(y), ∀yperson(y), and ¬∀yperson(y). We leave it to the reader
to give a precise inductive definition of subformulahood (see Exercise 1.1.6),
and turn to a more important topic: the distinction between free and bound
variables.

Consider the following formula:
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¬(customer(x) ∨ (∀x(robber(x) ∧ ∀yperson(y))))

The first occurrence of x is free. The second and third occurrences of x are
bound ; they are bound by the first occurrence of the quantifier ∀. The first
and second occurrences of the variable y are also bound; they are bound by
the second occurrence of the quantifier ∀. Here’s the full inductive definition:

1. Any occurrence of any variable is free in any atomic formula.

2. No occurrence of any variable is bound in any atomic formula.

3. If an occurrence of any variable is free in φ or in ψ, then that same
occurrence is free in ¬φ, (φ ∧ ψ), (φ ∨ ψ), and (φ→ ψ).

4. If an occurrence of any variable is bound in φ or in ψ, then that same
occurrence is bound in ¬φ, (φ∧ψ), (φ∨ψ), and (φ→ ψ). Moreover, that
same occurrence is bound in ∀yφ and ∃yφ, for any choice of variable y.

5. In any formula of the form ∀yφ or ∃yφ (here y can be any variable at
all) the occurrence of y that immediately follows the initial quantifier
symbol is bound.

6. If an occurrence of a variable x is free in φ, then that same occurrence
is free in ∀yφ and ∃yφ, for any variable y distinct from x. On the
other hand, all occurrences of x that are free in φ, are bound in ∀xφ
and in ∃xφ, and so is the occurrence of x that immediately follows the
quantifier.

We can now give the following definition: if a formula contains no occurrences
of free variables, then it is called a sentence of first-order logic.

Although they are both called variables, free and bound variables are
really very different. (In fact, some formulations of first-order logic use two
distinct kinds of symbol for what we have lumped together under the heading
‘variable’.) Here’s an analogy. Try thinking of a free variable as something
like the pronoun she in

She even has a stud in her tongue.

Uttered in isolation, this would be somewhat puzzling, as we don’t know
who she refers to. But of course, such an utterance would be made in an
appropriate context. This context might be either non-linguistic (for example,
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the speaker might be pointing to a heavily tattooed biker, in which case we
would say that she was being used deictically or demonstratively) or linguistic
(perhaps the speaker’s previous sentence was Honey Bunny is heavily into body
piercing, in which case the name Honey Bunny supplies a suitable anchor for
an anaphoric interpretation of she).

What’s the point of the analogy? Just as the pronoun she required some-
thing else (namely, contextual information) to supply a suitable referent, so
will formulas containing free variables. Simply supplying a model won’t be
enough; we need additional information on how to link the free variables to
the entities in the model.

Sentences, on the other hand, are relatively self-contained. For example,
consider the sentence ∀xrobber(x). This is a claim that every individual is
a robber. Roughly speaking, the bound variable x in robber(x) acts as a
sort of placeholder. In fact, the choice of x as a variable here is completely
arbitrary: for example, the sentence ∀yrobber(y) means exactly the same
thing. Both sentences are simply a way of stating that no matter what entity
we take the second occurrence of x (or y) as standing for, that entity will be
a robber.

Our discussion of the interpretation of first-order languages in first-order
models will make these distinctions precise (indeed, most of the real work
involved in interpreting first-order logic centers on the correct handling of
free and bound variables). But before turning to semantic issues, one final
remark. In what follows, we won’t always keep to the official first-order
syntax defined above. In particular, we’ll generally try to use as few brackets
as possible, as this tends to improve readability. For example, we would
rarely write

(customer(vincent) ∧ robber(pumpkin)),

which is the official syntax. Instead, we would (almost invariably) drop the
outermost brackets and write

customer(vincent) ∧ robber(pumpkin).

To help further reduce the bracket count, we assume the following prece-
dence conventions for the Boolean connectives: ¬ binds more tightly than ∨
and ∧, both of which in turn bind more tightly that →. What this means,
for example, is that the formula

∀x(¬customer(x) ∧ robber(x) → robber(x))
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is shorthand for

∀x((¬customer(x) ∧ robber(x)) → robber(x))

In addition, we sometimes use the square brackets ] and [ as well as the
official round brackets, as this can make the intended grouping of symbols
easier to grasp visually. Further conventions are introduced in Exercise 1.2.3.

One final remark. There is a natural division in first-order languages
between formulas which do not contain quantifiers, and formulas which do.
Intuitively, formulas which don’t contain quantifiers are simpler: after all,
then we don’t need to bother about variable binding and the free/bound
distinction. And indeed, as we shall learn in the course of the book, in many
interesting respects the quantifier free fragment of a first-order language is
far simpler than the full first-order language of which it is a part.

Logicians have a special name for the quantifier-free part of first-order
logic: they call it propositional logic. We suspect that most readers will have
had some prior exposure to propositional logic, but for those who haven’t,
Appendix ?? discusses it and introduces the notational simplifications stan-
dardly used when working with this important sublogic.

Exercise 1.1.4 Represent the following English sentences in first-order logic:

1. If someone is happy, then Vincent is happy.

2. If someone is happy, and Vincent is not happy, then either Jules is happy or
Butch is happy.

3. Either everyone is happy, or Butch and Pumpkin are fighting, or Vincent had a
weird experience.

4. Some cars are damaged and there are bullet holes in some of the walls.

5. All the hamburger are tasty, all the fries are good, and some of the milkshakes
are excellent.

6. Everybody in the basement is wearing either a leather jacket or a dog collar.

Exercise 1.1.5 Which occurrences of variables are bound, and which are free, in
the following formulas:

1. robber(y)

2. love(x,y)
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3. love(x,y) → robber(y)

4. ∀y(love(x,y) → robber(y))

5. ∃w∀y(love(w,y) → robber(y))

Exercise 1.1.6 Give an inductive definition of subformulahood. That is, for each
kind of formula in the language (atomic, Boolean, and quantified) specify exactly
what its subformulas are.

Exercise 1.1.7 Use the inductive definition given in the text to prove that any
occurrence of a variable in any formula must be either free or bound.

The Satisfaction Definition

Given a model of appropriate vocabulary, any sentence over this vocabulary
is either true or false in that model. To put it more formally, there is a
relation called truth which holds, or does not hold, between sentences and
models of the same vocabulary. Now, using the informal explanation given
above of what the Boolean connectives and quantifiers mean, it is sometimes
obvious how to check whether a given sentence is true in a given model: for
example, to check the truth of ∀xrobber(x) in a model we simply need to
check that every individual in the model is in fact a robber.

But an intuition-driven approach to the truth of first-order sentences is
not adequate for our purposes. For a start, when faced with a complex first-
order sentence containing many connectives and quantifiers, our intuitions
are likely to fade. Moreover, in this book we are interested in computing
with logic: we want a mathematically precise definition of when a first-order
sentence is true in a model, a definition that lends itself to computational
implementation.

Now, the obvious thing to try to do would be to give an inductive defi-
nition of first-order truth in a model. But there’s a snag: we cannot give a
direct inductive definition of truth, for the matrix of a quantified sentence
typically won’t be a sentence. For example, ∀xrobber(x) is a sentence,
but its matrix robber(x) is not. Thus an inductive truth definition defined
solely in terms of sentences couldn’t explain why ∀xrobber(x) was true in
a model, for there are no sentential subformulas for such a definition to bite
on.

Instead we proceed indirectly. We define a three place relation—called
satisfaction—which holds between a formula, a model, and an assignment of
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values to variables. Given a model M = (D,F ), an assignment of values to
variables in M (or more simply, an assignment in M) is a function g from
the set of variables to D. Assignments are a technical device which tell us
what the free variables stand for. By making use of assignment functions, we
can inductively interpret arbitrary formulas in a natural way, and this will
make it possible to define the concept of truth for sentences.

But before going further, one point is worth stressing: the reader should
not view assignment functions simply as a technical fix designed to get round
the problem of defining truth. Moreover, the reader should not think of satis-
faction as being a poor relation of truth. If anything, satisfaction, not truth,
is the fundamental notion, at least as far as natural language is concerned.
Why is this?

The key to the answer is the word context . As we said earlier, free vari-
ables can be thought of as analogs of pronouns, whose values need to be
supplied by context. An assignment of values to variables can be thought
of as a (highly idealized) mathematical model of context; it rolls up all the
contextual information into one easy to handle unit, specifying a denotation
for every free variable. Thus if we want to use first-order logic to model nat-
ural language semantics, it is sensible to think in terms of three components:
first-order formulas (descriptions), first-order models (situations) and vari-
able assignments (contexts). The idea of assignment-functions-as-contexts
is important in contemporary formal semantics; it has a long history and
has been explored in a number of interesting directions, notably in Discourse
Representation Theory and other forms of dynamic semantics.

But let’s return to the satisfaction definition. Suppose we’ve fixed our
vocabulary. (That is, from now on, when we talk of a model M , we mean
a model of this vocabulary, and whenever we talk of formulas, we mean the
formulas built from the symbols in that vocabulary.) We now give two further
technical definitions which will enable us to state the satisfaction definition
concisely.

First, let M = (D,F ) be a model, let g be an assignment of values to
variables in M , and let τ be a term. Then the interpretation of τ with respect
to M and g is F (τ) if τ is a constant, and g(τ) if τ is a variable. We denote
the interpretation of τ by Ig

F (τ).
The second idea we need is that of a variant of an assignment of values

to variables. So, let g be an assignment of values to variables in some model,
and let x be a variable. If g′ is an assignment of values to variables in the
same model, and for all variables y distinct from x such that g′(y)= g(y)
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holds, then we say that g′ is an x-variant of g. Variant assignments are the
technical tool that allows us to try out new values for a given variable (say
x) while keeping the values assigned to all other variables the same.

We are now ready for the satisfaction definition. Let φ be a formula, let
M = (D,F ) be a model, and let g be an assignment of values to variables
in M . Then the relation M, g |= φ (φ is satisfied in M with respect to the
assignment of values to variables g) is defined inductively as follows:

M, g |= R(τ1, · · · , τn) iff (Ig
F (τ1), · · · , Ig

F (τn)) ∈ F (R)
M, g |= ¬φ iff not M, g |= φ
M, g |= φ ∧ ψ iff M, g |= φ and M, g |= ψ
M, g |= φ ∨ ψ iff M, g |= φ or M, g |= ψ
M, g |= φ→ ψ iff not M, g |= φ or M, g |= ψ
M, g |= ∃xφ iff M, g′ |= φ, for some x-variant g′ of g
M, g |= ∀xφ iff M, g′ |= φ, for all x-variants g′ of g

(Here ‘iff’ is shorthand for ‘if and only if’.) Note the crucial—and indeed,
intuitive—role played by the x-variants in the clauses for the quantifiers. For
example, what the clause for the existential quantifier boils down to is this:
∃xφ is satisfied in a given model, with respect to an assignment g, if and
only if there is some x-variant g′ of g that satisfies φ in the model. That is,
we have to try to find some value for x that satisfies φ in the model, while
keeping the assignments to all other variables the same.

We can now define what it means for a sentence to be true in a model:

A sentence φ is true in a modelM if and only if for any assignment
g of values to variables in M , we have that M, g |= φ. If φ is true
in M we write M |= φ

This is an elegant definition of truth that beautifully mirrors the special,
self-contained nature of sentences. It hinges on the following observation:
it simply doesn’t matter which variable assignment we use to compute the
satisfaction of sentences. Sentences contain no free variables, so the only free
variables we will encounter when evaluating one are those produced when
evaluating its quantified subformulas (if it has any). But the satisfaction
definition tells us what to do with such free variables: simply try out variants
of the current assignment and see whether they satisfy the matrix or not. In
short, start with whatever assignment you like—the result will be the same.
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It is reasonably straightforward to make this informal argument precise, and
the reader is asked to do so in Exercise 1.1.11.

Still, for all the elegance of the truth definition, satisfaction is the funda-
mental concept. Not only is satisfaction the technical engine powering the
definition of truth, but from the perspective of natural language semantics
it is conceptually prior. By making explicit the role of variable assignments,
it holds up an (admittedly imperfect) mirror to the process of evaluating
descriptions in situations while making use of contextual information.

Exercise 1.1.8 Consider the model with D = {d1, d2, d3, d4, d5} and the following
interpretation function F :

F (mia) = d2

F (honey-bunny) = d1

F (vincent) = d4

F (yolanda) = d1

F (customer) = {d1, d2, d4}
F (robber) = {d3, d5}
F (love) = {(d3, d4)}

Are the following sentences true or false in this model?

1. ∃xlove(x,vincent)

2. ∀x(robber(x)→ ¬customer(x))

3. ∃x∃y(robber(x) ∧ ¬robber(y) ∧ love(x,y))

Exercise 1.1.9 Give a model that makes all the following sentences true:

1. has-gun(vincent)

2. ∀x(has-gun(x) → aggressive(x))

3. has-motorbike(butch)

4. ∀y(has-motorbike(y) ∨ aggressive(y))

5. ¬has-motorbike(jules)

Exercise 1.1.10 When we informally discussed the semantics of bound vari-
ables we claimed that in any model of appropriate vocabulary, ∀xrobber(x) and
∀yrobber(y) mean exactly the same thing. We can now be more precise: we
claim that the first sentence is true in precisely the same models as the second
sentence. Prove this.
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Exercise 1.1.11 We claimed that when evaluating sentences, it doesn’t matter
which variable assignment we start with. Formally, we are claiming that given
any sentence φ and any model M (of the same vocabulary), and any variable
assignments g and g′ in M , then M,g |= φ iff M,g′ |= φ. We want the reader to do
two things. First, show that the claim is false if φ is not a sentence but a formula
containing free variables. Second, show that the claim is true if φ is a sentence.

Exercise 1.1.12 For any formula φ, given two assignments g and g′ which differ
only in what they assign to variables not in φ, and any model M (of appropriate
vocabulary) then we have that M,g |= φ iff M,g′ |= φ. Prove this.

This result tells us that we don’t need to worry about entire variable assign-
ments, but only about the (finite) part of the assignment containing information
about the (finitely many) variables that actually occur in the formulas being eval-
uated. Indeed, instead of mentioning entire assignment functions and writing
things like M,g |= φ, logicians often prefer to specify only what has been as-
signed to the free variables in the formula being evaluated. For example, if φ is
a formula with only x and y free, a logician would be likely to write things like
M |= φ[x← d1, y← d4] (assign d1 to the free variable x, and d4 to the free variable
y) or M |= φ[x← d7, y← d2].

Function Symbols, Equality, and Sorting

We have now presented the core ideas of first-order logic, but before moving
on let us discuss three extensions of the basic formalism: first-order logic with
function symbols, first-order logic with equality, and sorted first-order logic.
Function symbols will play an important technical role when we discuss first-
order inference in Chapter ??, and equality is a fundamental tool in natural
language semantics.

Let’s first deal with function symbols. Suppose we want to talk about
Butch, Butch’s father, Butch’s grandfather, Butch’s great grandfather, and
so on. Now, if we know the names of all these people this is easy to
do—but what if we don’t? A natural solution is to add a 1-place func-
tion symbol father to the language. Then if butch is the constant that
names Butch, father(butch) is a term that picks out Butch’s father, fa-
ther(father(butch)) picks out Butch’s grandfather, and so on. That is,
function symbols are a syntactic device that let us form recursively structured
terms, thus letting us express many concepts in a natural way.

Let’s make this precise. First, we shall suppose that it is the task of the
vocabulary to tell us which function symbols we have at our disposal, and
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what the arity of each of these symbols is. Second, given this information,
we say (as before) that a model M is a pair (D,F ) where F interprets
the constants and relation symbols as described earlier, and, in addition, F
assigns to each function symbol f an appropriate semantic entity. What’s an
appropriate interpretation for an n-place function symbol? Simply a function
that takes n-tuples of elements of D as input, and returns an element of D
as output. Third, we need to say what terms we can form using these new
symbols. Here’s the definition we require:

1. All constants and variables are terms.

2. If f is a function symbol of arity n, and τ1,. . . , τn are terms, then
f(τ1, . . . , τn) is also a term.

3. Nothing else is a term.

A term is said to be closed if and only if it contains no variables.
Only one task remains: interpreting these new terms. In fact we need

simply extend our earlier definition of Ig
F in the obvious way. Given a model

M and an assignment g in M , we define (as before) Ig
F (τ) to be F (τ) if τ is a

constant, and g(τ) if τ is a variable. On the other hand, if τ is a term of the
form f(τ1, . . . , τn), then we define Ig

F (τ) to be F (f)(Ig
F (τ1), . . . , I

g
F (τn)). That

is, we apply the n-place function F (f)—the function interpreting f—to the
interpretation of the n argument terms.

Function symbols are a natural extension to first-order languages, as the
fatherhood example should suggest. However in this book we won’t use them
in our analyses of natural language semantics, we’ll use them for more techni-
cal purposes. In particular, function symbols play a key role in Chapter ??,
where they will help us formulate an inference system for first-order logic
suitable for computational implementation.

Let’s turn to equality. The first-order languages we have so far defined
have a curious expressive shortcoming: we have no way to assert that two
terms denote the same entity. This is real weakness as far as natural language
semantics is concerned (for example, we may wish to assert that Marsellus’s
wife and Mia are the same person). What are we to do?

The solution is straightforward. Given any language of first-order logic
(with or without function symbols) we can turn it into a first-order language
with equality by adding the special two place relation symbol =. We use
this relation symbol in the natural infix way: that is, if τ1 and τ2 are terms
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then we write τ1 = τ2 rather than the rather ugly = (τ1, τ2). Beyond this
notational convention, there’s nothing to say about the syntax of = ; it’s just
a two-place relation symbol. But what about its semantics?

Here matters are more interesting. Although, syntactically, = is just a
2-place relation symbol, it is a very special one. In fact (unlike love, or
hate, or any other two-place relation symbol) we are not free to interpret
it how we please. In fact, given any model M , any assignment g in M , and
any terms τ1 and τ2, we shall insist that

M, g |= τ1 = τ2 iff Ig
F (τ1) = Ig

F (τ2).

That is, the atomic formula τ1 = τ2 is satisfied if and only if τ1 and τ2 have
exactly the same interpretation. In short, = really means equality. In fact,
= is usually regarded as a logical symbol on a par with ¬ or ∀, for like these
symbols it has a fixed interpretation, and a semantically fundamental one at
that.

So we can now assert that two names pick out the same individual. For
example, to say that Yolanda is Honey-Bunny we use the formula

yolanda=honey-bunny,

and (if we make use of the 1-place function symbol wife to mean wife-of)
we can say that Mia is Marsellus’s wife as follows:

mia=wife(marsellus).

• Add that function symbols redundant (but nice!) with equality.

• Sorting — again redundant, but nice, and used in Chapter 3.

Exercise 1.1.13 Use function symbols and equality to say that Butch’s mother
is Mia’s grandmother.

1.2 Three Inference Tasks

Now that we know what first-order languages are, we have at our disposal
a fundamental tool for representing the meaning of natural language expres-
sions. But first-order logic can help with more than just representation: it
also gives us a grip on inference, and this is the topic to which we now turn.
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We introduce three inference tasks: querying , consistency checking , and
informativeness checking . The three tasks are fundamental ones, and can be
combined in various ways to deal with interesting problems in the semantics
of natural language. To give a classic example, a key part of the van der Sandt
algorithm for handling presupposition (discussed in the advanced companion
to this book), is a clever blend of consistency and informativeness checking.

By the end of the section the reader should have a good understanding of
what the three tasks are. We shall learn that the querying task is relatively
simple and can be handled by a piece of software called a model checker. We
shall also learn that the consistency and informativeness checking tasks are
closely related, that both are extremely difficult (indeed, undecidable), and
that developing computational tools to deal with them will force us to move
on from the model-theoretic perspective of this chapter to the proof-theoretic
perspective developed in Chapters 4 and 5.

The Querying Task

The querying task is the simplest of the three inference tasks we shall con-
sider. It is defined as follows:

The Querying Task Given a model M and a first-order formula
φ, is φ satisfied in M or not?

And now we must consider two further questions: Why is this task interest-
ing? And can we deal with it computationally?

Models are situations and first-order formulas are descriptions. Thus to
ask whether a description holds or does not hold in a given situation is to
ask a fundamental question. Moreover, it is a question that can be very
useful; this may become clearer if we think in terms of ‘databases’ rather
than ‘situations’.

A database is a structured collection of facts; databases vary in how
(and to what extent) they are structured, but if you think of a conventional
database as a first-order model you will not go far wrong. Now, real databases
are (often huge) repositories of content, and this content is typically accessed
by posing queries in specialized languages called database query languages.
The querying task we defined above is essentially a more abstract version
of what goes on in conventional database querying, with first-order logic
playing the role of the database query language, and models playing the role
of databases.
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But what does this have to do with natural language? Here’s one natural
link. Suppose we have represented some situation of interest as a model
(maybe this model is some pre-existing database, or maybe it’s something
we have dynamically constructed to keep track of a dialogue). But however
the model got there, it embodies content we are interested in, and it is natural
to try and use this content to provide answers to questions. Now (as we shall
learn in Chapter 4) it is possible to translate some kinds of natural language
questions into first-order logic. And if we do this, we have a simple way of
answering them: we simply see if their translations are satisfied in the model.
In Chapter 4 we construct a simple question answering system which works
this way.

Now for the second question: is querying a task we can compute? The
answer is basically yes , but there are two points we need to be careful about.

First, note that we defined the querying task for arbitrary formulas, not
just for sentences. And if a formula contains free variables we can’t simply
evaluate it in a model—we also need to stipulate what the free variables stand
for. Second, we don’t have a remotest chance of writing software for querying
arbitrary models. Many (in fact, most) models are infinite, and while it is
possible to give useful finite representations of some infinite models, most
are too big and unruly to be worked with computationally. Hence we should
confine our attention to finite models (and given our models-as-databases
analogy, this is a reasonable restriction to make).

If we remember to pay attention to the free variables, and confine our
attention to finite models, then it certainly is possible to write a program
which performs the querying task. Such a program is called a model checker ,
and in the following section we shall write a first-order model checker in
Prolog. We shall use this model checker when we discuss question answering
in Chapter 6.

A final remark. People with traditional logical backgrounds may be sur-
prised that we have defined querying as an inference task: traditional logic
texts typically don’t define this task, and many logicians wouldn’t consider
evaluating a formula in a model to be a form of inference. In our view,
however, querying is a paradigmatic example of inference. Consider what it
involves. On the one hand, we have the model, a repository (of a possibly vast
amount) of low-level information about entities, relationships, and proper-
ties. On the other hand we have formulas, which may describe aspects of the
situation in an abstract, logically complex, way. Given even a not-very-large
model and a not-particularly-complex formula, it may be far from obvious
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whether or not the formula is satisfied in the model. Computing whether a
formula is satisfied (or not satisfied) in a model is thus a beautiful example
of a process which makes implicit information explicit. Hence querying can
be viewed as a form of inference.

The Consistency Checking Task

Consistency is a commonly used concept in linguistics (especially in seman-
tics) and its central meaning is something like this: a consistent description is
one that ‘makes sense’, or ‘is intelligible’, or ‘describes something realizable’.
For example, Mia is a robber is obviously consistent, for it describes a possible
state of affairs, namely a situation in which Mia is a robber. An inconsistent
description, on the other hand ‘doesn’t make sense’, or ‘attempts to describe
something impossible’. For example, Mia is a robber and Mia is not a robber
is clearly inconsistent. This description tears itself apart: it simultaneously
affirms and denies that Mia is a robber, and hence fails to describe a possible
situation.

Consistency and inconsistency are important in computational semantics.
Suppose we are analyzing a discourse sentence by sentence. If at some stage
we detect an inconsistency, this may be a sign that something has gone wrong
with the communicative process. To give a blatant example, the discourse

Mia is happy. Mia is not happy.

is obviously strange. It is hard to know what to do with the ‘information’
it contains—but naively accepting it and attempting to carry on is probably
not the best strategy. Thus we would like to be able to detect inconsistency
when it arises, for it typically signals trouble.

But the ‘definitions’ given above of consistency and inconsistency are
imprecise. If we are to work with these notions computationally, we need
to pin them down clearly. Can the logical tools we have been discussing
help us pin down precise analogs of these concepts, analogs which do justice
to the key intuitions? They can: it is natural to identify the pre-theoretic
concept of consistency with the model-theoretic concept of satisfiability , and
to identify inconsistency with unsatisfiability .

A first-order formula is called satisfiable if it is satisfied in at least one
model. As we have encouraged the reader to think of models as idealized
situations, this means that satisfiable formulas are those which describe ‘con-
ceivable’, or ‘possible’, or ‘realizable’ situations. For example, robber(mia)



22 CHAPTER 1. FIRST-ORDER LOGIC

describes a realizable situation, for any model in which Mia is a robber sat-
isfies it. A formula that is not satisfiable in any model is called unsatisfiable.
That is, unsatisfiable formulas describe ‘inconceivable’, or ‘impossible’, or
‘unrealizable’ situations. For example, robber(mia) ∧ ¬robber(mia) de-
scribes something that is unrealizable: there simply aren’t any models in
which Mia both is and is not a robber.

It is useful to extend the concepts of satisfiability and unsatisfiability to
finite sets of formulas. A finite set of formulas {φ1, . . . , φn} is satisfiable if
φ1 ∧ · · · ∧ φn is satisfiable; that is, satisfiability for finite sets of formulas
mean ‘lump together all the information in the set using conjunction and see
if the result is satisfiable’. Similarly, a finite set of formulas {φ1, . . . , φn} is
unsatisfiable if φ1 ∧ · · · ∧ φn is unsatisfiable.

Note that satisfiability (and unsatisfiability) are model-theoretic or (as
it is sometimes put) semantic concepts. That is, both concepts are defined
using the notion of satisfaction in a model, and nothing else. Furthermore,
note that satisfiability (and unsatisfiability) are mathematically precise con-
cepts: we know exactly what first-order languages and first-order models
are, and we know exactly what it means when we claim that a formula is
satisfied in a model. Finally, it seems reasonable to claim that the notion
of a formula being satisfied in a model is a good analog of the pre-theoretic
notion of descriptions that describe realizable states of affairs. Hence for the
remainder of the book we shall identify the mathematical notions ‘satisfiable’
and ‘unsatisfiable’ with the pre-theoretical notions ‘consistent’ and ‘inconsis-
tent’ respectively, and accordingly, we define the consistency checking task
as follows:

The Consistency Checking Task Given a first-order formula
φ, is φ consistent (that is: satisfiable) or inconsistent (that is:
unsatisfiable)?

Some logicians might prefer to call this the satisfiability checking task,
and from time to time we shall use this terminology. But we prefer to talk
about consistency checking, for it emphasizes the pre-theoretic notion we are
trying to capture. Moreover, as we shall learn in Chapter 4, there is a also a
mathematical precise (but non model-theoretic) concept called consistency
that turns out to correspond exactly with the (model-theoretic) notion of
satisfiability. All in all, ‘consistency checking’ is a good terminological choice.
Incidentally, consistency checking for finite sets of formulas is done in the
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obvious way: we take the conjunction of the finite set, and test whether or
not it is satisfiable.

But is consistency checking something we can compute? The answer is
no, not fully. Consistency checking for first-order logic turns out to be a
very hard problem indeed. In fact, a well-known theorem of mathematical
logic tells us that there is no algorithm capable of solving this problem for
all possible input formulas. It is a classic example of a computationally
undecidable task.

We are not going to prove this undecidability result (see the Notes at
the end of the chapter for pointers to some nice proofs), but the following
remarks should help you appreciate why the problem is so hard. Note that
the consistency checking task is highly abstract compared to the querying
task. Whereas the querying task is about manipulating two concrete enti-
ties (a finite model and a formula), the consistency checking task is a search
problem—and what a search problem! Given a formula, we have to determine
if somewhere out there in the (vast) mathematical universe of models, a sat-
isfying model exists. Now, even if a finite satisfying model exists, there’s a lot
of finite models; how do we find the one we’re looking for? And anyway, some
satisfiable formulas only have infinite satisfying models (see Exercise 1.2.1);
how on earth can we find such models computationally?

Hopefully these remarks have given you some sense of why first-order
consistency checking is difficult. Indeed, given what we have just said, it
may seem that we should simply give up and go home! Remarkably, how-
ever, all is not lost. As we shall learn in Chapters 4 and 5, it is possible
to take a different perspective on consistency checking, a proof-theoretic (or
syntactic) perspective rather than a model theoretic perspective. That is,
it turns out to be possible to re-analyze consistency checking from a per-
spective that emphasizes symbol manipulation, not model existence. The
proof-theoretic perspective makes it possible to create software that offers a
useful partial solution to the consistency checking problem, and (as we shall
see in Chapter 6) such software is useful in the computational semantics.

Exercise 1.2.1 Consider the following formula:

∀x∃yneighbour(x,y) ∧ ∀x¬neighbour(x,x)
∧ ∀x∀y∀z(neighbour(x,y) ∧ neighbour(y,z) → neighbour(x,z)).

Is this formula satisfiable? Is it satisfiable in a finite model?
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The Informativeness Checking Task

The main goal of this section is to get to grips with pre-theoretic concept of
informativeness (and uninformativeness). We’ll start by defining the model-
theoretic concepts of validity and invalidity, and valid and invalid arguments.
We’ll then show that these concepts offer us a natural way of thinking about
informativeness.

A valid formula is a formula that is satisfied in all models (of the ap-
propriate vocabulary) given any variable assignment. To put it the other
way around: if φ is a valid formula, it is impossible to find a situation and
a context in which φ is not satisfied. For example, consider robber(x) ∨
¬robber(x). In any model, given any variable assignment, one (and indeed,
only one) of the two disjuncts must be true, and hence the whole formula
will be satisfied too. We indicate that a formula φ is valid by writing |= φ. A
formula that is not valid is called invalid. That is, invalid formulas are those
which fail to be satisfied in at least one model. For example robber(x) is an
invalid formula: it is not satisfied in any model where there are no robbers.
We indicate that a formula φ is invalid by writing 6|= φ.

There is a clear sense in which validities are ‘logical’: nothing can affect
them, they carry a cast-iron guarantee of satisfiability. But logic is often
thought of in terms of the more dynamic notion of valid arguments , a move-
ment, or inference, from premises to conclusions. This notion can also be
captured model-theoretically. Suppose φ1, . . . , φn, and ψ are a finite collec-
tion of first-order formulas. Then we say that the argument with premises
φ1, . . . , φn and conclusion ψ is a valid argument if and only if whenever all
the premises are satisfied in some model, using some variable assignment,
then the conclusion is satisfied in the same model using the same variable
assignment. The notation

φ1, . . . , φn |= ψ

means that the argument with premises φ1, . . . , φn and conclusion ψ is valid.
Incidentally, there are many ways of speaking of valid arguments. For exam-
ple, it is also common to say that ψ is a valid inference from the premises
φ1, . . . , φn, or that ψ is a logical consequence of φ1, . . . , φn, or that ψ is a
semantic consequence of φ1, . . . , φn.

An argument that is not valid is called invalid . That is, an argument
with premises φ1, . . . , φn and conclusion ψ is invalid argument if it is possible
to find a model and a variable assignment which satisfies all the premises but
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not the conclusion. We indicate that an argument is invalid by writing

φ1, . . . , φn 6|= ψ.

Validity and valid arguments are closely related. For example, the ar-
gument with premises ∀x(robber(x) → customer(x)) and robber(mia)
and the conclusion customer(mia) is valid. That is:

∀x(robber(x) → customer(x)), robber(mia) |= customer(mia).

But now consider the following (valid) formula:

|= ∀x(robber(x) → customer(x)) ∧ robber(mia) → customer(mia).

Pretty clearly, the validity of the formula ‘mirrors’ the validity of the argu-
ment. And indeed, as this example suggests, with the help of the Boolean
connectives ∧ and→ we can convert any valid argument into a validity. This
is an example of the Semantic Deduction Theorem in action. This theorem
is fully stated (and the reader is asked to prove it) in Exercise 1.2.2 below.

Validity and valid arguments are central concepts in model theory. Logi-
cians regard validities as important, for they embody the abstract patterns
that underly logical truth, and they regard valid arguments as important
because of the perspective they offer on correct mathematical reasoning. (In
a nutshell: for logicians, validities are the good guys.) However it is pos-
sible to view validity and valid argumentation in a less positive way, and
this brings us to the linguistically important concepts of informativeness and
uninformativeness.

There is a clear sense in which valid formulas are uninformative. Precisely
because they are satisfied in all models, valid formulas don’t tell us anything
at all about any particular model. That is, valid formulas don’t rule out
possibilities—they’re boringly vanilla. Thus we shall introduce an alternative
name for valid formulas: we shall often call them uninformative formulas,
and we shall call invalid formulas informative formulas. (So the good guys
have become the bad guys and vice-versa.) Moreover, as the concept of
informativeness turns out to be linguistically relevant, we shall define the
following task:

The Informativeness Checking Task Given a first-order for-
mula φ, is φ informative (that is: invalid) or uninformative (that
is: valid)?
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Valid arguments can be accused of uninformativeness too. If φ1, . . . , φn

|= ψ, and we already know that φ1, . . . , φn, then there is a sense in which
learning ψ doesn’t tell us anything new. For this reason we shall introduce the
following alternative terminology: if φ1, . . . , φn |= ψ, then we shall say that
ψ is uninformative with respect to φ1, . . . , φn. On the other hand, suppose
that φ1, . . . , φn 6|= ψ, and that we already know that φ1, . . . , φn. Then if we
are told ψ, we clearly have learned something new. Hence, if φ1, . . . , φn 6|=
ψ, then we shall say that ψ is informative with respect to φ1, . . . , φn.

Of course, by appealing to the Semantic Deduction Theorem, we can
reduce testing ψ for informativeness (or uninformativeness) with respect to
φ1, . . . , φn to ordinary informativeness checking. For the theorem tells us
that ψ is informative with respect to φ1, . . . , φn if and only if φ1∧· · ·∧φn → ψ
is an informative formula. So we can always reduce informativeness issues to
a task involving a single formula, and this is the strategy we shall follow in
Chapter 6.

But why should linguists care about informativeness? The point is this:
like inconsistency, uninformativeness can be a sign that something is going
wrong with the communicative process. If later sentences in a discourse are
consequences of earlier ones, this should probably make us suspicious, not
happy. To give a particularly blatant example, consider the discourse

Mia is married. Mia is married. Mia is married.

Obviously we should not clap our hands here and say ‘How elegant! The
second sentence is a logical consequence of the first, and the third is a logical
consequence of the second!’ This is a clear example of malfunctioning dis-
course. It patently fails to convey any new information. If it was produced by
a natural language generation system, we would suspect the system needed
debugging. If it was uttered by a person, we would probably look for another
conversational partner.

Now, it is important not to overstate the case here. In general, lack of
informativeness is not such a reliable indicator of communicative problems
as inconsistency. For a start, sometimes we may be interested in discourses
that embody valid argumentation (for example, if we are working with mathe-
matical text). Furthermore, sometimes it is appropriate to rephrase the same
information in different ways. For example, consider this little discourse:

Mia is married. She has a husband.
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The second sentence is uninformative with respect to the first, but this dis-
course would be perfectly acceptable in many circumstances. Nonetheless,
although uninformativeness is not a failsafe indicator of trouble, it is of-
ten important to detect whether or not genuinely new information is being
transmitted. So we need tools for carrying out informativeness checking.

And this brings us to the next question: is informativeness checking com-
putable? And once again the answer is no, not fully. Like the consistency
checking task, the informativeness checking task is undecidable. We’re not
going to prove this result, but given our previous discussion it is probably
clear that informativeness checking is likely to be tough. After all, informa-
tiveness checking is a highly abstract task: validity means satisfiable in all
models, and there’s an awful lot of awfully big of models out there.

This sounds like bad news, but once again there is light at the end of
the tunnel. As we shall learn in Chapters 4 and 5, it is possible to take
a proof-theoretic perspective on informativeness checking. Instead of view-
ing informativeness in terms of satisfaction in all models, it is possible to
reanalyze it in terms of certain kinds of symbol manipulation. This proof-
theoretic perspective makes it possible to create software that offer effective
partial solutions to the informativeness checking problem, and (as we shall
see in Chapter 6) we can apply this software to linguistic issues.

