
April 9, 2005

Introduction

This book introduces a number of fundamental techniques for comput-
ing semantic representations for fragments of natural language and per-
forming inference with the result. Both the underlying theory and their
implementation in Prolog are discussed. We believe that the reader who
masters these techniques will be in a good position to appreciate (and
critically assess) ongoing developments in computational semantics.

Computational semantics is a relatively new subject, and trying to
define such a lively area (if indeed it is a single area) seems premature,
even counterproductive. However, in this book we take “semantics”
to mean “formal semantics” (that is, the business of giving model-
theoretic interpretations to fragments of natural language, usually with
the help of some intermediate level of logical representation) and “com-
putational semantics” to be the business of using a computer to actually
build such representations (semantic construction) and reason with the
result (inference). Thus this book introduces techniques for tackling the
following two questions:

1. How can we automate the process of associating semantic repre-
sentations with expressions of natural language?

2. How can we use logical representations of natural language ex-
pressions to automate the process of drawing inferences?

In the remainder of the Introduction we’ll briefly sketch how we are
going to tackle these questions, explain where we think computational
semantics belongs on the intellectual landscape, suggest how best to
make use of the text and the associated software, and (in the Notes
at the very end) give a brief historical account of the origins of com-
putational semantics. Some of the discussion that follows may not be
completely accessible at this stage, especially if you have never encoun-
tered semantics or logic before. But if this is the case, don’t worry. Con-
centrate on the straightforward parts (such as the chapter-by-chapter

xi



April 9, 2005

xii / Representation and Inference for Natural Language

outline and the advice on using this book), and then go straight on
to the chapters that follow. You can return to the Introduction later;
by then you will be in a better position to assess the perspective on
computational semantics that has guided the writing of this book.

Representation

As regards semantic construction, this book is fairly orthodox (though
see below for some caveats). We first introduce the reader to first-order
logic, and then show how various kinds of sentences of natural language
can be systematically translated into this formalism. For example, the
techniques we discuss (and the software we implement) will enable us
to take a sentence like

Every boxer loves Mia.

as input and return the following formula of first-order logic as output:

∀x(boxer(x)→ love(x,mia)).

The technical tool we shall use to drive this translation process is the
lambda calculus. We motivate and introduce the lambda calculus from
a computational perspective, and show in detail how it can be incor-
porated into an architecture for building semantic representations.

To put it another way, it’s not inaccurate to claim that roughly half
of this book is devoted to what is known as Montague semantics. Yes,
it’s true that we don’t discuss a lot of topics that would ordinarily be
taught in a first course on Montague semantics (for example, we don’t
discuss intensional semantics). But in our view Richard Montague was
not merely the father of formal semantics (or model-theoretic semantics,
as it is often called), he was also the father of computational semantics.
Richard Montague made many pioneering contributions to the study of
semantics, but in our view the most important was the conceptual leap
that opened the door to genuine computational semantics: he showed
that the process of constructing semantic representations for expres-
sions of natural language could be formulated algorithmically . Many
philosophers before Montague (and many philosophers since) have used
(various kinds of) logic to throw light on (various aspects of) natural
language. But before Montague’s work, such comparisons were essen-
tially analogies. Montague showed how to link logic and language in a
systematic way, and it is this aspect of his work that lies at the heart
of this book.

Inference

But this book is not just about representation, it is also about inference.
Now, inference is a vast topic, and it is difficult to be precise about what



Introduction / xiii

April 9, 2005

is (and is not) covered by this term. But, roughly speaking, we view
inference as the process of making implicit information explicit . To
keep this book to a manageable size we have focused on one particular
aspect of this process, namely the making of logical inferences. We
have done so by formulating three inference tasks—the querying task,
the consistency checking task, and the informativity checking task—
and have looked at inference in natural language through the lens they
provide. For example, it is intuitively clear that the discourse

Every boxer loves Mia. Butch is a boxer. Butch does not love Mia.

is incoherent. But why is it incoherent? As we shall show in Chap-
ter 1, the consistency checking task gives us an important theoretical
handle on this type of incoherency. Moreover in the second half of the
book we shall create a computational architecture that makes use of
sophisticated automated reasoning tools to give us a useful (partial)
grasp on consistency checking (partial, because of the undecidability of
first-order logic). We conclude the book by showing how our semantic
construction software (part of Richard Montague’s legacy) and our in-
ference architecture (the legacy of John Alan Robinson and the other
pioneers of automated reasoning) can be integrated.

