
Chapter 1

First-Order Logic

First-order logic is the formalism used in this book to represent the meaning
of natural language sentences and to carry out various inference tasks. In
this chapter we introduce first-order logic from a model-theoretic (that is,
semantic) perspective, and write a Prolog program for handling the simplest
of the three inference tasks we shall discuss, the querying task.

In more detail, this is what we’ll do. First, we define the syntax and
semantics of first-order logic. We pay particular attention to the intuitions
and technicalities that lie behind the satisfaction definition, a mathematically
precise specification of how first-order languages are to be interpreted in
models. We then introduce the three inference tasks we are interested in:
the querying task, the consistency checking task, and the informativeness
checking task. All three tasks are defined model-theoretically. Following
this, we write a first-order model checker. This is a tool for handling the
querying task: the model checker takes as input a first-order formula and a
first-order model, and checks whether the formula is satisfied in the model.
By the time we’ve done all that, the reader will have a fairly clear idea of
what first-order logic is, and it becomes profitable to consider more general
issues. So, to close the chapter, we discuss the strengths and weaknesses of
first-order logic as a tool for computational semantics.

1.1 First-Order Logic

In this section we discuss the syntax and semantics of first-order logic. That
is, we introduce vocabularies, first-order models and first-order languages,

1



2 CHAPTER 1. FIRST-ORDER LOGIC

and tie these concepts together via the crucial satisfaction definition, which
spells out exactly how first-order languages are to be interpreted in models.
Following this, we introduce two useful extensions of the basic first-order
formalism: function symbols and equality .

Vocabularies

The main goal of this section is to define how first-order formulas (that
is, certain kinds of descriptions) are evaluated in first-order models (that
is, mathematical idealizations of situations). Simplifying somewhat (we’ll be
more precise later), the purpose of the evaluation process is to tell us whether
a description is true or false in a given situation.

We shall soon be able to do this—but we need to exercise a little care.
Intuitively, it doesn’t make much sense to ask whether or not an arbitrary
description is true in an arbitrary situation. Some descriptions and situa-
tions simply don’t belong together. For example, if we are given a formula
(that is, a description) from a first-order language intended for talking about
the various relationships and properties (such as loving , being a robber , and
being a customer) that hold of and between Mia, Honey Bunny, Vincent, and
Yolanda, and we are given a model (that is, a situation) which records infor-
mation about something completely different (for example, which household
cleaning products are best at getting rid of particularly nasty stains) then it
doesn’t really make much sense to evaluate this particular formula in that
particular model. Vocabularies allow us to avoid such problems: they tell us
which first-order languages and models belong together.

Here is our first vocabulary:

{ (love,2),
(customer,1),
(robber,1),
(mia,0),
(honey-bunny,0),
(vincent,0),
(yolanda,0) }

Intuitively, this vocabulary is telling us two important things: the topic
of conversation, and the language the conversation is going to be conducted
in. Let’s spell this out a little.



1.1. FIRST-ORDER LOGIC 3

First, the vocabulary tells us what we’re going to be talking about. In
the present case, we’re going to be talking about loving (the 2 indicates
that loving is taken to be a two-place relation) and the properties (or 1-
place relations) of being a customer and being a robber . In addition to these
relations we’re going to be talking about four special entities named Mia,
Honey Bunny , Vincent , and Yolanda (the 0s indicate that these are the
names of entities).

Second, the vocabulary also tells us how we can talk about these things.
In the above case it tells us that we will be using a symbol love of arity
2 (that is, a 2-place symbol) for talking about loving, two symbols of arity
1 (customer and robber) for talking about customers and robbers, and
four constant symbols (or names), namely mia, vincent, honey-bunny,
and yolanda for naming certain entities of special interest.

In short, a vocabulary gives us all the information needed to define the
class of models of interest (that is, the kinds of situations we want to describe)
and the relevant first-order language (that is, the kinds of descriptions we
can use). So let’s now look at what first-order models and languages actually
are.

Exercise 1.1.1 Consider the following situation: Vincent is relaxed. The gun rests

on the back of the seat, pointing at Marvin. Jules is driving. Marvin is tense. Devise
a vocabulary suitable for talking about this situation. Give the vocabulary in the
set-theoretic notation used in the text.

First-Order Models

Suppose we’ve fixed some vocabulary. What should a first-order model for
this vocabulary be?

Our previous discussion has pretty much given the answer. Intuitively, a
model is a situation. That is, it is a semantic entity: it contains the kinds
of things we want to talk about. Thus a model for a given vocabulary gives
us two pieces of information. First, it tells us which collection of entities we
are talking about; this collection is usually called the domain of the model,
or D for short. Second, for each symbol in the vocabulary, it gives us an
appropriate semantic value, built from the items in D. This task is carried
out by a function F which specifies, for each symbol in the vocabulary, an
appropriate semantic value; we call such functions interpretation functions.
Thus, in set-theoretic terms, a model M is an ordered pair (D,F ) consist-



4 CHAPTER 1. FIRST-ORDER LOGIC

ing of a non-empty domain D and an interpretation function F specifying
semantic values in D.

What are appropriate semantic values? There’s no mystery here. As
constants are names, each constant should be interpreted as an element of
D. (That is, for each constant symbol c in the vocabulary, F (c)∈ D.) As n-
place relation symbols are intended to denote n-place relations, each n-place
relation symbol R should be interpreted as an n-place relation on D. (That
is, F (R) should be a set of n-tuples of elements of D.)

Let’s consider an example. We shall define a simple model for the vocab-
ulary given above. Let D be {d1, d2, d3, d4}. That is, this four element set is
the domain of our little model.

Next, we must specify an interpretation function F . Here’s one:

F (mia) = d1

F (honey-bunny) = d2

F (vincent) = d3

F (yolanda) = d4

F (customer) = {d1, d3}
F (robber) = {d2, d4}
F (love) = {(d4, d2), (d3, d1)}

Note that every symbol in the vocabulary does indeed have an appropriate
semantic value: the four names pick out individuals, the two arity 1 symbols
pick out subsets of D (that is, properties, or 1-place relations on D) and the
arity 2 symbol picks out a 2-place relation on D. In this model d1 is Mia, d2

is Honey Bunny, d3 is Vincent and d4 is Yolanda. Both Honey Bunny and
Yolanda are robbers, while both Vincent and Mia are customers. Yolanda
loves Honey Bunny and Vincent loves Mia. Sadly, Honey Bunny does not
love Yolanda, Mia does not love Vincent, and nobody loves themselves.

Here’s a second model for the same vocabulary. We’ll use the same do-
main (that is, D = {d1, d2, d3, d4}) but change the interpretation function. To
emphasize that the interpretation function has changed, we’ll use a different
symbol (namely F2) for it.

F2(mia) = d2

F2(honey-bunny) = d1

F2(vincent) = d4

F2(yolanda) = d3



1.1. FIRST-ORDER LOGIC 5

F2(customer) = {d1, d2, d4}
F2(robber) = {d3}
F2(love) = ∅

In this model, three of the individuals are customers, only one is a robber,
and nobody loves anybody (the love relation is empty).

One point is worth emphasizing. Both models just defined are spe-
cial in the following way: every entity in D is named by exactly one con-
stant. But models don’t have to be like this. Consider the model with
D = {d1, d2, d3, d4, d5} and the following interpretation function F :

F (mia) = d2

F (honey-bunny) = d1

F (vincent) = d4

F (yolanda) = d1

F (customer) = {d1, d2, d4}
F (robber) = {d3, d5}
F (love) = {(d3, d4)}

In this model, not every entity has a name: d3 is anonymous. Moreover,
d1 has two names. But this is a perfectly good first-order model. For a start,
there simply is no requirement that every entity in a model must have a
name; roughly speaking, we only bother to name entities of special interest.
(So to speak, the domain is made up of stars, who are named, and extras,
who are not.) Moreover, there simply is no requirement that each entity in
a model must be named by at most one constant; just as in real life, one and
the same entity may have several names.

Exercise 1.1.2 Once again consider the following situation: Vincent is relaxed.

The gun rests on the back of the seat, pointing at Marvin. Jules is driving. Marvin is

tense. Using the vocabulary you devised in Exercise 1.1.1, present this situation
as a model (use the set-theoretic notation used in the text).

Exercise 1.1.3 Consider the following situation: There are four blocks. Two of

the blocks are cubical, and two are pyramid shaped. The cubical blocks are small and

red. The larger of the two pyramids is green, the smaller is yellow. Three of the blocks

are sitting directly on the table, but the small pyramid is sitting on a cube. Devise
a suitable vocabulary and present this situation as a model (use the set-theoretic
notation used in the text).



6 CHAPTER 1. FIRST-ORDER LOGIC

First-Order Languages

Given some vocabulary, we build the first-order language over that vocabulary

out of the following ingredients:

1. All the symbols in the vocabulary. We call these symbols the non-logical

symbols of the language.