Exercise 1.2.2 The Semantic Deduction Theorem for first-order logic says that
φ1, . . . , φn |= ψ if and only if |= (φ1∧· · ·∧φn)→ ψ. (That is, we can lump together
the premises using ∧, and then use → to state that this information implies the
conclusion.) Prove the Semantic Deduction Theorem.

Exercise 1.2.3 We say that two sentences φ and ψ are logically equivalent if and
only if φ |= ψ and ψ |= φ. For all formulas φ, ψ, and θ:

1. Show that φ ∧ ψ is logically equivalent to ψ ∧ φ, and that φ ∨ ψ is logically
equivalent to ψ ∨ φ (that is, show that ∧ and ∨ are both commutative).

2. Show that (φ∧ψ)∧θ is logically equivalent to ψ∧(φ∧θ), and that (φ∨ψ)∨θ
is logically equivalent to ψ ∨ (φ ∨ θ) (that is, show that ∧ and ∨ are both
associative).

3. Show that φ→ ψ is logically equivalent to ¬φ∨ψ (that is, show that → can
be regarded as a symbol defined in terms of ¬ and ∨).

4. Show that ∀xφ and ¬∃x¬φ are logically equivalent, and that so are ∃xφ and
¬∀x¬φ (that is, show that either quantifier can be defined in terms of the
other with the help of ¬).
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These equivalences come in useful in the course of the book. Equivalences 3 and 4
will enable us to take two handy shortcuts when implementing our model checker.
And because ∧ and ∨ are commutative and associative, it is natural to drop
brackets and write conjunctions such as φ1 ∧ φ2 ∧ φ3 ∧ φ4 and disjunctions such as
ψ1 ∧ ψ2 ∧ ψ3 ∧ ψ4. We often adopt this convention.

Relating Consistency and Informativeness

Now for an important observation. As we’ve just learned, two of the infer-
ence tasks that interest us (namely the consistency checking task and the
informativeness checking task) are extremely difficult. Indeed, in order to
make progress with them, in Chapters 4 and 5 we’re going to have to rethink
them from a symbol manipulation perspective. But one piece of good news
is at hand: the two tasks are intimately related, and knowing how to solve
one helps us to solve the other.

Here are the key observations:

1. φ is consistent (that is, satisfiable) if and only if ¬φ is informative (that
is, invalid).

2. φ is inconsistent (that is, unsatisfiable) if and only if ¬φ is uninforma-
tive (that is, valid).

3. φ is informative (that is, invalid) if and only if ¬φ is consistent (that
is, satisfiable).

4. φ is uninformative (that is, valid) if and only if ¬φ is inconsistent (that
is, unsatisfiable).

Why do these relationships hold? Consider, for example, the first. Sup-
pose φ is consistent. This means it is satisfiable in at least one model. But
this is the same as saying that there is at least one model where ¬φ is not
satisfied. Which is precisely to say that ¬φ is informative.

These relationships have practical importance. For example, in Chap-
ters 4 and 5 we discuss theorem provers. A theorem prover is a piece of
software whose primary task is to determine whether a first order formula
is uninformative (that is, valid) or not. But, by making use of the relation-
ships just listed, it is clear that it can do something else as well. Suppose
we want to know whether φ is inconsistent. Then, using the second of the
relationships listed above, we can try to establish this by giving ¬φ to the



1.3. A FIRST-ORDER MODEL CHECKER 29

theorem prover. If the theorem prover tells us that ¬φ is uninformative, then
we know that φ is inconsistent.

We will say more about these relationships, and about the tools that can
help us establish them, in Chapters 4 and 5.

Exercise 1.2.4 In the text we gave a simple argument establishing the first of the
relationships listed above. Establish the truth of the remaining three relationships.

1.3 A First-Order Model Checker

In the previous section we learned that the querying task (for finite models)
is a lot simpler computationally than the consistency and informativeness
checking tasks. In this section we build a tool for handling querying: we
write a first-order model checker in Prolog. The model checker takes the
Prolog representation of a (finite) model and the Prolog representation of a
first-order formula and tests whether or not the formula is satisfied in the
model (there is a mechanism for assigning values to any free variables the
formula contains). Our checker won’t handle function symbols (this extension
is left as an exercise) but it will handle equality.

We are going to provide two versions of the model checker. The first
version will be (so to speak) correct so long as you’re not too nasty to it.
That is, as long as you are sensible about the formulas you give it (taking care,
for example, only to give it formulas built over the appropriate vocabulary) it
will produce the right result. But we want a robust model checker, one that
is faithful to the nuances implicit in the first-order satisfaction definition. So
we shall explore the limitations of the first version, and then provide a more
refined version that deals with the remaining problems.

How should we implement a model checker? We have three principal
tasks. First, we must decide how to represent models in Prolog. Second,
we must decide how to represent first-order formulas in Prolog. Third, we
must specify how (Prolog representations of) first-order formulas are to be
evaluated in (Prolog representations of) models with respect to (Prolog rep-
resentations of) variable assignments. Let’s turn to these tasks straight away.
The Prolog representations introduced here will be used throughout the book.
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Representing Models in Prolog

Suppose we have fixed our vocabulary—for example, suppose we have decided
to work with this one:

{ (love,2),
(customer,1),
(robber,1),
(jules,0),
(vincent,0),
(pumpkin,0),
(honey-bunny,0)
(yolanda,0)}

How should we represent models of this vocabulary in Prolog? Here is an
example:

model([d1,d2,d3,d4,d5],

[f(0,jules,d1),

f(0,vincent,d2),

f(0,pumpkin,d3),

f(0,honey_bunny,d4),

f(0,yolanda,d5),

f(1,customer,[d1,d2]),

f(1,robber,[d3,d4]),

f(2,love,[(d3,d4)])])).

This represents a model with a domain D containing five elements. The
domain elements (d1–d5) are explicitly given in the list which is the first
argument of the model/2 term. The second argument of model/2 is also a
list. This second list specifies the interpretation function F . In particular,
it tells us that d1 is Jules, that d2 is Vincent, that d3 is Pumpkin, that d4 is
Honey-Bunny, and that d5 is Yolanda. It also tells us that both Jules and
Vincent are customers, that both Pumpkin and Honey Bunny are robbers,
and that Pumpkin loves Honey Bunny. Observe that it also gives us a lot
of negative information about Yolanda: she’s not a customer, she’s not a
robber, and she neither loves nor is loved by any of the others. Recall that
in Section 1.1 we formally defined a model M to be an ordered pair (D,F ).
As this example makes clear, our Prolog representation mirrors the form of
the set-theoretic definition.
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Let’s look at a second example, again for the same vocabulary. As this
example makes clear, our Prolog representation format for models really does
cover all the options allowed for by the set-theoretic definition.

model([d1,d2,d3,d4,d5,d6],

[f(0,jules,d1),

f(0,vincent,d2),

f(0,pumpkin,d3),

f(0,honey_bunny,d4),

f(0,yolanda,d4),

f(1,customer,[d1,d2,d5,d6]),

f(1,robber,[d3,d4]),

f(2,love,[])])).

Note that although the domain contains six elements, only four of them
are named by constants: both d5 are d6 are nameless. However we do know
something about the anonymous d5 and d6: both of them are customers
(so you might like to think of this model as a situation in which Jules and
Vincent are the customers of interest, and d5 and d6 are playing some sort
of supporting role). Next, note that d4 has two names, namely Yolanda
and Honey-Bunny. Finally, observe that the 2-place love relation is empty:
the empty list in f(2,love,[]) signals this. As these observations make
clear, our Prolog representation of first-order models correctly embodies the
nuances of the set-theoretic definition: it permits to us handle nameless and
multiply-named entities, and to explicitly state that a relation is empty. So
we have taken a useful step towards our goal of faithfully implementing the
first-order satisfaction definition.

Exercise 1.3.1 Give the set-theoretic description of the models that the two Pro-
log terms given above represent.

Exercise 1.3.2 Suppose we are working with the following vocabulary:

{(works-for,2),
(boxer,1),
(problem-solver,1),
(the-wolf,0),
(marsellus,0),
(butch,0)}
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Represent each of the following two models over this vocabulary as Prolog terms.

1. D = {d1, d2, d3},
F (the-wolf) = d1,
F (marsellus) = d2,
F (butch) = d3,
F (boxer) = {d3},
F (problem-solver) = {d1}.

2. D = {entity-1, entity-2, entity-3}
F (the-wolf) = entity-3,
F (marsellus) = entity-1,
F (butch) = entity-2,
F (boxer) = {entity-2, entity-3},
F (problem-solver) = {entity-2},
F (works-for) = {(entity-3, entity-1), (entity-2, entity-1)}.

Exercise 1.3.3 Write a Prolog program which when given a term, determines
whether or not the term represents a model. That is, your program should check
that the functor of the term is the model/2 predicate, that the first argument is
a list containing no multiple instances of symbols, that the second argument is a
list whose members are all three-place predicates with functor f, and so on.

Representing Formulas in Prolog

Let us now decide how to represent first-order formulas (for languages with-
out function symbols, but with equality) in Prolog. The first (and most
fundamental) decision is how to represent first-order variables. We make the
following choice: First-order variables will be represented by Prolog variables.

This advantage of this is that it allows us to use Prolog’s inbuilt unification
mechanism to handle variables: for example, we can assign a value to a
variable simply by using unification. Its disadvantage is that occasionally we
will need to exercise care to block unwanted unifications—but this is a price
well worth paying.

Next, we must decide how to represent the non-logical symbols. We do
so in the obvious way: a first-order constant c will be represented by the
Prolog atom c, and a first-order relation symbol r will be represented by the
Prolog atom r.

Given this convention, it is obvious how atomic formulas should be repre-
sented. For example, love(vincent,mia) would be represented by the Pro-
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log term love(vincent,mia), and hate(butch,x) would be represented by
hate(butch,X). Note that first-order atomic sentences (for example boxer(butch))
are represented by exactly the same Prolog term (namely boxer(butch))
that is used to represent the fact that Butch is a boxer in our Prolog represen-
tation of models. This will help keep the implementation of the satisfaction
clause for atomic formulas simple.

Recall that there is also a special two-place relation symbol, namely the
equality symbol =. We shall use the functor eq/2 as its Prolog represen-
tation. For example, the Prolog representation of the first-order formula
yolanda=honey-bunny is the term eq(yolanda,honey bunny).

Next the Booleans. The Prolog terms

and/2 or/2 imp/2 not/1

will be used to represent the connectives ∧, ∨, →, and ¬ respectively.
Finally, we must decide how to represent the quantifiers. Suppose φ is a

first-order formula, and Phi is its representation as a Prolog term. Then ∀xφ
will be represented as

all(X,Phi)

and ∃xφ will be represented as

ex(X,Phi).

The Satisfaction Definition in Prolog

We turn to the final task: evaluating (representations of) formulas in (repre-
sentations of) models with respect to (representations of) assignments. The
predicate which carries out the task is called satisfy/4, and the clauses
of satisfy/4 mirror the first-order satisfaction definition in a fairly natu-
ral way. The four arguments that satisfy/4 takes are: the formula to be
tested, the model (in the representation just introduced), a list of assign-
ments of members of the model’s domain to any free variables the formula
contains, and a polarity feature (pos or neg) that tells whether a formula
should be positively or negatively evaluated. Two points require immediate
clarification: how are assignments to be represented, and what is the pur-
pose of that mysterious sounding ‘polarity feature’ in the fourth argument of
satisfy?
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Assignments are easily dealt with. We shall use Prolog terms of the form
g(Variable,Value) to indicate that a variable Variable has been assigned
the element Value of the model’s domain. When we evaluate a formula, the
third argument of satisfy/4 will be a list of terms of this form, one for each
of the free variables the formula contains. (In effect, we’re taking advantage
of Exercise 1.1.12: we’re only specifying what is assigned to the free variables
actually occurring in the formula we are evaluating.) If the formula being
evaluated contains no free variables (that is, if it is a sentence) the list is
empty.

But what about the ‘polarity feature’ in the fourth argument? The point
is this. When we evaluate a formula in a model, we use the satisfaction
definition to break it down into smaller subformulas, and then check these
smaller subformulas in the model (for example, the satisfaction definition
tells us that to check a conjunction in a model, we should check both its
conjuncts in the model). Easy? Well, yes—except that as we work through
the model we may well encounter negations, and a negation is a signal that
what follows has to be checked as false in the model. And going deeper
into the negated subformula we may well encounter another negation, which
means that its argument has to be evaluated as true, and so on and so forth,
flipping backwards and forwards between true and false as we work our way
down towards the atomic formulas . . .

Quite simply, the polarity feature is a flag that records whether we are
trying to make a particular subformula true or false in a model. If subformula
is flagged pos it means we are trying to make it true, and if it is flagged neg

it means we are trying to make it false. (When we give the original formula
to the model checker, the fourth argument will be pos; after all, we want to
see if the formula is true in the model.) The heart of the model checker is a
series of clauses that spell out recursively what we need to do to check the
formula as true in the model, and what we need to do to check it as false.

Let’s see how this works. The easiest place to start is with the clauses of
satisfy/4 for the Boolean connectives. Here are the two clauses for negation
(recall that the Prolog :- should be read as ‘if’):

satisfy(not(Formula),Model,G,pos):-

satisfy(Formula,Model,G,neg).

satisfy(not(Formula),Model,G,neg):-

satisfy(Formula,Model,G,pos).
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Obviously these clauses spell out the required flip-flops between true and
false.

Now for the two clauses that deal with conjunction:

satisfy(and(Formula1,Formula2),Model,G,pos):-

satisfy(Formula1,Model,G,pos),

satisfy(Formula2,Model,G,pos).

satisfy(and(Formula1,Formula2),Model,G,neg):-

satisfy(Formula1,Model,G,neg);

satisfy(Formula2,Model,G,neg).

The first clause tells us that for a conjunction to be true in a model, both
its conjuncts need to be true there. On the other hand, as the second clause
tells us, for a conjunction to be false in a model, at least one of its conjuncts
need to be false there (note the use of the ; symbol, Prolog’s built in ‘or’, in
the second clause). We have simply turned what the satisfaction definition
tells us about conjunctions into Prolog.

Now for disjunctions:

satisfy(or(Formula1,Formula2),Model,G,pos):-

satisfy(Formula1,Model,G,pos);

satisfy(Formula2,Model,G,pos).

satisfy(or(Formula1,Formula2),Model,G,neg):-

satisfy(Formula1,Model,G,neg),

satisfy(Formula2,Model,G,neg).

Again, these are a direct Prolog encoding of what the satisfaction defini-
tion tells us. Note the use of Prolog’s built in ‘or’ in the first clause.

Finally, implication. Just for the fun of it, we’ll handle this a little differ-
ently. As we asked the reader to show in Exercise 1.2.3, the→ connective can
be defined in terms of ¬ and ∨: for any formulas φ and ψ whatsoever, φ→ ψ
is logically equivalent to ¬φ ∨ ψ. So, when asked to check an implication,
why not simply check the equivalent formula instead? After all, we already
have the clauses for ¬ and ∨ at our disposal. And that’s exactly what we’ll
do:

satisfy(imp(Formula1,Formula2),Model,G,Pol):-

satisfy(or(not(Formula1),Formula2),Model,G,Pol).
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Of course, it’s straightforward to give a pair of clauses (analogous to those
given above for ∧ and ∨) that handle → directly. The reader is asked to do
this in Exercise 1.3.6 below.

Let’s press on and see how the quantifiers are handled. Here are the
clauses for the existential quantifier:

satisfy(ex(X,Formula),model(D,F),G,pos):-

memberList(V,D),

satisfy(Formula,model(D,F),[g(X,V)|G],pos).

satisfy(ex(X,Formula),model(D,F),G,neg):-

setof(V,

(

memberList(V,D),

satisfy(Formula,model(D,F),[g(X,V)|G],neg)

),

D).

This requires some thought. Before examining the code however, what’s
the memberList/2 predicate it uses? It is one of the predicates in the library
comsemPredicates.pl. It succeeds if its first argument, any Prolog term, is
a member of its second argument, which has to be a list. That is, it does
exactly the same thing as the predicate usually called member/2. (We have
added it to our library to make our code self sufficient, and rechristened it to
avoid problems when our libraries are used with Prologs in which member/2

is provided as a primitive.)
But now that we know that, the first clause for the existential quantifier

should be understandable. The satisfaction definition tells us that a formula
of the form ∃xφ is true in a model with respect to an assignment g if there
is some variant assignment g′ under which φ is true in the model. The call
memberList(V,D) instantiates the variable V to some element of the domain
D, and then in the following line, with the instruction [g(X,V)|G], we try
evaluating with respect to this variant assignment. If this fails, Prolog will
backtrack, the call memberList(V,D) will provide another instantiation (if
this is still possible), and we try again. In essence, we are using Prolog
backtracking to try out different variant assignments.

And with the first clause clear, the second clause becomes comprehensi-
ble. First, note that the satisfaction definition tells us that a formula of the
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form ∃xφ is false in a model with respect to an assignment g if φ is false in
the model with respect to all all variant assignments g′. So, just as in the
first clause, we use memberList(V,D) and backtracking to try out different
variant assignments. However we take care not to forget what we’ve tried
out: we use Prolog’s inbuilt setof predicate to collect all the instantiations
of V that falsify the formula. But think about it: if all instantiations make
the formula false, then our setof will simply be the domain D itself. In
short, obtaining D as the result of our setof is the signal that we really have
falsified the existential formula.

To deal with the universal quantifier, we take a shortcut. Recall that
∀xφ is logically equivalent to ¬∃x¬φ (the reader was asked to show this in
Exercise 1.2.3). So let’s make use of this equivalence in the model checker:

satisfy(all(X,Formula),Model,G,Pol):-

satisfy(not(ex(X,not(Formula))),Model,G,Pol).

Needless to say, a pair of clauses which directly handle the universal
quantifier could be given. Exercise 1.3.7 below asks the reader to define
them.

Let’s turn to the atomic formulas. Here are the clauses for one-place
predicate symbols:

satisfy(Formula,model(D,F),G,pos):-

compose(Formula,Symbol,[Argument]),

i(Argument,model(D,F),G,Value),

memberList(f(1,Symbol,Values),F),

memberList(Value,Values).

satisfy(Formula,model(D,F),G,neg):-

compose(Formula,Symbol,[Argument]),

i(Argument,model(D,F),G,Value),

memberList(f(1,Symbol,Values),F),

\+ memberList(Value,Values).

Before discussing this, two remarks. First, note that we have again made use
of memberList/2. Second, we have also used compose/3, a predicate in the
library file comsemPredicates.pl defined as follows:

compose(Term,Symbol,ArgList):-

Term =.. [Symbol|ArgList].
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That is, compose/3 uses the built in Prolog =.. functor to flatten a term
into a list of which the first member is the functor and the other members
the arguments of the term. This is a useful thing to do, as we can then get
at the term’s internal structure using list-processing techniques; we’ll see a
lot of this in various guises throughout the course of the book. Note that we
use compose/3 here to decompose a formula.

With these preliminaries out of the way, we can turn to the heart of the
matter. It’s the predicate i/4 that does the real work. This predicate is a
Prolog version of the interpretation function Ig

F . Recall that when presented
with a term, Ig

F interprets it using the variable assignment g if it is a variable,
and with the interpretation function F if it is a constant. And this is exactly
what i/4 does:

i(X,model(_,F),G,Value):-

(

var(X),

memberList(g(Y,Value),G),

Y==X, !

;

atom(X),

memberList(f(0,X,Value),F)

).

We can now put the pieces together to see how satisfy/4 handles atomic
formulas built using one-place predicate symbols. In both the positive and
negative clauses we use compose to turn the formula into a list, and then
call i/4 to interpret the term. We then use memberList twice. The first
call looks up the meaning of the one-place predicate. As for the second call,
this is the only place where the positive and negative clauses differ. In the
positive clause we use the call memberList(Value,Values) to check that the
interpretation of the term is one of the possible values for the predicate in
the model (thus making the atomic formula true). In the negative clause we
use the call memberList(Value,Values) to check that the interpretation of
the term is not one of the possible values for the predicate in the model, thus
making the atomic formula false (recall that \+ is Prolog’s inbuilt negation
as failure predicate).

The clauses for two-place predicates work pretty much the same way. Of
course, we make two calls to i/4, one for each of the two argument terms:
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satisfy(Formula,model(D,F),G,pos):-

compose(Formula,Symbol,[Arg1,Arg2]),

i(Arg1,model(D,F),G,Value1),

i(Arg2,model(D,F),G,Value2),

memberList(f(2,Symbol,Values),F),

memberList((Value1,Value2),Values).

satisfy(Formula,model(D,F),G,neg):-

compose(Formula,Symbol,[Arg1,Arg2]),

i(Arg1,model(D,F),G,Value1),

i(Arg2,model(D,F),G,Value2),

memberList(f(2,Symbol,Values),F),

\+ memberList((Value1,Value2),Values).

It only remains to discuss the clauses for equality. But given our discus-
sion of i/4, the code that follows should be transparent:

satisfy(eq(X,Y),Model,G,pos):-

i(X,Model,G,Value1),

i(Y,Model,G,Value2),

Value1=Value2.

satisfy(eq(X,Y),Model,G,neg):-

i(X,Model,G,Value1),

i(Y,Model,G,Value2),

\+ Value1=Value2.

Well, that’s the heart of (the first version of) our model checker. Before
playing with it, let’s make it a little more user-friendly. For a start, it would
be pretty painful to have to type in an entire model every time we want to
make a query. We find it most convenient to have a separate file containing
a number of example models. In the file exampleModels.pl you will find the
following three examples:

example(1,

model([d1,d2,d3,d4,d5],

[f(0,jules,d1),

f(0,vincent,d2),
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f(0,pumpkin,d3),

f(0,honey_bunny,d4),

f(0,yolanda,d5),

f(1,customer,[d1,d2]),

f(1,robber,[d3,d4]),

f(2,love,[(d3,d4)])])).

example(2,

model([d1,d2,d3,d4,d5,d6],

[f(0,jules,d1),

f(0,vincent,d2),

f(0,pumpkin,d3),

f(0,honey_bunny,d4),

f(0,yolanda,d4),

f(1,customer,[d1,d2,d5,d6]),

f(1,robber,[d3,d4]),

f(2,love,[])])).

example(3,

model([d1,d2,d3,d4,d5,d6,d7,d8],

[f(0,mia,d1),

f(0,jody,d2),

f(0,jules,d3),

f(0,vincent,d4),

f(1,woman,[d1,d2]),

f(1,man,[d3,d4]),

f(1,joke,[d5,d6]),

f(1,episode,[d7,d8]),

f(2,in,[(d5,d7),(d5,d8)]),

f(2,tell,[(d1,d5),(d2,d6)])])).

Note that the first two of these examples are the models used in the text
to introduce our Prolog representation format for models. The third is new,
and in a different vocabulary.

So, let’s now write a driver predicate which takes a formula, a numbered
example model, a list of assignments to free variables, and checks the formula
in the example model (with respect to the assignment) and prints a result:

evaluate(Formula,Example,Assignment):-
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example(Example,Model),

(

satisfy(Formula,Model,Assignment,pos), !,

printStatus(pos)

;

printStatus(neg)

).

printStatus(pos):- write(’Satisfied in model. ’).

printStatus(neg):- write(’Not satisfied in model. ’).

For convenience, we have also included a predicate evaluate/2, defined
as follows:

evaluate(Formula,Example):-

evaluate(Formula,Example,[]).

That is, it calls evaluate/3 with an empty assignment list. This saves typing
if we want to evaluate a sentence.

Of course, we should also test our model checker. So we shall create a file
(a test suite) containing entries of the following form:

test(ex(X,robber(X)),1,[],pos).

The first argument of test/4 is the formula to be evaluated, the second is
the example model on which it has to be evaluated (here model 1), the third
is a list of assignments (here empty) to free variables in the formula, and the
fourth records whether the formula is satisfied or not (pos indicates it should
be satisfied).

Giving the command

?- modelCheckerTestSuite.

will force Prolog to evaluate all the examples in the test suite, and print
out the results. The output will be a series of entries of the following form:

Input formula:

1 ex(A, robber(A))

Example Model: 1

Status: Satisfied in model.

Model Checker says: Satisfied in model.
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The fourth line of output (Status) is the information (recorded in the test
suite) that the formula should be satisfied. The fifth line (Model Checker

says) shows that the model checker got this particular example right.
We won’t discuss the code for evaluate/0. It’s essentially a fail/0

driven iteration through the test suite file, that uses the evaluate/3 predi-
cate defined above to perform the actual model checking. You can find the
code in modelChecker1.pl.

Exercise 1.3.4 Systematically test the model checker on these models. If you
need inspiration, use evaluate to run the test suite and examine the output care-
fully. As you will see, this version of the model checker does not handle all the
examples in the way the test suite demands. Try to work out why not.

Exercise 1.3.5 Try the model checker on example model 1 with the examples

ex(X,and(customer(X)),ex(Y,robber(Y)))
ex(X,and(customer(X),ex(Y,robber(Y))))
ex(X,and(customer(X)),ex(X,robber(X)))
ex(X,and(customer(X),ex(X,robber(X))))

The model checker handles all four example correctly: that is, it says that all four
examples are satisfied in model 1. Fine—but why is it handling them correctly?
In particular, in the last two examples we reuse the variable X, binding different
occurrences to different quantifiers. What is it about the code that lets the model
checker know that the X in customer(X) is intended to play a different role than
the X in robber(X)?

Exercise 1.3.6 Our model checker handles → by rewriting φ → ψ as ¬φ ∨ ψ.
Provide clauses for → (analogous to those given in the text for ∧ and ∨) that
directly mirror what the satisfaction definition tells us about this connective.

Exercise 1.3.7 Our model checker handles ∀ by rewriting ∀xφ as ¬∃x¬φ. Provide
clauses for ∀ (analogous to those given in the text for ∃) that directly mirror what
the satisfaction definition tells us about this quantifier.

Refining the Model Checker

Our first model checker (modelChecker1.pl) is a reasonably well-behaved
tool that is faithful to the main ideas of the first-order satisfaction definition.
And there are some interesting ways of using it. For example, we can use it to
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Programs for the model checker

modelChecker1.pl

The main file containing the code for the model checker
for first-order logic. Consult this file to run the model
checker—it will load all other files it requires.

comsemPredicates.pl

Definitions of auxiliary predicates.

exampleModels.pl

Contains example models in various vocabularies.

modelCheckerTestSuite.pl

Contains formulas to be evaluated on the example models.

find elements in a model’s domain that satisfy certain descriptions. Consider
the following query:

?- satisfy(robber(X),

model([d1,d2,d3],

[f(0,pumpkin,d1),

f(0,jules,d2),

f(1,customer,[d2]),

f(1,robber,[d1,d3])]),

[g(X,Value)],

pos).

Value = d1 ? ;

Value = d3 ? ;

no

Note the assignment list [g(X,Value)] used in the query: X is given the
value Value, and this is a Prolog variable. So Prolog is forced to search for
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an instantiation when evaluating the query, and via backtracking finds all
instantiations for Value that satisfy the formula (namely d1 and d3). This
is a useful technique, as we will shall see in Chapter 6 when we use it in a
simple dialogue system.

Nonetheless, although well behaved, this version of the model checker is
not sufficiently robust, nor does it always return the correct answer. However
its weak points are rather subtle, so let’s sit back and think our way through
the following problems carefully.

First Problem Consider the following queries:

?- evaluate(X,1).

?- evaluate(imp(X,Y),4).

Now, as the first query asks the model checker to evaluate a Prolog vari-
able, and the second asks it to evaluate a ‘formula’, one of whose subformulas
is a Prolog variable, you may think that these examples are too silly to worry
about. But let’s face it, these are the type of queries a Prolog programmer
might be tempted to make (perhaps hoping to generate a formula that is
satisfied in model 1). And (like any other) query, they should be handled
gracefully—but they’re not. Instead they send Prolog into an infinite loop
and you will probably get a stack overflow message (if you don’t understand
why this happens, do Exercise 1.3.8 right away). This is unacceptable, and
needs to be fixed.

Second Problem Here’s a closely related problem. Consider the following
queries:

?- evaluate(mia,3).

?- evaluate(forall(mia,vincent),2).

Now, obviously these are not sensible queries: constants are not formulas,
and cannot be checked in models. But we have the right to expect that our
model checker responds correctly to these queries—and it doesn’t. Instead,
our basic model checker returns the message Not satisfied in model to
both queries.
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Why is this wrong? Because neither expression is the sort of entity that
can enter into a satisfaction relation with a model. Neither is in the ‘satisfied’
relation with any model, nor in the ‘not satisfied’ relation either. They’re
simply not formulas. So the model checker should come back with a different
message that signals this, something like Cannot be evaluated. And of
course, if the model checker is to produce such a message, it needs to be
able to detect when its input is a legitimate formula. The next problem pins
down what is required more precisely.

Third Problem We run into problems if we ask our model checker to
verify formulas built from items that don’t belong to the vocabulary. For
example, suppose we try evaluating the atomic formula

tasty(royale_with_cheese)

in any of the example models. Then our basic model checker will say Not

satisfied in model. This response is incorrect: the satisfaction relation is
not defined between formulas and models of different vocabularies. Rather
our model checker should throw out this formula and say something like
“Hey, I don’t know anything about these symbols!”. So, not only does the
model checker need to be able to verify that its input is a formula (as we
know from the second problem), it also needs to be able to verify that it’s a
formula built over a vocabulary that is appropriate for the model.

Fourth Problem Suppose we make the following query:

?- evaluate(customer(X),1).

Our model checker will answer Not satisfied in model. This is wrong: X
is a free variable, we have not assigned a value to it (recall that evaluate/2
evaluates with respect to the empty list of assignments), and hence the sat-
isfaction relation is not defined. So our model checker should answer Cannot
be evaluated, or something similar.

Well, those are the the main problems, and they can be fixed. In fact,
modelChecker2.pl handles such examples correctly, and produces appropri-
ate messages. We won’t discuss the code of modelChecker2.pl, but we will
ask the reader to do the following exercises. They will enable you better un-
derstand where modelChecker1.pl goes wrong, and how modelChecker2.pl

fixes matters up. Happy hacking!



46 CHAPTER 1. FIRST-ORDER LOGIC

Exercise 1.3.8 Why does our basic model checker get in an infinite loop when
given the following queries:

?- evaluate(X,1).

?- evaluate(imp(X,Y),4).

And what happens and why with examples like ex(X,or(customer(X),Z)) and
ex(X,or(Z,customer(X))). If the answers are not apparent from the code, carry
out traces (in most Prolog shells, the trace mode can be activated by commanding
“?- trace.” and deactivated by “?- notrace.”).

Exercise 1.3.9 What happens if you use the basic model checker to evaluate
constants as formulas, and why? If this is unclear, perform a trace.

Exercise 1.3.10 [hard] Modify the basic model checker so that it classifies the
kind of example examined in the previous two exercises as ill-formed input.

Exercise 1.3.11 Try out the new model checker (modelChecker2.pl) on the for-
mulas customer(X) and not(customer(X)). Why (exactly) has problem 4 van-
ished?

Programs for the refined model checker

modelChecker2.pl

This file contains the code for the revised model checker
for first-order logic. This version rejects ill-formed formu-
las and handles a number of other problems. Consult this
file to run the model checker—it will load all other files it
requires.

comsemPredicates.pl

Definitions of auxiliary predicates.

exampleModels.pl

Contains example models in various vocabularies.

modelCheckerTestSuite.pl

Contains formulas to be evaluated on the example models.
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1.4 First-Order Logic and Natural Language

By this stage, the reader should have a reasonable grasp of the syntax and
semantics of first-order logic, so it is time to raise a more basic question:
just how good is first-order logic as a tool for exploring natural language
semantics from a computational perspective? We now discuss this. First
we take an inferential perspective, and then we consider first-order logic’s
representational capabilities.

Inferential Capabilities

First-order logic is sometimes called classical logic, and it merits the de-
scription: it is the most widely studied and best understood of all logical
formalisms. Moreover, it is understood from a wide range of perspectives.
For example, the discipline called model theory (which takes as its starting
point the satisfaction definition discussed in this chapter) has mapped the
expressive powers of first-order logic in extraordinary mathematical detail.

Nor have the inferential properties of first-order logic been neglected: the
discipline called proof theory explores this topic. As we mentioned earlier
(and as we shall further discuss in Chapters 4 and 5), the primary task that
faces us when dealing with the consistency and informativeness checking
tasks (which were defined in model-theoretic terms) is to reformulate them
as concrete symbol manipulation tasks. Proof theorists and researchers in
automated reasoning have devised many ways of doing this, and explored
their properties and interrelationships in detail.

Some of the methods they have developed (notably the tableau and res-
olution methods discussed in Chapters 4 and 5) have proved useful compu-
tationally. Although no complete computational solution to the consistency
checking task (or equivalently, the informativeness checking task) exists, res-
olution and tableau based theorem provers for first-order logic have proved
effective in practice, and in recent years there have been dramatic improve-
ments in their performance. So one reason for being interested in first-order
logic is simply this: if you use first-order logic, a wide range of sophisticated
inference tools are at your disposal.

But there are other reasons for being interested in first-order logic. One of
the most important is this: working with first-order logic makes it straight-
forward to incorporate background knowledge (such as world knowledge and
lexical knowledge) into the inference process.
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Here’s an example. When discussing informativeness we gave the follow-
ing example of an uninformative-but-sometimes-acceptable discourse:

Mia is married. She has a husband.

But why is this uninformative? Recall that by an uninformative formula we
mean a valid formula (that is, one that is satisfied in every model). But

married(mia)→has-husband(mia).

is not valid. Why not? Because we are free to interpret married and has-
husband so that they have no connection with each other, and in some of
these interpretations the formula will be false.

But it is clear that such arbitrary interpretations of married and has-
husband are somehow cheating. After all, as any speaker of English knows,
the meanings of married and has-husband are intimately linked. But can
we capture this linkage, and can first-order logic help?

It can, and here’s how. Speakers of English have the following piece of
lexical knowledge (that is, knowledge of the meanings of words and how they
are inter-related), expressed here as a formula of first-order logic:

∀x(woman(x) ∧ married(x) → has-husband(x)).

If we take this lexical knowledge, and add to it the world knowledge that
Mia is a woman, then we do have a valid inference: the two premises

∀x(woman(x) ∧ married(x) → has-husband(x))

and

woman(mia)

have as a logical consequence that

married(mia)→has-husband(mia).

That is, in any model where the premises are true (and these are the models
of interest, for they are the ones that reflect our lexical and world knowledge)
then the conclusion is true also. In short, the uninformativeness of our little
discourse actually rests on an inference that draws on both lexical knowledge
and world knowledge. Modeling the discourse in first-order logic makes this
inferential interplay explicit.
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There are other logics besides first-order logic which are interesting from
an inferential perspective, such as the family of logics variously known as
modal, hybrid, and description logics. If you work with the simplest form of
such logics (that is, the propositional versions of such logics) the consistency
and informativeness checking tasks typically can be fully computed. More-
over, the description logic community has produced an impressive range of
efficient computational tools for dealing with these (and other) inferential
tasks. And such logics have been successfully used to tackle problems in
computational semantics.

But there is a price to pay. The interesting thing about first-order logic is
not merely that it is well behaved inferentially, but that (as we shall shortly
see) it offers expressive capabilities capable of handling a significant portion
of natural language semantics. Propositional modal, hybrid and description
logics don’t have the expressivity for such detailed semantic analysis. They
are likely to play an increasingly important role in computational semantics,
but they are probably best suited for giving efficient solutions to relatively
specialized tasks. It is possible that stronger versions of such logics (in par-
ticular, logics which combine the resources of modal, hybrid, or description
logic with those of first-order logic) may turn out to be a good general setting
for semantic analysis, but at present few computational tools for performing
inference in such systems are available.

Summing up, if you are interested in exploring the role of inference in nat-
ural language semantics, then first-order logic is probably the most interest-
ing starting point. Moreover, the key first-order inferential techniques (such
as tableau and resolution) are not parochial. Although initially developed
for first-order logic, they have been successfully transferred to other logical
systems (such as the modal/hybrid/description logic family). So studying
first-order inference techniques is a useful first step towards understanding
inference in other potentially useful logics.