Comments and caveats

Well, that’s where we heading—but before moving on, two remarks
should be made. First, above we talked about semantic construction
and inference as if they were independent, but in fact they’re not. In-
deed, how semantic construction and inference are interleaved is an
extremely deep and difficult problem, and we certainly don’t claim to
have solved it in this book. Nonetheless, we do believe that the is-
sues this problem raises need to be explored computationally, and that
architectures of the type discussed here—that is, architectures which
draw on both semantic construction and inference modules—will be-
come fundamental research tools.

Second, the working definition of computational semantics given
above isn’t quite as innocent as it looks. Many formal semanticists claim
that intermediate levels of logical representation are essentially redun-
dant. Richard Montague himself, in his paper “English as a Formal
Language”, showed how a small fragment of English could be model-
theoretically interpreted without first translating it into an interme-
diate logical representation. Moreover, in his paper “Universal Gram-
mar”, he showed that (given certain assumptions) it is always possible
to interpret fragments of natural language in this way.

Nonetheless, we feel justified in emphasising the role of intermedi-



April 9, 2005

xiv / Representation and Inference for Natural Language

ate logical representations. For a start, the move to a computational
perspective on formal semantics certainly increases the practical im-
portance of the representation level. Logical representations—that is,
formulas of a logical language—encapsulate meaning in a clean and
compact way. They make it possible to use well understood proof sys-
tems to perform inference, and we shall learn how to exploit this pos-
sibility. Models may be the heart of traditional formal semantics, but
representations are central to its computational cousin.

Moreover—and this is something that we hope becomes increasingly
clear in the course of the book—we feel that the computational per-
spective vividly brings out the theoretical importance of representa-
tions. The success of Discourse Representation Theory (DRT) over the
past two decades, the explosion of interest in underspecification (which
we explore in Chapter 3) and the exploration of glue languages such
as linear logic to drive the process of semantic construction all bear
witness to an important lesson: semanticists ignore representations at
their peril. Representations are well-defined mathematical entities that
(among other things) can be manipulated computationally, explored
geometrically, and specified indirectly with the aid of constraints. The
fact that representations are theoretically eliminable does not mean
they should not be taken seriously.

But why computational semantics?

Our discussion so far has taken it for granted that computational se-
mantics is an interesting subject, one well worth studying. But it is
probably a good idea to be explicit about why we think this is so.

We believe that the tools and techniques of computational semantics
are going to play an increasingly important role in the development of
semantics. Now, semantics has made enormous strides since the pio-
neering work of Richard Montague in the late 1960s and early 1970s.
Nonetheless, we believe that its further development is likely to become
increasingly reliant on the use of computational tools. Modern formal
semantics is still a paper-and-pencil enterprise: semanticists typically
examine in detail a topic that interests them (for example, the seman-
tics of tense, or aspect, or focus, or generalized quantifiers), abstract
away from other semantic phenomena, and analyse the chosen phe-
nomenon in detail. This “work narrow, but deep” methodology has
undeniably served semanticists well, and has lead to important insights
about many semantic phenomena. Nonetheless, we don’t believe that
it can unveil all that needs to be known about natural language seman-
tics, and we don’t think it is at all suitable for research that straddles
the (fuzzy and permeable) border between semantics and pragmatics



Introduction / xv

April 9, 2005

(the study of how language is actually used). Rather, we believe that
in the coming years it will become increasingly important to study the
interaction of various semantic (and pragmatic) phenomena, and to
model, as precisely as possible, the role played by inference.