2. A countably infinite collection of variables x, y, z, w, . . . , and so on.

3. The Boolean connectives ¬ (negation), ∧ (conjunction), ∨ (disjunc-
tion), and → (implication).

4. The quantifiers ∀ (the universal quantifier) and ∃ (the existential quan-
tifier).

5. The round brackets ) and ( and the comma. (These are essentially
punctuation marks; they are used to group symbols.)

Items 2–5 are common to all first-order languages: the only thing that
distinguishes one first-order language from another is the choice of non-logical
symbols (that is, the choice of vocabulary). The Boolean connectives, inci-
dentally, are named after George Boole, a 19th century pioneer of modern
mathematical logic.

So, suppose we’ve chosen some vocabulary. How do we mix these ingredi-
ents together? That is, what is the syntax of first-order languages? First of
all, we define a first-order term τ to be any constant or any variable. (Later in
this section, when we introduce function symbols, we’ll see that some first-
order languages allow us to form more richly structured terms than this.)
Roughly speaking, terms are the noun phrases of first-order languages: con-
stants can be thought of as first-order analogs of proper names, and variables
as first-order analogs of pronouns.

What next? Well, we are then allowed to combine our ‘noun phrases’ with
our ‘predicates’ (that is, the various relation symbols in the vocabulary) to
form atomic formulas:

If R is a relation symbol of arity n, and τ1, . . . , τn are terms, then
R(τ1, · · · , τn) is an atomic (or basic) formula.



1.1. FIRST-ORDER LOGIC 7

Intuitively, an atomic formula is the first-order counterpart of a natu-
ral language sentence consisting of a single clause (that is, what traditional
grammars call a simple sentence). The intended meaning of R(τ1, · · · , τn) is
that the entities named by the terms τ1, · · · , τn stand in the relation (or have
the property) named by the symbol R. For example

love(pumpkin,honey-bunny)

means that the entity named pumpkin stands in the relation denoted by
love to the entity named honey-bunny—or more simply, that Pumpkin
loves Honey Bunny. And

robber(honey-bunny)

means that the entity named honey-bunny had the property denoted by
robber—or more simply, that Honey Bunny is a robber.

Now that we know how to build atomic formulas, we can define more com-
plex descriptions. The following inductive definition tells us exactly which
well formed formulas (or wffs , or simply formulas) we can form.

1. All atomic formulas are wffs.

2. If φ and ψ are wffs then so are ¬φ, (φ ∧ ψ), (φ ∨ ψ), and (φ→ ψ).

3. If φ is a wff, and x is a variable, then both ∃xφ and ∀xφ are wffs. (We
call φ the matrix of such wffs.)

4. Nothing else is a wff.

Roughly speaking, formulas built using ¬ correspond to natural language
expressions of the form it is not the case that . . . ; for example, the formula

¬love(pumpkin,honey-bunny)

means It is not the case that Pumpkin loves Honey-Bunny, or more simply,
Pumpkin does not loves Honey-Bunny. Formulas built using ∧ correspond to
natural language expressions of the form . . . and . . . ; for example

(love(pumpkin,honey-bunny) ∧ love(vincent,mia))

means Pumpkin loves Honey-Bunny and Vincent loves Mia. Formulas built
using ∨ correspond to expressions of the form Either . . . or . . . ; for example



8 CHAPTER 1. FIRST-ORDER LOGIC

(love(pumpkin,honey-bunny) ∨ love(vincent,mia))

means Either Pumpkin loves Honey-Bunny or Vincent loves Mia. Formulas built
using → correspond to expressions of the form If . . . then . . . ; for example

(love(pumpkin,honey-bunny) → love(vincent,mia))

means If Pumpkin loves Honey-Bunny then Vincent loves Mia.
First-order formulas of the form ∃xφ and ∀xφ are called quantified for-

mulas. Roughly speaking, formulas of the form ∃xφ correspond to natural
language expressions of the form Some. . . (or Something . . . , or Somebody

. . . , and so on). For example

∃xlove(x,honey-bunny)

means Someone loves Honey-Bunny. Formulas of the form ∀xφ correspond to
natural language expressions of the form All . . . (or Every . . . , or Everything

. . . , and so on). For example

∀xlove(x,honey-bunny)

means Everyone loves Honey-Bunny. And the quantifiers can be combined to
good effect:

∃x∀ylove(x,y)

means Someone loves everybody, and

∀x∃ylove(x,y)

means Everybody loves someone.
In what follows, we sometimes need to talk about the subformulas of

a given formula. The subformulas of a formula φ are φ itself and all the
formulas used to build φ. For example, the subformulas of

¬∀yperson(y)

are person(y), ∀yperson(y), and ¬∀yperson(y). We leave it to the reader
to give a precise inductive definition of subformulahood (see Exercise 1.1.6),
and turn to a more important topic: the distinction between free and bound

variables.
Consider the following formula:



1.1. FIRST-ORDER LOGIC 9

¬(customer(x) ∨ (∀x(robber(x) ∧ ∀yperson(y))))

The first occurrence of x is free. The second and third occurrences of x are
bound ; they are bound by the first occurrence of the quantifier ∀. The first
and second occurrences of the variable y are also bound; they are bound by
the second occurrence of the quantifier ∀. Here’s the full inductive definition:

1. Any occurrence of any variable is free in any atomic formula.

2. No occurrence of any variable is bound in any atomic formula.

3. If an occurrence of any variable is free in φ or in ψ, then that same
occurrence is free in ¬φ, (φ ∧ ψ), (φ ∨ ψ), and (φ→ ψ).

4. If an occurrence of any variable is bound in φ or in ψ, then that same
occurrence is bound in ¬φ, (φ∧ψ), (φ∨ψ), and (φ→ ψ). Moreover, that
same occurrence is bound in ∀yφ and ∃yφ, for any choice of variable y.

5. In any formula of the form ∀yφ or ∃yφ (here y can be any variable at
all) the occurrence of y that immediately follows the initial quantifier
symbol is bound.

6. If an occurrence of a variable x is free in φ, then that same occurrence
is free in ∀yφ and ∃yφ, for any variable y distinct from x. On the
other hand, all occurrences of x that are free in φ, are bound in ∀xφ
and in ∃xφ, and so is the occurrence of x that immediately follows the
quantifier.

We can now give the following definition: if a formula contains no occurrences
of free variables, then it is called a sentence of first-order logic.

Although they are both called variables, free and bound variables are
really very different. (In fact, some formulations of first-order logic use two
distinct kinds of symbol for what we have lumped together under the heading
‘variable’.) Here’s an analogy. Try thinking of a free variable as something
like the pronoun she in

She even has a stud in her tongue.

Uttered in isolation, this would be somewhat puzzling, as we don’t know
who she refers to. But of course, such an utterance would be made in an
appropriate context. This context might be either non-linguistic (for example,



10 CHAPTER 1. FIRST-ORDER LOGIC

the speaker might be pointing to a heavily tattooed biker, in which case we
would say that she was being used deictically or demonstratively) or linguistic
(perhaps the speaker’s previous sentence was Honey Bunny is heavily into body

piercing, in which case the name Honey Bunny supplies a suitable anchor for
an anaphoric interpretation of she).

What’s the point of the analogy? Just as the pronoun she required some-
thing else (namely, contextual information) to supply a suitable referent, so
will formulas containing free variables. Simply supplying a model won’t be
enough; we need additional information on how to link the free variables to
the entities in the model.

Sentences, on the other hand, are relatively self-contained. For example,
consider the sentence ∀xrobber(x). This is a claim that every individual is
a robber. Roughly speaking, the bound variable x in robber(x) acts as a
sort of placeholder. In fact, the choice of x as a variable here is completely
arbitrary: for example, the sentence ∀yrobber(y) means exactly the same
thing. Both sentences are simply a way of stating that no matter what entity
we take the second occurrence of x (or y) as standing for, that entity will be
a robber.

Our discussion of the interpretation of first-order languages in first-order
models will make these distinctions precise (indeed, most of the real work
involved in interpreting first-order logic centers on the correct handling of
free and bound variables). But before turning to semantic issues, one final
remark. In what follows, we won’t always keep to the official first-order
syntax defined above. In particular, we’ll generally try to use as few brackets
as possible, as this tends to improve readability. For example, we would
rarely write

(customer(vincent) ∧ robber(pumpkin)),

which is the official syntax. Instead, we would (almost invariably) drop the
outermost brackets and write

customer(vincent) ∧ robber(pumpkin).

To help further reduce the bracket count, we assume the following prece-
dence conventions for the Boolean connectives: ¬ binds more tightly than ∨
and ∧, both of which in turn bind more tightly that →. What this means,
for example, is that the formula

∀x(¬customer(x) ∧ robber(x) → robber(x))



1.1. FIRST-ORDER LOGIC 11

is shorthand for

∀x((¬customer(x) ∧ robber(x)) → robber(x))

In addition, we sometimes use the square brackets ] and [ as well as the
official round brackets, as this can make the intended grouping of symbols
easier to grasp visually. Further conventions are introduced in Exercise 1.2.3.