But what is first-order logic like from a representational perspective? This
is the question to which we now turn.

Representational Capabilities

Assessing the representational capabilities of first-order logic for natural lan-
guage semantics is not straightforward: it would be easy to write a whole
chapter (indeed, a whole book) on the topic. But, roughly speaking, our
views are as follows. First-order logic does have shortcomings as a natural
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language representational formalism, and we shall draw attention to an im-
portant example. Nonetheless, first-order logic is capable of doing a lot of
work for us. It’s not called classical logic for nothing: it is an extremely
flexible tool.

It is quite common to come across complaints about first-order logic of the
following kind: first-order logic is inadequate for natural language semantics
because it cannot handle times (or intervals, or events, or modal phenomena,
or epistemic states, or . . . ). Take such complaints with a (large) grain of salt.
They are often wrong, and it is important to understand why.

The key lies in the notion of the model. We have encouraged the reader
to think of models as mathematical idealizations of situations, but while this
is a useful intuition pump, it is less than the whole truth. The full story
is far simpler: models can provide abstract pictures of just about anything.
Let’s look at a small example—a model which represents the way someone’s
emotional state evolves over three days. Let D = {d1, d2, d3, d4}) and let F
be as follows:

F (mia) = d1

F (monday) = d2

F (tuesday) = d3

F (wednesday) = d4

F (person) = {d1}
F (day) = {d2, d3, d4}
F (precede) = {(d2, d3), (d3, d4), (d2, d4)}
F (happy) = {(d1, d2), (d1, d3)}

That is, there are four entities in this model: one of them (d1) is a per-
son called Mia, and three of them (d2, d3, and d4) are the days of the week
Monday, Tuesday and Wednesday. The model also tells us that (as we would
expect) Monday precedes Tuesday, Tuesday precedes Wednesday, and Mon-
day precedes Wednesday. Finally, it tells us that Mia was happy on both
Monday and Wednesday (presumably something unpleasant happened on
Tuesday). In short, the last clause of F spells out how Mia’s emotional state
evolves over time.

Though simple, this example illustrates something crucial: models can
provide pictures of virtually anything we find interesting. Do you feel that the
analysis of tense and aspect in natural language requires time to be thought
of as a collection of intervals, linked by such relations as overlap, inclusion,
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and precedence? Very well then—work with models containing intervals
related in these ways. Moreover, you are then free (if you so desire) to talk
about these models using a first-order language of appropriate signature. Or
perhaps you feel that temporal semantics requires the use of events? Very
well then—work with models containing interrelated events. And once again,
you can (if you wish) talk about these models using a first-order language of
appropriate signature. Or perhaps you feel that the ‘possible world semantics’
introduced by philosophical logicians to analyze such concepts as necessity
and belief is a promising way to handle these aspects of natural language.
Very well then—work with models containing possible worlds linked in the
ways you find useful. And while you could talk about such models with some
sort of modal language, you are also free to talk about these models using
a first-order language of appropriate signature. Models and their associated
first-order languages are a playground, not a jail. They provide a space
where we are free to experiment with our ideas and ontological assumptions
as we attempt to come to grips with natural language semantics. The major
limitations are those imposed by our imagination.

Clever use of models sometimes enables first-order logic to provide use-
ful approximate solutions to expressivity demands that, strictly speaking,
it cannot handle. A classic example is second-order (and more generally,
higher-order) quantification. First-order logic is called ‘first-order’ because it
only permits us to quantify over first-order entities ; that is, elements of the
domain. It does not let us quantify over second-order entities such as sets of
domain elements (properties), or sets of pairs of domain elements (two-place
relations), sets of triples of domain elements (three-place relations), and so
on. Second-order logic allows us to do all this. For example, in second-order
logic we can express such sentences as Butch has every property that a good
boxer has by means of the following expression:

∀P∀x((good-boxer(x) → P(x)) → P(butch)).

Here P is a second order variable ranging over properties (that is, subsets of
the domain) while x is an ordinary first-order variable. Hence this formula
says: ‘for any property P and any individual x, if x is a good boxer implies
that x has property P, then Butch has property P too’.

So, it seems we’ve finally found an unambiguous example of something
that first order logic cannot do? Surprisingly, no. There is a way in which
first-order logic can come to grips with second-order entities—and once again,
it’s models that come to the rescue. Quite simply, if we want to quantify



52 CHAPTER 1. FIRST-ORDER LOGIC

over properties, why not introduce models containing domain elements that
play the role of properties. That is, why not introduce first-order entities
whose job it is to mimic second-order entities? After all, we’ve just seen that
domain elements can be thought of as times (and intervals, events, possible
worlds, and so on); maybe we can view them as properties (and two-place
relations, and three-place relations, . . . ) as well?

In fact, it has been known since the 1950s that this can be done in an
elegant way: it is possible to give a first-order interpretation of second-order
logic. Moreover, in some respects this first-order treatment of second-order
logic is better behaved that the ‘standard’ interpretation (in which properties
are domain subsets, one-place relations are sets of pairs of domain subsets,
and so on). In particular, both model-theoretically and proof-theoretically,
the first-order perspective on second-order quantification leads to a simpler
and better behaved logic than the ‘standard’ perspective does. Now, it may
be that the first-order analysis of second-order quantification isn’t as strong
as it should be (on the other hand, it could also be argued that the ‘standard’
analysis of second-order quantification is too strong). But the fact remains
that the first-order perspective allows us to get to grips with interesting
aspects of second-order logic. It may be an approximation, but it is a good
one. (For further information on this topic, consult the references cited in
the Notes at the end of the chapter.)

It’s not hard to give further examples of how clever use of models enables
us to handle expressivity demands which at first glance seem to lie beyond
the grasp of first-order logic. For example, first-order logic offers an elegant
handle on partiality ; that is, sentences which are neither true nor false but
rather undefined in some situation (see the Notes at the end of the chapter
for further information). But instead of multiplying examples of first-order
logic can do, let’s look at something it can’t.

Natural languages are rich in quantifiers: as well as being able to say
things like Some robbers and Every robber, we can also say things like Two
robbers, Three robbers, Most robbers, Many robbers and Few robbers. Some of
these quantifiers (notably counting quantifiers such as Two and Three) can
be handled by first-order logic; others, however, provably can’t. For example,
if we take Most to mean ‘more than half the entities in the model’, which
seems a reasonable interpretation, then even if we restrict our attention to
finite models, it is impossible to express this idea in first-order logic (see
the Notes for references). Thus a full analysis of natural language semantics
will require to work with richer logics capable of handling such generalized
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quantifiers. But while a lot is known about the theory of such quantifiers
(see the Notes) as yet few computational tools are available, so we won’t
consider generalized quantifiers further in this book.

First-order isn’t capable of expressing everything of interest to natural
language semantics: generalized quantifiers are an important counterexam-
ple. Nonetheless a surprisingly wide range of other important phenomena
can be given a first-order treatment. All in all, it’s an excellent starting
point for computational semantics.
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Chapter 2

Lambda Calculus

Now that we know something of first-order logic and how to work with it in
Prolog, it is time to turn to the first major theme of the book, namely:

How can we automate the process of associating semantic repre-
sentations with natural language expressions?

In this chapter we explore the issue concretely. We proceed by trial and
error. We first write a simple Prolog program that performs the task in a
limited way. We note where it goes wrong, and why, and develop a more
sophisticated alternative. These experiments lead us, swiftly and directly, to
formulate a version of the lambda calculus. The lambda calculus is a tool
for controlling the process of making substitutions. With its help, we will be
able to describe, neatly and concisely, how semantic representations should
be built. The lambda calculus is one of the main tools used in this book, and
by the end of the chapter the reader should have a reasonable grasp of why
it is useful to computational semantics and how to work with it in Prolog.

2.1 Compositionality

Given a sentence of English, is there a systematic way of constructing its
semantic representation? This question is far too general, so let’s ask a more
specific one: is there a systematic way of translating simple sentences such
as ‘Vincent loves Mia’ and ‘A woman snorts’ into first-order logic?

The key to answering this is to be more precise about what we mean by
‘systematic’. Consider ‘Vincent loves Mia’. Its semantic content is at least

55
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partially captured by the first-order formula love(vincent,mia). Now, the
most basic observation we can make about systematicity is the following: the
proper name ‘Vincent’ contributes the constant vincent to the representa-
tion, the transitive verb ‘loves’ contributes the relation symbol love, and
‘Mia’ contributes mia.

This first observation is important, and by no means as trivial as it may
seem. If we generalise it to the claim that the words making up a sentence
contribute all the bits and pieces needed to build the sentence’s semantic
representation, we have formulated a principle that is a valuable guide to
the complexities of natural language semantics. The principle is certainly
plausible. Moreover, it has the advantage of forcing us to face up to a number
of non-trivial issues sooner rather than later (for example, what exactly does
the determiner ‘every’ contribute to the representation of ‘Every woman loves
a boxer’?).

Nonetheless, though important, this principle doesn’t tell us everything
we need to know about systematicity. For example, from the symbols love,
mia and vincent we can also form love(mia,vincent). Why don’t we get
this (incorrect) representation when we translate ‘Vincent loves Mia’? What
exactly is it about the sentence ‘Vincent loves Mia’ that forces us to translate
it as love(vincent,mia)? Note that the answer “But ‘Vincent loves Mia’
means love(vincent,mia), stupid!”, which in many circumstances would
be appropriate, isn’t particularly helpful here. Computers are stupid. We
can’t appeal to their semantic insight, because they don’t have any. If we are
to have any hope of automating semantic construction, we must find another
kind of answer.

The missing ingredient is a notion of syntactic structure. ‘Vincent loves
Mia’ isn’t just a string of words: it has a hierarchical structure. In particular,
‘Vincent loves Mia’ is a sentence (S) that is composed of the subject noun
phrase (NP) ‘Vincent’ and the verb phrase (VP) ‘loves Mia’. This VP is in
turn composed of the transitive verb (TV) ‘loves’ and the direct object NP
‘Mia’. Given this hierarchy, it is easy to tell a coherent story—and indeed,
to draw a convincing picture—about why we should get the representation
love(vincent,mia), and not anything else:
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Vincent loves Mia (S)
love(vincent,mia)

Vincent (NP)
vincent

loves Mia (VP)
love(?,mia)

loves (TV)
love(?,?)

Mia (NP)
mia

Why is mia in the second argument slot of love? Because, when we
combine a TV with an NP to form a VP, we have to put the semantic repre-
sentation associated with the NP (in this case, mia) in the second argument
slot of the VP’s semantic representation (in this case, love(?,?)). Why does
vincent have to go in the first argument slot? Because this is the slot re-
served for the semantic representations of NPs that we combine with VPs
to form an S. More generally, given that we have some reasonable syntactic
story about what the pieces of the sentences are, and which pieces combine
with which other pieces, we can try to use this information to explain how the
various semantic contributions have to be combined. In short, one reasonable
explication of ‘systematicity’ is that it amounts to using the additional infor-
mation provided by syntactic structure to spell out exactly how the semantic
contributions are to be glued together.

Our discussion has led us to one of the key concepts of contemporary
semantic theory: compositionality . Suppose we have some sort of theory of
syntactic structure. It doesn’t matter too much what sort of theory it is,
just so long as it is hierarchical in a way that ultimately leads to the lexical
items. (That is, our notion of syntactic structure should allow us to classify
the sentence into subparts, sub-subpart, and sub-sub-subparts, . . . , and so
on—ultimately into the individual words making up the sentence.) Such
structures make it possible to tell an elegant story about where semantic
representations come from. Ultimately, semantic information flows from the
lexicon, thus each lexical item is associated with a representation. How is
this information combined? By making use of the hierarchy provided by the
syntactic analysis. Suppose the syntax tells us that some kind of sentential
subpart (a VP, say) is decomposable into two sub-subparts (a TV and an NP,
say). Then our task is to describe how the semantic representation of the
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VP subpart is to be built out of the representation of its two sub-subparts.
If we succeed in doing this for all the grammatical constructions covered by
the syntax, we will have given a compositional semantics for the language
under discussion (or at least, for that fragment of the language covered by
our syntactic analysis).

Syntax via Definite Clause Grammars

So, is there a systematic way of translating simple sentences such as ‘Vincent
loves Mia’ and ‘A woman snorts’ into first-order logic? We don’t yet have a
method, but at least we now have a plausible strategy for finding one. We
need to:

Task 1 Specify a reasonable syntax for the fragment of natural language of
interest.

Task 2 Specify semantic representations for the lexical items.

Task 3 Specify the translation compositionally. That is, we should specify
the translation of all expressions in terms of the translation of their
parts, where ‘parts’ refers to the substructure given to us by the syntax.

Moreover, all three tasks need to be carried out in a way that leads
naturally to computational implementation.

As this is a book on computational semantics, tasks 2 and 3 are where are
our real interests lie, and most of our energy will be devoted to them. But
since compositional semantics presupposes syntax, we need a way of handling
task 1. What should we do?

We have opted for a particularly simple solution: in this book the syn-
tactic analysis of a sentence will be a tree whose non-leaf nodes represent
complex syntactic categories (such as sentence, noun phrase and verb phrase)
and whose leaves represent lexical items (these are associated with basic syn-
tactic categories such as noun, transitive verb, determiner, proper name and
intransitive verb). The tree the reader has just seen is a typical example. This
approach has an obvious drawback (namely, the reader won’t learn anything
interesting about syntax) but it also has an important advantage: we will be
able to make use of Definite Clause Grammars (DCGs), the in-built Prolog
mechanism for grammar specification.
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Here is a DCG for the fragment of English we shall use in our ini-
tial semantic construction experiments. (This DCG, decorated with Pro-
log code for semantic operations, can be found in the files experiment1.pl,
experiment2.pl, and experiment3.pl.)

s --> np, vp. noun --> [woman].

np --> pn. noun --> [foot,massage].

np --> det, noun. vp --> iv.

pn --> [vincent]. vp --> tv, np.

pn --> [mia]. iv --> [snorts].

det --> [a]. iv --> [walks].

det --> [every]. tv --> [loves].

tv --> [likes].

This grammar tells us how to build certain kinds of sentences (s) out of
noun phrases (np), verb phrases (vp), proper names (pn), determiners (det),
nouns (noun), intransitive verbs (iv), and transitive verbs (tv), and gives us
a tiny lexicon to play with. For example, the grammar accepts the simple
sentence

‘Vincent walks.’

because ‘Vincent’ is declared as a proper name, and proper names are noun
phrases according to this grammar; ‘walks’ is an intransitive verb, and hence
a verb phrase; and sentences can consist of a noun phrase followed by a verb
phrase.

But the real joy of DCGs is that they provide us with a with a lot more
than a natural notation for specifying grammars. Because they are part and
parcel of Prolog, we can actually compute with them. For example, by posing
the query

s([mia,likes,a,foot,massage],[])

we can test whether ‘Mia likes a foot massage’ is accepted by the grammar,
and the query

s(X,[])
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generates all grammatical sentences.
With a little effort, we can do a lot more. In particular, by making use

of extra arguments (consult an introductory text on Prolog if you’re unsure
what this means) we can associate semantic representations with lexical items
very straightforwardly. The normal Prolog unification mechanism then gives
us the basic tool needed to combine semantic representations, and to pass
them up towards sentence level. In short, working with DCGs both frees us
from having to implement parsers, and makes available a powerful mechanism
for combining representations, so we’ll be able to devote our attention to
semantic construction.

It is worth emphasising, however, that the semantic construction meth-
ods discussed in this book are compatible with a wide range of theories of
natural language syntax, and with a wide range of programming languages.
In essence, we exploit the recursive structure of trees to build representations
compositionally: where the trees actually come from is relatively unimpor-
tant, as is the programming language used to encode the construction pro-
cess. We have have chosen to fill in the syntactical ‘black box’ using Prolog
DCGs—but a wide range of options is available and we urge our readers to
experiment.

Exercise 2.1.1 How many sentences are accepted by this grammar? How many
noun phrases? How many verb phrases? Check your answer by generating the
relevant items.

2.2 Two Experiments

How can we systematically associate first-order formulas with the sentences
produced by our little grammar? Let’s just plunge in and try, and see how
far our knowledge of DCGs and Prolog will take us.

Experiment 1

First the lexical items. We need to associate ‘Vincent’ with the constant
vincent, ‘Mia’ with the constant mia, ‘walks’ with the unary relation symbol
walk, and ‘loves’ with the binary relation symbol love. The following piece
of DCG code makes these associations. Note that the arity of walk and love

are explicitly included as part of the Prolog representation.
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pn(vincent)--> [vincent].

pn(mia)--> [mia].

iv(snort(_))--> [snorts].

tv(love(_,_))--> [loves].

How do we build semantic representations for sentences? Let’s first con-
sider how to build representations for quantifier-free sentences such as ‘Mia
loves Vincent’. The main problem is to steer the constants into the correct
slots of the relation symbol. (Remember, we want ‘Vincent loves Mia’ to be
represented by love(vincent, mia), not love(mia,vincent).) Here’s a
first (rather naive) attempt. Let’s directly encode the idea that when we
combine a TV with an NP to form a VP, we have to put the semantic rep-
resentation associated with the NP in the second argument slot of the VP’s
semantic representation, and that we use the first argument slot for the se-
mantic representations of NPs that we combine with VPs to form Ss.

Prolog has a built in predicate arg/3 such that arg(N,P,I) is true if I is
the Nth argument of P. This is a useful tool for manipulating pieces of syntax,
and with its help we can cope with simple quantifier free sentences rather
easily. Here’s the needed extension of the DCG:

s(Sem)--> np(SemNP), vp(Sem),

{

arg(1,Sem,SemNP)

}.

np(Sem)--> pn(Sem).

vp(Sem)--> tv(Sem), np(SemNP),

{

arg(2,Sem,SemNP)

}.

vp(Sem)--> iv(Sem).

These clauses work by adding an extra argument to the DCG (here, the
position filled by the variables Sem and SemNP) to percolate up the required
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semantic information using Prolog unification. Note that while the second
and the fourth clauses perform only this percolation task, the first and third
clauses, which deal with branching rules, have more work to do: they use
arg/3 to steer the arguments into the correct slots. This is done by associat-
ing extra pieces of code with the DCG rules, namely arg(1,Sem,SemNP) and
arg(2,Sem,SemNP). (These are normal Prolog goals, and are added to the
DCG rules in curly brackets to make them distinguishable from the grammar
symbols.) This program captures, in a brutally direct way, the idea that the
semantic contribution of the object NP goes into the second argument slot
of TVs, while the semantic contribution of subject NPs belongs in the first
argument slot.

It works. For example, if we pose the query:

?- s(Sem,[mia,snorts],[]).

we obtain the (correct) response:

Sem = snort(mia)

But this is far too easy—let’s try to extend our fragment with the deter-
miners ‘a’ and ‘every’. First, we need to extend the lexical entries for these
words, and the entries for the common nouns they combine with:

det(some(_,and(_,_)))--> [a].

det(all(_,imp(_,_)))--> [every].

noun(woman(_))--> [woman].

noun(footmassage(_))--> [foot,massage].

NPs formed by combining a determiner with a noun are called quantified
noun phrases.

Next, we need to say how the semantic contributions of determiners and
noun phrases should be combined. We can do this by using arg/3 four times
to get the instantiation of the different argument positions correct:

np(Sem)--> det(Sem), noun(SemNoun),
{
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arg(1,SemNoun,X),
arg(1,Sem,X),
arg(2,Sem,Matrix),
arg(1,Matrix,SemNoun)

}.

The key idea is that the representation associated with the NP will be the
representation associated with the determiner (note that the Sem variable is
shared between np and det), but with this representation fleshed out with
additional information from the noun. The Prolog variable X is a name for the
existentially quantified variable the determiner introduces into the semantic
representation; the code arg(1,SemNoun,X) and arg(1,Sem,X) unifies the
argument place of the noun with this variable. The code arg(2,Sem,Matrix)
simply says that the second argument of Sem will be the matrix of the NP se-
mantic representation, and more detail is added by arg(1,Matrix,SemNoun):
it says that the first slot of the matrix will be filled in by the semantic rep-
resentation of the noun. So if we pose the query

?- np(Sem,[a,woman],[]).

we obtain the response

Sem = some(X,and(woman(X),Y))

Also give query that yields the infix representation, and the
response.

Note that the output is an incomplete first-order formula. We don’t yet
have a full first-order formula (the Prolog variable Y has yet to be instanti-
ated) but we do know that we are existentially quantifying over the set of
women.

Given that such incomplete first-order formulas are the semantic represen-
tations associated with quantified NPs, it is fairly clear what must happen
when we combine a quantified NP with a VP to form an S: the VP must
provide the missing piece of information. (That is, it must provide an in-
stantiation for Y.) The following clause does this:

s(Sem)--> np(Sem), vp(SemVP),

{

arg(1,SemVP,X),
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arg(1,Sem,X),

arg(2,Sem,Matrix),

arg(2,Matrix,SemVP)

}.

Unfortunately, while the underlying idea is essentially correct, things have
just started going badly wrong. Until now, we’ve simply been extending the
rules of our original DCG with semantic information—and we’ve already
dealt with s --> np, vp. If we add this second version of s --> np, vp

(and it seems we need to) we are duplicating syntactic information. This is
uneconomical and inelegant. Worse, this second sentential rule interacts in
an unintended way with the rule

np(Sem)--> pn(Sem).

As the reader should check, as well as assigning the correct semantic
representation to ‘A woman snorts’, our DCG also assigns the splendidly
useless string of symbols

snort(some(X,and(woman(X),Y)))

Also give infix form.
But this isn’t the end of our troubles. We already have a rule for forming

VPs out of TVs and NPs, but we will need a second rule to cope with
quantified NPs in object position, namely:

vp(Sem)--> tv(SemTV), np(Sem),

{

arg(2,SemTV,X),

arg(1,Sem,X),

arg(2,Sem,Matrix),

arg(2,Matrix,SemTV)

}.

If we add this rule, we can assign correct representations to all the sen-
tences in our fragment. However we will also produce a lot of nonsense (for
example, ‘A woman loves a foot massage’ is assigned four representations,
three of which are just jumbles of symbols) and we are being systematically
forced into syntactically unmotivated duplication of rules. This doesn’t look
promising. Let’s try something else.
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Exercise 2.2.1 The code for experiment 1 is in experiment1.pl. Generate the
semantic representations of the sentences and noun phrases yielded by the gram-
mar.

Experiment 2

Although our first experiment was ultimately unsuccessful, it did teach us
something useful: to build representations, we need to work with incom-
plete first-order formulas, and we need a way of manipulating the missing
information. Consider the representations associated with determiners. In
experiment 1 we associated ‘a’ with some(_,and(_,_)). That is, the deter-
miner contributes the skeleton of a first-order formula whose first slot needs
to be instantiated with a variable, whose second slot needs to be filled with
the semantic representation of a noun, and whose third slot needs to be filled
by the semantic representation of a VP. However in experiment 1 we didn’t
manipulate this missing information directly. Instead we took a shortcut: we
thought in terms of argument position so that we could make use of arg/3.
Let’s avoid plausible looking short cuts. The idea of missing information is
evidently important, so let’s take care to always associate it with an explicit
Prolog variable. Perhaps this direct approach will make semantic construc-
tion easier.

Let’s first apply this idea to the determiners. We shall need three extra
arguments: one for the bound variable, one for the contribution made by the
noun, and one for the contribution made by the VP. Incidentally, these last
two contribution have a standard name: the contribution made by the noun
is called the restriction and the contribution made by the VP is called the
nuclear scope. We reflect this terminology in our choice of variable names:

det(X,Restr,Scope,some(X,and(Restr,Scope)))--> [a].

det(X,Restr,Scope,all(X,imp(Restr,Scope)))--> [every].

But the same idea applies to common nouns, intransitive verbs, and tran-
sitive verbs too. For example, instead of associating ‘woman’ with woman( ),
we should state that the translation of ‘woman’ is woman(y) for some par-
ticular choice of variable y—and we should explicitly keep track of which
variable we choose. (That is, although the y appears free in woman(y), we
actually want to have some sort of hold on it.) Similarly, we want to asso-
ciate a transitive verb like ‘loves’ with love(y,z) for some particular choice
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of variables y and z, and again, we should keep track of the choices we made.
So the following lexical entries are called for:

noun(X,woman(X))--> [woman].

iv(Y,snort(Y))--> [snorts].

tv(Y,Z,love(Y,Z))--> [loves].

Given these changes, we need to redefine the rules for producing sentences
and verb phrases.

s(Sem)--> np(X,SemVP,Sem), vp(X,SemVP).

vp(X,Sem)--> tv(X,Y,SemTV), np(Y,SemTV,Sem).

vp(X,Sem)--> iv(X,Sem).

The semantic construction rule associated with the sentential rule, for
example, tells us that Sem, the semantic representation of the sentence, is
essentially going to be that of the noun phrase (that’s where the value of the
Sem variable will trickle up from) but that, in addition, the bound variable X

used in Sem must be the same as the variable used in the verb phrase semantic
representation SemVP. Moreover, it tells us that SemVP will be used to fill in
the information missing from the semantic representation of the noun phrase.

So far so good, but now we need a little trickery. Experiment 1 failed
because there was no obvious way of making use of the semantic represen-
tations supplied by quantified noun phrases and proper names in a single
sentential rule. Here we only have a single sentential rule, so evidently the
methods of experiment 2 avoid this problem. Here’s how it’s done:

np(X,Scope,Sem)--> det(X,Restr,Scope,Sem),

noun(X,Restr).

np(SemPN,Sem,Sem)--> pn(SemPN).

Note that we have given all noun phrases—regardless of whether they
are quantifying phrases or proper names—the same arity in the grammar
rules. (That is, there really is only one np predicate in this grammar, not
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two predicates that happen to make use of the same atom as their functor
name.)

It should be clear how the first rule works. The skeleton of a quantified
noun phrase is provided by the determiner. The restriction of this determiner
is filled by the noun. The resultant noun phrase representation is thus a
skeleton with two marked slots: X marks the bound variable, while Scope

marks the missing scope information. This Scope variable will be instantiated
by the verb phrase representation when the sentential rule is applied.

The second rule is trickier. The easiest way to understand it to consider
what happens when we combine a proper name noun phrase with a verb
phrase to form a sentence. Recall that this is our sentential rule:

s(Sem)--> np(X,SemVP,Sem), vp(X,SemVP).

Hence when we have a noun phrase of the form np(SemPN,Sem,Sem), two
things happen. First, because of the doubled Sem variable, the semantic
representation of the verb phrase (that is, SemVP) becomes the semantic
reprsentation associated with the sentence. Secondly, because X is unified
with SemPN, the semantics of the proper name (a first-order constant) is sub-
stituted into the verb phrase representation. So the doubled Sem variable
performs a sort of role reversal. Intuitively, whereas the representation for
sentences that have a quantified noun phrase as subject is essentially the
subject’s representation filled out by the verb phrase representation, the re-
verse is the case when we have a proper name as subject. In such cases,
the verb phrase is boss. The sentence representation is essentially the verb
phrase representation, and the role of the proper name is simply to obediently
instantiate the empty slot in the verb phrase representation.

Our second experiment has fared far better than our first. It is clearly
a good idea to explicitly mark missing information; this gives us the control
required to fill it in and maneuver it into place. Nonetheless, experiment 2
uses the idea clumsily. Much of the work is done by the rules. These state
how semantic information is to be combined, and (as our NP rule for proper
names shows) this may require rule-specific Prolog tricks such as variable
doubling. Moreover, it is hard to think about the resulting grammar in a
modular way. For example, when we explained why the NP rules took the
form they do, we did so by explaining what was eventually going to happen
when the S rule was used. Now, perhaps we weren’t forced to do this—
nonetheless, we find it difficult to give an intuitive explanation of this rule
any other way.
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This suggests we are missing something. Maybe a more disciplined ap-
proach to missing information would reduce—or even eliminate—the need
for rule-specific combination methods? Indeed, this exactly happens if we
make use of the lambda calculus.

Exercise 2.2.2 Using either pen and paper or a tracer, compare the sequence of
variable instantiations this program performs when building representations for
‘Vincent snorts’ and ‘A woman snorts’, and ‘Vincent loves Mia’ and ‘Vincent loves a
woman’.

Programs for the first two experiments

experiment1.pl

The code of our first experiment in semantic construction
for a small fragment of English.

experiment2.pl

The second experiment in semantic construction.

2.3 The Lambda Calculus

We shall view lambda calculus as a notational extension of first-order logic
that allows us to bind variables using a new variable binding operator λ.
Occurrences of variables bound by λ should be thought of as placeholders
for missing information: they explicitly mark where we should substitute the
various bits and pieces obtained in the course of semantic construction. An
operation called β-conversion performs the required substitutions. We sug-
gest that the reader thinks of the lambda calculus as a special programming
language dedicated to a single task: gluing together the items needed to build
semantic representations.

Here is a simple lambda expression:

λx.man(x)

The prefix λx. binds the occurrence of x in man(x). We often say that
the prefix λx. abstracts over the variable x. We call expressions with such
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prefixes lambda abstractions (or, more simply, abstractions). In our example,
the binding of the free x variable in man(x) explicitly indicates that man
has an argument slot where we may perform substitutions. More generally,
the purpose of abstracting over variables is to mark the slots where we want
substitutions to be made.

We use the symbol @ to indicate the substitutions we wish to carry out.
Consider the following example:

λx.man(x)@vincent.

This compound expression consists of the abstraction λx.man(x) and the
constant vincent glued together by the @ symbol (that is, we use infix nota-
tion for the @-operator). Such expressions are called functional applications;
the left-hand expression is called the functor , and the right-hand expression
the argument. We often say that the functor is applied to its argument:
for example, the expression λx.man(x)@vincent is the application of the
functor λx.man(x) to the argument vincent.

But what is such an expression good for? It is an instruction to throw
away the λx. prefix of the functor, and to replace every occurrence of x
that was bound by this prefix by the argument; we shall call this substi-
tution process β-conversion (other common names include β-reduction and
λ-conversion). Performing the β-conversion specified by the previous expres-
sion yields:

man(vincent).

Abstraction, functional application, and β-conversion underly much of
our subsequent work. In fact, as we shall soon see, the business of specifying
semantic representations for lexical items is essentially going to boil down
to devising lambda abstractions that specify the missing information, while
functional application coupled with β-conversion will be the engine used to
combine semantic representations compositionally.

The previous example was rather simple, and in some respects rather
misleading. For a start, the argument was simply the constant vincent,
but (as we shall soon see) arguments can be complex expressions containing
occurrences of λ and @. Moreover, the λx. in λx.man(x) is simply used to
mark the missing term in the predicate man, but as experiments 1 and 2
made clear, to deal with noun phrases and determiners (and indeed, many
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other things) we need to mark more complex kinds of missing information.
However, λ will be used for such tasks too. For example, our semantic rep-
resentation of the noun phrase ‘a woman’ will be: λy.∃x(woman(x)∧y@x).
Here we are using the variable y to indicate that some information is missing
(namely, the nuclear scope, to use the linguistic terminology mentioned ear-
lier) and to show exactly where this information has to be plugged in when
it is found (it will be applied to the argument x and conjoined to the formula
woman(x)).

We are almost ready to examine some linguistic examples, but before
doing so an important point needs to be made: the lambda expressions
λx.man(x), λu.man(u), and λv.man(v) are intended to be equivalent, and
so are λu.∃x(woman(x)∧u@x) and λv.∃x(woman(x)∧v@x). All these ex-
pressions are functors which when applied to an argument A, replace the
bound variable by the argument. No matter which argument A we choose,
the result of applying any of the first three expressions to A and then β-
converting should be man(A), and the result of applying either of the last
two expressions to A should be ∃x(woman(x)∧A@x). To put it another
way, replacing the bound variables in a lambda expressions (for example,
replacing the variable x in λx.man(x) by u to obtain λu.man(u)) is a process
which yields a lambda expression which is capable of performing exactly the
same gluing tasks.

This shouldn’t be surprising—it’s the way bound variables always work.
For example, we saw in Chapter 1 that ∀xrobber(x) and ∀yrobber(y)
mean exactly the same thing, and mathematics students will be used to
relabelling variables when calculating integrals. A bound variable is essen-
tially a placeholder: the particular variable used is not intended to have any
significance. For this reason bound variables are sometimes called dummy
variables.

The process of relabelling bound variables (any bound variable: it doesn’t
matter whether it is bound by ∀ or ∃ or λ) is called α-conversion. If a lambda
expression E can be obtained from a lambda expression E ′ by α-conversion
then we say that E and E ′ are α-equivalent (or that they are alphabetic vari-
ants). Thus λx.man(x), λy.man(y), and λz.man(z) are all α-equivalent, and
so are the expressions λy.∃x(woman(x)∧y@x) and λz.∃y(woman(y)∧z@y).
In what follows we often treat α-equivalent expressions as if they were identi-
cal. For example, we will sometimes say that the lexical entry for some word
is a lambda expression E , but when we actually work out some semantic
construction, we might use an α-equivalent expression E ′ instead of E itself.
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As λ-bound variables are merely placeholders, this clearly should be allowed.
But the reader needs to understand that it’s not merely permissible to work
like this, it can be vital to do so if β-conversion is to work as intended.

Why? Well, suppose that the expression F in λx.F is a complex expres-
sion containing many occurences of λ, ∀ and ∃. It could happen that when
we apply λx.F to an argument A, some occurrence of a variable that is free
in A becomes bound by a lambda operator or a quantifier when we substi-
tute it into F . Later in the chapter we’ll see a concrete example—for now
we’ll simply say that we don’t want this to happen. Such accidental bindings
(as they are usually called) defeat the purpose of working with the lambda
calculus. The whole point of developing the lambda calculus was to gain
control over the process of performing substitutions. We don’t want to lose
control by foolishly allowing unintended interactions.

And such interactions need never be a problem. We don’t need to use
λx.F as the functor: any α-equivalent expression will do. By relabelling all
the bound variables in λx.F we can always obtain an α-equivalent functor
that doesn’t bind any of the variables that occur free in A, and accidental
binding is prevented. Thus, strictly speaking, it is not merely functional
application coupled with β-conversion that drives the process of semantic
construction in this book, but functional application and β-conversion cou-
pled with α-conversion.

That’s all we need to know about the lambda calculus for the time being—
though it is worth mentioning that the lambda calculus can be introduced
from a different, more logically oriented, perspective. The logical perspective
is useful (we discuss it briefly in the Notes at the end of the chapter, and
present it in more detail in Appendix ??) nonetheless it is not the only
legitimate perspective on lambda calculus. Indeed, as far as computational
semantics is concerned, it is the computational perspective we have adopted
here—lambda calculus as glue language—that makes the lambda calculus
interesting. So let’s ignore the logical perspective for now and try putting
our glue language to work. Here’s a good place to start: does lambda calculus
solve the problem we started with? That is, does it get rid of the difficulties
we encountered in experiments 1 and 2?

Let’s see. What is involved in building the semantic representation for
‘every boxer walks’ using lambdas? The first step is to assign lambda expres-
sions to the different basic syntactic categories. We assign the determiner
‘every’, the common noun ‘boxer’, and the intransitive verb ‘walks’ the fol-
lowing lambda expressions:
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‘every’: λu.λv.∀x(u@x→v@x)

‘boxer’: λy.boxer(y)

‘walks’: λz.walk(z)

Before going further, pause a moment. These expressions should remind
you of something, namely the representations used in experiment 2. For
example, in experiment 2 we gave the determiner ‘every’ the representation

det(X,Restr,Scope,all(X,imp(Restr,Scope)))

If we use the Prolog variable U instead of Restr, and V instead of Scope
this becomes

det(X,U,V,all(X,imp(U,V)))

which is quite similar to λu.λv.∀x(u@x→v@x).
But there are also important differences. The experiment 2 representation

is a Prolog-specific encoding of missing information. In contrast, lambda ex-
pressions are programming language independent (we could work with them
in Java, C++ or Haskell, for example). Moreover, experiment 2 ‘solved’ the
problem of combining missing information on a rule-by-rule basis. As will
soon be clear, functional application and β-conversion provide a completely
general solution to this problem.