Now, it’s easy to say that this is what should be done—actually do-
ing it, however, is difficult. Indeed, as long as semanticists rely purely
on pencil-and-paper methods, it is hard to see how this style of research
can produce detailed results. In our view, computational modelling is
required. That is, we believe that flexible computational architectures
which make it possible to experiment with semantic representations,
semantic construction strategies, and inference, must be designed and
implemented. To give an analogy, nowadays it is possible to use sophis-
ticated graphics programs when studying large molecules (such as pro-
teins). Such programs make it possible to grasp the three-dimensional
structure of the molecule, and hence to think at a more abstract level
about their properties and the reactions they can enter into. Semanti-
cists need analogous tools. The ability to formulate detailed semantic
theories, and to compute rapidly what they predict, could open up
a new phase of research in semantics. It could also revolutionise the
teaching of semantics.

Two comments. First, note that we’re not claiming that semanticists
should abandon their traditional “work narrow, but deep” strategy;
this style of research is indispensable. Rather, we are suggesting that
it should be augmented by a computer-aided “work broad, and model
the interactions” approach. Second—before anyone gets their hopes up
prematurely—we would like to emphasise that the software discussed
in this book does not constitute a genuine research architecture. The
design and implementation of the type of “Semantic Workbenches”
we have in mind is a serious task, one far beyond the scope of an
introduction to computational semantics. But we certainly do hope that
the software provided here will inspire readers to design and implement
more ambitious systems.

Computational semantics and computational linguistics

So that’s our answer to the question “Why computational semantics?”.
But although this answer might well interest (or enrage!) formal seman-
ticists, there is another group of researchers who may find it unconvinc-
ing. Which group? Computational linguists. We wouldn’t be surprised
to learn that some computational linguists are dubious about our aims
and methods. Where is the statistics? Where is the use of corpora? Why
analyse sentences in such depth? Does inference really require the use
of such powerful formalisms as first-order logic? Indeed, does inference



April 9, 2005

xvi / Representation and Inference for Natural Language

really require logic at all? We would like to make two brief remarks
here, for we certainly do view the techniques taught in this book as an
integral part of computational linguistics.

Firstly, what we teach in this book is certainly compatible with sta-
tistically-oriented approaches to computational linguistics. In essence,
we provide some fundamental semantic construction tools (the use of
lambda calculus, coupled with methods for coping with scope ambigui-
ties) and inference tools (an architecture for using theorem provers and
model builders in parallel) and put them to work. In this book these
components are used via a simple Definite Clause Grammar (DCG)
architecture, but they certainly don’t have to be. They can be—and
have been—combined with such tools as speech recognisers and wide
coverage statistical parsers to build more interesting systems.

Secondly, we believe that the methods taught in this book are
not merely compatible, but might actually turn out to be useful to
statistically-oriented work. This book was born from the conviction
that formal semantics has given rise to the deepest insights into the
semantics of natural language that we currently have—and an ac-
companying belief that a computational perspective is needed to fully
unleash their potential. So we find it natural (and important) to look
for points of contact with mainstream computational linguistics. For
example, many computational linguists want to extend the statistical
revolution of the late 1980s and early 1990s (which transformed such
areas as speech processing and parsing) to the semantic domain. We
don’t see any conflict between this goal and the ideas explored in this
book. Indeed, we believe that techniques from computational seman-
tics may be important in exploring statistical approaches to semantics:
detailed training corpora will be needed, and the techniques of com-
putational semantics may be helpful in producing the requisite “gold
standard” material.

It is true that these remarks are somewhat speculative. Nonetheless,
in our view the low cost of massive computational power, the ubiqui-
tous presence of the internet, the sophistication of current automated
reasoning tools, and the superb linguistic resources now so widely avail-
able, all add up to a new era in semantic research. Understanding how
natural language works is one of the toughest (and most interesting)
problems there is. It’s time to get all hands on deck.