One final remark. There is a natural division in first-order languages
between formulas which do not contain quantifiers, and formulas which do.
Intuitively, formulas which don’t contain quantifiers are simpler: after all,
then we don’t need to bother about variable binding and the free/bound
distinction. And indeed, as we shall learn in the course of the book, in many
interesting respects the quantifier free fragment of a first-order language is
far simpler than the full first-order language of which it is a part.

Logicians have a special name for the quantifier-free part of first-order
logic: they call it propositional logic. We suspect that most readers will have
had some prior exposure to propositional logic, but for those who haven’t,
Appendix ?? discusses it and introduces the notational simplifications stan-
dardly used when working with this important sublogic.

Exercise 1.1.4 Represent the following English sentences in first-order logic:

1. If someone is happy, then Vincent is happy.

2. If someone is happy, and Vincent is not happy, then either Jules is happy or

Butch is happy.

3. Either everyone is happy, or Butch and Pumpkin are fighting, or Vincent had a

weird experience.

4. Some cars are damaged and there are bullet holes in some of the walls.

5. All the hamburger are tasty, all the fries are good, and some of the milkshakes

are excellent.

6. Everybody in the basement is wearing either a leather jacket or a dog collar.

Exercise 1.1.5 Which occurrences of variables are bound, and which are free, in
the following formulas:

1. robber(y)

2. love(x,y)



12 CHAPTER 1. FIRST-ORDER LOGIC

3. love(x,y) → robber(y)

4. ∀y(love(x,y) → robber(y))

5. ∃w∀y(love(w,y) → robber(y))

Exercise 1.1.6 Give an inductive definition of subformulahood. That is, for each
kind of formula in the language (atomic, Boolean, and quantified) specify exactly
what its subformulas are.

Exercise 1.1.7 Use the inductive definition given in the text to prove that any
occurrence of a variable in any formula must be either free or bound.

The Satisfaction Definition

Given a model of appropriate vocabulary, any sentence over this vocabulary
is either true or false in that model. To put it more formally, there is a
relation called truth which holds, or does not hold, between sentences and
models of the same vocabulary. Now, using the informal explanation given
above of what the Boolean connectives and quantifiers mean, it is sometimes
obvious how to check whether a given sentence is true in a given model: for
example, to check the truth of ∀xrobber(x) in a model we simply need to
check that every individual in the model is in fact a robber.

But an intuition-driven approach to the truth of first-order sentences is
not adequate for our purposes. For a start, when faced with a complex first-
order sentence containing many connectives and quantifiers, our intuitions
are likely to fade. Moreover, in this book we are interested in computing

with logic: we want a mathematically precise definition of when a first-order
sentence is true in a model, a definition that lends itself to computational
implementation.

Now, the obvious thing to try to do would be to give an inductive defi-
nition of first-order truth in a model. But there’s a snag: we cannot give a
direct inductive definition of truth, for the matrix of a quantified sentence
typically won’t be a sentence. For example, ∀xrobber(x) is a sentence,
but its matrix robber(x) is not. Thus an inductive truth definition defined
solely in terms of sentences couldn’t explain why ∀xrobber(x) was true in
a model, for there are no sentential subformulas for such a definition to bite
on.

Instead we proceed indirectly. We define a three place relation—called
satisfaction—which holds between a formula, a model, and an assignment of



1.1. FIRST-ORDER LOGIC 13

values to variables. Given a model M = (D,F ), an assignment of values to
variables in M (or more simply, an assignment in M) is a function g from
the set of variables to D. Assignments are a technical device which tell us
what the free variables stand for. By making use of assignment functions, we
can inductively interpret arbitrary formulas in a natural way, and this will
make it possible to define the concept of truth for sentences.

But before going further, one point is worth stressing: the reader should
not view assignment functions simply as a technical fix designed to get round
the problem of defining truth. Moreover, the reader should not think of satis-
faction as being a poor relation of truth. If anything, satisfaction, not truth,
is the fundamental notion, at least as far as natural language is concerned.
Why is this?

The key to the answer is the word context . As we said earlier, free vari-
ables can be thought of as analogs of pronouns, whose values need to be
supplied by context. An assignment of values to variables can be thought
of as a (highly idealized) mathematical model of context; it rolls up all the
contextual information into one easy to handle unit, specifying a denotation
for every free variable. Thus if we want to use first-order logic to model nat-
ural language semantics, it is sensible to think in terms of three components:
first-order formulas (descriptions), first-order models (situations) and vari-
able assignments (contexts). The idea of assignment-functions-as-contexts
is important in contemporary formal semantics; it has a long history and
has been explored in a number of interesting directions, notably in Discourse
Representation Theory and other forms of dynamic semantics.

But let’s return to the satisfaction definition. Suppose we’ve fixed our
vocabulary. (That is, from now on, when we talk of a model M , we mean
a model of this vocabulary, and whenever we talk of formulas, we mean the
formulas built from the symbols in that vocabulary.) We now give two further
technical definitions which will enable us to state the satisfaction definition
concisely.

First, let M = (D,F ) be a model, let g be an assignment of values to
variables in M , and let τ be a term. Then the interpretation of τ with respect
to M and g is F (τ) if τ is a constant, and g(τ) if τ is a variable. We denote
the interpretation of τ by Ig

F (τ).
The second idea we need is that of a variant of an assignment of values

to variables. So, let g be an assignment of values to variables in some model,
and let x be a variable. If g′ is an assignment of values to variables in the
same model, and for all variables y distinct from x such that g′(y)= g(y)



14 CHAPTER 1. FIRST-ORDER LOGIC

holds, then we say that g′ is an x-variant of g. Variant assignments are the
technical tool that allows us to try out new values for a given variable (say
x) while keeping the values assigned to all other variables the same.

We are now ready for the satisfaction definition. Let φ be a formula, let
M = (D,F ) be a model, and let g be an assignment of values to variables
in M . Then the relation M, g |= φ (φ is satisfied in M with respect to the
assignment of values to variables g) is defined inductively as follows:

M, g |= R(τ1, · · · , τn) iff (Ig
F (τ1), · · · , I

g
F (τn)) ∈ F (R)

M, g |= ¬φ iff not M, g |= φ

M, g |= φ ∧ ψ iff M, g |= φ and M, g |= ψ

M, g |= φ ∨ ψ iff M, g |= φ or M, g |= ψ

M, g |= φ→ ψ iff not M, g |= φ or M, g |= ψ

M, g |= ∃xφ iff M, g′ |= φ, for some x-variant g′ of g
M, g |= ∀xφ iff M, g′ |= φ, for all x-variants g′ of g

(Here ‘iff’ is shorthand for ‘if and only if’.) Note the crucial—and indeed,
intuitive—role played by the x-variants in the clauses for the quantifiers. For
example, what the clause for the existential quantifier boils down to is this:
∃xφ is satisfied in a given model, with respect to an assignment g, if and
only if there is some x-variant g′ of g that satisfies φ in the model. That is,
we have to try to find some value for x that satisfies φ in the model, while
keeping the assignments to all other variables the same.

We can now define what it means for a sentence to be true in a model:

A sentence φ is true in a modelM if and only if for any assignment
g of values to variables in M , we have that M, g |= φ. If φ is true
in M we write M |= φ

This is an elegant definition of truth that beautifully mirrors the special,
self-contained nature of sentences. It hinges on the following observation:
it simply doesn’t matter which variable assignment we use to compute the

satisfaction of sentences. Sentences contain no free variables, so the only free
variables we will encounter when evaluating one are those produced when
evaluating its quantified subformulas (if it has any). But the satisfaction
definition tells us what to do with such free variables: simply try out variants
of the current assignment and see whether they satisfy the matrix or not. In
short, start with whatever assignment you like—the result will be the same.



1.1. FIRST-ORDER LOGIC 15

It is reasonably straightforward to make this informal argument precise, and
the reader is asked to do so in Exercise 1.1.11.

Still, for all the elegance of the truth definition, satisfaction is the funda-
mental concept. Not only is satisfaction the technical engine powering the
definition of truth, but from the perspective of natural language semantics
it is conceptually prior. By making explicit the role of variable assignments,
it holds up an (admittedly imperfect) mirror to the process of evaluating
descriptions in situations while making use of contextual information.

Exercise 1.1.8 Consider the model with D = {d1, d2, d3, d4, d5} and the following
interpretation function F :

F (mia) = d2

F (honey-bunny) = d1

F (vincent) = d4

F (yolanda) = d1

F (customer) = {d1, d2, d4}
F (robber) = {d3, d5}
F (love) = {(d3, d4)}

Are the following sentences true or false in this model?

1. ∃xlove(x,vincent)

2. ∀x(robber(x)→ ¬customer(x))

3. ∃x∃y(robber(x) ∧ ¬robber(y) ∧ love(x,y))

Exercise 1.1.9 Give a model that makes all the following sentences true:

1. has-gun(vincent)

2. ∀x(has-gun(x) → aggressive(x))

3. has-motorbike(butch)

4. ∀y(has-motorbike(y) ∨ aggressive(y))

5. ¬has-motorbike(jules)

Exercise 1.1.10 When we informally discussed the semantics of bound vari-
ables we claimed that in any model of appropriate vocabulary, ∀xrobber(x) and
∀yrobber(y) mean exactly the same thing. We can now be more precise: we
claim that the first sentence is true in precisely the same models as the second
sentence. Prove this.