Let’s return to ‘every boxer walks’. According to our grammar, a deter-
miner and a common noun can combine to form a noun phrase. Our semantic
analysis couldn’t be simpler: we will associate the NP node with the func-
tional application that has the determiner representation as functor and the
noun representation as argument.

every boxer (NP)
λu.λv.∀x(u@x→v@x)@λy.boxer(y)

every (Det)
λu.λv.∀x(u@x→v@x)

boxer (Noun)
λy.boxer(y)
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Now, applications are instructions to carry out β-conversion, so let’s do
what is required. (Note that as there are no free occurrences of variables in
the argument expression, there is no risk of accidental variable capture, so we
don’t need to α-convert the functor.) Performing the demanded substitution
yields:

‘every boxer’: λv.∀x(λy.boxer(y)@x→v@x)

But this expression contains the subexpression λy.boxer(y)@x. Now,
the argument x is a free variable, but x does not occur bound in the functor
λy.boxer(y), so we don’t need to α-convert the functor. So we can simply go
ahead and perform the required β-conversion, and when we do so we obtain:

‘every boxer’: λv.∀x(boxer(x)→v@x)

We can’t perform any more β-conversions, so lets carry on with the anal-
ysis of the sentence. The following tree shows the final representation we
obtain:

every boxer walks (S)
∀x(boxer(x)→walk(x))

every boxer (NP)
λv.∀x(boxer(x)→v@x)

walks (VP)
λz.walk(z)

every (Det)
λu.λv.∀x(u@x→v@x)

boxer (Noun)
λy.boxer(y)

Why is the S node associated with ∀x(boxer(x)→walk(x))? It’s cer-
tainly what we want, but where does it come from?

In fact we obtain it by a procedure analogous to that just performed at
the NP node. First, we associate the S node with the application that has
the NP representation just obtained as functor, and the VP representation
as argument:

‘every boxer walks’: λv.∀x(boxer(x)→v@x)@λz.walk(z)

Performing β-conversion yields:
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‘every boxer walks’: ∀x(boxer(x)→ λz.walk(z)@x)

We can then perform β-conversion on the subexpression λz.walk(z)@x,
and when we do so we obtain the desired representation:

‘every boxer walks’: ∀x(boxer(x)→walk(x))

It is worth reflecting on this example, for it shows that in two impor-
tant respects semantic construction is getting simpler. First, the process
of combining two representations is now uniform: we simply say which of
the representations is the functor and which the argument, whereupon com-
bination is carried out by applying functor to argument and β-converting.
Second, more of the load of semantic analysis is now carried by the lexicon:
it is here that we use the lambda calculus to make the missing information
stipulations.

Are there clouds on the horizon? For example, while the semantic repre-
sentation of a quantifying noun phrase such as ‘a woman’ can be used as a
functor, surely the semantic representation of an NP like ‘Vincent’ will have
to be used as an argument? We avoided this problem in experiment 2 by the
variable doubling trick used in the NP rule for proper names—but that was
a Prolog specific approach, incompatible with the use of lambda calculus.
Maybe—horrible thought!—we’re going to be forced to duplicate syntactic
rules again, just as we did in experiment 1.

In fact, there’s no problem at all. The lambda calculus offers a delightfully
simple functorial representation for proper names, as the following examples
show:

‘Mia’: λu.u@mia

‘Vincent’: λu.u@vincent

These representations are abstractions, thus they can be used as functors.
However note what such functors do: they are instructions to substitute
their argument in the slot marked u, which amounts to applying their own
arguments to themselves! Because the lambda calculus offers us the means to
specify such role-reversing functors, the spectre of syntactic rule duplication
vanishes.

As an example of these new representations in action, let us build a
representation for ‘Vincent loves Mia’. We shall assume that TV semantic
representations take their object NP’s semantic representation as argument,
so we assign ‘loves’ the following lambda expression:
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λw.λz.(w@λx.love(z,x)).

And as in the previous example, the subject NP’s semantic representation
takes the VP’s semantic representation as argument, so we can build the
following tree:

Vincent loves Mia (S)
love(vincent,mia)

Vincent (NP)
λu.u@vincent

loves Mia (VP)
λz.(love(z,mia))

loves (TV)
λw.λz.(w@λx.love(z,x))

Mia (NP)
λu.u@mia

Let’s sum up what we have achieved. Our decision to move beyond the ap-
proach of experiment 2 to the more disciplined approach of the lambda calcu-
lus was sensible. For a start, we don’t need to spend any more time thinking
about how to combine two semantic representations—functional application
and β-conversion give us a general mechanism for doing so. Moreover, much
of the real work is now being done at the lexical level; indeed, even the
bothersome problem of finding a decent way of handling NP representations
uniformly now has a simple lexical solution.

In fact, for the remainder of this book, the following version of the three
tasks listed earlier will underly our approach to semantic construction:

Task 1 Specify a DCG for the fragment of natural language of interest.

Task 2 Specify semantic representations for the lexical items with the help
of the lambda calculus.

Task 3 Specify the semantic representation R′ of a syntactic item R whose
parts are F and A with the help of functional application. That is,
specify which of the subparts is to be thought of as functor (here it’s
F), which as argument (here it’s A) and then define R′ to be F ′@A′,
where F ′ is the semantic representation of F and A′ is the semantic
representation of A.



76 CHAPTER 2. LAMBDA CALCULUS

We must now show that the second and third tasks lend themselves nat-
urally to computational implementation.

Exercise 2.3.1 Work in detail through the functional applications and β-conversions
required to build the semantic representations for the VP and the S in the tree for
‘Vincent loves Mia’. Make sure you understand the role-reversing idea used in the
TV’s semantic representation.

2.4 Implementing Lambda Calculus

Our decision to perform semantic construction with the aid of an abstract
glue language (the lambda calculus) has pleasant consequences for grammar
writing. But how can we make the approach computational?

The answer is clear: we should wrap the key combinatorial mechanisms
(functional application, β-conversion, and α-conversion) into a simple black
box. When thinking about semantics we should be free to concentrate on
the interesting issues—we shouldn’t have to worry about the mechanics of
gluing semantic representations together.

In this section we build such a black box. We first show how to represent
lambda abstractions and functional applications in Prolog, we then write (a
first version of) a β-conversion predicate, and finally we write an α-conversion
predicate. The required black box is simply the β-conversion predicate mod-
ified to call the α-conversion predicate before carrying out reductions.

Lambda expressions in Prolog

Let’s get to work. First we have to decide how to represent a lambda ab-
straction λx.E in Prolog. We do so as follows:

lam(X,E).

That is, we use the Prolog functor lam/2 instead of λ, the Prolog variable
X instead of x, and write E (the Prolog representation of E) in the second
argument place of lam.

Next we have to decide how to represent functional applications F@A in
Prolog. We do so as follows:

app(F,A).
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That is, we use the Prolog functor app/2 instead of @, write F (the Prolog
representation of F) as its first argument, and A (the Prolog representation
of A) as its second argument.

With these notational decisions taken, we have all we need to start writing
DCGs that build lambda expressions. Let’s first see what the syntactic rules
will look like. (This following DCG is part of the file experiment3.pl.)
Actually, there’s practically nothing that needs to be said here. If we use the
syntactic rules in the manner suggested by (our new version of) task 3, all
we need is the following:

s(app(NP,VP))--> np(NP), vp(VP).

np(PN)--> pn(PN).

np(app(Det,Noun))--> det(Det), noun(Noun).

vp(IV)--> iv(IV).

vp(app(TV,NP))--> tv(TV), np(NP).

Note that the unary branching rules just percolate up their semantic repre-
sentation (here coded as Prolog variables PN, IV and so on), while the binary
branching rules use app to build semantic representations out of the compo-
nent semantic representations in the manner suggested by task 3. Compared
with the code in experiments 1 and 2, this is completely transparent: we
simply apply function to argument to get the desired result.

The real work is done at the lexical level. The entries for nouns and
intransitive verbs practically write themselves:

noun(lam(X,footmassage(X)))--> [foot,massage].

noun(lam(X,woman(X)))--> [woman].

iv(lam(X,walk(X)))--> [walks].

And here’s the code stating that λx.x@vincent is the translation of
‘Vincent’, and λx.x@mia the translation of ‘Mia’:
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pn(lam(X,app(X,vincent)))--> [vincent].

pn(lam(X,app(X,mia)))--> [mia].

Next, recall that the lambda expressions for the determiners ‘every’ and
‘a’ are λu.λv.∀x.(u@x→v@x) and λu.λv.∃x.(u@x∧v@x). We express these
in Prolog as follows.

det(lam(U,lam(V,all(X,imp((app(U,X)),(app(V,X)))))))--> [every].

det(lam(U,lam(V,some(X,and((app(U,X)),(app(V,X)))))))--> [a].

And now we have enough to start experimenting with semantic construc-
tion: we simply pass the semantic information up the tree from the lexicon,
and app explicitly records how it all fits together. Here is an example query:

?- s(Sem,[mia,snorts],[]).

Sem = app(lam(U,app(U,mia)),lam(X,snort(X)))

Show the infix form
So far so good—but we’re certainly not finished yet. While the output is

correct, we don’t want to produce representations crammed full of lambdas
and applications: we want genuine first-order formulas. So we need a way of
getting rid of the glue after it has served it’s purpose. Let’s start developing
the tools needed to do this.

Implementing β-conversion

The crucial tool we need is a predicate that carries out β-conversion. For
example, when given

app(lam(U,app(U,mia)),lam(X,snort(X)))

as input (this is the rather messy expression just produced by our DCG), it
should carry out the required β-conversions to produce

snort(mia),
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which is the first-order expression we really want. But how can we define
such a predicate?

The crucial idea is to make use of a stack that keeps track of all expressions
that need to be used as arguments at some point. (A stack is a data structure
that stores information in a last-in/first-out manner: the last item ‘pushed’
onto the stack will be the first item ‘popped’ off it. Prolog lists can naturally
be thought of as stacks, the head of the list being the top of the stack).
Let’s look at some examples. Here’s what should happen when we β-convert
app(lam(X,smoke(X)),mia):

Formula Stack Comment
app(lam(X,smoke(X)),mia) [] start with empty stack
lam(X,smoke(X)) [mia] applications push argument onto stack
smoke(mia) [] abstractions pop element from stack

As this example shows, at the start of the β-conversion process the stack
is empty. When the lambda expression we are working with is an application
(as in the first line), its argument is pushed onto the stack and the outermost
occurrence of app is discarded. When the formula we are working with is
an abstraction (as in the second line) the initial lambda is thrown away, and
the item at the top of the stack (here mia) is popped and substituted for the
newly-freed variable (here X). If the expression we are working with is neither
an application nor an abstraction (as in the third line) we halt.

Now, the previous example obviously works correctly, but it is so simple
you might be tempted to think that it is overkill to use a stack. But it’s not.
Consider this example:

Formula Stack
app(app(lam(Z,lam(Y,invite(Y,Z))),mia),vincent) []
app(lam(Z,lam(Y,invite(Y,Z))),mia) [vincent]
lam(Z,lam(Y,invite(Y,Z))) [mia,vincent]
lam(Y,invite(Y,mia)) [vincent]
invite(vincent,mia) []

Note the way the last-in/first-out discipline of the stack ensures that
the arguments are correctly substituted. In this example, vincent is the
argument of the outermost functional application. But we can’t substitute
vincent at this stage as the functor expression

app(lam(Z,lam(Y,invite(Y,Z))),mia)
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is not an abstraction. Instead, we must first β-convert this functor (this
involves substituting mia into the Z slot). As we see in line three, once
this has been done the functor is in the correct syntactic form (that is, its
outermost operator is now a lambda) and so we can substitute mia for Y. In
short, the stack keeps track of which functor corresponds to which argument.

Let’s look at a final example. This shows what happens when the semantic
representation of a proper name is applied to a complex argument:

Formula Stack
app(lam(U,app(U,mia)),lam(X,smoke(X))) []
lam(U,app(U,mia)) [lam(X,smoke(X))]
app(lam(X,smoke(X)),mia) []
lam(X,smoke(X)) [mia]
smoke(mia) []

Well, that’s the idea—let’s now turn it into Prolog. Here’s the base clause:

betaConvert(X,Y,[]):-

var(X),

Y=X.

Why is this correct? As we have seen, the stack is needed because functors
are not always in the required syntactic form (they don’t always have lambda
as the outermost operator), so we sometimes need to β-convert the functor
first. Bearing this is mind, consider the base clause. Variables cannot be
(further) reduced, so the result of β-converting a variable is the variable
itself. Moreover, the stack must be empty at this point, for a non-empty
stack would only make sense if the expression to be reduced was a lambda-
abstraction, which a variable simply isn’t.

Now for the second clause. If we’re not dealing with a variable, and if the
expression is an application (that is, of the form (Functor@Argument)), then
we push the argument onto the stack and go on with reducing the functor.
(Of course, we only do this if the functor is not a variable, as variables cannot
be further reduced in the first place.) The following code does this:

betaConvert(Expression,Result,Stack):-

nonvar(Expression),

Expression = app(Functor,Argument),

nonvar(Functor),

betaConvert(Functor,Result,[Argument|Stack]).
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Now for the third clause. Whereas an application pushes an element on
the stack, an abstraction lam(X,Formula) pops an element off the stack and
substitutes it for X. We implement the substitution process by unifying X

with the element at the top of the stack. Note that this clause can only
be entered if the stack is non-empty: the use of [X|Stack] as the third
argument guarantees that there is at least one element on the stack (and the
choice of the Prolog variable X to mark the top of the stack forces the desired
unification):

betaConvert(Expression,Result,[X|Stack]):-

nonvar(Expression),

Expression = lam(X,Formula),

betaConvert(Formula,Result,Stack).

Finally, we need a clause that deals with other kinds of complex expression
(such as conjunctions) and with lambda-abstractions when the stack is empty.
In such cases we use compose/3 to break down the complex expression into
a list of subexpressions, carry out β-conversion on all elements of this list
using betaConvertList/3, and then re-assemble using compose/3:

betaConvert(Expression,Result,[]):-

nonvar(Expression),

\+ (Expression = app(X,_), nonvar(X)),

compose(Expression,Functor,SubExpressions),

betaConvertList(SubExpressions,ResultSubExpressions),

compose(Result,Functor,ResultSubExpressions).

The definition of betaConvertList/3 is the obvious recursion:

betaConvertList([],[]).

betaConvertList([Expression|Others],[Result|Results]):-

betaConvert(Expression,Result),

betaConvertList(Others,Results).

Last of all, we supply a driver predicate which initialises the β-conversion
process with an empty list:

betaConvert(X,Y):-

betaConvert(X,Y,[]).
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Let’s try out the s(Sem,[mia,snorts],[]) query again—except this
time, we’ll feed the output into our new β-conversion predicate:

?- s(Sem,[mia,snorts],[]), betaConvert(Sem,Reduced).

Sem = app(lam(A,app(A,mia)),lam(B,snort(B)))

Reduced = snort(mia)

yes

This, of course, is exactly what we wanted.

Implementing α-conversion

The stack-based approach to β-conversion just discussed is the heart of the
black box we are constructing. Nonetheless, as it stands, our implementation
of β-conversion is not fully correct. Why not? Because we have ignored the
need to perform α-conversion.

As we mentioned earlier, when performing β-conversion we have to take
care that none of the free variables in the argument becomes accidentally
bound by lambdas or quantifiers in the functor. There is a very easy way to
prevent such problems: before carrying out β-conversion we should change
all the bound variables in the functor (both those bound by lambdas, and
those bound by quantifiers) to variables not used in the argument. Doing so
guarantees that accidental binding simply cannot occur—and not doing so
can have disastrous consequences for semantic construction.

Here’s a typical example of what can go wrong. Let’s start with the
following representations for the NP ‘every man’ and the VP ‘loves a woman’:

‘every man’ (NP): λu.∀y(man(y)→u@y)
‘loves a woman’ (VP): λx.∃y(woman(y)∧love(x,y))

Applying the NP representation to the VP representation gives us the
following representation for the sentence:

λu.∀y(man(y)→u@y)@λx.∃y(woman(y)∧love(x,y)).

Let’s reduce this to something more readable. Substituting the argument
into u yields:
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∀y(man(y)→λx.∃y(woman(y)∧love(x,y))@y).

So far so good—but now things can go badly wrong if we are careless.
We need to perform β-conversion on the following subexpression:

λx.∃y(woman(y)∧love(x,y))@y

At this point, warning bells should start to clang. In this subexpression,
the argument is the free variable y. But now look at the functor: y occurs
existentially quantified, so if we substitute x for its argument y we end up
with:

∀y(man(y)→∃y(woman(y)∧love(y,y)))

This certainly does not express the intended meaning of the sentence ‘every
man loves a woman’ (it says something along the lines of “everything is not a
man or some woman loves herself”). The existential quantifier has ‘stolen’ the
y, which really should have been bound by the outermost universal quantifier.

But we don’t have to fall into this trap. Indeed, avoiding it is simplicity
itself: all we have to do is α-convert the functor of the subexpression so that
it does not bind the variable y. For example, if we decided to replace y by z
in the functor, instead of reducing the expression

λx.∃y(woman(y) ∧love(x,y))@y

(which is what leads to trouble) then our task is instead to reduce the fol-
lowing α-equivalent expression

λx.∃z(woman(z) ∧love(x,z))@y.

Doing it this way yields

∀y(man(y)→ ∃z(woman(z)∧love(y,z)))

which is a sensible semantic representation for ‘every man loves a woman’.
The consequences for our implementation are clear. Two tasks remain

before our desired black box is ready: we must implement a predicate which
carries out α-conversion, and we must alter the β-conversion predicate so
that it uses the α-conversion predicate before carrying out reductions.

Following text probably needs changing. Emphasize that we
want alpha-conversion for other purposes (elimanting alphabetic
variants) not just for beta conversion.
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So the first question is: how do we implement α-conversion? In essence
we recursively strip down the expression that needs to be α-converted and
relabel bound variables as we encounter them. Along the way we will need to
do some administration to keep track of free and bound variables (remember
we only want to rename bound variables). We shall do this with the help
of a list of substitutions and a (difference-) list of free variables. These lists
will be empty at the beginning of the conversion process, and is introduced
by the driver clause for α-conversion:

alphaConvert(Expression,Converted):-

alphaConvert(Expression,[],[]-_,Converted).

And now we simply carry on and define clauses covering all possible kinds
of expressions that could be encountered. First, what happens if we encounter
a variable? Well, if the variable is part of the list of substitutions, we simply
substitute it. Otherwise, it must be a free variable, and we leave it as it is
and add it to the list of free variables. This is coded as follows:

alphaConvert(X,Sub,Free1-Free2,Y):-

var(X),

(

memberList(sub(Z,Y),Sub),

X==Z, !,

Free2=Free1

;

Y=X,

Free2=[X|Free1]

).

Let’s now deal with the crucial case of the variable binders (the existen-
tial quantifier, the universal quantifier, and the lambda-operator). As we
would expect, these are the expressions that introduce substitutions: the
new variable Y will be substituted for X.

alphaConvert(Expression,Subs,Free1-Free2,some(Y,F2)):-

nonvar(Expression),

Expression = some(X,F1),

alphaConvert(F1,[sub(X,Y)|Subs],Free1-Free2,F2).
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alphaConvert(Expression,Subs,Free1-Free2,all(Y,F2)):-

nonvar(Expression),

Expression = all(X,F1),

alphaConvert(F1,[sub(X,Y)|Subs],Free1-Free2,F2).

alphaConvert(Expression,Subs,Free1-Free2,lam(Y,F2)):-

nonvar(Expression),

Expression = lam(X,F1),

alphaConvert(F1,[sub(X,Y)|Subs],Free1-Free2,F2).

Other complex expressions (such as conjunctions) are broken down into
their parts (using compose/3), and α-converted as well, using a predicated
called alphaConvertList. This part of the code is very much like that used
in the analogous part of our β-conversion predicate:

alphaConvert(F1,Subs,Free1-Free2,F2):-

nonvar(F1),

\+ F1 = some(_,_),

\+ F1 = all(_,_),

\+ F1 = lam(_,_),

compose(F1,Symbol,Args1),

alphaConvertList(Args1,Subs,Free1-Free2,Args2),

compose(F2,Symbol,Args2).

And alphaConvertList/3 has the expected recursive definition:

alphaConvertList([],_,Free-Free,[]).

alphaConvertList([X|L1],Subs,Free1-Free3,[Y|L2]):-

alphaConvert(X,Subs,Free1-Free2,Y),

alphaConvertList(L1,Subs,Free2-Free3,L2).

And that’s all there is to it. As this predicate creates brand new symbols
every time it encounters a binding, its output is exactly what we want. For
example, in the following query the some and the all bind the same variable
X. In the output they each bind a distinct, brand new, variable:

?- alphaConvert(some(X,and(man(X),all(X,woman(X)))),R).
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X = _G504
R = some(_G595,and(man(_G595),all(_G639,woman(_G639))))

yes

The Black Box

Fine—but now that we are able to perform α-conversion, how do we use it
to make our β-conversion predicate correct? In the obvious way. Here is the
clause of our β-conversion predicate that handles the case for applications:

betaConvert(Expression,Result,Stack):-

nonvar(Expression),

Expression = app(Functor,Argument),

nonvar(Functor),

betaConvert(Functor,Result,[Argument|Stack]).

We simply have to add a line which uses alphaConvert/2 to relabel all bound
variables in the functor using fresh new symbols:

betaConvert(Expression,Result,Stack):-

nonvar(Expression),

Expression = app(Functor,Argument),

nonvar(Functor),

alphaConvert(Functor,Converted),

betaConvert(Converted,Result,[Argument|Stack]).

And that’s our black box completed.
Of course, we should test that it really works. We have created a test

suite containing entries of the following form:

expression(app(lam(A,lam(B,like(B,A))),mia),

lam(C,like(C,mia))).

The first argument of expression/2 is the lambda expression to be β-
converted, the second is the result (or more accurately, one of the possible
results). If you load the file betaConversion.pl and then issue the command

?- betaConvertTestSuite.
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Prolog will evaluate all the examples in the test suite, and and the output
will be a series of entries of the following form:

Expression: app(lam(_G2,app(_G2,mia)),lam(_G3,walk(_G3)))

Expected: walk(mia)

Converted: walk(mia)

Result: ok

This tells us that our betaConversion predicate has been applied to
Expression (that is, the first argument of expression/2) to produce Converted,
and because this matches what we Expected (that is, the second argument
of expression/2) the Result is ok.

Fine—but why did we say that the second argument of expression/2

was ‘one of the possible results’? Well, consider the following example:

Expression: app(lam(_G5,lam(_G8,like(_G8,_G5))),mia)

Expected: lam(_G4,like(_G4,mia))

Converted: lam(_G1,like(_G1,mia))

Result: ok

Here Expected and Converted are not identical—but the result is clearly
right as the two expressions are α-equivalent. So when we say that Expected
and Converted should ‘match’, what we really mean is that they have to be
α-equivalent.

How do we test that two expressions are α-equivalent? With this code:
Comment

alphabeticVariants(Term1,Term2):-

alphaConvert(Term1,[],[]-Free1,Term3),

alphaConvert(Term2,[],[]-Free2,Term4),

Free1==Free2,

numbervars(Term3,0,_),

numbervars(Term4,0,_),

Term3=Term4.

The code introduced in this section is fundamental to the rest of the book.
It is important that the reader gets to grips with it. A good place to start is
with the following exercises.
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Exercise 2.4.1 The β-conversion code is in file betaConversion.pl. It contains
a commented out sequence of print instructions that displays the contents of the
stack. Comment in these print instructions and then try out the examples in file
betaConversionTestSuite.pl. Incidentally, don’t just run the test suite—read it
as well. Some of the examples are very instructive, and the file contains comments
on many of them.

Exercise 2.4.2 Some readers may still wonder whether we really need α-conver-
sion. After all (they might argue) all we really need is a guarantee that we will
never encounter two distinct occurrences of a binding operator (∀, ∃ or λ) binding
the same variable. And couldn’t we write our lexicons in such a way that every
distinct occurrence of a binding operator binds a distinct variable?

Well, we could do this, but apart from being an unwieldy (lexicons can be very
big so we would need a lot of distinct variables) writing lexicons in this way is
not enough to ensure that distinct occurences of binding operators bind distinct
variables. Why not? (Hint: ‘and’ is translated by the following lambda expression:

λu.λv.λx.(u@x ∧ v@x).
Use this to build a semantic representation for ‘Vincent and Mia dance’. What do
you observe?)

Exercise 2.4.3 In the text we learned that failing to apply α-conversion be-
fore reducing β-expressions can yield the incorrect representations. In fact, if
we try to work with our first version of betaConvert (the one that doesn’t call on
alphaConvert) we also encounter a host of additional Prolog-specific problems.

The β-conversion code is in file betaConversion.pl. By commenting out a
single marked line in this file, α-conversion can be turned off. Do the following
experiments.

1. Enrich the DCG with a rule for ‘and’ (use the semantic representation
for ‘and’ given in the previous question) and show that with α-conversion
switched on, your DCG gives the correct representation for ‘Vincent and Mia
dance’. Then explain why Prolog fails to build any representation at all
when α-conversion is turned off.

2. Run file betaConversionTestSuite.pl with α-conversion turned off. You
will encounter some surprising behaviour (for example, in one case Prolog
fails to terminate). Explain these failures.

Exercise 2.4.4 [intermediate] Give the Prolog code for lexical entries of ditran-
sitive verbs such as ‘offer’ in ‘Vincent offers Mia a drink’.
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Exercise 2.4.5 [intermediate] Find a suitable lambda expression for the lexical
entry of the determiner ‘no’, and then give the corresponding Prolog code.

Exercise 2.4.6 [intermediate] Extend the DCG so that it covers sentences such
as ‘everyone dances’ and ‘somebody snorts’.

Exercise 2.4.7 [hard] Pereira and Shieber provide a simpler approach to the se-
mantics for transitive verbs. Firstly, lam(X,lam(Y,love(X,Y))) is their semantic
representation for the verb ‘love’. Secondly, they use the following grammar rule
to deal with transitive verbs:

vp(lam(X,app(NP,TV)))--> tv(lam(X,TV)), np(NP).

Explain how this works. Is it really unproblematic?

Exercise 2.4.8 [intermediate] In our discussion in the text we assumed that β-
conversion was carried out only after the DCG had been built for the entire sen-
tence. Change the DCG so that β-conversion is interleaved with semantic construc-
tion. This can be done by making β-conversion part and parcel of the grammar.
For instance, change the rule for sentences to

s(S)--> np(NP), vp(VP), {betaConvert(app(NP,VP),S)}.
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Programs for implementing the lambda calculus

experiment3.pl

DCG with lambda calculus for a small fragment of English.

betaConversion.pl

Implementation of β-conversion.

alphaConversion.pl

Implementation of α-conversion.

betaConversionTestSuite.pl

Lots of examples to test our implementation of β-
conversion.

comsemPredicates.pl

Definitions of some auxiliary predicates.
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2.5 Grammar Engineering

With our notation for lambda abstraction and functional application, and
our implementation of β-conversion, we have the basic semantic construction
tools needed in this book. So it is time to move on from the baby DCGs we
have been playing with and define a more interesting grammar fragment.

But let’s do it right—we should try to observe some basic principles of
grammar engineering. That is, we should strive for a grammar that is modular
(each component should have a clear role to play and a clean interface with
the other components), extendible (it should be straightforward to enrich the
grammar should the need arise) and reusable (we should be able to reuse
a significant portion of the grammar, even when we change the underlying
representation language).

Grammar engineering principles have strongly influenced the design of
the larger grammar we shall now discuss—and not , we would like to stress,
purely for pedagogic reasons. We have experimented with many ways of
computing semantic representations (for example, in the following chapter
we will consider four different techniques for coping with scope ambiguities).
Moreover we have checked that our approach is compatible with other seman-
tic representation languages (notably Discourse Representation Structures)
though this is not a topic we shall explore in this book. As we have learned
(often the hard way) incorporating such extensions, and keeping track of
what is going on, requires a disciplined approach towards grammar design.

We have opted for a fairly simple two-dimensional grammar architecture
consisting of a collection of syntax rules and corresponding composition rules,
and a lexicon with a set of semantic macros.

The syntax rules are DCG rules annotated with additional grammatical
information. These rules will not change in the course of the book. The
lexicon lists information about words belonging to most syntactic categories
in an easily extractable form; again, this component will stay fixed through-
out the book. The syntax rules together with the lexical entries describe the
syntactic part of the grammar. (Actually, strictly speaking, this is not true.
As we will see, the lexical entries also contain some simple facts about what
is usually called lexical semantics; for example, that ‘big’ is the opposite of
‘small’.)

The semantic part of the grammar consists of the composition rules and
the crucial semantic macros. The composition rules state how semantic rep-
resentations of a complex category is computed out of the semantic repre-
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sentations of its parts. The semantic macros are where we write the lambda
definitions that tell us how the word combines level at which we state what
we have previously called ‘lexical entries’. It is here that we will do most
of our semantic work, and our modifications will largely be confined to this
level.

The diagram below illustrates the modular design of the syntax-semantics
interface and the Prolog predicates that implement it.

grammar lexicon
syntax syntax rules (-->/2) lexical entries (lexEntry/2)

semantics composition rules (combine/2) semantic macros (semMacro/2)

The DCG and the lexical entries are stored in two separate files. The
semantic rules and macros, because they are dependent on the choice of
semantic formalism, and we will change this as we gradually add more and
more sophistication to our semantic analysis, are part of the main file.

The Syntax Rules

Here are some of the core DCG rules that we are using. (We won’t show
all the rules but instead explain only some of them, as they bear all strik-
ing similarities. Please consult the file englishGrammar.pl for the complete
set of rules.) These rules license a number of semantically important con-
structions, such as proper names, determiners, pronouns, relative clauses,
the copula construction, and coordination. The DCG rules were using re-
semble those we used earlier in this chapter, but there are some important
differences. First of all, in order to deal with agreement, morphology, and
coordination, we will decorate syntactic categories with a list of feature value
pairs expressing this grammatical information. And secondly, all syntax rules
come with a hook to a semantics rule, in the form of the combine/2 notation.
Here is an example illustrating these two extensions:

s([coord:no,sem:Sem])-->

np([coord:_,num:Num,sem:NP]),

vp([coord:_,inf:fin,num:Num,sem:VP]),

{combine(s:Sem,[np:NP,vp:VP])}.

This rule is of course the familiar S→ NP VP rule, but it tells us slightly
more: this S is a non-coordinating sentence, that the number feature of NP
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and VP are constrained to be of the same value, and that the inflectional
form of the VP must be finite.

Now consider some rules that show how coordination is dealt with. Im-
plementing coordination in DCGs requires special attention because DCGs
should stay away from lect-recursive syntax rules (that is, rules of the form
X → X Y), as this will cause Prolog to fall in an infinite loop. The way we
solve this is simple and effective, and introduces a feature coord that can
either have the value yes or no.

np([coord:yes,num:pl,sem:NP])-->

np([coord:no,num:sg,sem:NP1]),

coord([type:conj,sem:C]),

np([coord:_,num:_,sem:NP2]),

{combine(np:NP,[np:NP1,coord:C,np:NP2])}.

np([coord:yes,num:sg,sem:NP])-->

np([coord:no,num:sg,sem:NP1]),

coord([type:disj,sem:C]),

np([coord:_,num:sg,sem:NP2]),

{combine(np:NP,[np:NP1,coord:C,np:NP2])}.

These rules show a further interesting point about English noun phrases
in coordination, namely that its grammatical number is determined by the
kind of coordinating particle that is used. So, the NP ‘Mia and Vincent’ will
receive the value pl for the feature num, whereas ‘Mia or Vincent’ gets the
value sg.

Finally, we’ve got the lexical rules. These are rules that apply to terminal
symbols, the actual strings in the input of the parser, and need to call the
lexicon to check if a string belongs to the syntactic category searched for.

noun([sem:Sem])-->

{lexEntry(noun,[symbol:Symbol,syntax:Word,_])},

Word,

{semMacro(noun,[symbol:Symbol,sem:Sem])}.

In this example for nouns, the semantic macro is used to construct the
actual semantic representation for a noun. Each lexical category is associated
with such a macro, and this enables us to abstract away from specific types
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of structures. So we have set up the syntax rules in such a way that we
are independent from the semantic theory we want to work with, and this
is an attractive property as we are going to change the underlying semantic
representations in the following chapters.

All these rules will work for us unchanged throughout the book. The
reader can find a complete list in the file englishGrammar.pl. Furthermore,
the file lambda.pl, that contains the implementation of the lambda calculus
of this chapter, already uses these rules in the way described here.

One shortcoming should be mentioned. We implemented a limited amount
of inflectional morphology—all our examples are relentlessly third-person
present-tense. This is a shame (tense and its interaction with temporal ref-
erence is a particularly rich source of semantic examples), nonetheless, we
shall not be short of interesting things to do. Even this small set of rules
assigns tree structures to an interesting range of English sentences:

Mia knows every owner of a hash bar.
Vincent or Mia dances.
Every boxer that kills a criminal loves a woman.
Vincent does not love a boxer or criminal that snorts.
Vincent does not love a boxer or a criminal that snorts.
If a boxer snorts then a woman collapses.

The Composition Rules

Let’s turn to the composition rules. Here the news is extremely pleasant.
For a start, the required semantic annotations are utterly straightforward;
they are simply the obvious “apply the function to the argument statements”
expressed with the help of app/2.

combine(s:app(A,B),[np:A,vp:B]).

That is, we simply apply the NP semantics to the VP semantics. None
of the rules are much more complex than this. The rules for coordination
are the most complex, but even these are straightforward as the following
example shows:

combine(np:app(app(B,A),C),[np:A,coord:B,np:C]).

The unary rules, of course, are even simpler for they merely pass the
representation up to the mother node. For example:
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combine(np:A,[pn:A]).

Of course, because combine/3 offers us extreme flexibility in implement-
ing semantic construction, we can also choose to apply β-conversion directly:

combine(t:Converted,[s:Sem]):-

betaConvert(Sem,Converted).

At this point we would like to stress once more the modularity of this
approach to grammar engineering. For instance, if one were to replace the
lambda calculus with another tool for computing semantic representations
(which we think is probably not a good idea), the combine/2 rules would be
the right place to do it.

The Lexicon

Our lexicon lists information about the words belonging to most syntactic
categories in a form useful for the interface component that we shall shortly
define. The general format of a lexical entry is lexEntry(Cat,Features)

where Cat is the syntactic category, and Features a list of feature-value
pairs. This list contains specific information depending on the type of lexical
entry, such as sortal properties for nouns, gender information proper names,
and inflectional status for verbs.

We will go through a few examples to get an idea how the lexicon is set
up. Let’s first consider nouns:

lexEntry(noun,[symbol:beverage,syntax:[beverage],hypernyms:[drinkable,food]]).

lexEntry(noun,[symbol:burger,syntax:[burger],hypernyms:[edible,food]]).

lexEntry(noun,[symbol:boxer,syntax:[boxer],hypernyms:[person]]).

lexEntry(noun,[symbol:boss,syntax:[boss],hypernyms:[person]]).

Nouns in our lexicon come with three features: symbol, the relation sym-
bol used to compute the semantic representation), syntax, a list of words
describing the appearance of the lexical entry in a phrase (note that we use
a list here to deal with multi-word phrases would we like to do so), and fi-
nally hypernyms, information about the noun’s hypernym relation to other
symbols of our semantic vocabulary. The latter information will be used
to compute a simple ontology that will be useful for generating background
knowledge for inference tasks. In Chapter 6 we will explore this information.

Other lexical entries are much simpler of nature. A case in point are the
entries for determiners, containing no semantic information at all:
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lexEntry(det,[syntax:[every],type:uni]).
lexEntry(det,[syntax:[a],type:indef]).
lexEntry(det,[syntax:[the],type:def]).
lexEntry(det,[syntax:[which],type:wh]).

The semantic contribution of determiners is not simply a constant or
predicate symbol, but rather a relatively complex expression that is depen-
dent on the underlying representation language. Hence we shall specify the
semantics of these categories in the semantic macros.

Proper names are coded in the lexicon with gender information. Note the
use of the multi-word lexeme here for ‘Vincent Vega’.

lexEntry(pn,[symbol:vincent,syntax:[vincent,vega],gender:male]).
lexEntry(pn,[symbol:yolanda,syntax:[yolanda],gender:female]).