Outline

The key aim of this book is to develop a working toolkit for computa-
tional semantics. We develop this toolkit as follows:



Introduction / xvii

April 9, 2005

Chapter 1. First-Order Logic. We begin by introducing the syntax
and semantics of first-order logic, the semantic representation language
used in this book. We then define and discuss the three inference tasks
we are interested in: the querying task, the consistency checking task,
and the informativity checking task. Following this, we implement a
first-order model checker in Prolog. A model checker is a program that
checks whether a formula is true in a given model, or to put it another
way, it is a piece of software that performs the querying task.

Chapter 2. Lambda Calculus. Here we start studying semantic con-
struction. We outline the methodology underlying our work (namely,
compositionality) and motivate our use of DCGs (Definite Clause
Grammars). We then write two rather naive programs that build se-
mantic representations for a very small fragment of English. These
experiments lead us to the lambda calculus, the tool that drives this
book’s approach to semantic construction. We implement β-conversion,
the computational core of the lambda calculus, and then integrate it
into the grammatical architecture that will be used throughout the
book.

Chapter 3. Underspecified Representations. Here we investigate
a fundamental problem for computational semantics: scope ambigu-
ities. These are semantic ambiguities that can arise in syntactically
unambiguous expressions, and they pose a problem for compositional
approaches to semantic construction. We illustrate the problem, and
present four (increasingly more sophisticated) solutions: Montague’s
use of quantifier raising, Cooper storage, Keller storage, and hole se-
mantics. We integrate storage and hole semantics into our grammar
architecture.

Chapter 4. Propositional Inference. Here we turn to the second
major theme of the book: inference. Our approach to inference will be
based on first-order theorem proving and model building, and in this
chapter we lay the conceptual foundations for the work of Chapter 5 in
the simpler setting of propositional logic. We introduce a signed tableau
and a resolution system for propositional calculus, implement both
in Prolog, and conclude with a discussion of a number of theoretical
issues.

Chapter 5. First-Order Inference. In this chapter we explore in-
ference in the setting of full first-order logic—and, as we swiftly learn,
that’s a computationally demanding setting. We extend the proposi-
tional and resolution theorem provers to deal with first-order logic, but
we also see that home-brewed theorem provers simply don’t have the
muscle for tackling the consistency and informativity checking tasks
in a serious way. So we change tack: instead of building our own, we
show the reader how to integrate the sophisticated inference tools cre-
ated by the automated reasoning community into an inference architec-



April 9, 2005

xviii / Representation and Inference for Natural Language

ture for computational semantics. By the end of the chapter, we have
constructed an architecture for consistency and informativity check-
ing that works by calling (sophisticated) theorem provers and model
builders in parallel.

Chapter 6. Putting It All Together. In this chapter we bring
together the software developed in earlier chapters and develop a se-
ries of programs bearing the name Curt (which stands for Clever Use
of Reasoning Tools). Curt starts out as a real baby—it can build se-
mantic representations and detect scope ambiguities, but alas, nothing
more. No matter! By making use of our inference architecture, (and
the model checker developed in Chapter 1), we are able, step-by-step,
to extend Curt’s abilities so that it can handle consistency checking,
informativity checking, eliminate logically equivalent readings, incor-
porate background knowledge, and answer simple questions.

Here’s how the chapters fit together:

Chapter 1

Chapter 2, 3 Chapter 4, 5

Chapter 6

That is, Chapter 1 provides the foundation for everything that fol-
lows. Chapter 2 and 3 are the representation track of the book, and
should be read together. Similarly, Chapters 4 and 5 are the infer-
ence track of the book, and again, these two chapters should be read
together. The representation and inference tracks are independent of
each other, and can be read in either order. Finally, Chapter 6 draws
on all that has gone before.