16 CHAPTER 1. FIRST-ORDER LOGIC

Exercise 1.1.11 We claimed that when evaluating sentences, it doesn’t matter
which variable assignment we start with. Formally, we are claiming that given
any sentence φ and any model M (of the same vocabulary), and any variable
assignments g and g′ in M , then M,g |= φ iff M,g′ |= φ. We want the reader to do
two things. First, show that the claim is false if φ is not a sentence but a formula
containing free variables. Second, show that the claim is true if φ is a sentence.

Exercise 1.1.12 For any formula φ, given two assignments g and g′ which differ
only in what they assign to variables not in φ, and any model M (of appropriate
vocabulary) then we have that M,g |= φ iff M,g′ |= φ. Prove this.

This result tells us that we don’t need to worry about entire variable assign-
ments, but only about the (finite) part of the assignment containing information
about the (finitely many) variables that actually occur in the formulas being eval-
uated. Indeed, instead of mentioning entire assignment functions and writing
things like M,g |= φ, logicians often prefer to specify only what has been as-
signed to the free variables in the formula being evaluated. For example, if φ is
a formula with only x and y free, a logician would be likely to write things like
M |= φ[x← d1, y← d4] (assign d1 to the free variable x, and d4 to the free variable
y) or M |= φ[x← d7, y← d2].

Function Symbols, Equality, and Sorting

We have now presented the core ideas of first-order logic, but before moving
on let us discuss three extensions of the basic formalism: first-order logic with
function symbols, first-order logic with equality, and sorted first-order logic.
Function symbols will play an important technical role when we discuss first-
order inference in Chapter ??, and equality is a fundamental tool in natural
language semantics.

Let’s first deal with function symbols. Suppose we want to talk about
Butch, Butch’s father, Butch’s grandfather, Butch’s great grandfather, and
so on. Now, if we know the names of all these people this is easy to
do—but what if we don’t? A natural solution is to add a 1-place func-
tion symbol father to the language. Then if butch is the constant that
names Butch, father(butch) is a term that picks out Butch’s father, fa-
ther(father(butch)) picks out Butch’s grandfather, and so on. That is,
function symbols are a syntactic device that let us form recursively structured
terms, thus letting us express many concepts in a natural way.

Let’s make this precise. First, we shall suppose that it is the task of the
vocabulary to tell us which function symbols we have at our disposal, and



1.1. FIRST-ORDER LOGIC 17

what the arity of each of these symbols is. Second, given this information,
we say (as before) that a model M is a pair (D,F ) where F interprets
the constants and relation symbols as described earlier, and, in addition, F
assigns to each function symbol f an appropriate semantic entity. What’s an
appropriate interpretation for an n-place function symbol? Simply a function
that takes n-tuples of elements of D as input, and returns an element of D
as output. Third, we need to say what terms we can form using these new
symbols. Here’s the definition we require:

1. All constants and variables are terms.

2. If f is a function symbol of arity n, and τ1,. . . , τn are terms, then
f(τ1, . . . , τn) is also a term.

3. Nothing else is a term.

A term is said to be closed if and only if it contains no variables.
Only one task remains: interpreting these new terms. In fact we need

simply extend our earlier definition of Ig
F in the obvious way. Given a model

M and an assignment g in M , we define (as before) Ig
F (τ) to be F (τ) if τ is a

constant, and g(τ) if τ is a variable. On the other hand, if τ is a term of the
form f(τ1, . . . , τn), then we define Ig

F (τ) to be F (f)(Ig
F (τ1), . . . , I

g
F (τn)). That

is, we apply the n-place function F (f)—the function interpreting f—to the
interpretation of the n argument terms.

Function symbols are a natural extension to first-order languages, as the
fatherhood example should suggest. However in this book we won’t use them
in our analyses of natural language semantics, we’ll use them for more techni-
cal purposes. In particular, function symbols play a key role in Chapter ??,
where they will help us formulate an inference system for first-order logic
suitable for computational implementation.

Let’s turn to equality. The first-order languages we have so far defined
have a curious expressive shortcoming: we have no way to assert that two
terms denote the same entity. This is real weakness as far as natural language
semantics is concerned (for example, we may wish to assert that Marsellus’s
wife and Mia are the same person). What are we to do?

The solution is straightforward. Given any language of first-order logic
(with or without function symbols) we can turn it into a first-order language
with equality by adding the special two place relation symbol =. We use
this relation symbol in the natural infix way: that is, if τ1 and τ2 are terms



18 CHAPTER 1. FIRST-ORDER LOGIC

then we write τ1 = τ2 rather than the rather ugly = (τ1, τ2). Beyond this
notational convention, there’s nothing to say about the syntax of = ; it’s just
a two-place relation symbol. But what about its semantics?

Here matters are more interesting. Although, syntactically, = is just a
2-place relation symbol, it is a very special one. In fact (unlike love, or
hate, or any other two-place relation symbol) we are not free to interpret
it how we please. In fact, given any model M , any assignment g in M , and
any terms τ1 and τ2, we shall insist that

M, g |= τ1 = τ2 iff I
g
F (τ1) = I

g
F (τ2).

That is, the atomic formula τ1 = τ2 is satisfied if and only if τ1 and τ2 have
exactly the same interpretation. In short, = really means equality. In fact,
= is usually regarded as a logical symbol on a par with ¬ or ∀, for like these
symbols it has a fixed interpretation, and a semantically fundamental one at
that.

So we can now assert that two names pick out the same individual. For
example, to say that Yolanda is Honey-Bunny we use the formula

yolanda=honey-bunny,

and (if we make use of the 1-place function symbol wife to mean wife-of)
we can say that Mia is Marsellus’s wife as follows:

mia=wife(marsellus).

• Add that function symbols redundant (but nice!) with equality.

• Sorting — again redundant, but nice, and used in Chapter 3.

Exercise 1.1.13 Use function symbols and equality to say that Butch’s mother
is Mia’s grandmother.

1.2 Three Inference Tasks

Now that we know what first-order languages are, we have at our disposal
a fundamental tool for representing the meaning of natural language expres-
sions. But first-order logic can help with more than just representation: it
also gives us a grip on inference, and this is the topic to which we now turn.



1.2. THREE INFERENCE TASKS 19

We introduce three inference tasks: querying , consistency checking , and
informativeness checking . The three tasks are fundamental ones, and can be
combined in various ways to deal with interesting problems in the semantics
of natural language. To give a classic example, a key part of the van der Sandt
algorithm for handling presupposition (discussed in the advanced companion
to this book), is a clever blend of consistency and informativeness checking.

By the end of the section the reader should have a good understanding of
what the three tasks are. We shall learn that the querying task is relatively
simple and can be handled by a piece of software called a model checker. We
shall also learn that the consistency and informativeness checking tasks are
closely related, that both are extremely difficult (indeed, undecidable), and
that developing computational tools to deal with them will force us to move
on from the model-theoretic perspective of this chapter to the proof-theoretic

perspective developed in Chapters 4 and 5.

The Querying Task

The querying task is the simplest of the three inference tasks we shall con-
sider. It is defined as follows:

The Querying Task Given a model M and a first-order formula
φ, is φ satisfied in M or not?

And now we must consider two further questions: Why is this task interest-
ing? And can we deal with it computationally?

Models are situations and first-order formulas are descriptions. Thus to
ask whether a description holds or does not hold in a given situation is to
ask a fundamental question. Moreover, it is a question that can be very
useful; this may become clearer if we think in terms of ‘databases’ rather
than ‘situations’.

A database is a structured collection of facts; databases vary in how
(and to what extent) they are structured, but if you think of a conventional
database as a first-order model you will not go far wrong. Now, real databases
are (often huge) repositories of content, and this content is typically accessed
by posing queries in specialized languages called database query languages.
The querying task we defined above is essentially a more abstract version
of what goes on in conventional database querying, with first-order logic
playing the role of the database query language, and models playing the role
of databases.



20 CHAPTER 1. FIRST-ORDER LOGIC

But what does this have to do with natural language? Here’s one natural
link. Suppose we have represented some situation of interest as a model
(maybe this model is some pre-existing database, or maybe it’s something
we have dynamically constructed to keep track of a dialogue). But however
the model got there, it embodies content we are interested in, and it is natural
to try and use this content to provide answers to questions. Now (as we shall
learn in Chapter 4) it is possible to translate some kinds of natural language
questions into first-order logic. And if we do this, we have a simple way of
answering them: we simply see if their translations are satisfied in the model.
In Chapter 4 we construct a simple question answering system which works
this way.

Now for the second question: is querying a task we can compute? The
answer is basically yes , but there are two points we need to be careful about.