Another example of lexical entries encoding background knowledge are
adjectives. Here we introduce antonyms relations, expressing disjointness
between semantic concepts. Again, we will explain in Chapter 4 how we will
explore this information.

lexEntry(adj,[symbol:big,syntax:[big],antonyms:[small]]).
lexEntry(adj,[symbol:kahuna,syntax:[kahuna],antonyms:[]]).
lexEntry(adj,[symbol:male,syntax:[male],antonyms:[female]]).
lexEntry(adj,[symbol:married,syntax:[married],antonyms:[single]]).

As a final example (please refer to englishLexicon.pl for a complete
listing of the lexicon), consider the lexical entries for the transitive verb to
clean:

lexEntry(tv,[symbol:clean,syntax:[clean],inf:inf,num:sg]).
lexEntry(tv,[symbol:clean,syntax:[cleans],inf:fin,num:sg]).
lexEntry(tv,[symbol:clean,syntax:[clean],inf:fin,num:pl]).

This way of setting up a lexicon offers natural expansion options. For
example, if decided to develop a grammar that dealt with both singular and
plural forms of nouns (which we won’t do so in this book), it is just a matter
of extending the general format of entries with one or more fields.
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The Semantic Macros

We now come to arguably the most important part of the grammar, the
semantic macros. As the introduction of combine/3 has reduced the process
of combining semantic representations to an elegant triviality, and as the
only semantic information the lexicon supplies is the relevant constant and
relation symbols, the semantic macros is where the real semantic work will
be done. Let’s consider some examples of semantic macros right away.

semMacro(pn,M):-

M = [symbol:Sym,

sem:lam(U,app(U,Sym))].

semMacro(pn,M):-

M = [symbol:Sym,

sem:lam(U,app(U,Sym))].

semMacro(noun,M):-

M = [symbol:Sym,

sem:lam(X,Formula)],

compose(Formula,Sym,[X]).

semMacro(tv,M):-

M = [symbol:Sym,

sem:lam(K,lam(Y,app(K,lam(X,Formula))))],

compose(Formula,Sym,[Y,X]).

semMacro(tv,M):-

M = [symbol:Sym,

sem:lam(K,lam(Y,app(K,lam(X,F))))],

compose(F,Sym,[Y,X]).

The semantic macro for proper names is straightforward. For instance, for
‘Mia’, the value mia will be associated with the feature symbol, and hence the
representation lambda(U,app(U,mia)) will be associated with the feature
sem. The second macro builds a semantic representation for any noun given
the predicate symbol Sym, turning this into a formula lambda abstracted with
respect to a single variable. The representation is built using the compose/3

predicate to coerce it into a the required lambda expression. For example,
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the symbol boxer would give the formula lambda(X,boxer(X)). The macro
for transitive verbs is similar to that of the macro for nouns, apart from
handling two variables rather than just one.

As we’ve already mentioned, the interface also contains self-contained
entries for the determiners. Here they are:

semMacro(det,M):-
M = [type:uni,

sem:lam(U,lam(V,all(X,imp((app(U,X)),(app(V,X))))))].

semMacro(det,M):-
M = [type:indef,

sem:lam(U,lam(V,some(X,and((app(U,X)),(app(V,X))))))].

semMacro(det,M):-
M = [type:indef,

sem:lam(U,lam(V,some(X,and(app(U,X),app(V,X)))))].

These, of course, are just the old-style ‘lexical entries’ we are used to.

Exercise 2.5.1 [easy] Find out how copula verbs are handled in the lexicon and
grammar, and how the semantic representation for sentences like ‘Mia is a boxer’
and ‘Mia is not Vincent’ are generated.

Exercise 2.5.2 [moderate] Extend the grammar such that is allows expressions
of the form Vincent is male, Mia and Vincent are cool, and Marsellus or Butch is big.

Exercise 2.5.3 [moderate] Extend the grammar such that is allows expressions
of the form ‘Vincent and Jules are in a restaurant’ and ‘Butch is without a weapon’.
(Represent the meaning of the preposition ‘without’ as a simple two-place relation
symbol.)

Exercise 2.5.4 [hard] Add the preposition ‘without’ to the lexicon, and define
a new semantic macro that takes the implicit negation of this preposition into
account. For instance, ‘a man without a weapon’ should receive a representation
such as ∃x(man(x)∧¬∃y(weapon(y)∧with(x,y))).

From now on, we will always use the syntax rules and the lexicon (with
the exceptions of a few pedagogic explorations of other formats). To put it
another way: from now on the primary locus of change will be the semantic
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macros and the composition rules. For example, it is here that we will de-
velop treatments of quantifier scope, pronoun resolution, and presupposition
accommodation. For a complete listing of the macros we have just been dis-
cussing, see the file lambda.pl, but we shall see many more types of semantic
macros as we work our way through the book.

Programs for the full grammar fragment

lambda.pl

This is the main file for the implementation of the lambda
calculus using the extended grammar

betaConversion.pl

The predicates that implement β-conversion.

alphaConversion.pl

The predicates that implement β-conversion.

readLine.pl

Module for converting strings into lists.

sentenceTestSuite.pl

Test suite with sentences.

englishLexicon.pl

Our standard English lexical entries. Contains entries for
nouns, proper names, intransitive and transitive verbs,
prepositions, and pronouns.

englishGrammar.pl

Our standard grammatical rules for a fragment of English.
Rules cover basic sentences, noun phrases, relative clauses
and modification of prepositional phrases, verb phrases,
and a limited form of coordination.
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Chapter 3

Underspecified Representations

This chapter develops methods for dealing with an important semantic phe-
nomenon: scope ambiguities. Sentences with scope ambiguities are often
semantically ambiguous (that is, they have at least two non-equivalent first-
order representations) but fail to exhibit any syntactic ambiguity (that is,
they have only one syntactic analysis). As our approach to semantic con-
struction is based on the idea of using syntactic structure to guide semantic
construction, we face an obvious problem here: if there is no syntactic am-
biguity, we will only be able to build one of the possible representations. As
scope ambiguities are common, we need to develop ways of coping with them
right away.

We are going to investigate four different approaches to scope ambigui-
ties: Montague’s original method, two storage based methods, and a modern
underspecification based approach called hole semantics. We will implement
the storage based approaches and hole semantics.

But as well as developing practical solutions to a pressing problem, this
chapter tells an important story. Computational semanticists are adopting
an increasingly abstract perspective on what representations are and how
we should work with them. Once we have studied the evolutionary line
leading from Montague’s method to contemporary underspecification-based
methods, we will be in a better position to appreciate why.

101
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3.1 Scope Ambiguities

Scope ambiguity is a common phenomenon and can arise from many sources.
In this chapter we will mostly be concerned with quantifier scope ambigui-
ties. These are ambiguities that arise in sentences containing more than one
quantifying noun phrase; for example, ‘Every boxer loves a woman’.

The methods of the previous chapter allow us to assign a representation
to this sentence as follows:

Every boxer loves a woman (S)
∀x(boxer(x)→ ∃y(woman(y)∧love(x,y)))

Every boxer (NP)
λP.∀x(boxer(x)→P@x)

loves a woman (VP)
λz.∃y(woman(y)∧love(z,y))

loves (TV)
λX.λz.X@λx.love(z,x)

a woman (NP)
λQ.∃y(woman(y)∧Q@y)

The first-order formula we have constructed states that for each boxer
there is a woman that he loves:

(1) ∀x(boxer(x)→ ∃y(woman(y)∧love(x,y)))

This representation permits different women to be loved by different boxers.
However ‘Every boxer loves a woman’ has a second meaning (or to use the

linguistic terminology, a second reading) that is captured by the following
formula:

(2) ∃y(woman(y) ∧ ∀x(boxer(x) → love(x,y)))

This says that there is one woman who is loved by all boxers.
It is clear that these readings are somehow related, and that this relation

has something to do with the relative scopes of the quantifiers: both first-
order representations have the same components, but somehow the parts
contributed by the two quantifying noun phrases have been shuffled around.
In the first representation the existential quantifier contributed by ‘a woman’
has ended up inside the scope of the universal quantifier contributed by ‘every
boxer’ and in the second representation the nesting is reversed. It is usual
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to say that in the first reading ‘every boxer’ has scope over (or outscopes) ‘a
woman’, while in reading (2) ‘a woman’ has scope over ‘every boxer’.

Unfortunately, these scoping possibilities are not reflected syntactically:
the only plausible parse tree for this sentence is the one just shown. Thus
while it makes good semantic sense to say that in reading (2) ‘a woman’
outscopes ‘every boxer’, we can’t point to any syntactic structure that would
explain why this scoping possibility exists. And as each word in the sentence
is associated with a fixed lambda expression, and as semantic construction is
simply functional application guided by the parse tree, this means there is no
way for us to produce this second reading. This difficulty clearly strikes at the
very heart of our semantic construction methodology. As scope ambiguities
are extremely common, so we urgently need a solution.

In this chapter we examine four increasingly sophisticated (and increas-
ingly abstract) approaches to the problem. The first of these, Montague’s
original method, introduces some important ideas, but as it relies on the
use of additional rules it isn’t compatible with the approach to grammar
engineering adopted in this book. However by introducing a more abstract
form of representation—the store—we will be able to capture Montague’s key
ideas in a computationally attractive way. Stores were introduced by Robin
Cooper and are arguably the earliest example of underspecified representa-
tions . Nonetheless, stores are relatively concrete. By simultaneously moving
to more abstract underspecified representations, and replacing the essentially
generative perspective underlying storage methods with a constraint based
perspective, we arrive at hole semantics. As we shall see, this more abstract
view of what representations are, and how we should work with them, has
advantages. For example, in hole semantics not only can we handle quanti-
fier scope ambiguities, we can also handle the scope ambiguities created by
constructs such as negation, and do so in a uniform way.

But before examining these solutions let’s discuss the problem a little
further. Some readers may be having doubts: are scope ambiguities really
such a problem? Consider again ‘Every boxer loves a woman’. In a sense,
representation (1) is sufficient to cover both readings of our example: it
is ‘weaker’, since it is entailed by representation (2). Couldn’t we argue
that this weaker reading is the ‘real’ representation of the sentence, and
that the stronger reading is pragmatically inferred from it with the help of
contextual knowledge? Perhaps we don’t need novel techniques for coping
with quantifier ambiguity after all.

But while this idea is just about plausible for ‘Every boxer loves a woman’,
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it doesn’t withstand closer scrutiny. Consider the sentence ‘Every owner of a
hash bar gives every criminal a big kahuna burger’. This has 15 readings. Some
of these readings turn out to be logically equivalent, but even after we take
this into account we are still left with 11 distinct readings. Here they are:

Node 1: (reading 1)
1:∀A(criminal(A) & male(A) → ∃B(bkburger(B) & (neuter(B) & ∀C(∀D(hashbar(D) & (neuter(C) &
(neuter(D) & (owner(C) & of(C,D)))) → give(C,A,B))))))

Node 2: (reading 2)
2:∀A(criminal(A) & male(A) →∃B(∃C(bkburger(C) & (hashbar(B) & (neuter(B) & (neuter(C) & ∀D(neuter(D)
& (owner(D) & of(D,B)) → give(D,A,C))))))))

Node 3: (reading 3)
3:∀A(criminal(A) & male(A) → ∃B(hashbar(B) & (neuter(B) & ∀C(neuter(C) & (owner(C) & of(C,B))
→ ∃D(bkburger(D) & (neuter(D) & give(C,A,D)))))))

Node 4: (reading 4 and 14)
4:∀A(criminal(A) & male(A) → ∀B(∀C(hashbar(C) & (neuter(B) & (neuter(C) & (owner(B) & of(B,C))))
→ ∃D(bkburger(D) & (neuter(D) & give(B,A,D))))))
14:∀A(∀B(hashbar(B) & (neuter(A) & (neuter(B) & (owner(A) & of(A,B)) )) → ∀C(criminal(C) &
male(C) → ∃D(bkburger(D) & (neuter(D) & giveA(C,D))))))

Node 5: (reading 5)
5:∃A(bkburger(A) & (neuter(A) & ∀B(criminal(B) & male(B) →∃C(hashbar(C) & (neuter(C) & ∀D(neuter(D)
& (owner(D) & of(D,C)) → give(D,B,A)))))))

Node 6: (reading 6 and 7)
6:∃A(bkburger(A) & (neuter(A) & ∀B(criminal(B) & male(B) → ∀C(∀D(hashbar(D) & (neuter(C) &
(neuter(D) & (owner(C) & of(C,D)))) → give(C,B,A))))))
7:∃A(bkburger(A) & (neuter(A) & ∀B(∀C(hashbar(C) & (neuter(B) & (neuter(C) & (owner(B) & of(B,C))))
→ ∀D(criminal(D) & male(D) → give(B,D,A))))))

Node 8: (reading 8)
8:∃A(hashbar(A) & (neuter(A) & ∀B(criminal(B) & male(B) →∃C(bkburger(C) & (neuter(C) & ∀D(neuter(D)
& (owner(D) & of(D,A)) → give(D,B,C)))))))

Node 9: (reading 9 and 12)
9:∃A(hashbar(A) & (neuter(A) & ∀B(criminal(B) & male(B) → ∀C(neuter(C) & (owner(C) & of(C,A))
→ ∃D(bkburger(D) & (neuter(D) & give(C,B,D)))))))
12:∃A(hashbar(A) & (neuter(A) & ∀B(neuter(B) & (owner(B) & of(B,A)) → ∀C(criminal(C) & male(C)
→ ∃D(bkburger(D) & (neuter(D) & give(B,C,D)))))))

Node 10: (reading (10 and 11)
10:∃A(∃B(bkburger(B) & (hashbar(A) & (neuter(A) & (neuter(B) & ∀C(criminal(C) & male(C) →∀D(neuter(D)
& (owner(D) & of(D,A)) → give(D,C,B))))))))
11:∃A(∃B(bkburger(B) & (hashbar(A) & (neuter(A) & (neuter(B) & ∀C(neuter(C) & (owner(C) & of(C,A))
→ ∀D(criminal(D) & male(D) → give(C,D,B))))))))

Node 13: (reading 13)
13:∃A(hashbar(A) & (neuter(A) & ∀B(neuter(B) & (owner(B) & of(B,A)) →∃C(bkburger(C) & (neuter(C)
& ∀D(criminal(D) & male(D) → give(B,D,C)))))))

Node 15: (reading 15)
15:∀A(∀B(hashbar(B) & (neuter(A) & (neuter(B) & (owner(A) & of(A,B)))) →∃C(bkburger(C) & (neuter(C)
& ∀D(criminal(D) & male(D) → give(A,D,C))))))

If we examine these readings closely and determine their logical rela-
tionships we discover that they are partitioned into two logically unrelated
groups, as shown the following diagram:
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10

13 8

9

5

2

3

6

15 1

4

The arrows in the diagram represent logical implication. Note that each
group has a weakest reading (namely 10 and 6) but there is no single weakest
reading that covers all the possibilities. It is difficult to see how a pragmatic
approach could account for this example.

Incidentally, we did not (as the reader will doubtless be relieved to hear)
have to compute these readings and determine their logical relationships by
hand. In fact, all we had to do was combine the semantic construction
methods discussed in this chapter with the kind of inference tools discussed
in Chapter 5. In Chapter 6 we show the reader exactly how this can be done.

3.2 Montague’s Approach

Montague semantics makes use of (indeed, is the source of) the direct method
of constructing semantic representations for quantified NPs studied in the
previous chapter. However, motivated in part by quantifier scope ambigui-
ties, Montague also introduced a rule of quantification (often called quanti-
fier raising) that allowed a more indirect approach. The basic idea is simple.
Instead of directly combining syntactic entities with the quantifying noun
phrase we are interested in, we are permitted to choose an ‘indexed pronoun’
and to combine the syntactic entity with the indexed pronoun instead. In-
tuitively, such indexed pronouns are ‘placeholders’ for the quantifying noun
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phrase. When this placeholder has moved high enough in the tree to give
us the scoping we are interested in, we are permitted to replace it by the
quantifying NP of interest.

As an example, let’s consider how to analyse ‘Every boxer loves a woman’.
Here’s the first part of the tree we need:

(3) Every boxer loves her-3 (S)
∀x(boxer(x)→love(x,z3))

Every boxer (NP)
λP.∀x(boxer(x)→P@x)

loves her-3 (VP)
λy.love(y,z3))

loves (TV)
λX.λy.X@λx.love(y,x)

her-3 (NP)
λP.P@z3)

Instead of combining ‘loves’ with the quantifying term ‘a woman’ we have
combined it with the placeholder pronoun ‘her-3’. This pronoun bears an
‘index’, namely the numeral ‘3’. The placeholder pronoun is associated with
a ‘semantic placeholder’, namely λP.P@z3. As we shall see, it is the semantic
placeholder that does most of the real work for us. Note that the pronoun’s
index appears as subscript on the free variable in the semantic placeholder.
From a semantic perspective, choosing an indexed pronoun really amounts to
opting to work with the semantic placeholder (instead of the semantics of the
quantifying NP) and stipulating which free variable the semantic placeholder
should contain.

Now, the key point the reader should note about this tree is how ordinary
it is. True, it contains a weird looking pronoun ‘her-3’—but, that aside, it’s
just the sort of structure we’re used to. For a start, the various elements
are syntactically combined in the expected way. Moreover λP.P@z3, the se-
mantic representation associated with the placeholder pronouns, should look
familiar. Recall that the semantic representation for ‘Mia’ is λP.P@mia.
Thus the placeholder pronoun is being given the semantics of a proper name,
but with an individual variable (here z3) instead of a constant, which seems
sensible. Moreover (as the reader should check) the representations for ‘loves
her-3’ and ‘every boxer loves her-3’ are constructed using functional applica-
tion just as we discussed in the previous chapter. In short, we have ‘raised’
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both the syntactic and semantic placeholders high into the tree, and we have
done so in a completely orthodox way.

Now for the next step. We want to ensure that ‘a woman’ outscopes ‘every
boxer’. By using the placeholder pronoun ‘her-3’, we have delayed introducing
‘a woman’ into the tree. But ‘every boxer’ is now firmly in place, so if we
replaced ‘her-3’ by ‘a woman’ we would have the desired scoping relation.
Predictably, there is a rule that lets us do this: given a quantifying NP, and
a sentence containing a placeholder pronoun, we are allowed to construct
a new sentence by substituting the quantifying NP for the placeholder. In
short, we are allowed to extend the previous tree as follows:

(4)

Every boxer loves a woman (S)

a woman (NP)
λP.∃y(woman(y)∧P@y)

Every boxer loves her-3 (S,3)
∀x(boxer(x)→love(x,z3))

But what’s happening semantically? We know what formula we want to
be assigned to the top S node (namely, the formula 2) but how can we ensure
it gets there? Let’s think the matter through.

We want ‘a woman’ to take wide scope over ‘every boxer’ semantically.
Hence we should use the semantic representation associated with ‘a woman’
as the function. (To see this, simply look at the form of its semantic represen-
tation. When we apply it to an argument and perform β-conversion, we will
be left with an existentially quantified expression, which is what we want.)
But what should its argument be? There is only one reasonable choice. It
must be the representation associated with ‘every boxer loves her-3’ lambda
abstracted with respect to z3:

(5) λz3.∀x(boxer(x)→love(x,z3))

Why is this? Well, right at the bottom of the tree we made use of the
semantic placeholder λP.P@z3. When we raised this placeholder up the tree
using functional application, we were essentially ‘recording’ what the seman-
tic representation of ‘a woman’ would have encountered if we had used it
directly. (Remember, we did nothing unusual, either syntactically or seman-
tically, during the raising process.) The formula ∀x(boxer(x)→love(x,z3))
is the record of these encounters. When we are ready to ‘play back’ this
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recorded information, we lambda abstract with respect to z3 (thus indicat-
ing that this variable is the crucial one, the one originally chosen) and feed
the resulting expression as an argument to the semantic representation of ‘a
woman’. Lambda conversion will glue this record into its rightful place, and,
as the following tree shows, everything will work out just right:

(6)

Every boxer loves a woman (S)
∃y(woman(y)∧∀x(boxer(x)→love(x,y)))

a woman (NP)
λP.∃y(woman(y)∧P@y)

Every boxer loves her-3 (S, 3)
λz3.∀x(boxer(x)→love(x,z3))

That’s it. Summing up, Montague’s approach makes use of syntactic and
semantic placeholders so that we can place quantifying NPs in parse trees
at exactly the level required to obtain the desired scope relations. A neat
piece of ‘lambda programming’ (we call it Montague’s trick) ensures that the
semantic information recorded by the placeholder is re-introduced into the
semantic representation correctly.

But will Montague’s approach help us computationally? As it stands,
no. Why not? Because it does not mesh well with the grammar engineering
principles adopted in this book. We want semantical construction methods
which we can bolt onto pretty much any grammar which produces parse trees
for a fragment of natural language. Moreover, we never want to be forced
to modify a grammar: ideally we’d like to be able to treat the syntactical
component as a black box, hook our semantic representations onto it, and
then compute.

But Montague’s approach doesn’t work that way. To apply his method
directly, we have to add extra rules to our grammars, such as the rules for
introducing placeholder pronouns and for eliminating placeholder pronouns
in favour of quantifying noun phrases, that we saw in our example. And if we
wanted to deal with more serious scope problems (for example, the interaction
of quantifier scope ambiguities with negation) we would probably have to add
a lot of extra rules as well. This is not only hard work, it seems linguistically
misguided: grammar rules are there to tell us about syntactic structure—but
now we’re using them to manipulate mysterious-looking placeholder entities
in a rather ad-hoc looking attempt to reduce scope issues to syntax.
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But while we won’t use Montague’s approach directly, we will use it in-
directly. For as we shall now see, it is possible to exploit Montague’s key
insights in a different way.

3.3 Storage Methods

Storage methods are an elegant way of coping with quantifier scope ambigui-
ties: they neatly decouple scope considerations from syntactic issues, making
it unnecessary to add new grammar rules. Moreover, both historically and
pedagogically, they are the natural approach to explore next, for they draw
on the key ideas of Montague’s approach (in essence, they exploit semantic
placeholders and Montague’s trick in a computationally natural way) and at
the same time they anticipate key themes of modern underspecification-based
methods.

Cooper Storage

Cooper storage is a technique developed by Robin Cooper for handling quan-
tifier scope ambiguities. In contrast to the work of the previous section, se-
mantic representations are built directly, without adding to the basic gram-
mar rules. The key idea is to associate each node of a parse tree with a store,
which contains a ‘core’ semantic representation together with the quantifiers
associated with nodes lower in the tree. After the sentence is parsed, the
store is used to generate scoped representations. The order in which the
stored quantifiers are retrieved from the store and combined with the core
representation determines the different scope assignments.

To put it another way, instead of simply associating nodes in parse trees
with a single lambda expression (as we have done until now), we are going
to associate them with a core semantic representation, together with the
information required to turn this core into the kinds of representation we are
familiar with. Viewed from this perspective, stores are simply a more abstract
form of semantic representation—representations which encode, compactly
and without commitment, the various scope possibilities; in short, they are
a simple form of underspecified representation.

Let’s make these ideas precise. Formally, a store is an n-place sequence.
We represent stores using the angle brackets 〈 and 〉. The first item of the
sequence is the core semantic representation; it’s simply a lambda expression.
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(Incidentally, if we wanted to, we could insist that we’ve been using stores
all along: we need merely say that when we previously talked of assigning a
lambda expression φ to a node, we really meant that we assigned the 1-place
store 〈φ〉 to a node.) Subsequent elements (if any) are pairs (β, i), where β
is the semantic representation of an NP (that is, another lambda expression)
and i is an index. An index is simply a label which picks out a free variable
in the core semantic representation. As we shall see, this index has the same
purpose as the indexes we used for Montague-style raised quantifiers. We
call pairs (β, i) indexed binding operators.

How do we use stores for semantic construction? Unsurprisingly, the story
starts with the quantified noun phrases (that is, noun phrases formed with
the help of a determiner). Instead of simply passing on the store assigned
to them, quantified noun phrases are free to ‘re-package’ the information it
contains before doing so. (Other sorts of NPs, such as proper names, aren’t
allowed to do this.) More precisely, quantified noun phrases are free to make
use of the following rule:

Storage (Cooper)
If the store 〈φ, (β, j), . . . , (β ′, k)〉 is a semantic representation for
a quantified NP, then the store 〈λP.P@zi,(φ, i), (β, j) . . . (β

′, k)〉,
where i is some unique index, is also a representation for that NP.

The crucial thing to note is that the index associated with φ is identical
with the subscript on the free variable in λP.P@zi. (After all, if we decide
to store φ away for later use, it’s sensible to keep track of what its argument
is.)

In short, from now on when we encounter a quantified NP we will be faced
by a choice. We can either pass on φ (together with any previously stored
information) straight on up the tree, or we can decide to use λP.P@zi as the
core representation, store the quantifier φ on ice for later use (first taking care
to record which variable it is associated with) and pass on this new package.
The reader should be experiencing a certain feeling of deja vu. We’re essen-
tially using the pronoun representation λP.P@zi as a semantic placeholder,
just as we did in the previous section. Indeed, as will presently become clear,
our shiny new storage technology re-uses the key ideas of quantifier storage
in a fairly direct way.

Incidentally, the storage rule is not recursive. It offers a simple two
way choice: either pass on the ordinary representation (that is, the store
〈φ, (β, j), . . . , (β ′, k)〉) or use the storage rule to form
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〈λP.P@zi, (φ, i), (β, j) . . . (β
′, k)〉

and pass this new store on up instead. We’re not offered—and we don’t
want or need—the option of reapplying the storage rule to this new store
to form 〈λP.P@zm, (λP.P@zi, m), (φ, i), (β, j), . . . , (β ′, k)〉. Intuitively, we’re
offered a straight choice between keeping the lambda expression associated
with the quantified NP in the active part of the memory (that is, in the
first slot of the store) or placing it, suitably indexed, in the freezer for later
consumption.

It’s time for an example. Let’s analyse ‘Every boxer loves a woman’ using
Cooper storage. Here’s (part of) the relevant tree.

Every boxer loves a woman (S)
〈love(z6,z7),(λP.∀x(boxer(x)→P@x),6),(λP.∃y(woman(y)∧P@y),7)〉

Every boxer (NP)
〈λQ.Q@z6,(λP.∀x(boxer(x)→P@x),6)〉

loves a woman (VP)
〈λu.love(u,z7),(λP.∃y(woman(y)∧P@y),7)〉

loves (TV)
λX.λu.X@λv.love(u,v)

a woman (NP)
〈λQ.Q@z7,(λP.∃y(woman(y)∧P@y),7)〉

Note that the nodes for ‘a woman’ and ‘Every boxer’ are both associated
with 2-place stores. Why is this? Consider the node for ‘a woman’. We
know from our previous work that the lambda expression associated with
‘a woman’ is λP.∃y(woman(y)∧P@y). In our new representations-are-stores
world view, this means that the 1-place store

〈λP.∃y(woman(y)∧P@y)〉
is a legitimate interpretation for the NP ‘a woman’. But remember—this

is not our only option. We are free to use the storage rule, and this is what
we did when building the above tree. We’ve picked a brand new free variable
(namely z7), used the placeholder λQ.Q@z7 as the first item in the store, and
‘iced’ λP.∃y(woman(y)∧P@y), first recording the fact that z7 is the variable
relevant to this expression. Essentially the same story could be told for the
NP ‘every boxer’, save that there we chose the new free variable z6.

Once this has been grasped, the rest is easy. In particular, if a functor
node F is associated with a store 〈F ′, (β, j), . . . , (β ′, k)〉 and its argument
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node A is associated with the store 〈A′, (β ′′, l), . . . , (β ′′′, m)〉, then store as-
sociated with the node R whose parts are F and A is

〈F ′@A′, (β, j), . . . , (β ′, k), (β ′′, l), . . . , (β ′′′, m)〉.
That is, the first slot of the store really is the active part: it’s where the core
representation is built. If you examine the above tree, you’ll see that the
stores associated with ‘loves a woman’ and ‘every boxer loves a woman’ were
formed using this ‘functional application in the first slot’ method. Note that
in both cases we’ve simplified F ′@A′ using β-conversion.

But we’re not yet finished. We now have a sentence, and this sentence is
associated with an abstract unscoped representation (that is, a store), but
of course, at the end of the day we really want to get our hands on some
ordinary scoped first-order representations. How do we do this?

This is is the task of retrieval, a rule which is applied to the stores associ-
ated with sentences. Retrieval removes one of the indexed binding operators
from the freezer, and combines it with the core representation to form a new
core representation. (If the freezer is empty, then the store associated with
the S node must already be a 1-place sequence, and thus we already have
the expression we are looking for.) It continues to do this until it has used
up all the indexed binding operators. The last core representation obtained
in this way will be the desired scoped semantic representation (we hope!).

What does the combination process involve? Suppose retrieval has re-
moved a binding operator indexed by i. It lambda abstracts the core seman-
tic representation with respect to the variable bearing the subscript i, and
then functionally applies the newly retrieved binding operator to the newly
lambda-abstracted-over core representation. The result is the new core rep-
resentation, and it replaces the old core representation as the first item in
the store. More precisely:

Retrieval (Cooper)
Let σ1 and σ2 be (possibly empty) sequences of binding operators.
If the store 〈φ, σ1, (β, i), σ2〉 is associated with an expression of
category S, then the store 〈β@λzi.φ, σ1, σ2〉 is also associated with
this expression.

Hey—we’re simply performing Montague’s trick with the aid of stores!
Let’s return to our example and apply the retrieval rule to the store

associated with the S node. Now, this store contains two indexed binding
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operators. The retrieval rule allows us to remove either of them and to
combine it with the core representation. Suppose we choose to first retrieve
the quantifier for ‘every boxer’ (that is, the indexed binding operator in the
second slot of the store). Then the retrieval rule tells us that the following
store must be associated with the S node:

〈λP.∀x(boxer(x)→P@x)@λz6.love(z6,z7),(λP.∃y(woman(y)∧P@y),7)〉

Using β-conversion, this simplifies to:

〈∀x(boxer(x)→love(x,z7)), (λP.∃y(woman(y)∧P@y),7)〉

No more β-conversions are possible, but there’s still a quantifier left in
store. Retrieving it produces:

〈λP.∃y(woman(y)∧P@y)@λz7.∀x(boxer(x)→love(x,z7))〉

The result is the reading where ‘a woman’ outscopes ‘every boxer’, as
becomes clear if we perform two more β-conversions to obtain:

〈∃y(woman(y)∧∀x(boxer(x)→love(x,y))〉

How do we get the other reading? We simply retrieve the quantifiers in
the other order. We suggest that the reader works through the details.

We are ready to turn to computation: how do we implement Cooper
storage in Prolog?

The first steps are straightforward. We’ll represent indexed binding op-
erators as terms of the form bo(Quant,Index). Stores will be represented as
lists: the head will be a lambda expression, the tail (if non-empty) a list of
binding operators. So the following Prolog list represents a store:

[walk(X),bo(lambda(P,all(Y,imp(boxer(Y),app(P,X)))),X)]

But now we need to think a little. The semantic representations we want
to work with are stores, not just plain lambda expressions. So we have to
modify our semantic macros and composition rules in such a way that they
are dealing with stores. Here are some examples of the macros for storage:
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semMacro(noun,M):-

M = [symbol:Sym,

sem:[lambda(X,Formula)]],

compose(Formula,Sym,[X]).

semMacro(iv,M):-

M = [symbol:Sym,

sem:[lambda(X,Formula)]],

compose(Formula,Sym,[X]).

Most of the composition rules work as before, the only difference being
that they work with stores rather than plain lambda expressions. Sometimes
a composition rule needs to append stores—coordination is a case in point:

combine(np:[app(app(B,A),C)|S3],[np:[A|S1],coord:[B],np:[C|S2]]):-
appendLists(S1,S2,S3).

More interesting are the composition rules are those for noun phrases
formed by determiners and nouns. Here we either put the quantified noun
phrase on the store, or leave it where it is:

combine(np:[lam(P,app(P,X)),bo(app(A,B),X)|S],[det:[A],n:[B|S]]).
combine(np:[app(A,B)|S],[det:[A],n:[B|S]]).

Two remarks should be made. First, storage should be a possibility only
available to quantified noun phrases (in particular, we can’t store other kinds
of noun phrases such as proper names). Second, we have made pushing a
quantifier onto the store an optional operation; that’s why there are two
composition rules for the same syntactic rule above.

Now, we leave the reader to investigate why it is linguistically desirable to
make storage optional (see Exercise 3.3.5). But we will point out that making
it optional can lead to a lot of (sometimes unnecessary) work. Consider
‘Every boxer loves a woman’. If storage is optional, there are actually five
strategies that can be used when trying to build representations for this
sentence: leave both quantified noun phrases in place, just store ‘Every boxer’,
just store ‘a woman’, store both and retrieve ‘Every boxer’ first, or store both
and retrieve ‘a woman’ first. But this sentence only has two logically distinct
readings, so three of these options don’t lead to anything new. Still, as
optionality is the better path to follow, we’ll just have to find ways of coping
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with such redundancies. For example, in this section we’ll add a filter to
eliminate semantic representations that are alphabetic variants of readings
already produced.

One composition rule remains: the sentential one, which licenses retrieval:

combine(s:S,[np:[A|S1],vp:[B|S2]]):-

appendLists(S1,S2,S3),

sRetrieval([app(A,B)|S3],Retrieved),

betaConvert(Retrieved,S).

With this last rule to hand we have all we need to create stores—but how
is retrieval to be implemented?

The Prolog predicate that copes with retrieval is sRetrieval/2. Its first
argument is a store, its second argument the derived scoped representation.
If the store contains just one element, then this is the scoped formula—the
first clause deals with this case:

sRetrieval([S],S).

Otherwise, this predicate takes an element from the store using the selectFromList/3,
lambda abstracts Sem (the first item in the list) with respect to the retrieved
variable, and applies the retrieved quantifier to it, yielding a new semantic
representation that will be β-converted later. Note that the sRetrieval

predicate is recursive, thus it will eventually reduce the store to a list con-
taining just one item, namely a scoped representation:

sRetrieval([Sem|Store],S):-

selectFromList(bo(Q,X),Store,NewStore),

sRetrieval([app(Q,lam(X,Sem))|NewStore],S).

But why does this generate all the quantifier scope representations? This is
thanks to selectFromList/3. This predicate (which is included in comsemPredicates.pl)
is defined in such a way that, if there is more than one element in the store, it
succeeds when it removes any element at all from it. Therefore, sRetrieval
produces (via the Prolog backtracking mechanism) all the scoped represen-
tation possible.

The driver is transparent (as promised, we filter out alphabetic variants):

cooperStorage:-

readLine(Sentence),
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setof(Sem,t([sem:Sem],Sentence,[]),Sems1),

filterAlphabeticVariants(Sems1,Sems2),

printRepresentations(Sems2).

The filter in defined using the alphabeticVariants/2 predicate dis-
cussed in the previous chapter:

filterAlphabeticVariants(L1,L2):-

selectFromList(X,L1,L3),

memberList(Y,L3),

alphabeticVariants(X,Y), !,

filterAlphabeticVariants(L3,L2).

filterAlphabeticVariants(L,L).

And here’s an example of our program at work:

?- cooperStorage.

> Every boxer loves a woman.

1 exists(A,woman(A)&forall(B,boxer(B)>love(B,A)))

2 forall(A,boxer(A)>exists(B,woman(B)&love(A,B)))

yes

Summing up, Cooper storage is a more abstract version of Montague’s
approach to quantification that makes use of special representations called
stores. From the perspective of computational semantics, it has a distinct
advantage over Montague’s approach: it doesn’t require additional grammar
rules. Indeed, when you get down to it, all we really needed to do to im-
plement Cooper storage was to define the composition rules and provide the
additional predicate sRetrieval, which gave us the ability to manipulate our
new representations in ways that plain old functional application couldn’t.
Cooper storage is indeed a natural and useful technique.

Exercise 3.3.1 Try the Cooper storage implementation without filtering out al-
phabetic variants. What happens and why?
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Exercise 3.3.2 How many scoped representations are retrieved for ‘every piercing
that is done with a needle is okay’? (Take ‘is done with’ as a two place relation, and
view ‘is okay’ as a one place predicate.) Are they all correct?