Each chapter concludes with Notes that list references and briefly
discuss more advanced topics. Four appendices at the end of the book
provide background information.



Introduction / xix

April 9, 2005

Using this book

We have tried to make this book relatively self-contained. In fact, there
is only one real prerequisite that is not introduced here, namely the
Prolog programming language. To gain the most out of the computa-
tional side of this book, you will need to have some knowledge of this
language, and access to a Prolog interpreter. Many good books on Pro-
log are available, but we’d like to draw your attention to Learn Prolog
Now! , by Patrick Blackburn, Johan Bos, and Kristina Striegnitz. Writ-
ten in parallel with the present book, it contains everything needed
to understand the code presented here. Learn Prolog Now! is available
free on the internet at

http://www.learnprolognow.org/

For the Prolog interpreters that handle our software, see Appendix A.
Apart from Prolog, we believe that this book covers everything most

readers will need. Indeed, we believe that even readers with fairly mod-
est backgrounds in linguistics and logic should be able to follow the
discussion. We have taught this material both to linguistics students
(with rather weak logical and computational backgrounds) and to com-
puter science students (with stronger logical backgrounds, but no prior
exposure to linguistics). Our experience suggests that as long as the in-
structor is sensitive to the type of background knowledge the students
have, it is possible to successfully teach this material. Moreover, the
Notes at the end of each chapter provide many references for supple-
mentary reading. So if you are using this book for self study and get
stuck at some point, try looking at these.

But there is one point we would like to strongly emphasise to all
our readers: please take the computational component seriously. Yes,
it is certainly possible to read this book with only half an eye on the
computational developments. Moreover, we’ll also admit that even if
you’re allergic to computers and computer programming, but want to
learn about semantics in a way that emphasises inference, you can use
this book for that purpose without worrying too much about the Prolog
programs.

Still, while you can read the book this way, we feel it’s a bit of a
shame to do so—after all, this is a book on computational semantics,
and the reader who does not make the effort to get to grips with the
computational issues it discusses is getting (at most) fifty percent of
what this book has to offer. Now, there’s no denying that for some read-
ers the computational side will be the hard part—readers with weak
computational backgrounds will have to put in some extra work (apart
from anything else, they’ll have to learn something about Prolog). But



April 9, 2005

xx / Representation and Inference for Natural Language

the effort is well worth making. Thinking about problems computa-
tionally often reveals new perspectives on old ideas. For example, our
account of the lambda calculus in Chapter 2 makes no appeal to types,
function valued functions, or higher-order logic—rather, lambda calcu-
lus is presented as a beautiful piece of data-abstraction that emerges
naturally from a declarative analysis of semantic construction. To give
another example, the various techniques developed for handling scope
ambiguities (from Montague’s method, through storage methods, to
modern underspecification methods) display a conceptually clear evo-
lutionary line when viewed computationally.

Thus the computational side of this book should not be viewed as an
optional extra. Indeed, we might say that the ideal reader of this book
is someone who treats the text as documentation. Such a reader might
not wish to understand all the details of the programs provided, but he
or she would certainly want to play with them, perhaps by extending
the grammars, by experimenting with novel semantic constructions, by
applying the inference architecture to novel tasks, or by applying these
ideas to other languages. In short, don’t think of this as a book. Think
of it as a tool-kit for exploring computational semantics. And then put
it to work.

Web support

We have set up webpage for this book. The URL is

http://www.blackburnbos.org/

There you will find our Prolog programs, pointers to other useful soft-
ware (such as Prolog interpreters, theorem provers and model builders),
and any corrections to the text that need to be made. From time to
time we will place material there that extends the present text. For
example, Blackburn and Bos (2003), which can be read as a sort of
‘alternative introduction’ to this book, can be found on the website.