First, note that we defined the querying task for arbitrary formulas, not
just for sentences. And if a formula contains free variables we can’t simply
evaluate it in a model—we also need to stipulate what the free variables stand
for. Second, we don’t have a remotest chance of writing software for querying
arbitrary models. Many (in fact, most) models are infinite, and while it is
possible to give useful finite representations of some infinite models, most
are too big and unruly to be worked with computationally. Hence we should
confine our attention to finite models (and given our models-as-databases
analogy, this is a reasonable restriction to make).

If we remember to pay attention to the free variables, and confine our
attention to finite models, then it certainly is possible to write a program
which performs the querying task. Such a program is called a model checker ,
and in the following section we shall write a first-order model checker in
Prolog. We shall use this model checker when we discuss question answering
in Chapter 6.

A final remark. People with traditional logical backgrounds may be sur-
prised that we have defined querying as an inference task: traditional logic
texts typically don’t define this task, and many logicians wouldn’t consider
evaluating a formula in a model to be a form of inference. In our view,
however, querying is a paradigmatic example of inference. Consider what it
involves. On the one hand, we have the model, a repository (of a possibly vast
amount) of low-level information about entities, relationships, and proper-
ties. On the other hand we have formulas, which may describe aspects of the
situation in an abstract, logically complex, way. Given even a not-very-large
model and a not-particularly-complex formula, it may be far from obvious



1.2. THREE INFERENCE TASKS 21

whether or not the formula is satisfied in the model. Computing whether a
formula is satisfied (or not satisfied) in a model is thus a beautiful example
of a process which makes implicit information explicit. Hence querying can
be viewed as a form of inference.

The Consistency Checking Task

Consistency is a commonly used concept in linguistics (especially in seman-
tics) and its central meaning is something like this: a consistent description is
one that ‘makes sense’, or ‘is intelligible’, or ‘describes something realizable’.
For example, Mia is a robber is obviously consistent, for it describes a possible
state of affairs, namely a situation in which Mia is a robber. An inconsistent
description, on the other hand ‘doesn’t make sense’, or ‘attempts to describe
something impossible’. For example, Mia is a robber and Mia is not a robber

is clearly inconsistent. This description tears itself apart: it simultaneously
affirms and denies that Mia is a robber, and hence fails to describe a possible
situation.

Consistency and inconsistency are important in computational semantics.
Suppose we are analyzing a discourse sentence by sentence. If at some stage
we detect an inconsistency, this may be a sign that something has gone wrong
with the communicative process. To give a blatant example, the discourse

Mia is happy. Mia is not happy.

is obviously strange. It is hard to know what to do with the ‘information’
it contains—but naively accepting it and attempting to carry on is probably
not the best strategy. Thus we would like to be able to detect inconsistency
when it arises, for it typically signals trouble.

But the ‘definitions’ given above of consistency and inconsistency are
imprecise. If we are to work with these notions computationally, we need
to pin them down clearly. Can the logical tools we have been discussing
help us pin down precise analogs of these concepts, analogs which do justice
to the key intuitions? They can: it is natural to identify the pre-theoretic
concept of consistency with the model-theoretic concept of satisfiability , and
to identify inconsistency with unsatisfiability .

A first-order formula is called satisfiable if it is satisfied in at least one
model. As we have encouraged the reader to think of models as idealized
situations, this means that satisfiable formulas are those which describe ‘con-
ceivable’, or ‘possible’, or ‘realizable’ situations. For example, robber(mia)



22 CHAPTER 1. FIRST-ORDER LOGIC

describes a realizable situation, for any model in which Mia is a robber sat-
isfies it. A formula that is not satisfiable in any model is called unsatisfiable.
That is, unsatisfiable formulas describe ‘inconceivable’, or ‘impossible’, or
‘unrealizable’ situations. For example, robber(mia) ∧ ¬robber(mia) de-
scribes something that is unrealizable: there simply aren’t any models in
which Mia both is and is not a robber.

It is useful to extend the concepts of satisfiability and unsatisfiability to
finite sets of formulas. A finite set of formulas {φ1, . . . , φn} is satisfiable if
φ1 ∧ · · · ∧ φn is satisfiable; that is, satisfiability for finite sets of formulas
mean ‘lump together all the information in the set using conjunction and see
if the result is satisfiable’. Similarly, a finite set of formulas {φ1, . . . , φn} is
unsatisfiable if φ1 ∧ · · · ∧ φn is unsatisfiable.

Note that satisfiability (and unsatisfiability) are model-theoretic or (as
it is sometimes put) semantic concepts. That is, both concepts are defined
using the notion of satisfaction in a model, and nothing else. Furthermore,
note that satisfiability (and unsatisfiability) are mathematically precise con-
cepts: we know exactly what first-order languages and first-order models
are, and we know exactly what it means when we claim that a formula is
satisfied in a model. Finally, it seems reasonable to claim that the notion
of a formula being satisfied in a model is a good analog of the pre-theoretic
notion of descriptions that describe realizable states of affairs. Hence for the
remainder of the book we shall identify the mathematical notions ‘satisfiable’
and ‘unsatisfiable’ with the pre-theoretical notions ‘consistent’ and ‘inconsis-
tent’ respectively, and accordingly, we define the consistency checking task
as follows:

The Consistency Checking Task Given a first-order formula
φ, is φ consistent (that is: satisfiable) or inconsistent (that is:
unsatisfiable)?

Some logicians might prefer to call this the satisfiability checking task,
and from time to time we shall use this terminology. But we prefer to talk
about consistency checking, for it emphasizes the pre-theoretic notion we are
trying to capture. Moreover, as we shall learn in Chapter 4, there is a also a
mathematical precise (but non model-theoretic) concept called consistency
that turns out to correspond exactly with the (model-theoretic) notion of
satisfiability. All in all, ‘consistency checking’ is a good terminological choice.
Incidentally, consistency checking for finite sets of formulas is done in the



1.2. THREE INFERENCE TASKS 23

obvious way: we take the conjunction of the finite set, and test whether or
not it is satisfiable.

But is consistency checking something we can compute? The answer is
no, not fully. Consistency checking for first-order logic turns out to be a
very hard problem indeed. In fact, a well-known theorem of mathematical
logic tells us that there is no algorithm capable of solving this problem for
all possible input formulas. It is a classic example of a computationally

undecidable task.
We are not going to prove this undecidability result (see the Notes at

the end of the chapter for pointers to some nice proofs), but the following
remarks should help you appreciate why the problem is so hard. Note that
the consistency checking task is highly abstract compared to the querying
task. Whereas the querying task is about manipulating two concrete enti-
ties (a finite model and a formula), the consistency checking task is a search
problem—and what a search problem! Given a formula, we have to determine
if somewhere out there in the (vast) mathematical universe of models, a sat-
isfying model exists. Now, even if a finite satisfying model exists, there’s a lot
of finite models; how do we find the one we’re looking for? And anyway, some
satisfiable formulas only have infinite satisfying models (see Exercise 1.2.1);
how on earth can we find such models computationally?

Hopefully these remarks have given you some sense of why first-order
consistency checking is difficult. Indeed, given what we have just said, it
may seem that we should simply give up and go home! Remarkably, how-
ever, all is not lost. As we shall learn in Chapters 4 and 5, it is possible
to take a different perspective on consistency checking, a proof-theoretic (or
syntactic) perspective rather than a model theoretic perspective. That is,
it turns out to be possible to re-analyze consistency checking from a per-
spective that emphasizes symbol manipulation, not model existence. The
proof-theoretic perspective makes it possible to create software that offers a
useful partial solution to the consistency checking problem, and (as we shall
see in Chapter 6) such software is useful in the computational semantics.

Exercise 1.2.1 Consider the following formula:

∀x∃yneighbour(x,y) ∧ ∀x¬neighbour(x,x)
∧ ∀x∀y∀z(neighbour(x,y) ∧ neighbour(y,z) → neighbour(x,z)).

Is this formula satisfiable? Is it satisfiable in a finite model?



24 CHAPTER 1. FIRST-ORDER LOGIC

The Informativeness Checking Task

The main goal of this section is to get to grips with pre-theoretic concept of
informativeness (and uninformativeness). We’ll start by defining the model-
theoretic concepts of validity and invalidity, and valid and invalid arguments.
We’ll then show that these concepts offer us a natural way of thinking about
informativeness.

A valid formula is a formula that is satisfied in all models (of the ap-
propriate vocabulary) given any variable assignment. To put it the other
way around: if φ is a valid formula, it is impossible to find a situation and
a context in which φ is not satisfied. For example, consider robber(x) ∨
¬robber(x). In any model, given any variable assignment, one (and indeed,
only one) of the two disjuncts must be true, and hence the whole formula
will be satisfied too. We indicate that a formula φ is valid by writing |= φ. A
formula that is not valid is called invalid. That is, invalid formulas are those
which fail to be satisfied in at least one model. For example robber(x) is an
invalid formula: it is not satisfied in any model where there are no robbers.
We indicate that a formula φ is invalid by writing 6|= φ.