Exercise 3.3.3 Extend the storage analysis to ditransitive verbs, and check how
many readings it gives for sentences like ‘A boxer gives every woman a foot massage’.
Are these the readings you would expect?

Exercise 3.3.4 What does the store (before retrieval) for ‘every piercing is done
with a needle’ look like? And after retrieval?

Exercise 3.3.5 Why should storage be optional? Think about the way quantified
noun phrases interact with negation. More concretely, think about the possible
readings of the sentence ‘Every boxer doesn’t love a woman’. How many readings
does this sentence have? How many readings does Cooper storage assign to this
sentence if storage is optional? And if storage is not optional?

Keller Storage

Cooper storage allows us a great deal of freedom in retrieving information
from the store. We are allowed to retrieve quantifiers in any order we like, and
the only safety net provided is the use of co-indexed variables and Montague’s
trick.

Is this really safe? We haven’t spotted any problems so far—but then
we’ve only discussed one kind of scope ambiguity, namely those in sentences
containing a transitive verb with quantifying NPs in subject and object po-
sition. However there are lots of other syntactic constructions that give rise
to quantifier scope ambiguities, for instance relative clauses (7) and preposi-
tional phrases in complex noun phrases (8):

(7) Every piercing that is done with a gun goes against the entire idea behind
it.

(8) Mia knows every owner of a hash bar.

Both examples give rise to scope ambiguities. For example, in (8) there is
a reading where Mia knows all owners of (possibly different) hash bars, and
a reading where Mia knows all owners that own one and the same hash bar.
Moreover, both examples contain nested NPs. In the first example ‘a gun’ is
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a sub-NP of ‘every piercing that is done with a gun’, while in the second, ‘a
hash bar’ is a sub-NP of ‘every owner of a hash bar’.

We’ve never had to deal with nested NPs before. Is Cooper storage
delicate enough to cope with them, and does it allow us to generate all
possible readings? Let’s examine example (8) more closely and find out.
This is the store (as the reader should verify):

〈know(mia,z2), (λP.∀y(owner(y)∧of(y,z1)→P@y),2),
(λQ.∃x(hashbar(x)∧Q@x),1)〉

There are two ways to perform retrieval: by pulling the universal quan-
tifier off the store before the existential, or vice versa. Let’s explore the
first possibility. Pulling the universal quantifier off the store yields (after
β-conversion):

〈∀y(owner(y)∧of(y,z1)→know(mia,y)), (λQ.∃x(hashbar(x)∧Q@x),1)〉

Retrieving the existential quantifier then yields (again, after lambda con-
version):

(9) 〈∃x(hashbar(x)∧∀y(owner(y)∧of(y,x)→know(mia,y)))〉

This states that there is a hash bar of which Mia knows every owner.
This is one of the readings we would like to have. So let’s explore the other
option. If we pull the existential quantifier from the S store first we obtain:

〈∃x(hashbar(x)∧know(mia,z2)), (λP.∀y(owner(y)∧of(y,z1)→P@y),2)〉

Pulling the remaining quantifier off the store then yields:

(10) 〈∀y(owner(y)∧of(y,z1)→ ∃x(hashbar(x)∧know(mia,y)))〉

But this is not at all we wanted! Cooper storage has given us not a
sentence, but a formula containing the free variable z1. What is going wrong?

Essentially, the Cooper storage mechanism is ignoring the hierarchical
structure of the NPs. The sub-NP ‘a hash bar’ contributes the free variable
z1. However, this free variable does not stay in the core representation: when
the NP ‘every owner of a hash bar’ is processed, the variable z1 is moved out
of the core representation and put on ice. Hence lambda abstracting the core
representation with respect to z1 isn’t guaranteed to take into account the
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contribution that z1 makes—for z1 makes its contribution indirectly, via the
stored universal quantifier. Everything is fine if we retrieve this quantifier
first (since this has the effect of ‘restoring’ z1 to the core representation) but
if we use the other retrieval option it all goes horribly askew. Cooper storage
doesn’t impose enough discipline on storage and retrieval, thus when it has
to deal with nested NPs, it over-generates.

What are we to do? An easy solution would be to build a ‘free variable
check’ into the retrieval process. That is, we might insist that we can only
retrieve an indexed binding operator if the variable matching the index occurs
in the core representation.

But this isn’t very principled; it deals with the symptoms, not the cause.
The heart of the problem is that Cooper storage rides roughshod over the
hierarchical structure of NPs; we should try to deal with this head on. (Inci-
dentally, arguably there’s also an empirical problem: the free variable solu-
tion isn’t adequate if one extends the grammar somewhat. We won’t discuss
this here but refer the reader to the Notes.)

Here’s an elegant solution due to Bill Keller: allow nested stores. That
is, allow stores to contain other stores. Intuitively, the nesting structure of
the stores should automatically track the nesting structure of NPs in the
appropriate way. As an added bonus, nesting is easier to implement than a
free variable check.

Here’s the new storage rule:

Storage (Keller)
If the (nested) store 〈φ, σ〉 is an interpretation for an NP, then
the (nested) store 〈λP.P@zi,(〈φ,σ〉,i)〉, for some unique index i,
is also an interpretation for this NP.

To see how this new storage rule works, consider how we assemble the
representation associated with the complex noun phrase ‘every owner of a
hash bar’.
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every owner of a hash bar (NP)
〈λP.P@z2, (〈λP.∀y(owner(y)∧of(y,z1)→P@y), (〈λQ.∃x(hashbar(x)∧Q@x)〉,1)〉,2)〉

every (DET)
〈λQ.λP.∀y(Q@y→P@y)〉

owner of a hash bar (NBAR)
〈λu.owner(u)∧of(u,z1), (〈λQ.∃x(hashbar(x)∧Q@x)〉,1)〉

owner (N)
〈λx.owner(x)〉

of a hash bar (PP)
〈λP.λu.P@u∧of(u,z1), (〈λQ.∃x(hashbar(x)∧Q@x)〉,1)〉

As for the retrieval rule, it will now look like this.

Retrieval (Keller)
Let σ, σ1 and σ2 be (possibly empty) sequences of binding opera-
tors. If the (nested) store 〈φ, σ1, (〈β, σ〉, i), σ2〉 is an interpretation
for an expression of category S, then 〈β@λzi.φ, σ1, σ, σ2〉 is too.

The new retrieval rule ensures that any operators stored while process-
ing β become accessible for retrieval only after β itself has been retrieved.
Nesting automatically overcomes the problem of generating readings with
free variables. To see how it works in practice, let’s return to our original
example. The nested store associated with ‘Mia knows every owner of a hash
bar’ is

〈know(mia,z2), (〈λP.∀y(owner(y)∧of(y,z1)→P@y),
(〈λQ.∃x(hashbar(x)∧Q@x)〉,1)〉,2)〉

There is only one way to perform retrieval: first pulling of the universal
quantifier, followed by the existential quantifier, resulting in (9). Since this
is the only possibility, the unwanted reading (10) is not generated.

But wait a minute: how do we get the reading where Mia knows all owners
of possible different hash bars? In fact, this couldn’t be easier. All we have
to do is avoid storing the sub-NP ‘a hash bar’. If we do this, we can produce
the following tree:
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every owner of a hash bar (NP)
〈λP.P@z2, (〈λP.∀y(owner(y)∧∃x(hashbar(x)∧of(z,x))→P@y)〉,2)〉

every (DET)
〈λQ.λP.∀x(Q@x→P@x)〉

owner of a hash bar (NBAR)
〈λz.owner(z)∧∃x(hashbar(x)∧of(z,x))〉

owner (N)
〈λx.owner(x)〉

of a hash bar (PP)
〈λP.λz.P@z∧∃x(hashbar(x)∧of(z,x))〉

This leads to the following analysis for ‘Mia knows every owner of a hash
bar’:

〈know(mia,z2),(〈λP.∀y(owner(y)∧∃x(hashbar(x)∧of(y,x))→P@y)〉,2)〉
There is only one operator the store. Retrieving it yields the reading we

want.

〈∀y(owner(y)∧∃x(hashbar(x)∧of(y,x))→know(mia,y))〉
Now to make this computational: how do we implement Keller stor-

age in Prolog? In fact it’s a very simple modification of our earlier code
for Cooper storage. First, we tweak the underlying representation a little.
Keller-style indexed binding operators will be represented as terms of the
form bo(Quant,Index). Stores will be represented as lists: the head will
be a lambda expression, the tail (if non-empty) a list of Keller-style binding
operators. So the following Prolog list represents a (Keller-style) store:

[walk(X),bo([lambda(P,all(Y,imp(boxer(Y),app(P,X))))],X)]

(You should compare this with the example of a Cooper-style store we gave
earlier.)

With this underlying change made, very little needs to be changed in our
earlier code. Here’s the new version of sRetrieval/2 we need:

sRetrieval([S],S).

sRetrieval([Sem|Store],S):-
selectFromList(bo([Q|NestedStore],X),Store,TempStore),
appendLists(NestedStore,TempStore,NewStore),
sRetrieval([app(Q,lam(X,Sem))|NewStore],S).
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The main difference is the call to appendLists/3 to merge stores.
Finally, we must alter the composition rules for noun phrases (these are

only rules that change):

combine(np:[lam(P,app(P,X)),bo([app(A,B)|S],X)],[det:[A],n:[B|S]]).
combine(np:[app(A,B)|S],[det:[A],n:[B|S]]).

And that’s it. The over-generation problem is solved. We’ll never see
unwanted free variables again. Let’s try out our program and see what
happens:

?- kellerStorage.

> Mia knows every owner of a hash bar.

Readings:
1 exists(A,hashbar(A)&forall(B,of(B,A)&owner(B)>know(mia,B)))
2 forall(A,exists(B,hashbar(B)&of(A,B))&owner(A)>know(mia,A))

Let’s sum up what we have learned. The original version of Cooper
storage doesn’t handle storage and retrieval in a sufficiently disciplined way,
and this causes it to generate spurious readings (in fact, nonsensical readings)
when faced with nested NPs. The problem can be elegantly cured by making
use of nested stores, and implementing this idea requires only minor changes
to our earlier Prolog code.

But although storage methods are useful, they have their limitations. For
a start, they are not as expressive as we might wish: although Keller storage
predicts the five readings for

(11) One criminal knows every owner of a hash bar

it doesn’t allow us to insist that ‘every owner’ must out-scope ‘a hash bar’,
while at the same time leaving the scope relation between subject and object
noun phrase unspecified. To put it another way, storage is essentially a
technique which enables us to represent all possible meanings compactly; it
doesn’t allow us to express additional constraints on possible readings, and
this is precisely what most modern underspecified representations let us do.

Moreover, storage is a technique specifically designed to handle quanti-
fier scope ambiguities. Unfortunately, many other constructs (for example,
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negation) also give rise to scope ambiguities, and storage has nothing to say
about these. In Exercise 3.3.5 we saw that Cooper storage couldn’t generate
all the readings of ‘Every boxer doesn’t love a woman’. Keller storage can’t do
so either, as the reader should verify. What are we to do? Inventing a special
scoping mechanism for negation, and then trying to combine it with storage,
doesn’t seem an attractive option. We would like a uniform approach to
scope ambiguity, not a separate mechanism for each construct—and this as
another motive for turning to the more abstract view offered by current work
on underspecification.

Exercise 3.3.6 In Exercise 3.3.5 we saw that Cooper storage works better with
negated sentences if storage made optional. Explain why optionality is even more
important for Keller storage than it is for Cooper storage.

Exercise 3.3.7 Give first-order representations for the five readings of ‘a man
likes every woman with a five-dollar shake’. You might have noticed that the number
of correct readings for this example is less than the combinatorial possibilities of
the quantifiers that are involved. Naively, one would expect to have 3! = 6 readings
for this example. Why is one reading excluded?

3.4 Hole Semantics

In recent eyars there has been a lot of interest in the use of underspecified rep-
resentations to cope with scope ambiguities; so much so that it often seems
as if semantics has entered an age of underspecification. With the benefit of
hindsight, however, we can see that the idea of underspecified representations
isn’t really new. In our work on storage, for example, we associated stores,
not simply lambda expressions, with parse tree nodes; and as we have al-
ready remarked, a store is in essence an underspecified representation. What
is new is both the sophistication of the new generation of underspecified
representations (as we shall see, they offer us a great deal of flexibility and
expressive power), and, more importantly, the way such representations are
now regarded by semanticists.

In the past, storage style (and other ‘funny’) representations seem to have
been regarded with some unease. They were (it was conceded) certainly a
useful tool, but they appeared to live in a conceptual no-man’s-land—not
really semantic representations, but not syntax either—that was hard to
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Programs for quantifier storage methods

cooperStorage.pl

Implementation of Cooper Storage. Defines storage of noun
phrases and retrieval of the store.

kellerStorage.pl

Implementation of Nested Storage (Keller). Defines stor-
age of noun phrases and retrieval of the store.

alphaConversion.pl

Contains the predicate for checking for alphabetic variants
of readings obtained by the storage implementations.

betaConversion.pl

The predicates that implement β-conversion.

englishGrammar.pl

Our standard grammatical rules for a fragment of English.

sentenceTestSuite.pl

Lots of natural language examples to test our implementa-
tion.

readLine.pl

Contains predicates that convert a string into a list of
words.

comsemPredicates.pl

Definitions of some auxiliary predicates.
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classify. The key insight that underlies current approaches to underspecifi-
cation is that it is both fruitful and principled to view representations more
abstractly. That is, it is becoming increasingly clear that the level of rep-
resentations is richly structured, that computing semantic representations
elegantly demands deeper insight into this structure, and that—far from be-
ing a sign of some fall from semantic grace—semanticists should learn to play
with representations in more refined ways.

In this book, we shall explore an approach to underspecification called
hole semantics. We have chosen hole semantics because it is the approach
we are most familiar with (the method is due to Johan Bos) and it illustrates
most of the key ideas of current approaches to underspecification in a fairly
simple way. Rferences to other approaches to underspecification can be found
in the Notes at the end of the chapter.

Hole Semantics

Viewed from a distance, hole semantics shares an obvious similarity with
storage methods: at the end of the parsing stage, sentences won’t be asso-
ciated with a semantic representation. Rather, they will be associated with
abstract representations from which the desired representation can be read
off. Viewed closer up, however, it is clear that hole semantics adopts a far
more radical perspective on representation than storage does.

Hole semantics is essentially a constraint-based approach to semantic rep-
resentation. That is, at the end of the parsing process the method deliv-
ers a set of constraints: any first-order representation which fulfills these
constraints—which govern how the various bits and pieces produced dur-
ing the parsing process can be plugged together—is a permissible semantic
representation for the sentence. This contrasts sharply with the essentially
generative approach offered by storage (Here’s the store! Enumerate the
readings like this!) and the source of much of hole semantic’s power.

Let’s get started. Our first task will be to break the underlying rep-
resentation language (that is, first-order logic over some vocabulary) down
into convenient chunks, and then we define a simple constraint language gov-
erning how these chunks can be assembled into bigger units. The resulting
representations we call underspecified formulas, UFs for short.

Our semantic representation languages (SRL) are always first-order lan-
guages (with equality, let’s say) over some vocabulary. Given such an SRL,
the vocabulary of the underspecified representation language (URL) for the



126 CHAPTER 3. UNDERSPECIFIED REPRESENTATIONS

SRL we are working with consist of the following items:

• The 2-place predicates :not and ≤.

• The 3-place predicates :imp, :and, :all, :some and :eq.

• Every symbol in the SRL vocabulary is a URL constant.

• If the SRL vocabulary contains any constant symbols, then constant
is a 2-place URL symbol. CHANGE THIS

• If the SRL vocabulary contains a relation symbol pred of arity n, then
:pred is a n+ 1-place URL symbol.

The URL is a three sorted language. It contains variables called holes
(written h, h′, h1, h2, and so on), variables called labels (written l, l′, l1, l2,
and so on) and variables called metavariables (written v, v′, v1, v2, and so
on). A node is a hole or a label. A meta-term is meta-variables or a URL
constant (that is, a symbol from the SRL vocabulary).

We are not interested in all the first-order formulas that can be con-
structed over this vocabulary—we’re only interested in the existentially closed
conjunctive formulas. More precisely, we’re interested in what we call UFs.
Basic UFs are defined as follows:

1. If l is a label, and h is a hole, then l≤h is a basic UF;

2. If l is a label, and n and n′ are nodes, then l:not(n), l:imp(n,n′),
l:and(n,n′), l:or(n,n′) are basic UFs;

3. If l is a label, t and t′ are terms, then l:eq(t,t′) is a basic UF;

4. If l is a label, S is a symbol in the SRL language with arity n, and t1

. . . tn are terms, then l:S,t1,. . . ,tn) is a basic UF.

5. If l is a label, v a metavariable, and n a hole or label, then l:some(v,n)
and l:all(v,n) are basic UFs.

6. Nothing else is a basic UF.

Now for arbitrary UFs:

1. All basic UFs are UFs;
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2. If φ is a UF, and n is a node then ∃nφ is a UF;

3. If φ is a UF, and v is a meta-variable then ∃vφ is a UF;

4. If φ and ψ are UFs,then (φ ∧ ψ) is a UF;

5. Nothing else is a UF.

Here’s an example. As we have already mentioned, sentences are going to
be associated with an UF. Here’s the UF associated with ‘Every boxer loves
a woman’:

(12) ∃l1∃l2∃v1(l1:all(v1,l2) ∧ ∃l3∃h1(l2:imp(l3,h1) ∧ l3:boxer(v1) ∧
∃l4∃l5∃v2(l4:some(v2,l5) ∧ ∃l6∃h2(l5:and(l6,h2) ∧ l6:woman(v2) ∧
∃l7(l7:love(v1,v2) ∧ l7≤h1 ∧ l7≤h2 ∧ ∃h0(l1≤h0 ∧ l4≤h0))))))

Simplify this underspecified formula by raising all quantifiers to the front:

∃h0∃h1∃h2∃l1∃l2∃l3∃l4∃l5∃l6∃l7∃v1∃v2(l1:all(v1,l2) ∧ l2:imp(l3,h1)
∧ l3:boxer(v1) ∧ l4:some(v2,l5) ∧ l5:and(l6,h2) ∧ l6:woman(v2)
∧ l7:love(v1,v2)∧ l7≤h1 ∧ l7≤h2 ∧ l1≤h0 ∧ l4≤h0)

But what does this UF mean? Essentially it tells us how we are permitted
to plug together the labeled formulas to build a first-order formula. The
hole h0 is a variable that stands for the first-order formula that we will
eventually build. This formula will be built by plugging together three labeled
formulas given in the middle component of the UF. Plugging together simply
means substituting one of these three formulas in another. (Incidentally,
when we carry out such a substitution we only substitute the formula, not
its label as well. The label is simply an identifier that enables us to state the
right hand side constraints succinctly). Any plugging will do—as long as it
satisfies all constraints given. These constraints are essentially constraints
on subformulas, and are best thought of visually. Each dashed line in the
following diagram corresponds to a ≤ expression in an obvious way:
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h0

l1 l4

l1:all(v1,l2) l4:some(v2,l5)

l2:imp(l3,h1) l5:and(l6,h2)

l3:boxer(v1) l6:woman(v2)

l7

l7:love(v1,v2)

The constraints are set up in such a way that the formula l7:love(v1,v2)
is forced to be out-scoped by the consequent of the universal quantifier’s
scope, and the second conjunct of the existential quantifier’s scope.

Now it’s time to say a little more about resolving these ambiguous rep-
resentations. The holes underspecify scope, and in order to give us non-
ambiguous interpretations, each hole should be plugged with a formula in
such a way that all the constraints are satisfied. In other words, we should
be sure that each hole gets associated with some label. Obviously, no la-
bel can be plugged into two different holes at the same time. Therefore, a
so-called plugging is a one-to-one correspondence from holes to labels (i.e.,
a bijective function, with the set of holes as domain and the set of labels
as codomain). A plugging for a proper UF is admissible if the instantia-
tions of the holes with labels result in a representation in which there is no
contradiction spelled out by the constraints.

There are two pluggings, P1 such that P1(h0)=l1, P1(h1)=l4, P1(h2)=l7,
and P2 such that P2(h0)=l4, P2(h1)=l7, P2(h2)=l1. Plugging P1 interprets
(12) as giving the universal quantifier wide scope, out-scoping the existential
quantifier. The corresponding formula is:
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h0

l1

l1:all(v1,l2)

l2:imp(l3,h1)

l3:boxer(v1) l4

l4:some(v2,l5)

l5:and(l6,h2)

l6:woman(v2) l7

l7:love(v1,v2)

This tree structure obviously describes the formula:

∀x(boxer(x)→ ∃y(woman(y) ∧ love(x,y)))

This formula is true in a model where all boxers love a woman, but not
necessarily the same woman.

Plugging P2 interprets (12) as follows:
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h0

l4

l4:some(v2,l5)

l5:and(l6,h2)

l6:woman(v2) l1

l1:all(v1,l2)

l2:imp(l3,h1)

l3:boxer(v1) l7

l7:love(v1,v2)

Here the existential quantifier out-scopes the universal quantifier. In a
model where there is some woman that is loved by all boxers, this interpre-
tation denotes truth. The corresponding formula in predicate logic is:

∃y(woman(y) ∧ ∀x(boxer(x) → love(x,y)))

Translation of a UF and a plugging to FOL:

(h,P )uf2fol = (P (h))uf2fol iff h is a hole
(l,P )uf2fol = ∃v(n,P )uf2fol iff l:some(v,n)
(l,P )uf2fol = ∀v(n,P )uf2fol iff l:all(v,n)
(l,P )uf2fol = ((n,P )uf2fol ∧ (n′,P )uf2fol) iff l:and(n,n′)
(l,P )uf2fol = c(v) iff l:c(v)

and so on....

Underspecified Representations in Prolog

Explain new Prolog notation required for UFs.
In addition, to distinguish holes and labels from each other (and from

other meta-variables), we will use hole(H) to designate a hole h and label(L)

for a label l.
Here is an example UF for ‘a boxer collapses’.
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∃h0 ∃l1 ∃h1 ∃l2 ∃l3 ∃l4 ∃v1(l3:some(v1,l4) ∧ l4:and(l2,h1) ∧ l1≤h1 ∧
l3≤h0 ∧ l2:boxer(v1) ∧ l2≤h0 ∧ l1:collapse(v1) ∧ l1≤h0)

And here is its Prolog equivalent:

ex(A,and(hole(A),ex(B,and(label(B),ex(C,and(hole(C),ex(D,and(label(D),

ex(E,and(label(E),ex(F,and(label(F),ex(G,and(E:ex(G,F),and(F:and(D,C),

and(leq(B,C),and(leq(E,A),and(and(D:boxer(G),leq(D,A)),

and(B:collapse(G),leq(B,A))))))))))))))))))))

Note, in the Prolog notation too there is no confusion possible between
meta- and object level of representation.

Computing Underspecified Formulas

Building UFs is done with the tools we’re already familiar way: using lambdas
and β-conversion. For UFs, we are going to introduce lambdas for holes,
labels and meta-variables as well. Use of colon.

The way we construct UFs is basically an extension to our normal sys-
tematic way of constructing representations. To keep track of the holes and
labels, we will decorate each UF-representation with two additional lambdas:
one binding the top hole, and one binding the main label. The top hole is
the hole that closes the current scope domain. The main label is the label
within the current scope domain that is out-scoped by all elements within
its scope domain.

Abstracting away from these two concepts, it is straightforward to com-
bine UFs (incidentally, macro definitions might get complicated—drawing a
picture often eases matters).

Start with a simple example. As notational convention we use indexs for
existentially quantified variables, and no indexes for lambda-bound variables.
Take the noun ‘boxer’ for instance:

λv.λh.λl.(boxer(l,v) ∧ l≤h).

Drawn as a tree:

λv.λh.λl. [

h

l

l:boxer(v)

]
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Determiner ‘every’:

λx.λy.λh.λl.∃h1∃l1∃l2∃l3∃v1(l2:all(v1,l3) ∧ l3:imp(l1,h1) ∧ l≤h1

∧ l2≤h ∧ x@v1@h@l1 ∧ y@v1@h@l).

The two additional lambdas binding h and l define the scope domain of
‘every’. The quantifier itself gets label l2 with restriction l1 and nuclear scope
h1. The constraint l2≤h ensures that the quantifier is out-scoped by the top
of the scope domain, and l≤h1 states that its verbal argument (y) is in its
scope. The applications (x@v1@h@l1) and (y@v1@h@l) are crucial—these
associate the restriction label of the quantifier with the label of the noun
representation, and the top and hole label of the verb phrase argument.

Drawn as a tree:

λxyhl.∃h1l1l2l3v1([

h

l2

l2:all(v1,l3)

l3:imp(l1,h1)

l

] ∧ x@v1@h@l1 ∧ y@v1@h@l)

Drawn as two trees (‘every boxer’):

λxyhl.∃h1l1l2l3v1([

h

l2

l2:all(v1,l3)

l3:imp(l1,h1)

l

] ∧ [

h

l1

l1:boxer(v1)

] ∧ y@v1@h@l)

Next step. Drawn as a tree (‘every boxer’):
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λyhl.∃h1l1l2l3v1([

h

l2

l2:all(v1,(l3)

l3:imp(l1,h1)

l1:boxer(v1) l

] ∧ y@v1@h@l)

Drawn as a tree, the verb phrase (‘does not growl’):

λvhl.∃h2l4[

h

l4

l4:not(h2)

l

l:growl(v)

]

Drawn as two trees (‘every boxer does not growl’):

λhl.∃h1l1l2l3v1([

h

l2

l2:all(v1,(l3)

l3:imp(l1,h1)

l1:boxer(v1) l

] ∧ ∃h2l4[

h

l4

l4:not(h2)

l

l:growl(v1)

] )

Drawn as a tree (‘every boxer does not growl’):
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λhl.∃h1h2l1l2l3l4v1[

h

l2 l4

l2:all(v,l3) l4:not(h2)

l3:imp(l1,h1)

l1:boxer(v1) l

l:growl(v1)

]

In Prolog, nouns are dealt with by the following macro:

semMacro(noun,M):-
M = [symbol:Sym,

sem:lam(X,lam(H,lam(L,and(pred1(L,Sym,X),leq(L,H)))))].

Let’s introduce the semantic macro for the determiner ‘every’:

semMacro(det,M):-

M = [type:uni,

sem:lam(N,lam(V,lam(H,lam(L,ex(H1,ex(L1,ex(L2,ex(L3,ex(X,

and(hole(H1),and(label(L1),and(label(L2),and(label(L3),

and(all(L2,X,L3),and(imp(L3,L1,H1),and(leq(L,H1),

and(leq(L2,H),and(app(app(app(N,X),H),L1),

app(app(app(V,X),H),L)))))))))))))))))))].

Proper names, on the other hand do not introduce holes, and therefore
have no ≤-constraints. A new top hole H and main label L are introduced
and applied to its argument V.

semMacro(pn,M):-
M = [symbol:Sym,

gender:_,
sem:lam(V,lam(H,lam(L,app(app(app(V,Sym),H),L))))].

Verbs introduce the ‘top’ hole and a leq-constraint between itself and
the top. This is of importance for sentences where no quantifiers (or other
scope-introducing elements) appear, as it establishes a clean link from the
top element to the main label, that of the verb. Consider the entries for
intransitive and transitive verbs for example:
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semMacro(iv,M):-
M = [symbol:Sym,

sem:lam(X,lam(H,lam(L,and(pred1(L,Sym,X),
leq(L,H)))))].

semMacro(tv,M):-
M = [symbol:Sym,

sem:lam(Z,lam(X,app(Z,lam(Y,lam(H,lam(L,
and(pred2(L,Sym,Y,X),leq(L,H))))))))].

Underspecification allows us to be very flexible. We can use one and the
same technique for both quantifiers and negation. Here is the semantic macro
for auxiliary verbs:

semMacro(av,M):-
M = [pol:neg,

sem:lam(V,lam(X,lam(H,lam(L,ex(S,ex(N,and(hole(S),
and(label(N),and(not(N,S),and(leq(N,H),and(leq(L,S),

app(app(app(V,X),H),L))))))))))))];

Similar macros are defined for the quantified noun phrases, copula, rela-
tive pronouns, adjectives, prepositions, and coordination. We won’t discuss
them all in detail here.

The composition rules are mostly like that of the implementation of the
lambda calculus. There are two exceptions: complex sentences (see exercise),
and the following rule:

combine(t:U,[s:S]):-
betaConvert(ex(T,and(hole(T),ex(L,and(label(L),

app(app(S,T),L))))),U).

This is the rule that closes off the outermost scoping domain. Here S, the
representation for the sentence, is of the form λh.λl.φ. Now the above rule,
being of the form ∃h0∃l1S@h0@l1, results in ∃h0∃l1λh.λl.φ@h0@l1 which can
be reduced to a UF without any occurrences of lambda-bound variables.

The Plugging Algorithm

The steps: 1. skolemize variables—this will be easier for the implementation
because we can make maximal use of unification. (numbervars/3) 2. break
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down UF and assert to database. 3. calculate a plugging 4. compute top
and construct the formula.

Break down the UF and assert it to the Prolog database. We therefore
introduce the following dynamic predicates (predicates which definition can
change during runtime).

:- dynamic plug/2, leq/2, hole/1, label/1.

:- dynamic ex/3, all/3, que/4.

:- dynamic not/2, or/3, imp/3, and/3.

:- dynamic pred1/3, pred2/4, eq/3.

Assert UF to Prolog database. Remember that UFs are existentially
quantified conjunctive formulas, so we need only to recurse on those. All
other expressions are asserted to the database.

assertUF(ex(_,F)):-

assertUF(F).

assertUF(and(F1,F2)):-

assertUF(F1),

assertUF(F2).

assertUF(F):-

\+ F=and(_,_),

\+ F=ex(_,_),

assert(F).

Once a UF is broken down into bits and asserted to the database, we use
parent/2 to define parenthood between labels and holes.

parent(A,B):- imp(A,B,_).

parent(A,B):- imp(A,_,B).

parent(A,B):- or(A,B,_).

parent(A,B):- or(A,_,B).

parent(A,B):- and(A,B,_).

parent(A,B):- and(A,_,B).

parent(A,B):- not(A,B).

parent(A,B):- all(A,_,B).

parent(A,B):- ex(A,_,B).
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In addition, we every plug is also a parent.

parent(A,B):- plug(A,B).

We use the parent and the leq of the UF to define dominance. Transitive
closure of dominance:

dom(X,Y):- dom([],X,Y).

dom(L,X,Y):-

parent(X,Y),

\+ memberList(parent(X,Y),L).

dom(L,X,Y):-

leq(Y,X),

\+ memberList(leq(Y,X),L).

dom(L,X,Z):-

parent(X,Y),

\+ memberList(parent(X,Y),L),

dom([parent(X,Y)|L],Y,Z).

dom(L,X,Z):-

leq(Y,X),

\+ memberList(leq(Y,X),L),

dom([leq(Y,X)|L],Y,Z).

Once we have defined dominance, we can also define the top of a UF:

top(X):-

dom(X,_),

\+ dom(_,X), !.

Check whether a plugging is proper. First retract previous attempt to
plugging from the database, then assert the new pluggings. Check whether
the plugging causes cycles, and whether two nodes with the same parent
dominate another node.
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properPlugging(Plugs):-

retractall(plug(_,_)),

findall(X,(memberList(X,Plugs),assert(X)),_),

\+ dom(A,A),

\+ ( parent(A,B), parent(A,C), \+ B=C, dom(B,D), dom(C,D)).

Plug recursively all holes with the available labels.

plugHoles([],_,Plugs):-

properPlugging(Plugs).

plugHoles([H|Holes],Labels1,Plugs):-

properPlugging(Plugs),

selectFromList(L,Labels1,Labels2),

plugHoles(Holes,Labels2,[plug(H,L)|Plugs]).

Finally, given a plugging (still asserted to the database!), we need to re-
construct the formula. This is done by uf2fol/2, which recursively converts
a UF into an ordinary first-order formula with respect to a plugging.

If a UF-term is a hole, it inspects the plugging for that hole and continues
converting the label:

uf2fol(H,F):-

hole(H),

plug(H,L),

uf2fol(L,F).

If a label points to a quantifier, the scope of that quantifier is further
converted. Here is the definition for converting the universal quantifier:

uf2fol(L,all(X,F)):-

all(L,X,H),

uf2fol(H,F).

For the booleans, again this is straightforward. Consider for instance the
definition for plugging an implication:

uf2fol(L,imp(F1,F2)):-

imp(L,H1,H2),

uf2fol(H1,F1),

uf2fol(H2,F2).
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Finally, basic formulas:

uf2fol(L,F):-

pred1(L,Symbol,Arg),

compose(F,Symbol,[Arg]).

uf2fol(L,F):-

pred2(L,Symbol,Arg1,Arg2),

compose(F,Symbol,[Arg1,Arg2]).

The main wrapper.

plugUF(UF,Sem):-

numbervars(UF,0,_), % assuming distinct variables

initUF,

assertUF(UF),

findall(H,hole(H),Holes),

findall(L,(label(L),\+ parent(_,L)),Labels),

top(Top),

plugHoles(Holes,Labels,[]),

uf2fol(Top,Sem).

As usual we implement a driver that grasps all the important predicates
together. This one combines the plugging algorithm and the construction of
UFs, displays the UF on the current output device as well as all the readings
it has.

holeSemantics:-

readLine(Sentence),

parse(Sentence,UF),

printRepresentations([UF]),

setof(Sem,plugUF(UF,Sem),Sems),

printRepresentations(Sems).

Here is an example session, showing the UF for ‘every woman does not
snort’ and the two obtained readings.

?- holeSemantics.

> Every woman does not snort
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1 ex(A,and(hole(A),ex(B,and(label(B),ex(C,ex(D,ex(E,ex(F,ex(G,

and(hole(C),and(label(D),and(label(E),and(label(F),and(all(E,G,F),

and(imp(F,D,C),and(leq(B,C),and(leq(E,A),and(and(pred1(D,woman,G),

leq(D,A)),ex(H,ex(I,and(hole(H),and(label(I),and(not(I,H),

and(leq(I,A),and(leq(B,H),and(pred1(B,snort,G),

leq(B,A)))))))))))))))))))))))))))

1 not(all(G, imp(woman(G), snort(G))))

2 all(G, imp(woman(G), not(snort(G))))

yes

Programs for Hole Semantics

holeSemantics.pl

Main file of Predicate Logic Unplugged.

pluggingAlgorithm.pl

The plugging algorithm for hole semantics.

sentenceTestSuite.pl

Lots of natural language examples to test our implementa-
tion.

readLine.pl

Contains predicates that convert a string into a list of
words.

comsemPredicates.pl

Definitions of some auxiliary predicates.

Exercise 3.4.1 The Prolog definition of the transitive closure of the dominance
relation is perhaps, with the inclusion of memberList/3 and an accumulator list of
previously unaccounted immediate dominance relations, slightly more complicated
than you had expected. A simpler alternative could be:

dom(X,Y):- parent(X,Y).
dom(X,Z):- parent(X,Y), dom(Y,Z).

Test this definition, by querying the goal ?- dom(A,A), on the following two
databases (that is, we want to test whether the databases contain cycles):
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1. parent(a,b). parent(b,c). parent(c,a).

2. parent(a,b). parent(b,c). parent(c,a). parent(d,a).

Although both of these instances of the parent/2 relation contain cycles, the
simple definition for dom/2 only detects a cycle on the first database, and gets
entangled in a loop on the second database. Explain why this is so, and also
explain how the definition for dom/2 using an accumulator deals with both cases.

Evaluating Underspecification

So far we have formalised semantic underspecified representations and are
able to deal with (quantifier) scope ambiguities. But how does this proposal
relate to earlier accounts of scope ambiguities? Are there any benefits in using
the new streamlined underspecified representation rather than stick to the
old fashioned storage methods? The basic answer is that underspecification
languages are more powerful: they exhibit far more descriptive potential
than storage methods. To make this statement more clear, let’s consider a
concrete example sentence including three quantifiers:

(13) One criminal knows every owner of a hash bar.