Notes

Modern logic and semantics stem from the work of Gottlob Frege (1848-
1925). On the logical side, Frege introduced the use of variable binding
quantifiers (we shall see such quantifiers in the following chapter when
we introduce first-order logic), and on the semantic side he introduced
a number of concepts (such as the distinction between the “sense” and
the “reference” of an expression) that are still important today. Readers
wanting a taste of Frege’s work could try Frege (1892). Translations of
this paper have been widely anthologised (for example you can find it
in Martinich (1996) under the title “On Sense and Nominatum”).



Introduction / xxi

April 9, 2005

Frege’s logical work and his ideas on the foundations of mathematics
became increasingly influential from roughly 1900 onwards, and their
influence endures till this day. But his pioneering work on semantics
took longer to bear fruit. While some important early work was done
(for example, by the philosopher Bertrand Russell) the next big steps
were not taken till the middle of the 20th century.

With the benefit of hindsight we can see that this delay was not
accidental, for a key idea was missing: the notion of interpretation in
a model . As we shall see in the following chapter, nowadays logic is
conceived of as having two main components. First, there is some kind
of formal logical language (for example, a language of first-order logic
that makes use of such symbols such as ∀, ∃, ∧, → and so on). But
in addition, crucial use is made of what are known as models, sim-
ple mathematical structures that act as pictures of the world (or at
least, that part of the world we happen to be interested in for our
application). At the heart of much modern logic is the idea of giving
a precise mathematical definition of how formal logical languages are
linked with models—or to put it more semantically, to specify how
formal languages are to be interpreted in models (such a definition is
usually called a satisfaction definition). One of the fundamental facts
that any theory of semantics is going to have to get to grips with is that
natural languages (like English) can be used to talk about the world
around us (for example, English speakers use the word “woman” for
adult human females). When we link a logical language with a model
via a satisfaction definition we gain a precise mathematical handle on
the language-world relationship.

In 1933 Alfred Tarski (1902–1983) gave the first fully explicit satis-
faction definition (see Tarski (1935) for a German translation of the Pol-
ish original). Its importance was quickly realised by both philosophers
and mathematicians, and stimulated serious work on semantics. In par-
ticular, Rudolf Carnap (1891–1979), produced an important body of
work. For example, his book “Meaning and Necessity” (Carnap, 1947)
is still well worth looking at: among other things it discusses the se-
mantics of belief and necessity (two key examples of intensionality in
natural language), examines the notion of “meaning postulate” in de-
tail (such postulates would nowadays be thought of as axioms encoding
world knowledge or lexical knowledge), and speculates on the possibil-
ity of extending Tarski’s model-based approach to semantics to handle
pragmatics too.

But it was with the work of Richard Montague (1930–1971) that se-
mantics finally came of age. Although Montague only wrote a handful of
papers on the subject, they were destined to shape subsequent research.



April 9, 2005

xxii / Representation and Inference for Natural Language

Three of his papers, “Pragmatics” (Montague, 1968), “On the Nature
of Certain Philosophical Entities” (Montague, 1969), and “Pragmat-
ics and Intensional Logic” (Montague, 1970b) are technically sophisti-
cated developments of the program initiated by Carnap. (And as the
titles of two of these papers indicate, Montague was able to extend the
model-based approach to semantics to cover a pragmatic phenomenon,
namely indexicality.) But it is his last three papers “English as a For-
mal Language” (Montague, 1970a), “Universal Grammar” (Montague,
1970c), and “The Proper Treatment of Quantification in Ordinary En-
glish” (Montague, 1973) that sound a genuinely new note, for it is here
that Montague unveils what has become known as the method of frag-
ments. What does this mean? Simply that in these papers Montague
defined grammars for small portions of English, and showed how the
sentences generated by these grammars could be interpreted in models.
In “English as a Formal Language” Montague interpreted the English
fragment directly (that is, without first translating into an intermedi-
ate logical representation) whereas in “Universal Grammar” and “The
Proper Treatment of Quantification in Ordinary English” he first trans-
lated into higher-order logic. But this difference is far less important
than what is common to them all: in all three papers the interpretation
process required is completely explicit . In essence, all three papers give
interpretation algorithms for fragments of English. To be sure, nobody
would claim that the interpretations offered by Montague cover all as-
pects of what we might want to call meaning, and it is also true that
the fragments given by Montague were rather small. But such consid-
erations should not blind us to the fact that in these papers something
very important has taken place: we see the first glimpse of a possible
mechanism underlying natural language semantics.