There is a clear sense in which validities are ‘logical’: nothing can affect
them, they carry a cast-iron guarantee of satisfiability. But logic is often
thought of in terms of the more dynamic notion of valid arguments , a move-
ment, or inference, from premises to conclusions. This notion can also be
captured model-theoretically. Suppose φ1, . . . , φn, and ψ are a finite collec-
tion of first-order formulas. Then we say that the argument with premises

φ1, . . . , φn and conclusion ψ is a valid argument if and only if whenever all
the premises are satisfied in some model, using some variable assignment,
then the conclusion is satisfied in the same model using the same variable
assignment. The notation

φ1, . . . , φn |= ψ

means that the argument with premises φ1, . . . , φn and conclusion ψ is valid.
Incidentally, there are many ways of speaking of valid arguments. For exam-
ple, it is also common to say that ψ is a valid inference from the premises
φ1, . . . , φn, or that ψ is a logical consequence of φ1, . . . , φn, or that ψ is a
semantic consequence of φ1, . . . , φn.

An argument that is not valid is called invalid . That is, an argument
with premises φ1, . . . , φn and conclusion ψ is invalid argument if it is possible
to find a model and a variable assignment which satisfies all the premises but



1.2. THREE INFERENCE TASKS 25

not the conclusion. We indicate that an argument is invalid by writing

φ1, . . . , φn 6|= ψ.

Validity and valid arguments are closely related. For example, the ar-
gument with premises ∀x(robber(x) → customer(x)) and robber(mia)
and the conclusion customer(mia) is valid. That is:

∀x(robber(x) → customer(x)), robber(mia) |= customer(mia).

But now consider the following (valid) formula:

|= ∀x(robber(x) → customer(x)) ∧ robber(mia) → customer(mia).

Pretty clearly, the validity of the formula ‘mirrors’ the validity of the argu-
ment. And indeed, as this example suggests, with the help of the Boolean
connectives ∧ and→ we can convert any valid argument into a validity. This
is an example of the Semantic Deduction Theorem in action. This theorem
is fully stated (and the reader is asked to prove it) in Exercise 1.2.2 below.

Validity and valid arguments are central concepts in model theory. Logi-
cians regard validities as important, for they embody the abstract patterns
that underly logical truth, and they regard valid arguments as important
because of the perspective they offer on correct mathematical reasoning. (In
a nutshell: for logicians, validities are the good guys.) However it is pos-
sible to view validity and valid argumentation in a less positive way, and
this brings us to the linguistically important concepts of informativeness and
uninformativeness.

There is a clear sense in which valid formulas are uninformative. Precisely
because they are satisfied in all models, valid formulas don’t tell us anything
at all about any particular model. That is, valid formulas don’t rule out
possibilities—they’re boringly vanilla. Thus we shall introduce an alternative
name for valid formulas: we shall often call them uninformative formulas,
and we shall call invalid formulas informative formulas. (So the good guys
have become the bad guys and vice-versa.) Moreover, as the concept of
informativeness turns out to be linguistically relevant, we shall define the
following task:

The Informativeness Checking Task Given a first-order for-
mula φ, is φ informative (that is: invalid) or uninformative (that
is: valid)?



26 CHAPTER 1. FIRST-ORDER LOGIC

Valid arguments can be accused of uninformativeness too. If φ1, . . . , φn

|= ψ, and we already know that φ1, . . . , φn, then there is a sense in which
learning ψ doesn’t tell us anything new. For this reason we shall introduce the
following alternative terminology: if φ1, . . . , φn |= ψ, then we shall say that
ψ is uninformative with respect to φ1, . . . , φn. On the other hand, suppose
that φ1, . . . , φn 6|= ψ, and that we already know that φ1, . . . , φn. Then if we
are told ψ, we clearly have learned something new. Hence, if φ1, . . . , φn 6|=
ψ, then we shall say that ψ is informative with respect to φ1, . . . , φn.

Of course, by appealing to the Semantic Deduction Theorem, we can
reduce testing ψ for informativeness (or uninformativeness) with respect to
φ1, . . . , φn to ordinary informativeness checking. For the theorem tells us
that ψ is informative with respect to φ1, . . . , φn if and only if φ1∧· · ·∧φn → ψ

is an informative formula. So we can always reduce informativeness issues to
a task involving a single formula, and this is the strategy we shall follow in
Chapter 6.

But why should linguists care about informativeness? The point is this:
like inconsistency, uninformativeness can be a sign that something is going
wrong with the communicative process. If later sentences in a discourse are
consequences of earlier ones, this should probably make us suspicious, not
happy. To give a particularly blatant example, consider the discourse

Mia is married. Mia is married. Mia is married.

Obviously we should not clap our hands here and say ‘How elegant! The
second sentence is a logical consequence of the first, and the third is a logical
consequence of the second!’ This is a clear example of malfunctioning dis-
course. It patently fails to convey any new information. If it was produced by
a natural language generation system, we would suspect the system needed
debugging. If it was uttered by a person, we would probably look for another
conversational partner.

Now, it is important not to overstate the case here. In general, lack of
informativeness is not such a reliable indicator of communicative problems
as inconsistency. For a start, sometimes we may be interested in discourses
that embody valid argumentation (for example, if we are working with mathe-
matical text). Furthermore, sometimes it is appropriate to rephrase the same
information in different ways. For example, consider this little discourse:

Mia is married. She has a husband.



1.2. THREE INFERENCE TASKS 27

The second sentence is uninformative with respect to the first, but this dis-
course would be perfectly acceptable in many circumstances. Nonetheless,
although uninformativeness is not a failsafe indicator of trouble, it is of-
ten important to detect whether or not genuinely new information is being
transmitted. So we need tools for carrying out informativeness checking.

And this brings us to the next question: is informativeness checking com-
putable? And once again the answer is no, not fully. Like the consistency
checking task, the informativeness checking task is undecidable. We’re not
going to prove this result, but given our previous discussion it is probably
clear that informativeness checking is likely to be tough. After all, informa-
tiveness checking is a highly abstract task: validity means satisfiable in all

models, and there’s an awful lot of awfully big of models out there.
This sounds like bad news, but once again there is light at the end of

the tunnel. As we shall learn in Chapters 4 and 5, it is possible to take
a proof-theoretic perspective on informativeness checking. Instead of view-
ing informativeness in terms of satisfaction in all models, it is possible to
reanalyze it in terms of certain kinds of symbol manipulation. This proof-
theoretic perspective makes it possible to create software that offer effective
partial solutions to the informativeness checking problem, and (as we shall
see in Chapter 6) we can apply this software to linguistic issues.

Exercise 1.2.2 The Semantic Deduction Theorem for first-order logic says that
φ1, . . . , φn |= ψ if and only if |= (φ1∧· · ·∧φn)→ ψ. (That is, we can lump together
the premises using ∧, and then use → to state that this information implies the
conclusion.) Prove the Semantic Deduction Theorem.

Exercise 1.2.3 We say that two sentences φ and ψ are logically equivalent if and
only if φ |= ψ and ψ |= φ. For all formulas φ, ψ, and θ:

1. Show that φ ∧ ψ is logically equivalent to ψ ∧ φ, and that φ ∨ ψ is logically
equivalent to ψ ∨ φ (that is, show that ∧ and ∨ are both commutative).

2. Show that (φ∧ψ)∧θ is logically equivalent to ψ∧(φ∧θ), and that (φ∨ψ)∨θ
is logically equivalent to ψ ∨ (φ ∨ θ) (that is, show that ∧ and ∨ are both
associative).

3. Show that φ→ ψ is logically equivalent to ¬φ∨ψ (that is, show that → can
be regarded as a symbol defined in terms of ¬ and ∨).

4. Show that ∀xφ and ¬∃x¬φ are logically equivalent, and that so are ∃xφ and
¬∀x¬φ (that is, show that either quantifier can be defined in terms of the
other with the help of ¬).



28 CHAPTER 1. FIRST-ORDER LOGIC

These equivalences come in useful in the course of the book. Equivalences 3 and 4
will enable us to take two handy shortcuts when implementing our model checker.
And because ∧ and ∨ are commutative and associative, it is natural to drop
brackets and write conjunctions such as φ1 ∧ φ2 ∧ φ3 ∧ φ4 and disjunctions such as
ψ1 ∧ ψ2 ∧ ψ3 ∧ ψ4. We often adopt this convention.

Relating Consistency and Informativeness

Now for an important observation. As we’ve just learned, two of the infer-
ence tasks that interest us (namely the consistency checking task and the
informativeness checking task) are extremely difficult. Indeed, in order to
make progress with them, in Chapters 4 and 5 we’re going to have to rethink
them from a symbol manipulation perspective. But one piece of good news
is at hand: the two tasks are intimately related, and knowing how to solve
one helps us to solve the other.

Here are the key observations:

1. φ is consistent (that is, satisfiable) if and only if ¬φ is informative (that
is, invalid).

2. φ is inconsistent (that is, unsatisfiable) if and only if ¬φ is uninforma-
tive (that is, valid).