With the tools developed in this chapter it is perfectly possible to repre-
sent the relative scopes of the three quantifiers fully underspecified. More-
over, it is possible to partially specify relative scopes. For some (linguistic)
reason, one might wish to express that ‘one criminal’ out-scopes ‘every owner’
and ‘a hash bar’, but that the relative scopes of the latter two quantifying con-
structs does not matter. We need not add new machinery to our formalism:
we can use the ≤-constraint to state such requirements.

How do other approaches to quantifier scope fare with such requirements?
Storage techniques [?, ?], to begin with, are not able to express such con-
straints. A store is a sequence of the core semantic representation and a list
of the binding operators (the quantifiers) which scope is not fixed yet. In the
process of constructing a store, quantified noun phrases can either enter the
store or combine with the core semantic representation (and form a new core
semantic representation, by means of in-situ quantification). At the end of
the parse, the different ways in which the quantifiers are retrieved from the
store and combined with the core semantic representation result in different
readings (the last quantifier which is pulled off the store gets widest scope).



142 CHAPTER 3. UNDERSPECIFIED REPRESENTATIONS

Hence, to give a quantifier obligatory wide scope, the only way to pursue is
to put it on the store, while performing in-situ application for the remain-
ing quantifiers. But this presumes that the scope order of the remaining
quantifiers is fixed!



Chapter 4

Putting It All Together

We now have some answers to the questions with which this book began:

1. We can build first-order representations in a compositional way for
simple natural language expressions. Moreover, we can do so in a way
that takes scope ambiguities into account.

2. We know how to automate the process of performing inference with
first-order representations.

Along the way, we have developed a number of useful tools, and learned
something about the tools developed by the automated reasoning commu-
nity. Now it is time to put the pieces together. As we shall see, by plugging
together lambda calculus, quantifier storage, theorem proving, model build-
ing, and model checking programs, we can build a system that can handle
some simple but interesting interactions with a user. We call this system
Curt—short for “Clever Use of Reasoning Tools”. The user extends Curt’s
knowledge by entering English sentences, and can query Curt about its ac-
quired knowledge.

We will present seven different versions of Curt, starting with a basic
system, and gradually extending it. So let’s get down to business and examine
the system from which all the others grow: Baby Curt.

4.1 Baby Curt

Baby Curt is the backbone of the Curt system, and uses the absolute mini-
mum of inference tools (namely none at all). It is built around the kellerStorage

143
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program from Chapter 3. Here is an example of a dialogue with Baby Curt.
The text preceded by the > symbol are the user’s input:

> Vincent loves Mia.

Curt: OK.

> Every woman knows a boxer.

Curt: OK.

Baby Curt’s only response is to acknowledge the input by prompting
“OK”. But we are also able to inspect Curt’s internal memory. We do this
by typing one of the reserved commands. (Reserved commands are not in-
terpreted by Curt.) One of these is the commands readings which has the
following effect:

> readings

1 (love(vincent,mia) &
forall A (woman(A) > exists B (boxer(B) & know(A,B))))

2 (love(vincent,mia) &
exists A (boxer(A) & forall B (woman(B) > know(B,A))))

There are two interpretations in Curt’s memory, due to the scope ambi-
guity of the second sentence we entered. Note that both formulas represent
the entire set of sentences entered so far, and that conjunction is used to
combine the formulas.

Normally Curt takes the first of the readings in its memory and combines
that with the new sentences that are entered; it simply forgets about any
other interpretations. But there is another reserved command that allows us
to force Curt to choose a specific reading. This is the select command:

> select 2

> readings

1 (love(vincent,mia) &
exists A (boxer(A) & forall B (woman(B) > know(B,A))))
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Here we see that Curt has kept the narrow scope reading for a boxer in
its memory. Another reserved command is history. Curt reacts to this by
supplying all the sentences entered so far:

> history

1 [vincent,loves,mia]
2 [every,woman,knows,a,boxer]

There are a couple more reserved commands that Baby Curt understands.
The command bye quits the dialogue with Curt, and the command new starts
a new discourse (it clears the readings in Curt’s memory, and throws away
the history of the discourse). As we develop Curt, we will add new reserved
commands, and these will be explained as they are introduced.

So, that is what Baby Curt does—but how is it implemented?
First a fundamental implementation decision. Curt needs to keep track

of the readings it generates and the sentences the user enters. The number
of readings and sentences grows as the dialogue proceeds, but the user is free
to throw away this information at any time by using the new command. How
should this be handled?

We do so using two dynamic Prolog predicates. The first, readings/1,
will be used to store the interpretations of the sentence that we enter. The
second, history/1, will be used to store the history of the discourse. Be-
cause we declare these predicates as dynamic, we can change their definition
while running the program, using the built-in Prolog assert and retract

predicates. The auxiliary predicates that handle this can be found in the file
curtPredicates.pl.

With this noted, we can turn to the large-scale architecture of Curt. The
core of Curt is a dialogue control structure implemented with the help of the
recursive predicate curtTalk/1, whose argument designates the program’s
executing state. This is one of the values quit or run: the quit value stops
the recursion (and thereby ends the dialogue with Curt), whereas the run

value takes Curt through the recursion again:

curtTalk(quit).

curtTalk(run):-

readLine(Input),
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curtUpdate(Input,ReplyMoves,State),

curtOutput(ReplyMoves),

curtTalk(State).

The control strategy of Curt is straightforwardly coded in this recursive
predicate. With readLine/1 it asks us to type in a sentence, which will
be unified with the Prolog variable Input. Next curtUpdate/3 takes the
newly entered sentence and updates it with respect to the previously entered
sentences. It returns a list of reply-moves, and a new value for the program’s
executing state. The reply-moves tell Curt how to react to your input, and
we will have a closer look at them shortly when we discuss curtOutput/1.

Let’s first see how curtUpdate/3 is implemented. First of all we deal
with the reserved commands. These are all straightforwardly coded:

curtUpdate([new],[],run):- !,

updateReadings([]),

clearHistory.

curtUpdate([readings],[],run):- !,

readings(R),

printRepresentations(R).

curtUpdate([history],[],run):- !,

history(H),

printRepresentations(H).

curtUpdate([select,X],[],run):-

number(X),

readings(R1),

selectReadings(X,R1,R2), !,

updateReadings(R2).

curtUpdate([bye],[bye],quit):- !.

The first four of these reserved commands return (in the third argument
position) the value run for the execution state of Curt, and return (in the sec-
ond argument position) an empty set of reply-moves, because there is no spe-
cial way Curt should reply after obeying one of the reserved commands. The
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reserved command bye behaves differently: this sets the program’s execution
state to quit (which will stop the recursion in curtTalk/1 and terminate
the program) and unifies the reply-moves to [bye].

If whatever we entered doesn’t match any of the reserved commands,
Curt attempts to parse the input using kellerStorage/3. If it succeeds in
doing that, it updates the history, and combines the readings with those of
the previous discourse:

curtUpdate(Input,[accept],run):-

kellerStorage(Input,Readings), !,

updateHistory(Input),

readings(OldReadings),

combine(Readings,OldReadings,NewReadings),

updateReadings(NewReadings).

There are two more possibilities. Maybe we absent-mindedly jiggled the
return key. This is not a particularly intellectually demanding task, but Baby
Curt needs to know how to deal with it:

curtUpdate([],[clarify],run):- !.

That is, in this case Curt will demand clarification from the user.
Finally, the input might not be any of the cases described above. That is,

whatever the user had entered is neither a reserved command, nor parseable
by our grammar, nor a nervous tic. We deal with any such cases as follows:

curtUpdate(_,[noparse],run).

So, what the predicate curtUpdate/3 returns (and note that because
of this last fallback clause it always succeeds) is a list of reply-commands.
This list can be empty (in which case Curt doesn’t reply) or it can contain
one of the following values: bye, clarify, accept, and noparse. (As Curt
develops, the number of reply-commands will grow.) Turning the abstract
reply-moves into concrete output is done by recursively going through the
list of moves:

curtOutput([]).

curtOutput([Move|Moves]):-
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realiseMove(Move,Output),

format(’~n~nCurt: ~p~n’,[Output]),

curtOutput(Moves).

The reply-moves themselves are concretely realized by using a simple
look-up table:

realiseMove(clarify,’Want to tell me something?’).

realiseMove(bye,’Goodbye!’).

realiseMove(accept,’OK.’).

realiseMove(noparse,’What?’).

And that is the core of the Curt architecture. However there are several
predicates that we haven’t explained yet. Some of them are not so important
and we ask the reader to do the Exercise 4.1.2 to find out how they work. But
combine/3, which is used by curtUpdate/3 to combine the readings of the
new sentence with the readings of the previous discourse, is worth looking at
right away:

combine(New,[],New).

combine(Readings,[Old|_],Updated):-
findall(and(Old,New),memberList(New,Readings),Updated).

The first clause succeeds when Curt’s memory is empty (at the beginning
of the dialogue, or when the user has just used the reserved command new).
The second clause uses the built-in Prolog findall/3 to yield a list of all
new readings combined with the first reading of the history.

Exercise 4.1.1 Load Baby Curt and enter some sentences. Try all the reserved
commands.

Exercise 4.1.2 Inspect the file curtPredicates.pl and check how the predicates
updateReadings/1, updateHistory/1, clearHistory/0, and selectReadings/3
are defined.
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Programs for Baby Curt

babyCurt.pl

Loading this file loads everything needed to run Baby Curt.

curtPredicates.pl

Auxiliary predicates used by the Curt family.

4.2 Rugrat Curt

Baby Curt may be cute, but it’s not that bright. In fact, it’s downright
dumb:

> mia smokes

Curt: ’OK.’

> mia does not smoke

Curt: ’OK.’

The discourse is blatantly contradictory, but Baby Curt simply parses it,
stores the representation, and carries on as usual. It’s clearly time baby
started to grow up. What shall we do?

Time for Rugrat Curt. By hooking up Baby Curt to the free variable
tableau prover of Chapter 5, we get a system that handles (some) inconsistent
discourses:

> mia smokes

Curt: ’OK.’

> mia does not smoke

Message (consistency checking): proof found.
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Curt: ’No! I do not believe that!’

As we can see, Rugrat Curt reacts with furious disbelief to this discourse;
it does so via a new reply-move called contradiction that triggers this
response when the input in inconsistent. But how did Rugrat Curt know
that the input was inconsistent?

Recall from Chapter 5 that theorem provers provide us with a negative
check for consistency. That is, if Discourse-So-Far is the first-order repre-
sentation built by Curt from the preceding dialogue, and φ is the first-order
representation of the latest sentence, then we can use a theorem prover to
test whether

Discourse-So-Far |= ¬φ
If the theorem can prove this, then the latest sentence is inconsistent with the
previous discourse. Now, note the message from the free-variable theorem
tableau prover in the second line of our example: our prover found a proof
of inconsistency. This is what lead to Curt’s complaint.

That’s the basic idea, but how do we make it work in Prolog? Actu-
ally, because Rugrat Curt is an extension of Baby Curt, there is very little
that changes in the backbone of the system. One change is the clause of
curtUpdate that deals with parsing a sentence. We impose an additional
condition (implemented by consistentReadings/2) that filters out incon-
sistent readings:

curtUpdate(Input,Moves,run):-
kellerStorage(Input,Readings), !,
updateHistory(Input),
readings(OldReadings),
combine(Readings,OldReadings,Combined),
consistentReadings(Combined-NewReadings,Moves),
updateReadings(NewReadings),
updateModels(Models).

The consistent readings are selected as follows. For each reading in Curt’s
memory, Curt tries to prove whether it is inconsistent using the predicate
consistent/2. All readings that are consistent are stored in the variable
Consistent. If there are no consistent readings, then reply-move is unified
with contradiction, otherwise the reply-move is set to accept.



4.2. RUGRAT CURT 151

consistentReadings(Readings-Consistent,[Move]):-
findall(Reading,

(
memberList(Reading,Readings),
consistent(Reading)

),
Consistent),

(
Consistent=[],
Move=contradiction

;
\+ Consistent=[],
Move=accept

).

Consistency checking is implemented by calling the free-variable tableau
prover from Chapter 5 with the negation of the formula and a Q-depth of
75. If no proof is found then Rugrat Curt assumes this reading is consistent.

consistent(Formula):-
prove(not(Formula),75), !,
nl, write(’Message (consistency checking): proof found.’),
fail.

consistent(_).

Because we have now added a new reply-move, we also need to add a
clause for the realization of that move:

realiseMove(contradiction,’No! I do not believe that!’).

And that’s that. Before reading the text further, take time to do the
following exercises.

Exercise 4.2.1 Play around with Rugrat Curt and give it more complex dis-
courses to handle. Try to determine the limits of our little rugrat. Does it handle
all inconsistent input? For example, does it handle input in which a later input
sentence contradicts an earlier one? And does it handle all input efficiently? And
are there natural language constructions that it does not handle?
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Exercise 4.2.2 Rugrat Curt is implemented using the free variable tableau prover
from Chapter 5, with the Q-depth preset to 75. This means that if a proof of in-
consistency requires a greater Q-depth, then Rugrat Curt will give up and wrongly
conclude that the input is consistent. Try and find a natural language example
which you know to be inconsistent, and which Rugrat Curt can build a represen-
tation for, but which Rugrat Curt cannot prove inconsistent.

Programs for Rugrat Curt

rugratCurt.pl

Loading this file loads everything needed to run Rugrat
Curt.

4.3 Clever Curt

If you did the previous exercises carefully, you will have discovered that Ru-
grat Curt has a number of problems. For a start, there is a basic natural
language construction (namely sentences whose verb phrase consists of is
followed by a noun phrase; that is, what a linguist would call copula con-
structions) that it does not handle correctly. Consider the following dialogue:

> Vincent is a man

Curt: OK.

> Mia likes every man.

Curt: OK.

> Mia does not like Vincent.

Curt: OK.

This is blatantly contradictory, but Rugrat Curt just doesn’t see it. Why
not? Because Rugrat Curt can’t handle equality reasoning. The semantic
representation we build for ‘Vincent is a man’ is
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exists A (man(A) & vincent = A)

Note the way the equality symbol is used to predicate the ‘is a man’ property
of ‘Vincent’. But the free-variable tableau system of Chapter 5 doesn’t handle
equality, and so Rugrat Curt fails in a very obvious (and very fundamental)
way.

Another problem you will have noticed is that Rugrat Curt can be ex-
tremely slow. As we emphasized in the previous chapter, first-order theorem
proving is a very difficult task computationally (indeed, general first-order
reasoning is undecidable, and even propositional reasoning, which looks so
simple, is NP-complete). So it is easy to come up with problems that will
overwhelm a naive theorem prover (remember the steamroller!). Rugrat Curt
can only crawl—we want something better.

This is where Clever Curt comes in. Clever Curt does consistency check-
ing, but does so by using a sophisticated theorem prover and a model builder
in parallel. It does this via the predicate callInference.pl which we de-
veloped in Chapter 5. Recall that callInference.pl offers several combi-
nations of theorem prover and model builder; you choose the combination
you want by commenting out the other options. In what follows we assume
that Clever Curt uses this predicate with the theorem prover Bliksem and
the model builder Mace selected, but we urge the reader to experiment with
other combinations—the results are often fascinating.

Both Bliksem and Mace are highly sophisticated reasoning tools, so it is
hardly surprising that Clever Curt handles consistency checking far better
than Rugrat Curt does. For start, Bliksem handles equality reasoning, so we
have no further trouble with sentences like ‘Vincent is a man’ or ‘Butch is not
a boxer’. Moreover, as we saw in the last chapter, Bliksem’s performance is
in a completely different league from that of our little free-variable tableau
prover. So if a discourse contains inconsistencies Clever Curt will generally
be far faster at finding them.

But (as we discussed in the previous chapter) the use of a model builder
also gives us something useful. If a discourse is consistent, then a theorem
prover will never be able to detect an inconsistency. But this means it will
keep attacking the problem until its pre-allocated computational resources
are used up. By running a model builder in parallel with a theorem builder,
we may be able to show that a discourse is consistent before the theorem
prover does all this wasteful work, for a model builder provides us with a
positive check for consistency. If the model builder can show that
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Discourse-So-Far ∪ {φ}
has a model, then the latest sentence is consistent with the previous discourse.

To sum up, by running a positive check for consistency (using the model
builder) in parallel with a negative test for consistency (using the theorem
prover) we can hope for better all-round performance. Bearing this in mind,
let’s take a look at Clever Curt in action:

> Mia dances.

Message (consistency checking): mace found a result.

Curt: OK.

We have something new here: a message from the model builder Mace stating
that it has found a model for the input. This means that the discourse is
consistent. What does the model that Mace built look like? Clever Curt
has a new reserved command models that allows us to inspect the models
created in the course of the dialogue:

> models

1 model([d1],[f(1,dance,[d1]),f(0,mia,d1)])

This displays the models using the notation introduced in Chapter 1.
Here Mace has found the simplest possible model for the discourse: a model
with a domain consisting of one entity, named Mia, that has the property of
dancing.

Very nice—but be careful! The models we are given are not always those
we might expect. To give an example, let’s extend the previous discourse as
follows:

> Jody dances

Message (consistency checking): mace found a result.

Curt: OK.

So far so good. Mace has (correctly) told us that the discourse consisting of
the sentence ‘Mia dances’ followed by the sentence ‘Jody dances’ is consistent
(that is, Mace succeeded in building a model of it). But now let’s look at
the model it constructed:
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> models

1 model([d1],[f(1,dance,[d1]),f(0,jody,d1),f(0,mia,d1)])

The model in its memory still contains only one entity d1—this entity has
two names (namely Jody and Mia) and it dances. This is a logically sensible
model of the discourse, but it is probably not what you had in mind. Why
does Mace give us this model? Because model builders normally try to find
a minimal model. And as there is no information at Curt’s disposal telling
it that Mia and Jody are two different people, it maps both names to the
same entity. When we explicitly tell Curt that Mia and Jody are different,
Curt gives us the expected model:

> Mia is not Jody.

Message (consistency checking): mace found a result.

Curt: OK.

> models

1 model([d1,d2],[f(0,mia,d1),f(0,jody,d2),f(1,dance,[d1,d2])])

As final example, let’s give Clever Curt the dialogue that Rugrat Curt
failed on:

> Vincent is a man

Message (consistency checking): mace found a result.

Curt: OK.

> Mia likes every man.

Message (consistency checking): mace found a result.

Curt: OK.

> Mia does not like Vincent.

Message (consistency checking): bliksem found a result.

Curt: No! I do not believe that!
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Here we see a natural interplay between theorem prover and model builder.
The model builder shows consistency (for the first two lines of dialogue) and
then the theorem prover steps in and detects the inconsistency introduced
by the third line.

Now for the implementation. Because Clever Curt is an extension of
Rugrat Curt, once again there is relatively little that changes. One change is
the definition of consistentReadings which is now a three-place predicate
(because we want to keep track of the models returned by the model builder):

consistentReadings(Readings-Consistent,Models,[Move]):-
findall((Reading,Model),

(
memberList(Reading,Readings),
consistent(Reading,Model)

),
Interpretations),

(
Interpretations=[],
Move=contradiction

;
\+ Interpretations=[],
Move=accept

),
findall(R,memberList((R,_),Interpretations),Consistent),
findall(M,memberList((_,M),Interpretations),Models).

The predicate consistent/2 is defined as follows. It sets the domain
size, and then makes a call to callTPandMB/4 (recall Chapter 5), prints the
result and succeeds only if the model returned is non-empty.

consistent(Formula,Model):-
DomainSize=15,
callTPandMB(Formula,DomainSize,Model,Engine),
format(’~nMessage (consistency checking): ~p found a result.’,[Engine]),
\+ Model=model([],[]).

And that’s pretty much it. Once again, we suggest the reader thinks hard
about the following exercises before moving on.
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Exercise 4.3.1 Load Clever Curt and experiment with different discourses. Ask
Curt to display the models it finds for consistent discourses. Are there any ‘strange’
models? Find some new examples of inconsistent discourses. Do the theorem
prover and model builder always interact in the expected way?

Exercise 4.3.2 In Exercise 4.2.2 we asked you to find a natural language example
which you knew to be inconsistent, and which Rugrat Curt could build a represen-
tation for, but which Rugrat Curt could not prove inconsistent. How does Clever
Curt handle your example?

Exercise 4.3.3 Try playing with Clever Curt when the chosen theorem prover
is Otter. Can you find examples for which the behaviour of Curt is significantly
different when this prover is chosen?

Programs for Clever Curt

cleverCurt.pl

Loading this file loads everything needed to run Clever
Curt.

4.4 Sensitive Curt

Detecting inconsistency is one of the most fundamental inference tasks of all,
and Clever Curt handles it rather well. But there is another task of interest
in natural language semantics, namely informativeness checking. It is often
important to be able to distinguish old and new information.

Clever Curt can’t do this. For example, consider the following dialogue:

> Vincent knows every boxer

Message (consistency checking): mace found a result.

Curt: OK.

> Butch is a boxer

Message (consistency checking): mace found a result.
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Curt: OK.

> Vincent knows Butch

Message (consistency checking): mace found a result.

Curt: OK.

The third sentence, Vincent knows Butch, follows from the previous two
sentences, Vincent knows every boxer and Butch is a boxer. That is, it doesn’t
introduce any new information—it is uninformative with respect to what
has gone before. Clever Curt, however, doesn’t realize this. Now, in many
contexts this example wouldn’t be a problematic example of language use,
but Clever Curt can’t detect even extremely blatant examples of repeated
information:

> Mia smokes

Message (consistency checking): mace found a result.

Curt: OK.

> Mia smokes

Message (consistency checking): mace found a result.

Curt: OK.

> Mia smokes

Message (consistency checking): mace found a result.

Curt: OK.

In short, Clever Curt is blissfully unaware of the difference between old
and new information. How can we sensitize Curt to this distinction?

We learnt two important answers in Chapter 5 (a different answer is
explored in Exercise 4.4.2). First, we learnt that theorem provers provide us
with a negative check for informativeness. If a theorem prover can show that

Discourse-So-Far |= φ

then the latest sentence is not informative with respect to the previous dis-
course. We also learnt that model builder provide us with a positive check
for informativeness. If a model builder can show that
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Discourse-So-Far ∪ {¬φ}
has a model then the latest sentence is informative with respect to with the
previous discourse.

Both checks are built into Sensitive Curt. Sensitive Curt is an extension
of Clever Curt (that is, Sensitive Curt performs positive and negative consis-
tency checks in parallel). But Sensitive Curt is also alert for uninformative
contributions by the user. It does so by using a theorem prover and model
builder in parallel to check whether new contributions are informative with
respect to the readings Curt has in its memory.

Here’s an example of Sensitive Curt in action:

> Mia smokes

Message (consistency checking): mace found a result.

Curt: OK.

> Mia smokes

Message (consistency checking): mace found a result

Message (informativeness): bliksem found a result.

Curt: Well, that is obvious!

This is how Sensitive Curt behaves, but how is it implemented? The key
step is to add yet another filter to the clause curtUpdate/3. As well as watch-
ing out for consistent readings (as we did in Clever Curt) we check whether or
not readings are informative by using the predicate informativeReadings/3:

curtUpdate(Input,Moves,run):-

kellerStorage(Input,Readings), !,

updateHistory(Input),

readings(OldReadings),

combine(Readings,OldReadings,Combined),

consistentReadings(Combined-NewReadings,Models,TempMoves),

informativeReadings(NewReadings,TempMoves,Moves),

updateReadings(NewReadings),

updateModels(Models).
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The predicate, informativeReadings/3, is defined as follows:

informativeReadings([],Moves,Moves):- !.

informativeReadings(Readings,_,[obvious]):-
memberList(and(Old,New),Readings),
\+ informative(Old,New), !.

informativeReadings(_,Moves,Moves).

There are three clauses for this predicate. The first clause checks whether
the number of readings is empty. If this is the case, all readings are incon-
sistent, so there is no need to check for informativeness. The second clause
checks if there are no informative readings among the set of consistent read-
ings. It does so with the help of the predicate informative/2. This returns
the reply-move obvious if it succeeds. Otherwise, in the third clause, the
reply-moves keeps its old value.

So, how is informative/2 implemented? As follows:

informative(Old,New):-
callTP(imp(Old,New),Proof,Engine),
(
Proof=proof,
format(’~nMessage (informativeness checking): ~p found a result.’,[Engine])
fail

;
\+ Proof=proof

).

Finally, because we have added a new reply-move, we need to add a clause
for the realization of that move:

realiseMove(obvious,’Well, that is obvious!’).

And that’s that. But before moving on, a few more remarks are in order.
Clever Curt was completely insensitive to the distinction between new and

old information. Sensitive Curt goes to the other extreme—it is completely
tuned in to this distinction (or at least, tuned to them up to the limits
imposed by theorem prover and model builder that it uses). That is, within
these limits, Curt can judge whether arguments are valid or invalid.
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Recall from Chapter 1 that a natural language argument is a sequence of
sentences, the last of which is called the conclusion, the rest premises. Here,
for example, is a simple two premise natural language argument:

(1)
Vincent knows every boxer.
Butch is a boxer.
Vincent knows Butch.

This argument is valid . If the premises are true, then the conclusion
is true too. And if we give the premises and conclusions of this argument
to Sensitive Curt, it will smugly announce ‘Well, that is obvious!’, thereby
establishing that the argument is valid.

Similarly, we can use Sensitive Curt to show that arguments are not valid.
The following, for instance, is not a valid argument:

(2)
If Mia snorts, then Vincent smokes.
Vincent smokes.
Mia snorts.

If we enter these three lines one by one, Sensitive Curt will not make its
triumphant ‘Well, that is obvious!’ cry. For it’s not a valid argument at all. If
you doubt whether Sensitive Curt is right about this try, give it the same two
premises, but change the third line to ‘Mia does not snort’. Sensitive Curt will
happily generate a model, thereby showing that ‘Mia snorts’ is informative
with respect to the premises, and hence that the original argument is not
valid.

One final remark about argumentation is worth making. Consider the
following argument:

(3)
A woman loves every man.
Every boxer is a man.
A woman loves every boxer.

Is this a valid or not? The answer is: sometime yes, sometimes no. The
premises have scope ambiguities, and so does the conclusion, so it really
depends on which reading are intended. We leave the reader to sort out the
details in the following exercise.
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Exercise 4.4.1 Try Sensitive Curt on a number of examples. A good starting
point is the argument just given. When is it valid, and when is it invalid? (Recall
that there a reserved command select to allow us to choose which reading is
carried through.)

Exercise 4.4.2 In the text we used the approach discussed in Chapter 5 (namely
running a theorem prover and model builder in parallel) to determine informative-
ness. But it is interesting to think about other methods of establishing informa-
tiveness.

Clever Curt carries out consistency checks before it checks for informativeness,
so if φ is a first-order representation of (one of the readings of) the new sentence
that survives this check, then we know that φ is consistent with what has gone
before. Now, suppose that M is the model Clever Curt has made for the discourse
so far, and suppose that φ is false in this model. What does this tell us? Use
this observation (and the first-order model checker implemented in Chapter 1) to
implement a positive test for informativeness. What are the advantages and disad-
vantages of this approach to informativeness checking compared to the approach
in the text?

Programs for Sensitive Curt

sensitiveCurt.pl

Loading this file loads everything needed to run Sensitive
Curt.

4.5 Scrupulous Curt

Although Sensitive Curt can perform both consistency and informativeness
checking, in one respect it is rather naive: it accepts as distinct readings
all the output provided by the Keller Storage program. Now, the Keller
Storage program does weed out α-equivalent readings, but it can’t detect
more logically sophisticated examples of equivalent readings. Consider, for
example, the following:

> A boxer loves a woman.
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Message (consistency checking): mace found a result.
Message (consistency checking): mace found a result.

Curt: OK.

> readings

1 exists A (boxer(A) & exists B (woman(B) & love(A,B)))
2 exists A (woman(A) & exists B (boxer(B) & love(B,A)))

Now, a superficial glance at this output suggests that this sentence has
two readings. But it should be intuitively obvious that there is really only
one reading, hence the two formulas above must boil down to the same
thing. This is easy to show. First note that we can can move the innermost
quantifier to the outside without changing the meaning:

1 exists A (exists B (boxer(A) & (woman(B) & love(A,B))))
2 exists A (exists B (woman(A) & (boxer(B) & love(B,A))))

Then, by appealing to the commutativity and associativity of conjunction,
we can rewrite the first formula as follows:

1 exists A (exists B (woman(B) & (boxer(A) & love(A,B))))

Finally, if we permute the existential quantifiers at the start of the first
formula (another operation which does not change the meaning) we obtain:

1 exists B (exists A (woman(B) & (boxer(A) & love(A,B))))

But this is α-equivalent to

2 exists A (exists B (woman(A) & (boxer(B) & love(B,A))))

Hence both representations say the same thing, hence one of the representa-
tions can be eliminated.

Now, it would be nice if our system could eliminate superfluous readings,
and this is what Scrupulous Curt does for us. In essence, given two readings
φ and ψ from a set of readings, Scrupulous Curt calls the theorem prover to
try and prove both φ → ψ and ψ → π (that is, it tries to prove φ ↔ ψ).
Scrupulous Curt has a new reserved command called summary which elimi-
nates logically equivalent readings from its memory. Here is how Scrupulous
Curt deals with the previous example:
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> A boxer loves a woman.

Message (consistency checking): mace found a result.
Message (consistency checking): mace found a result.

Curt: OK.

> readings

1 exists A (boxer(A) & exists B (woman(B) & love(A,B)))
2 exists A (woman(A) & exists B (boxer(B) & love(B,A)))

> summary

Message (eliminating equivalent readings): there are 2 readings:
1 exists A (boxer(A) & exists B (woman(B) & love(A,B)))
2 exists A (woman(A) & exists B (boxer(B) & love(B,A)))
Readings 1 and 2 are equivalent (bliksem).

> readings

1 exists A (woman(A) & exists B (boxer(B) & love(B,A)))

Well, that is what Scrupulous Curt does, but how does it work? We
need to make the following changes to Sensitive Curt. First we extend the
curtUpdate/3:

curtUpdate([summary],[],run):-

readings(Readings),

elimEquivReadings(Readings,Unique),

updateReadings(Unique),

updateModels([]).

The predicate that pulls this all together is elimEquivReadings/2. This
consists of three clauses. The first and second clauses are for the cases where
there are no readings or only one reading. The third clause numbers the
readings and gives them to elimEquivReadings/3, which is where the logical
crunching is carried out.
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elimEquivReadings([],[]).

elimEquivReadings([Reading],[Reading]).

elimEquivReadings(Readings,Unique):-
numberReadings(Readings,1,N,Numbered),
format(’~nMessage (eliminating equivalent readings): there are ~p readings:’,[N]),
printRepresentations(Readings),
elimEquivReadings(Numbered,[],Unique).

Numbering the readings is easy:

numberReadings([],N,N,[]):-
N > 1.

numberReadings([X|L1],N1,N3,[n(N2,X)|L2]):-
N2 is N1 + 1,
numberReadings(L1,N2,N3,L2).

And now for elimEquivReadings/3, which is where we actually try to
prove the equivalences:

elimEquivReadings(Numbered,Diff,Unique):-
selectFromList(n(N1,R1),Numbered,Readings),
memberList(n(N2,R2),Readings),
\+ memberList(diff(N1,N2),Diff), !,
Formula=and(imp(R1,R2),imp(R2,R1)),
callTP(Formula,Result,Engine),
(

Result=proof, !,
format(’Readings ~p and ~p are equivalent (~p).~n’,[N1,N2,Engine]),
elimEquivReadings(Readings,Diff,Unique)

;
format(’Readings ~p and ~p are probably not equivalent.~n’,[N1,N2]),
elimEquivReadings([n(N1,R1)|Readings],[diff(N1,N2),diff(N2,N1)|Diff],Unique)

).

elimEquivReadings(Numbered,_,Unique):-
findall(Reading,memberList(n(_,Reading),Numbered),Unique).
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And that’s that. Or is it? Well, yes and no. Note that we’ve only made
use of a theorem prover. Can’t a model builder help us out here too? Yes,
of course it can, as the following dialogue makes clear:

> every boxer loves a woman

Message (consistency checking): mace found a result.

Message (consistency checking): mace found a result.

Curt: ’OK.’

> summary

Message (eliminating equivalent readings): there are 2 readings:

1 forall A (boxer(A) > exists B (woman(B) & love(A, B)))

2 exists A (woman(A) & forall B (boxer(B) > love(B, A)))

Readings 1 and 2 are probably not equivalent.

Now (as every reader of this book should know by now!) the two readings
of ‘Every boxer loves a woman’ are certainly not equivalent. But that’s not
what Scrupulous Curt says. Scrupulous Curt is indeed scrupulous: it merely
says that that the two readings are ‘probably not equivalent’. Why? Because
what has happened in this case is that the theorem prover has tried, and
failed, to prove equivalence. But failure to prove something is no guarantee
that a proof does not exist. It would be nice to use the model builder to
build a concrete model in which one of the formulas is true and the other
false, thereby explicitly showing the non-equivalence of these formulas. The
reader is asked to explore this idea in Exercise 4.5.4

Exercise 4.5.1 Try Scrupulous Curt on other examples involving spurious scop-
ing ambiguities. Test it to destruction. That is, try to come up with examples
that grind Scrupulous Curt to a halt.

Exercise 4.5.2 [hard] As the previous exercise shows, it is easy to overload Scrupu-
lous Curt. This is not surprising: even quite simple sentences may give rise to lots
of readings, and theorem proving is a computationally intensive task, so system-
atically testing for equivalences on all readings is not exactly a holiday!

Nonetheless, we certainly didn’t do ourselves any favors in the above imple-
mentation. It is possible to rewrite the Prolog code so that fewer calls to the
theorem prover are made. (Hint: if you have already proved that φ → θ and
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θ → ψ it follows that φ → ψ; calling a theorem prover on this last problem is a
waste of resources.)

Exercise 4.5.3 [hard] Sometimes (recall Chapter 3) there is a strongest reading,
namely one that implies all the others. And sometimes (recall the ‘Every owner of
a hashbar. . . ’ example in Chapter 3) there are two (or more) strongest readings
(that is, sometimes there is a collection of readings φ1, . . . , φn, such that any other
reading follows from one of these formulas).

Rewrite Scrupulous Curt so that it calculates all the strongest readings, retains
them, and throws all other readings away.

Exercise 4.5.4 Extend eliminateEquivalentReadings/3by calling a model builder
in parallel to explicitly demonstrate the non-equivalence of readings.

Programs for Scrupulous Curt

scrupulousCurt.pl

Loading this file loads everything needed to run Scrupulous
Curt.

4.6 Knowledgeable Curt

Curt can now do so many clever things (perform consistency and informa-
tiveness checks, and weed out redundant readings) that it is rather sad that
we now have to make an insulting observation about it: Curt is ignorant. Pig
ignorant. It knows absolutely nothing about anything, and this can make its
responses look absurd. Consider the following example:

> Mia is a woman

Message (consistency checking): mace found a result.

Curt: OK.

> Mia is a plant
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Message (consistency checking): mace found a result.

Curt: OK.

A human being, of course, immediately sees the conflict between the
claims that Mia is a woman and that she is a plant. But for Scrupulous
Curt, ignorance is bliss. It blindly accepts the input and carries on.

What should we do? Well, there is only one cure for ignorance: knowl-
edge, knowledge, and yet more knowledge! Adding background knowledge
leads us to Knowledgeable Curt, an educated version of Scrupulous Curt.
Now, recall the discussion of Chapter 1.4. As we pointed out there, one of
the pleasant aspects of using first-order logic as a representation formalism is
the simple way it enables background knowledge to be incorporated into in-
ference. If we can formulate the required background knowledge in first-order
logic, then using this knowledge is merely a matter of using these formulas
as additional premises. Let’s be precise about what “using these formulas as
additional premises” means.