It is not possible here to give a detailed account of developments
in semantics since the work of Montague. Perhaps the most important
development, and certainly the one of most relevance to computational
semantics, was the birth of Discourse Representation Theory (see Heim
(1982), Kamp (1984), and Kamp and Reyle (1993)). DRT (as it is usu-
ally called) has enabled Montague’s program to be extended from the
level of sentences to entire discourses, and has also enabled semantics
to make further inroads on the domain of pragmatics. But DRT and
many other interesting developments are beyond the scope of the book,
so we refer the reader to Partee (1997a) and Partee (1997b), two useful
discussions of Montague’s work and the research it inspired.

We now turn our attention from the development of formal seman-
tics to research conducted in two computational disciplines, namely
computational linguistics and Artificial Intelligence (AI). The formal



Introduction / xxiii

April 9, 2005

semantic tradition has been the primary source of much that we teach
in this book, but the way we view this material has been indelibly
marked by ideas from computational linguistics and AI. So let’s round
out the picture with a quick look at these traditions.

One of the basic themes of this book is the usefulness of logic as a tool
for representation and inference. But this is not a new idea—it’s a main-
stay of classical AI. It’s interesting to look through some of the more
influential AI textbooks, say Nilsson (1980), Winston (1981), Char-
niak and McDermott (1985), Rich and Knight (1990), and Russell and
Norvig (1995). All take first-order logic as a fundamental framework for
representation and inference (and not merely for natural language tasks
either), and discuss inference procedures for first-order logic (notably
resolution) in varying degrees of detail. Weaker formalisms (such as se-
mantic nets) are sometimes used and (especially in the later texts) the
point is explicitly made that such formalisms are essentially fragments
of first-order logic with good computational properties (for example,
semantic nets are a forerunner of what are nowadays known as descrip-
tion logics; see Baader et al. (2003)).

In short, many of the fundamental ideas on logic and inference un-
derlying these texts are close to those taught here. Indeed, much what
divides this book from these earlier introductions (apart from the ob-
vious fact that the texts just mentioned cover a wide range of top-
ics in AI, such as learning, planning, and image recognition, whereas
ours focuses exclusively on computational semantics) is simply due to
the explosive pace of contemporary research. When we talk about se-
mantic construction, we can draw on ideas (such as constraint-based
underspecification) that hadn’t been developed when these books were
written. And when we advocate the use of first-order logic and theorem
proving, we can point the reader to provers (and indeed, newer tools
such as model builders) whose performance dwarfs anything available
earlier. Moreover, in this book we emphasise the importance of develop-
ing architectures by finding the best available components and linking
them. This style of development wasn’t so practical in the 1980s and
early 1990s; nowadays, given the ubiquity of the internet, it seems likely
to become the default option.

So there is a broad similarity of aims and methods between what we
teach in this book and much that is done in computational linguistics
and AI—and given the fundamental role played by logic in these disci-
plines, we don’t find this surprising. If anything, what is surprising is
how long it has taken for a real alliance between computational linguis-
tics and formal semantics to be forged. For until the 1990s there seem
to have been few systematic attempts by researchers in computational



April 9, 2005

xxiv / Representation and Inference for Natural Language

linguistics (and AI) to make contact with ideas from formal seman-
tics (and attempts by formal semanticists to make serious contact with
ideas from computational linguistics and AI seem to have been even
thinner on the ground). That said, there are some interesting examples
of earlier work in computational linguistics that falls (or almost falls)
under our working definition of computational semantics. Let’s look at
a few.