3. φ is informative (that is, invalid) if and only if ¬φ is consistent (that
is, satisfiable).

4. φ is uninformative (that is, valid) if and only if ¬φ is inconsistent (that
is, unsatisfiable).

Why do these relationships hold? Consider, for example, the first. Sup-
pose φ is consistent. This means it is satisfiable in at least one model. But
this is the same as saying that there is at least one model where ¬φ is not
satisfied. Which is precisely to say that ¬φ is informative.

These relationships have practical importance. For example, in Chap-
ters 4 and 5 we discuss theorem provers. A theorem prover is a piece of
software whose primary task is to determine whether a first order formula
is uninformative (that is, valid) or not. But, by making use of the relation-
ships just listed, it is clear that it can do something else as well. Suppose
we want to know whether φ is inconsistent. Then, using the second of the
relationships listed above, we can try to establish this by giving ¬φ to the



1.3. A FIRST-ORDER MODEL CHECKER 29

theorem prover. If the theorem prover tells us that ¬φ is uninformative, then
we know that φ is inconsistent.

We will say more about these relationships, and about the tools that can
help us establish them, in Chapters 4 and 5.

Exercise 1.2.4 In the text we gave a simple argument establishing the first of the
relationships listed above. Establish the truth of the remaining three relationships.

1.3 A First-Order Model Checker

In the previous section we learned that the querying task (for finite models)
is a lot simpler computationally than the consistency and informativeness
checking tasks. In this section we build a tool for handling querying: we
write a first-order model checker in Prolog. The model checker takes the
Prolog representation of a (finite) model and the Prolog representation of a
first-order formula and tests whether or not the formula is satisfied in the
model (there is a mechanism for assigning values to any free variables the
formula contains). Our checker won’t handle function symbols (this extension
is left as an exercise) but it will handle equality.

We are going to provide two versions of the model checker. The first
version will be (so to speak) correct so long as you’re not too nasty to it.
That is, as long as you are sensible about the formulas you give it (taking care,
for example, only to give it formulas built over the appropriate vocabulary) it
will produce the right result. But we want a robust model checker, one that
is faithful to the nuances implicit in the first-order satisfaction definition. So
we shall explore the limitations of the first version, and then provide a more
refined version that deals with the remaining problems.

How should we implement a model checker? We have three principal
tasks. First, we must decide how to represent models in Prolog. Second,
we must decide how to represent first-order formulas in Prolog. Third, we
must specify how (Prolog representations of) first-order formulas are to be
evaluated in (Prolog representations of) models with respect to (Prolog rep-
resentations of) variable assignments. Let’s turn to these tasks straight away.
The Prolog representations introduced here will be used throughout the book.



30 CHAPTER 1. FIRST-ORDER LOGIC

Representing Models in Prolog

Suppose we have fixed our vocabulary—for example, suppose we have decided
to work with this one:

{ (love,2),
(customer,1),
(robber,1),
(jules,0),
(vincent,0),
(pumpkin,0),
(honey-bunny,0)
(yolanda,0)}

How should we represent models of this vocabulary in Prolog? Here is an
example:

model([d1,d2,d3,d4,d5],

[f(0,jules,d1),

f(0,vincent,d2),

f(0,pumpkin,d3),

f(0,honey_bunny,d4),

f(0,yolanda,d5),

f(1,customer,[d1,d2]),

f(1,robber,[d3,d4]),

f(2,love,[(d3,d4)])])).

This represents a model with a domain D containing five elements. The
domain elements (d1–d5) are explicitly given in the list which is the first
argument of the model/2 term. The second argument of model/2 is also a
list. This second list specifies the interpretation function F . In particular,
it tells us that d1 is Jules, that d2 is Vincent, that d3 is Pumpkin, that d4 is
Honey-Bunny, and that d5 is Yolanda. It also tells us that both Jules and
Vincent are customers, that both Pumpkin and Honey Bunny are robbers,
and that Pumpkin loves Honey Bunny. Observe that it also gives us a lot
of negative information about Yolanda: she’s not a customer, she’s not a
robber, and she neither loves nor is loved by any of the others. Recall that
in Section 1.1 we formally defined a model M to be an ordered pair (D,F ).
As this example makes clear, our Prolog representation mirrors the form of
the set-theoretic definition.



1.3. A FIRST-ORDER MODEL CHECKER 31

Let’s look at a second example, again for the same vocabulary. As this
example makes clear, our Prolog representation format for models really does
cover all the options allowed for by the set-theoretic definition.

model([d1,d2,d3,d4,d5,d6],

[f(0,jules,d1),

f(0,vincent,d2),

f(0,pumpkin,d3),

f(0,honey_bunny,d4),

f(0,yolanda,d4),

f(1,customer,[d1,d2,d5,d6]),

f(1,robber,[d3,d4]),

f(2,love,[])])).

Note that although the domain contains six elements, only four of them
are named by constants: both d5 are d6 are nameless. However we do know
something about the anonymous d5 and d6: both of them are customers
(so you might like to think of this model as a situation in which Jules and
Vincent are the customers of interest, and d5 and d6 are playing some sort
of supporting role). Next, note that d4 has two names, namely Yolanda
and Honey-Bunny. Finally, observe that the 2-place love relation is empty:
the empty list in f(2,love,[]) signals this. As these observations make
clear, our Prolog representation of first-order models correctly embodies the
nuances of the set-theoretic definition: it permits to us handle nameless and
multiply-named entities, and to explicitly state that a relation is empty. So
we have taken a useful step towards our goal of faithfully implementing the
first-order satisfaction definition.

Exercise 1.3.1 Give the set-theoretic description of the models that the two Pro-
log terms given above represent.

Exercise 1.3.2 Suppose we are working with the following vocabulary:

{(works-for,2),
(boxer,1),
(problem-solver,1),
(the-wolf,0),
(marsellus,0),
(butch,0)}



32 CHAPTER 1. FIRST-ORDER LOGIC

Represent each of the following two models over this vocabulary as Prolog terms.

1. D = {d1, d2, d3},
F (the-wolf) = d1,
F (marsellus) = d2,
F (butch) = d3,
F (boxer) = {d3},
F (problem-solver) = {d1}.

2. D = {entity-1, entity-2, entity-3}
F (the-wolf) = entity-3,
F (marsellus) = entity-1,
F (butch) = entity-2,
F (boxer) = {entity-2, entity-3},
F (problem-solver) = {entity-2},
F (works-for) = {(entity-3, entity-1), (entity-2, entity-1)}.

Exercise 1.3.3 Write a Prolog program which when given a term, determines
whether or not the term represents a model. That is, your program should check
that the functor of the term is the model/2 predicate, that the first argument is
a list containing no multiple instances of symbols, that the second argument is a
list whose members are all three-place predicates with functor f, and so on.

Representing Formulas in Prolog

Let us now decide how to represent first-order formulas (for languages with-
out function symbols, but with equality) in Prolog. The first (and most
fundamental) decision is how to represent first-order variables. We make the
following choice: First-order variables will be represented by Prolog variables.

This advantage of this is that it allows us to use Prolog’s inbuilt unification
mechanism to handle variables: for example, we can assign a value to a
variable simply by using unification. Its disadvantage is that occasionally we
will need to exercise care to block unwanted unifications—but this is a price
well worth paying.

Next, we must decide how to represent the non-logical symbols. We do
so in the obvious way: a first-order constant c will be represented by the
Prolog atom c, and a first-order relation symbol r will be represented by the
Prolog atom r.

Given this convention, it is obvious how atomic formulas should be repre-
sented. For example, love(vincent,mia) would be represented by the Pro-



1.3. A FIRST-ORDER MODEL CHECKER 33

log term love(vincent,mia), and hate(butch,x) would be represented by
hate(butch,X). Note that first-order atomic sentences (for example boxer(butch))
are represented by exactly the same Prolog term (namely boxer(butch))
that is used to represent the fact that Butch is a boxer in our Prolog represen-
tation of models. This will help keep the implementation of the satisfaction
clause for atomic formulas simple.

Recall that there is also a special two-place relation symbol, namely the
equality symbol =. We shall use the functor eq/2 as its Prolog represen-
tation. For example, the Prolog representation of the first-order formula
yolanda=honey-bunny is the term eq(yolanda,honey bunny).

Next the Booleans. The Prolog terms

and/2 or/2 imp/2 not/1

will be used to represent the connectives ∧, ∨, →, and ¬ respectively.
Finally, we must decide how to represent the quantifiers. Suppose φ is a

first-order formula, and Phi is its representation as a Prolog term. Then ∀xφ
will be represented as

all(X,Phi)

and ∃xφ will be represented as

ex(X,Phi).