In the versions of Curt we have seen so far, if Discourse-So-Far is the
representation built by Curt from the preceding dialogue, and φ is the rep-
resentation of the latest sentence, then consistency checking boils down to
using a theorem prover to test whether

Discourse-So-Far |= ¬φ
(the negative test) and simultaneously using the model builder to check
whether

Discourse-So-Far ∪ {φ}
has a model (the positive test). As for informativeness checking, this boils
down to using a theorem prover to test whether

Discourse-So-Far |= φ

(the negative test) and simultaneously using the model builder to check
whether

Discourse-So-Far ∪ {¬φ}
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has a model (the positive test).
So what happens when we add (first-order) background knowledge? Well,

let’s suppose that we have written down first-order formulas expressing the
required background knowledge, and let’s suppose that we have classified
this knowledge into two kinds: lexical knowledge and world knowledge. Then
consistency checking boils down to using a theorem prover to test whether

Lexical-Knowledge ∪ World-Knowledge ∪ Discourse-So-Far |= ¬φ
(the negative test) and simultaneously using the model builder to check
whether

Lexical-Knowledge ∪ World-Knowledge ∪ Discourse-So-Far ∪ {φ}
has a model (the positive test). As for informativeness checking, this boils
down to using a theorem prover to test whether

Lexical-Knowledge ∪ World-Knowledge ∪ Discourse-So-Far |= φ

(the negative test) and simultaneously using the model builder to check
whether

Lexical-Knowledge ∪ World-Knowledge ∪ Discourse-So-Far ∪ {¬φ}
has a model (the positive test).

Let’s look at an example. Knowledgeable Curt has a small fund of lexical
and world knowledge, and among the things it knows is that woman are
people and that people cannot be plants. Knowledgeable Curt brings this
information to bear in the way just described, and thus handles the previous
dialogue differently:

> Mia is a woman

Message (consistency checking): mace found a result.

Curt: OK.

> Mia is a plant

Message (consistency checking): bliksem found a result.

Curt: No! I do not believe that!
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This is a conceptually clean and simple way of thinking about inferences
that involve knowledge. Nonetheless, one point should be made right away:
a lot of knowledge is needed to ensure that Curt behaves in a even a semi-
sensible way. It is revealing to see just how much information Knowledgeable
Curt brings to bear on even the simplest problem. Consider the following
dialogue:

> ?- mia smokes

Message (consistency checking): mace found a result.

Curt: ’OK.’

> ?- readings

1 smoke(mia)

This dialogue is about as simple as it gets: one sentence and one read-
ing (and a very simple reading at that). But when we look at what took
place behind the scenes, we are in for a bit of a shock. Knowledgeable Curt
has a new reserved command knowledge which computes and shows the
background knowledge used for the current reading. What background in-
formation did the model builder (and indeed, the theorem prover) take into
account in its consistency check? All this:

> ?- knowledge

1 (forall A (concrete(A) > ~ abstract(A)) &

(forall B (entity(B) > concrete(B)) &

(forall C (entity(C) > thing(C)) &

(forall D (living(D) > ~ nonliving(D)) &

(forall E (male(E) > ~ female(E)) &

(forall F (organism(F) > living(F)) &

(forall G (organism(G) > entity(G)) &

(forall H (animate(H) > ~ inanimate(H)) &

(forall I (human(I) > ~ nonhuman(I)) &

(forall J (person(J) > human(J)) &

(forall K (person(K) > animate(K)) &

(forall L (person(L) > organism(L)) &
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(forall M (female(M) > ~ male(M)) &

(female(mia) & (person(mia) &

(female(mia) & person(mia)))))))))))))))))

Now, that’s a lot of formulas. And this raises a host of questions. Where
exactly did Knowledgeable Curt get hold of this knowledge? Where are these
formulas stored? Is this all the knowledge at its disposal, or is it merely a
selection? And if it’s a selection, why were these formulas selected for this
inference and not others? And how exactly was this background knowledge
chosen? Did we haphazardly write down a host of useful looking formulas,
or was there an attempt to structure the knowledge representation process?
We discuss these issues in the coming pages.

Lexical Knowledge

Well, did we just haphazardly write down a host of plausible looking formulas,
or did we try to take a more structured approach? Unsurprisingly, we tried
to be as systematic as possible. Formulating background knowledge is an
extremely difficult business. Even for a simple system like Curt, it is not
easy to see what is required, and it is easy to make mistakes or overlook
things. Guiding principles are vital.

We’ve already mentioned one useful principle: splitting background knowl-
edge into lexical knowledge and world knowledge. Why is this helpful? For a
start, simply realizing that this distinction can be made (even if it is a little
fuzzy) is a useful first step. More importantly, isolating lexical knowledge as
an interesting subcategory of knowledge forces us to think hard about the
meaning of words—and this will lead us to systematic ways of formulating
and storing knowledge.

But haven’t we already thought hard about the meaning of words? In
one sense, yes. For example we have said that the meaning of ‘man’ is
λy.man(y), and that the meaning of ‘every’ is λu.λv.∀x(u@x→v@x). These
are important things to say about the meanings of these words. In particular,
these representations pin down, precisely and elegantly, what we might call
the combinatorial, or compositional, meanings of these words.

But there is an important difference between the compositional meanings
of ‘man’ (an open class word, namely a noun) and ‘every’ (a closed class word,
namely a determiner). Intuitively, we feel that giving ‘every’ the representa-
tion λu.λv.∀x(u@x→v@x) gives us the essence of its meaning; clearly there
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are other things that that could (and should) be said, but simply giving this
representation accomplishes a lot. But we certainly don’t feel this way when
we give ‘man’ the representation λy.man(y). Far from thinking we’ve said it
all, we feel we’ve hardly started. Instead of getting to grips with all aspects of
the meaning of ‘man’, this definition essentially gives us the symbol man, and
that’s that. In particular, how this symbol relates to other symbols such as
person, male, father, husband, chromosome, and so on, is completely
unspecified.

In short, we need to say something about lexical semantics. Lexical se-
mantics studies the relationships that hold between the concepts expressed
by words. It is a fascinating (and difficult) subject which we won’t be able
to explore in detail in this book. But it is important to say something about
it, for thinking systematically about the relationships that hold between (the
concepts expressed by) words is an important way of structuring background
knowledge. We shall illustrate this with a simple (but systematic) treatment
of nouns and adjectives. In essence we will describe the fine structure of
entities (that is, the things these words denote) by designing an ontology
of concepts . The work involved is essentially classificatory: we arrange the
concepts expressed by words into a hierarchy. Once we’ve done this, we’ll go
on and discuss how make such knowledge available to Curt.

Let’s first look at the nouns. Here is a tree structure made up of six nouns
(‘organism’, ‘animal’, ‘plant’, ‘animal’, ‘person’, ‘man’, and ‘woman’):

organism

animal plant person

man woman

These are the kind of tree-structures that we will use to classify nouns.
Thinking about noun meanings in terms of trees is a natural way of formu-
lating knowledge, for such diagrams enable us to use the idea of inheritance:
daughter nodes inherit information from mother nodes. For example, ac-
cording to the above tree, every ‘plant’ is an ‘organism’, every ‘animal’ is an
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‘organism’, every ‘person’ is an ‘organism’, every ‘man’ is a ‘person’, and every
‘woman’ is a ‘person’.

Let’s introduce some standard linguistic terminology: ‘organism’ is a hy-
pernym of ‘animal’, and ‘animal’ is a hyponym of ‘organism’. Incidentally, lin-
guists do not view the hypernym or hyponym relations as transitive. That
is, while ‘object’ is a hypernym of ‘food’, and ‘food’ is a hypernym of ‘bever-
age’, the linguist would not say that ‘object’ was a hypernym of ‘beverage’.
In graphical terms, to move to the hypernym we take one step up the tree
to the mother mode, and to move to a hyponym we move one step down to
a daughter.

Read this way, the classification presented by the above tree makes fairly
good sense. Of course it possible to quibble with the terminology—a biologist
would insist that persons are animals—but for many purposes it is a sensible
starting point. But whether or not you like this particular classification, it
is important that you appreciate the tree-based thinking that gave rise to
it: such thinking is a useful way of structuring our attempts at knowledge
representation.

Let’s now consider adjectives. Several pairs of adjectives form antonym
relations: big/small, male/female, old/young, quick/slow, and so on. We
will use this lexical knowledge to define disjointness in our ontology. We
will do this as follows. We introduce the antonyms ‘male’/‘female’, ‘ani-
mate’/‘inanimate’, ‘human’/‘nonhuman’. Next we define

animal: animate, nonhuman.
plant: nonhuman, inanimate.
person: human, animate.
man: male.
woman: female.

Some of these classes will be disjoint. For example, the concept animal
is disjoint from plant, because animals are classified as animate, whereas
plants are inanimate. That is, according to this partial picture of the world,
nothing can be a plant and an animal, nothing can be an animal and a
person, and nothing can be a plant and a person. And other classes may
inherit such disjointness properties. For example, man inherits the property
of being disjoint from plants and animals, because man is a hyponym of
person.

That’s the basic idea. Let’s now apply it on a bigger scale, and classify
all the nouns in our lexicon. That is, we shall give a tree that covers all of
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the nouns that our Prolog programs work with. Obviously there are many
ways of carrying out this task, and it is highly likely that if two different
people classified the same set of nouns, they’d each come up with a different
ontology, for everyone has a slightly different conception of the world. Is this
a serious obstacle? For our purposes, no. We simply want to illustrate how
important it is to provide some (consistent) picture of the world, and how
to put this picture to work. But of course, if you want to adapt the tools
provided in this book to some particular domain, then it is virtually inevitable
that you will have to to extend or otherwise modify the ontology provided
below. This will require a serious (and probably lengthy) analysis of your
problem domain. There’s no getting away from it: knowledge representation
is hard work.

Here is the top of our ontology:

thing

event entity

object

food artifact

building instrument

organism

animal person plant

At the root of this structure we have event (an abstract thing), and
entity (a concrete thing). Then entity is divided into object (any non-
living entity) and organism (yes, you guessed right: a living entity). The
remaining classifications should be fairly self-explanatory. We will use the
following disjointness relationships:

abstract – concrete
nonliving – living
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edible – inedible
immobile – mobile
animate – inanimate
nonhuman – human
male – female

And that is our ontology (or at least, the uppermost part of it). And
now, taking this tree as our point of departure, the next step is to use it as a
guide to the world of nouns (or at least, the nouns in our lexicon). That is,
we must go painstakingly through our lexicon and relate each of the nouns it
contains to one of these nodes. For example, ‘episode’ and ‘joke’ are events,
‘foot massage’ and ‘piercing’ are events, a ‘five dollar shake’ is a beverage, and
so on. Incidentally, this approach also let’s us deal with homonyms (words
that have multiple unconnected meanings), as Exercise 4.6.1 asks the reader
to show.

What exactly is involved in going through the lexicon and relating each
noun to one of the nodes in the ontology? It means enriching the lexical
entries along the following lines:

lexEntry(noun,[symbol:car,syntax:[car],hypernyms:[vehicle]]).
lexEntry(noun,[symbol:chainsaw,syntax:[chainsaw],hypernyms:[device]]).
lexEntry(noun,[symbol:criminal,syntax:[criminal],hypernyms:[person]]).
lexEntry(noun,[symbol:customer,syntax:[customer],hypernyms:[person]]).
lexEntry(noun,[symbol:drug,syntax:[drug],hypernyms:[food]]).
lexEntry(noun,[symbol:entity,syntax:[entity],hypernyms:[concrete,thing]]).
lexEntry(noun,[symbol:episode,syntax:[episode],hypernyms:[event]]).
lexEntry(noun,[symbol:event,syntax:[event],hypernyms:[abstract,unisex,thing]]).
lexEntry(noun,[symbol:fdshake,syntax:[five,dollar,shake],hypernyms:[beverage]]).

That is, for each noun in the lexicon, we fill the last slot with its hypernym
noun. (Actually, in some cases we are abusing the linguistic terminology here,
for not all of these are what a linguist would call true hypernyms. It would be
more accurate if we spoke of superconcepts.) The hyponym relation doesn’t
need to be explicitly encoded; as it is just the converse of the hypernym
relation it is easy to compute.

As we’ve already remarked, linguists do not view the hypernym relation
as transitive. That is, while ‘object’ is a hypernym of ‘food’, and ‘food’ is a
hypernym of ‘beverage’, ‘object’ is not a hypernym of ‘beverage’. Nonetheless,
it is certainly true that anything that is a beverage is an object, and when
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performing inference we will be interested in drawing such conclusions, and
this means that we will need to chain our our way through the hypernym
relation. (To put it in mathematical terms: the relation that is really in-
teresting from the inferential point of view is the transitive closure of the
hypernym relation, not the hypernym relation itself.) But this leads to a
practical point: if we have been careless, and specified the hypernym rela-
tion wrongly, we may get silly answers when we carry out such chaining. In
particular we need to take care that there are no words w, v1, v2, . . . , vn

in our lexicon such that w is a hypernym of v1, v1 is a hypernym of v2, . . . ,
and vn is a hypernym of w. Now, if you have sat down and looked at all the
lexical entries, you will have seen that encoding all this structure is a lot of
work, and it would be easy to make such a mistake. Thus it would be useful
to have a Prolog utility that checks that our ontological specifications don’t
contains cycles, and Exercise 4.6.2 asks the reader to provide one.

Adjectives are dealt with in much the same way. We give them entries
like the following:

lexEntry(adj,[symbol:big,syntax:[big],antonyms:[small]]).
lexEntry(adj,[symbol:male,syntax:[male],antonyms:[female]]).
lexEntry(adj,[symbol:female,syntax:[female],antonyms:[male]]).
lexEntry(adj,[symbol:concrete,syntax:[concrete],antonyms:[abstract]]).

Once we have recorded our ontology in the lexicon, we want to use this
information to perform inference. Now, in this book the inference tools
used are those of first-order logic—so if we want to make use of the lexical
knowledge we have so carefully defined we need to make it available in a form
that first-order theorem provers, model builders and model checkers can use.

This is easy to do—we simply compile the ontology into a collection of
first-order axioms. We use the predicate axiom/3 to record the results of
this compilation process. For example, for the concept ‘car’ the compilation
returns:

axiom(car,1,

all(X,imp(car(X),vehicle(X)))).

And if you examine the lexical entry for the word ‘car’, it will be pretty
obvious where this came from:

lexEntry(noun,[symbol:car,syntax:[car],hypernyms:[vehicle]]).
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It should clear that the compilation process has turned the information that
‘vehicle’ is a hypernym of ‘car’ into first-order logic in the obvious way: it
has given us the axiom ∀x(car(x)→vehicle(x)). But why did we write the
symbol car as the first argument of axiom? We call car the trigger symbol
for the axiom. We won’t discuss the role of trigger symbols now, but will
return to the topic at the end of this section.

Let’s look at another example. Here’s the lexical entry for the adjective
‘concrete’:

lexEntry(adj,[symbol:concrete,syntax:[concrete],antonyms:[abstract]]).

The compilation process yields following:

axiom(concrete,1,

all(X,imp(concrete(X),not(abstract(X))))).

That is, it returns ∀x(concrete(x)→ ¬abstract(x)).
The lexical relations recorded in our lexicon (namely, the hypernym re-

lation for nouns and proper names, and the antonym relation for adjectives)
generate these axioms automatically; in fact, the compilation is performed
when the file backgroundKnowledge.pl is consulted. Exercise 4.6.3 asks you
to take a closer look at what is involved here.

A practical consequence of this approach to lexical knowledge represen-
tation is that if you want to change some of these axioms, the right way to
do so is by changing the lexical entries; recall from Chapter 2 that these are
stored in the file englishLexicon.pl. To inspect the axioms generated, give
the command

listing(backgroundKnowledge:axiom).

after loading Knowledgeable Curt (and before giving the command curt

to start the dialogue).

Exercise 4.6.1 [easy] Think of a way to put homonyms (words that have multi-
ple unconnected meanings) in the ontology of nouns. For instance, according to
WordNet, ‘boxer’ could be someone who fights with his fists for sport, a worker
who packs things into containers, or a breed of stocky medium-sized short-haired
dog with a brindled coat and square-jawed muzzle developed in Germany.

Exercise 4.6.2 Write a checker that browses through the lexicon, checking that
it is never possible to cycle back to a word by moving along the hypernym relation
for nouns.
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Exercise 4.6.3 Inspect the file backgroundKnowledge.pl and find out how lexi-
cal knowledge is converted into axioms by the predicate generateLexicalKnowledge.

World Knowledge

The lexical knowledge we have added is useful, but Curt needs more than the
knowledge generated by hypernym and antonym relations—it needs knowl-
edge of a more general kind: world knowledge.

It is hard to be precise about what should fall under the heading ‘world
knowledge’. For example, it is arguable that some of the knowledge we are
about to call ‘world knowledge’ could (and perhaps should) be thought of
as ‘lexical knowledge’ (see Exercise 4.6.7). Moreover, it is difficult to formu-
late world knowledge in a systematic manner; a truly systematic approach is
probably only possible in clearly defined application domains. So our discus-
sion of world knowledge will only illustrate basic issues of direct relevance to
computational semantics: we shall give a few simple axioms, and show how
they affect Curt’s behaviour.

The file backgroundKnowledge.pl contains several world knowledge ax-
ioms. The axioms are stored in the same axiom/3 based format used for
compiled lexical knowledge. For example, one of our world knowledge ax-
ioms states that only persons can dance, and another states that only persons
or buildings can collapse. These axioms are stored as follows:

axiom(dance,1,
all(X,imp(dance(X),person(X)))).

axiom(collapse,1,
all(X,imp(collapse(X),or(person(X),building(X))))).

We also have some slightly more complicated axioms, for example one
stating that cleaning is something that people do to artifacts and another
stating that drinking is something that people do to beverages:

axiom(clean,2,
all(X,all(Y,imp(clean(X,Y),and(person(X),artifact(Y)))))).

axiom(drink,2,
all(X,all(Y,imp(drink(X,Y),and(person(X),beverage(Y)))))).
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Why is such knowledge relevant to computational semantics? For a start,
with this knowledge at its disposal, Curt will be more choosy about which
sentences and discourses it accepts as consistent. For example, Knowledge-
able Curt will reject Mia drinks a restaurant as inconsistent. Observe that to
reject this sentence Curt must make an inference that draws on both world
knowledge (drinking is a relation that holds between beverages and people)
and lexical knowledge (the ontology defined in the lexicon precludes restau-
rants from being beverages).

Furthermore, note that consistency tests that take world knowledge into
account not only exclude sentences or discourses, they can also filter out scope
ambiguities. For example, ‘Every car has a radio’ has the same structure as
‘Every boxer loves a woman’, but clearly world knowledge typically rules out
the reading where ‘a radio’ has wide scope. After all (unless we are working
in a domain containing only one car) it is highly implausible that all cars will
share the same radio!

Here’s how Knowledgeable Curt handles this example:

> ?- every car has a radio

Message (consistency checking): mace found a result.

Message (consistency checking): bliksem found a result.

Curt: ’OK.’

That is, the Keller Storage program generates two candidate readings, and
consistency checking is performed. Now, the first message says that the model
builder (which carries out the positive test) found a result, which means that
the first reading is consistent. However the second message says that the
theorem prover (which carries out the negative test) found a result, which
means that an inconsistency was detected. And indeed, when we give the
command readings we see that only one of the candidate readings (namely,
where ‘every car’ takes wide scope) has survived:

> ?- readings

1 forall A (car(A) > exists B (radio(B) & have(A, B)))

What lead Curt to reject the other reading? If you give the command
knowledge and go carefully through the output you will find that Curt drew
on (among other things) the following principle:
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forall T forall U (exists V

(object(T) & (object(U) & (object(V) &

(have(T, V) & have(U, V))))) > T = U))

This says that if an object V is part of two objects T and U, then T and U

must be the same thing (or to put it another way: no object can be part
of two distinct objects). This is part of the world knowledge supplied to
Knowledgeable Curt.

Exercise 4.6.4 Some of the axioms at Knowledgeable Curt’s disposal are too
restrictive. For example, defining cleaning as a relation between persons and ar-
tifacts means that Curt rejects the sentence ‘Mia cleans Vincent’. Change the
world knowledge backgroundKnowledge.pl so that this sentence (and sentences
like ‘Mia cleans a plant’) are accepted, but sentences like ‘Mia cleans a footmassage’
are rejected.

Exercise 4.6.5 The sentence ‘Every boxer has a broken nose’ has two logically
distinct readings, but world knowledge rules one of these out as biologically im-
plausible. By extending the lexicon and the world knowledge, ensure that Curt
rejects the unwanted reading.

Exercise 4.6.6 Compare the performance of Knowledgeable Curt on the ‘Every
boxer has a broken nose’ example when Bliksem and Otter, respectively, are used
as Curt’s theorem prover.

Exercise 4.6.7 It might be argued that some of the ‘world knowledge’ axioms in
backgroundKnowledge.pl actually embody lexical knowledge. For example, the
axiom stating that drinking is a relation that holds between people and beverages
could be viewed this way, for it defines what linguists would call a sortal restric-
tion on verbal arguments. Which other axioms are like this? Which are not?
Find a way to include such information in the lexicon, and change the program
backgroundKnowledge in such a way that it automatically generates such axioms
from the lexicon.

Selecting Background Knowledge

One aspect of our representation of lexical and world knowledge remains
unexplained: the role of trigger symbols. That is, instead of writing

axiom(car,1,

all(X,imp(car(X),vehicle(X))))
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why didn’t we simply write

axiom(all(X,imp(car(X),vehicle(X)))

instead? We said earlier that car was the trigger symbol for this axiom, but
what is it there for?

The answer can be summed up in one word: efficiency. It should be clear
that storing all our axioms in one big unstructured database is not a good
idea. We don’t want to call on all the background knowledge we have at
disposal for every inference. The more background knowledge we use, the
greater the risk that we overwhelm our theorem provers and model builders.
Given a particular instance of a problem, we should weed out axioms that
are irrelevant. For example, if we are talking about cars, we may well need to
know about vehicles too—but there is no need for knowledge about vehicles
if we are only talking about different kinds of beverages.

The predicate backgroundKnowledge/2 takes this into account by select-
ing the background knowledge axioms related to a formula. Its first argument
should be instantiated to the formula you want your background knowledge
for (we call this the trigger formula), and the second argument will be unified
with a formula representing the background knowledge.

In essence, backgroundKnowledge/2 works as follows: it finds all the non-
logical symbols that appear in the trigger formula, and then checks whether
there are any axioms in the database containing these symbols. It forms
the conjunctions of all such formulas, and only this selected information is
actually used in the inference task. (This relevant conjunction is what you
see when you use the reserved command knowledge in Curt.)

Exercise 4.6.8 Examine the backgroundKnowledge/2 predicate (you will find it
in the file backgroundKnowledge.pl).

Programs for Knowledgeable Curt

knowledgeableCurt.pl

Loading this file loads everything needed to run Knowl-
edgeable Curt.
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4.7 Helpful Curt

The Curts we have met so far only allow us to assert information. There is
no way to query information, or at least no natural way. Helpful Curt is a
little more gracious:

> Vincent knows every woman.

Curt: OK.

> Mia is a woman.

Curt: OK.

> Who knows Mia?

Curt: This question makes sense!

Curt: vincent

Roughly speaking, Helpful Curt works as follows. It takes the user’s
wh-question, translates it into a quasi-logical form, uses the model checker
developed in Chapter 1 to query the discourse model it has built, and then
generates a noun phrase that expresses the model checker’s response. But this
description is only a first approximation: for reasons we shall discuss below,
we’re also going to call to the theorem prover to see whether our answers are
“fully warranted”. But this is jumping ahead—for the time being, let’s focus
on the central idea. We want to hook Curt up to our model checker so that
it can answer questions. How do we go about doing this?

First the representational issue. Questions, unlike assertions, don’t have
truth-values, so it would be misleading to represent them as ordinary for-
mulas. We will instead use a simple quasi-logical format to represent their
content. Here’s an example. We will represent the wh-question ‘Who shot
Marvin?’ by:

que(X,person(X),shot(X,marvin)).

We represent all wh-questions using this format: a principal variable (here
X) a restriction (here person(X)) and a body (here shot(X,marvin)). This is
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similar to the way we represented the quantifiers and the lambda operator in
Prolog, and the resemblance is intentional. Like the quantifiers and lambda,
our question marker que is a variable binder: que binds the free occurrences
of the principal variable X in both the restriction and the body.

The semantic role of the restriction and body should be intuitively clear:
the restriction represents what is being asked for, and the body supplies
additional information that must hold of this entity. Here are some more
examples to think about:

Who did not shoot Marvin?
que(X,person(X),not(shot(X,marvin)))

Which customer ordered a five dollar shake?
que(Y,customer(Y),some(X,and(fdshake(X),order(Y,X))))

Which man or woman knows Butch?
que(X,or(man(X),woman(X)),know(X,butch))

We have called these representations quasi-logical forms: they are not
first-order formulas, hence we can’t interpret them directly or (more to the
point) use them directly with inference tools. But we almost can. The
meaning of questions can be thought of in first-order logical terms if we
adopt the following two-step perspective: first, translate que(X,R,S) into
the first-order sentence some(X,and(R,S)), and use this to check whether
the question makes sense. Second, query the model with the matrix of this
first-order formula (that is, and(R,S)) to find suitable instantiations for the
free variable X. Let’s discuss this two-step process more carefully, for it lies
at the heart of Helpful Curt.

The first step is to check that the sentence makes sense. We do so by
giving (the revised version of) the model checker from Chapter 1 the model
so far built of the discourse, and then making the query some(X,and(R,S))

about this model. If our model checker returns the result undefined (undef),
then we know that we can’t say anything useful about this question. Here’s
an example of a dialogue where Helpful Curt runs into this situation:

> Vincent loves every woman.

Message (consistency checking): mace found a result.

Curt: ’OK.’
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> Who is a plant?

Curt: ’I have no idea.’

What’s going on? With the first sentence we tell Curt something about
Vincent and his relation to women, and the model builder (here Mace) suc-
cessfully builds a model of the (consistent) situation described by the input.
Now, because Helpful Curt is an extension of Knowledgeable Curt, this model
will build in a lot of background information supplied by the lexical and world
knowledge components. Nonetheless, there is simply no reason for Curt to
build in any information about plants on the basis of the input sentence, so
it doesn’t do so. But this means that the discourse model Mace constructs
won’t be of the correct signature to handle queries about plants, and when
the model checker is asked to do so it returns undef. This explains Curt’s
(quite reasonable) reaction: the question, with its abrupt change of topic,
comes as a shock, and is (quite rightly) dismissed.

So, that’s what happens if the model builder return undef. But what
if the result is positive (pos) or negative (neg)? This tells that we can
answer the question, either positively or negatively. Now, if the result is
negative, then Curt will simply say “none”, and this is fine. But if the re-
sponse is positive then (because we are dealing with wh-questions) the answer
“yes” would be insufficient: in the positive case we need to provide answers
like “Mia” or “Mia and Vincent”. How do we do this? We use our model
checker once more—but this time, rather than querying with the sentence
some(X,and(R,S)), we throw away the existential quantifier (thereby freeing
X) and query as follows:

?- satisfy(and(R,S),Model,[g(X,A)],pos).

This query will unify A with an entity in the model that satisfies both R

and S—precisely what is required to generate an appropriate positive answer
to a wh-question.

How is this implemented? The key predicate is answerQuestion/3, which
takes the question representation and the discourse model as arguments and
returns a set of reply-moves:

answerQuestion(que(X,R,S),Models,Moves):-
(
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Models=[Model|_],
satisfy(some(X,and(R,S)),Model,[],Result),
\+ Result=undef,
!,
findall(A,satisfy(and(R,S),Model,[g(X,A)],pos),Answers),
realiseAnswer(Answers,que(X,R,S),Model,String),
Moves=[sensible_question,answer(String)]

;
Moves=[unknown_answer]

).

This predicate is constructed as a disjunction: the first part of the dis-
junct deals with sensible questions (reply-moves: sensible-question plus the
answer), the second part deals with questions that cannot be answered by
Curt (reply-move: unknown-answer). It clearly shows that the model checker
is used twice, the first time to check whether the question makes sense, then
the second time (as an argument to findall) to gather together the entities
that satisfy the query.

So far so good—but now we need to go a little deeper. We have explained
the core ideas involved in using a model checker to answer questions, but
question answering is a subtle business. Is querying a discourse model really
all that is involved in question answering? The following observation should
give us pause for thought: discourse models show a possible picture of the
world. The pictures they give show us the way the agent imagines them to
be: this need not correspond to the way things actually are. Moreover, in
the case of Curt, the ‘agent’ generating the discourse model is not a person
blessed with a human being’s sophisticated array of cognitive abilities: it’s
just a Prolog program calling a model builder.

Here’s a simple example of how things can go wrong. Suppose we tell
Helpful Curt that ‘Mia or Jody dances’. Depending on the model checker
used, it could be that the discourse model shows that either Mia dances (and
Jody does not) or that Jody dances (and Mia does not) or that both dance.
In such cases, if Curt simply uses the model checker to inspect the discourse,
then replying either “Mia” or “Jody” goes beyond what is fully warranted
on the basis of the information supplied by the input sentence (together with
the background knowledge)

Now, we can’t resolve all the issues that such examples raise, but we
can do something. We used the phrase “fully warranted on the basis of the
information supplied by the input sentence (together with the background
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knowledge)”. And this is something we can test for: we can use a theorem
prover to see whether the entity the model checker selects is guaranteed to
be an answer (given the dialogue so far and the background knowledge) or
whether it is merely a possible answer (because of the particular choices the
discourse model embodies). Building in such a check gives rise to dialogues
like this:

> mia or jody dances

Message (consistency checking): mace found a result.

Curt: ’OK.’

> who dances

Message (answer checking): unknown found result "unknown".

Curt: ’This question makes sense!’

Curt: ’maybe jody’

Let’s spell out what happened here. On the basis of the input sentence ‘Mia
or Jody dances’ (a disjunction) the model builder built a discourse model in
which ‘Jody dances’ is true. Hence when asked ‘Who dances’ by the user,
Curt uses the model checker and finds that ‘Jody’ is a candidate answer.
But now Helpful Curt lives up to his name: perhaps ‘Jody’ is only a can-
didate answer because of the peculiarities of the particular discourse model
built? Helpful Curt checks this possibility by using the theorem prover to
see whether ‘Jody dances’ follows logically from the discourse so far and the
background knowledge. In fact it doesn’t—that is, the answer is not fully
warranted—hence Helpful Curt hedges its bets and responds ‘Maybe Jody’.
Here’s how the required check is implemented:

checkAnswer(Answer,Proof):-
readings([F|_]),
backgroundKnowledge(F,BK),
callTP(imp(and(F,BK),Answer),Proof,Engine),
format(’~nMessage (answer checking): ~p found result "~p".’,[Engine,Proof])

Now we are ready to examine the final step: how we generate answers on
the basis of the model checker’s response. Rather than outputting the sort
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of response the model checker gives us (like d3) we want to Curt to generate
a natural language noun phrase that names, or at least describes, this entity.
How do we do this?

The wh-questions we deal with only have noun phrases as possible an-
swers, and Helpful Curt only generates two kinds of noun phrase, proper
names and indefinite noun phrases (in Exercise 4.7.4 we ask the reader to
extend Helpful Curt so that is can generate definite descriptions as well).
How do we choose between proper names and indefinite noun phrases? We
shall use the following rule of thumb: generating a proper name is more in-
formative than generating an indefinite noun phrase (that is, we assume that
‘Mia’ will generally be better as an answer than ‘a woman’, given that we
know that the entity chosen by the model checker is indeed called Mia and
is indeed a woman).

So our strategy will be to first attempt to generate a proper name for
entities of the model’s domain. The following code does this:

realiseString(que(X,R,S),Value,Model,String):-
lexEntry(pn,[symbol:Symbol,syntax:Answer|_]),
satisfy(eq(Y,Symbol),Model,[g(Y,Value)],pos), !,
checkAnswer(some(X,and(eq(X,Symbol),and(R,S))),Proof),
(

Proof=proof, !,
list2string(Answer,String)

;
list2string([maybe|Answer],String)

).

This clause is pretty straightforward. First it does a lexical look-up for
a proper name Answer with the constant Symbol. Then it uses the model
checker (note: this is the third round of calls to the model checker!) to see if
this symbol is one that matches the entity we want to generate. It does so by
posing a simple equality query to the model checker. Using backtracking, it
keeps on attempting to find a suitable proper name until it either succeeds (in
which case we use the proper name it found) or fails (in which case we start
trying to generate an indefinite noun phrase). Suppose it succeeds. Then it
uses the theorem prover to check whether the answer is fully warranted of
the basis of the discourse so far and the background knowledge; this is done
using a call to checkAnswer/2 as we discussed above. If the answer is not
fully warranted, Curt adds a “maybe” before then proper name, otherwise it
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responds with the proper name alone. As Answer is declared in the lexicon
to be a list of atoms, Helful Curt builds the final response via a call to
list2string/2.

Then, if we fail to find a proper name for the entity given to us by the
model checker, we try to generate an indefinite noun phrase that describes
it instead. Here’s how:

realiseString(que(X,R,S),Value,Model,String):-
lexEntry(noun,[symbol:Symbol,syntax:Answer|_]),
compose(Formula,Symbol,[X]),
satisfy(Formula,Model,[g(X,Value)],pos), !,
checkAnswer(some(X,and(Formula,and(R,S))),Proof),
(

Proof=proof, !,
list2string([a|Answer],String)

;
list2string([maybe,a|Answer],String)

).

This clause is very similar to the previous one. We start with lexical
look-up for nouns (again we use backtracking to find a match), then using
the model builder we check whether the entity we’re trying to describe has
the property the noun expresses. If it does, we use the theorem prover to
see whether it is fully warranted (and add a “maybe” if it is not) and use
list2string/2 to output the final response as a string.

We’re nearly there. All that remains is wrap the calls to realiseString/4
up into a high level predicate:

realiseAnswer([],_,_,’none’).

realiseAnswer([Value],Q,Model,String):-
realiseString(Q,Value,Model,String).

realiseAnswer([Value1,Value2|Values],Q,Model,String):-
realiseString(Q,Value1,Model,String1),
realiseAnswer([Value2|Values],Q,Model,String2),
list2string([String1,and,String2],String).

The first clause deals where the case where no satisfying entity is found, the
second where one is found, and the third where several is found. And that’s
Helpful Curt.
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Exercise 4.7.1 Some of the answers (formed by nouns) that Curt gives to ques-
tion are not as specific as they could be. Change the implementation of the real-
ization of answers such that it gives the most specific possible answer.

Exercise 4.7.2 The generation of nouns as coded by realiseString/3 doesn’t
necessarily generate the most informative answer. Play around with Helpful Curt
and identify cases were funny answers are generated and explain the problem.
Propose a solution to overcome this. Implement the solution proposed in the
previous exercise.

Exercise 4.7.3 Check restriction of questions.

Exercise 4.7.4 The clause of realiseString/3 implementing nouns always gen-
erates nouns following an indefinite article. But answers can sometimes be made
more precise by generating a definite article instead. Discuss the situations in
which this is the case and provide an additional clause for realiseString/3 that
implements this.

Exercise 4.7.5 Extend the grammar fragment and the driver predicate in such
a way that yes-no questions are covered as well.

Exercise 4.7.6 Reimplement wh-questions by using the gap-threading technique
to pass on the variable of the wh-phrase down the syntax tree, as required in ‘Who
did Vincent kill?’ (For gap-threading, consult Pereira & Shieber’s book.)

Programs for Helpful Curt

helpfulCurt.pl

Loading this file loads everything needed to run Helpful
Curt.

Here’s an overview of all the Curt code and its capabilities:
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Programs for the Curt Family

babyCurt.pl

Baby Curt. No inference capabilities.

rugratCurt.pl

Rugrat Curt. Consistency checking with naive theorem
prover (the free-variable tableau from Chapter 5).

cleverCurt.pl

Clever Curt. Consistency checking with sophisticated
model builder and theorem prover.

sensitiveCurt.pl

Sensitive Curt. Consistency and informativeness checking
with sophisticated model builder and theorem prover.

scrupulousCurt.pl

Scrupulous Curt. Eliminating logically equivalent readings.

knowledgeableCurt.pl

Knowledgeable Curt. Incorporating Background Knowl-
edge.

helpfulCurt.pl

Helpful Curt. Question Answering.

elimEquivReadings.pl

Code for eliminating logically equivalent readings.

curtPredicates.pl

Auxiliary predicates used by the Curt family.

callInference.pl

Modify this file to experiment with different theorem
prover/model builder combinations.