Hobbs and Rosenschein (1978), a paper entitled “Making Compu-
tational Sense of Montague’s Intensional Logic”, suggests that Mon-
tague semantics is best thought of in terms of procedural semantics
rather than model-theoretic semantics; to add substance to this idea,
the paper contains a translation of Montague’s intensional logic into
the functional programming language Lisp. In Schubert and Pelletier
(1982), motivated by the need to carry out inference, the authors de-
fine a simple translation from a fragment of English (specified using a
context-free grammar) into what they call conventional logic. In Lands-
bergen (1982), on the other hand, the motivation is machine translation.
Montague’s logic is used as an interlingua: the source language is trans-
lated into it, and the resulting logical expression is used to help build a
sentence in the target language. In Main and Benson (1983), ideas from
Montague semantics are used in a question answering system. Also from
this period is Gunji (1981), a PhD thesis which is not only a pioneering
contribution to computational semantics, but to computational prag-
matics as well. Gunji, realising that a database in a computer can be
regarded as a model, defines a system in which incoming sentences are
translated into Montague-style logic. While the database is essentially
read-only memory as far as his semantic procedures are caused (that is,
logical formulas are evaluated in the database without altering it, much
as in a standard database query) there are also pragmatic procedures
that can modify the model (or as Gunji puts it, induce context changes)
which may well affect the semantic evaluations of later sentences.

It is also interesting to look through anthologies on computational
linguistics for evidence of interest in computational semantics. Actually,
one such collection “Computational Semantics. An Introduction to Ar-
tificial Intelligence and Natural Language Comprehension” (Charniak
and Wilks, 1976) contains in its title the earliest usage of the term
“computational semantics” that we know of. A collection of classic
papers that is well worth consulting is Grosz et al. (1986), and the
more recent collection Rosner and Johnson (1992) also contains much
of relevance. Finally, mention must be made of the collected papers of
Robert Moore, a researcher who has made many contributions to com-
putational semantics, ranging from work on semantic construction to



Introduction / xxv

April 9, 2005

intensional semantics (see Moore (1995)).
But it was sometime during the 1990s that computational semantics

really began to acquire its own identity. For a start, more solid bridges
between formal semantics and computational linguistics began to ap-
pear. For example, though the Handbook of Contemporary Semantic
Theory (Lappin, 1997) for the most part contains articles on tradi-
tional themes in formal semantics, it also contains an article devoted
to the use of attribute-value structure unification (a standard tech-
nique in computational linguistics) to build semantic representations
(see Nerbonne (1997)). And in the other direction, Jurafsky and Mar-
tin (2000), which has established itself as the standard introduction
to speech and language processing, teaches an approach to semantic
construction that is based on first-order logic and lambda calculus (see
in particular Chapters 14 and 15) and refers to the work of Richard
Montague and other researchers in formal semantics.

But perhaps the most important coming-of-age landmark was the
founding of the International Workshop on Computational Semantics
(IWCS) by Harry Bunt. The first was in 1995, and the workshop (which
is held in Tilburg in the Netherlands) has taken place every two years
ever since. It is the main meeting place for the computational seman-
tics community, and selected proceedings of two of these meetings are
available in book form (see Bunt and Muskens (1999) and Bunt et al.
(2001)). A more specialised workshop, Inference in Computational Se-
mantics (ICoS), was held in Amsterdam, The Netherlands in 1999,
and since then ICoS has been held in Schloss Dagstuhl, Germany (in
2000), in Siena, Italy (in 2001), and in Nancy, France (in 2003). Selected
proceedings of the first three meetings are available as special journal
issues (see Monz and De Rijke (2000), Bos and Kohlhase (2003) and
Kohlhase (2004)). Finally, in 1999 the Association for Computational
Linguistics approved the creation of SIGSEM, a Special Interest Group
in Computational Semantics. See

http://www.aclweb.org/sigsem

for further information.