The Satisfaction Definition in Prolog

We turn to the final task: evaluating (representations of) formulas in (repre-
sentations of) models with respect to (representations of) assignments. The
predicate which carries out the task is called satisfy/4, and the clauses
of satisfy/4 mirror the first-order satisfaction definition in a fairly natu-
ral way. The four arguments that satisfy/4 takes are: the formula to be
tested, the model (in the representation just introduced), a list of assign-
ments of members of the model’s domain to any free variables the formula
contains, and a polarity feature (pos or neg) that tells whether a formula
should be positively or negatively evaluated. Two points require immediate
clarification: how are assignments to be represented, and what is the pur-
pose of that mysterious sounding ‘polarity feature’ in the fourth argument of
satisfy?



34 CHAPTER 1. FIRST-ORDER LOGIC

Assignments are easily dealt with. We shall use Prolog terms of the form
g(Variable,Value) to indicate that a variable Variable has been assigned
the element Value of the model’s domain. When we evaluate a formula, the
third argument of satisfy/4 will be a list of terms of this form, one for each
of the free variables the formula contains. (In effect, we’re taking advantage
of Exercise 1.1.12: we’re only specifying what is assigned to the free variables
actually occurring in the formula we are evaluating.) If the formula being
evaluated contains no free variables (that is, if it is a sentence) the list is
empty.

But what about the ‘polarity feature’ in the fourth argument? The point
is this. When we evaluate a formula in a model, we use the satisfaction
definition to break it down into smaller subformulas, and then check these
smaller subformulas in the model (for example, the satisfaction definition
tells us that to check a conjunction in a model, we should check both its
conjuncts in the model). Easy? Well, yes—except that as we work through
the model we may well encounter negations, and a negation is a signal that
what follows has to be checked as false in the model. And going deeper
into the negated subformula we may well encounter another negation, which
means that its argument has to be evaluated as true, and so on and so forth,
flipping backwards and forwards between true and false as we work our way
down towards the atomic formulas . . .

Quite simply, the polarity feature is a flag that records whether we are
trying to make a particular subformula true or false in a model. If subformula
is flagged pos it means we are trying to make it true, and if it is flagged neg

it means we are trying to make it false. (When we give the original formula
to the model checker, the fourth argument will be pos; after all, we want to
see if the formula is true in the model.) The heart of the model checker is a
series of clauses that spell out recursively what we need to do to check the
formula as true in the model, and what we need to do to check it as false.

Let’s see how this works. The easiest place to start is with the clauses of
satisfy/4 for the Boolean connectives. Here are the two clauses for negation
(recall that the Prolog :- should be read as ‘if’):

satisfy(not(Formula),Model,G,pos):-

satisfy(Formula,Model,G,neg).

satisfy(not(Formula),Model,G,neg):-

satisfy(Formula,Model,G,pos).



1.3. A FIRST-ORDER MODEL CHECKER 35

Obviously these clauses spell out the required flip-flops between true and
false.

Now for the two clauses that deal with conjunction:

satisfy(and(Formula1,Formula2),Model,G,pos):-

satisfy(Formula1,Model,G,pos),

satisfy(Formula2,Model,G,pos).

satisfy(and(Formula1,Formula2),Model,G,neg):-

satisfy(Formula1,Model,G,neg);

satisfy(Formula2,Model,G,neg).

The first clause tells us that for a conjunction to be true in a model, both
its conjuncts need to be true there. On the other hand, as the second clause
tells us, for a conjunction to be false in a model, at least one of its conjuncts
need to be false there (note the use of the ; symbol, Prolog’s built in ‘or’, in
the second clause). We have simply turned what the satisfaction definition
tells us about conjunctions into Prolog.

Now for disjunctions:

satisfy(or(Formula1,Formula2),Model,G,pos):-

satisfy(Formula1,Model,G,pos);

satisfy(Formula2,Model,G,pos).

satisfy(or(Formula1,Formula2),Model,G,neg):-

satisfy(Formula1,Model,G,neg),

satisfy(Formula2,Model,G,neg).

Again, these are a direct Prolog encoding of what the satisfaction defini-
tion tells us. Note the use of Prolog’s built in ‘or’ in the first clause.

Finally, implication. Just for the fun of it, we’ll handle this a little differ-
ently. As we asked the reader to show in Exercise 1.2.3, the→ connective can
be defined in terms of ¬ and ∨: for any formulas φ and ψ whatsoever, φ→ ψ

is logically equivalent to ¬φ ∨ ψ. So, when asked to check an implication,
why not simply check the equivalent formula instead? After all, we already
have the clauses for ¬ and ∨ at our disposal. And that’s exactly what we’ll
do:

satisfy(imp(Formula1,Formula2),Model,G,Pol):-

satisfy(or(not(Formula1),Formula2),Model,G,Pol).



36 CHAPTER 1. FIRST-ORDER LOGIC

Of course, it’s straightforward to give a pair of clauses (analogous to those
given above for ∧ and ∨) that handle → directly. The reader is asked to do
this in Exercise 1.3.6 below.

Let’s press on and see how the quantifiers are handled. Here are the
clauses for the existential quantifier:

satisfy(ex(X,Formula),model(D,F),G,pos):-

memberList(V,D),

satisfy(Formula,model(D,F),[g(X,V)|G],pos).

satisfy(ex(X,Formula),model(D,F),G,neg):-

setof(V,

(

memberList(V,D),

satisfy(Formula,model(D,F),[g(X,V)|G],neg)

),

D).

This requires some thought. Before examining the code however, what’s
the memberList/2 predicate it uses? It is one of the predicates in the library
comsemPredicates.pl. It succeeds if its first argument, any Prolog term, is
a member of its second argument, which has to be a list. That is, it does
exactly the same thing as the predicate usually called member/2. (We have
added it to our library to make our code self sufficient, and rechristened it to
avoid problems when our libraries are used with Prologs in which member/2

is provided as a primitive.)
But now that we know that, the first clause for the existential quantifier

should be understandable. The satisfaction definition tells us that a formula
of the form ∃xφ is true in a model with respect to an assignment g if there
is some variant assignment g′ under which φ is true in the model. The call
memberList(V,D) instantiates the variable V to some element of the domain
D, and then in the following line, with the instruction [g(X,V)|G], we try
evaluating with respect to this variant assignment. If this fails, Prolog will
backtrack, the call memberList(V,D) will provide another instantiation (if
this is still possible), and we try again. In essence, we are using Prolog
backtracking to try out different variant assignments.

And with the first clause clear, the second clause becomes comprehensi-
ble. First, note that the satisfaction definition tells us that a formula of the



1.3. A FIRST-ORDER MODEL CHECKER 37

form ∃xφ is false in a model with respect to an assignment g if φ is false in
the model with respect to all all variant assignments g′. So, just as in the
first clause, we use memberList(V,D) and backtracking to try out different
variant assignments. However we take care not to forget what we’ve tried
out: we use Prolog’s inbuilt setof predicate to collect all the instantiations
of V that falsify the formula. But think about it: if all instantiations make
the formula false, then our setof will simply be the domain D itself. In
short, obtaining D as the result of our setof is the signal that we really have
falsified the existential formula.

To deal with the universal quantifier, we take a shortcut. Recall that
∀xφ is logically equivalent to ¬∃x¬φ (the reader was asked to show this in
Exercise 1.2.3). So let’s make use of this equivalence in the model checker:

satisfy(all(X,Formula),Model,G,Pol):-

satisfy(not(ex(X,not(Formula))),Model,G,Pol).

Needless to say, a pair of clauses which directly handle the universal
quantifier could be given. Exercise 1.3.7 below asks the reader to define
them.

Let’s turn to the atomic formulas. Here are the clauses for one-place
predicate symbols:

satisfy(Formula,model(D,F),G,pos):-

compose(Formula,Symbol,[Argument]),

i(Argument,model(D,F),G,Value),

memberList(f(1,Symbol,Values),F),

memberList(Value,Values).

satisfy(Formula,model(D,F),G,neg):-

compose(Formula,Symbol,[Argument]),

i(Argument,model(D,F),G,Value),

memberList(f(1,Symbol,Values),F),

\+ memberList(Value,Values).

Before discussing this, two remarks. First, note that we have again made use
of memberList/2. Second, we have also used compose/3, a predicate in the
library file comsemPredicates.pl defined as follows:

compose(Term,Symbol,ArgList):-

Term =.. [Symbol|ArgList].



38 CHAPTER 1. FIRST-ORDER LOGIC

That is, compose/3 uses the built in Prolog =.. functor to flatten a term
into a list of which the first member is the functor and the other members
the arguments of the term. This is a useful thing to do, as we can then get
at the term’s internal structure using list-processing techniques; we’ll see a
lot of this in various guises throughout the course of the book. Note that we
use compose/3 here to decompose a formula.

With these preliminaries out of the way, we can turn to the heart of the
matter. It’s the predicate i/4 that does the real work. This predicate is a
Prolog version of the interpretation function Ig

F . Recall that when presented
with a term, Ig

F interprets it using the variable assignment g if it is a variable,
and with the interpretation function F if it is a constant. And this is exactly
what i/4 does:

i(X,model(_,F),G,Value):-

(

var(X),

memberList(g(Y,Value),G),

Y==X, !

;

atom(X),

memberList(f(0,X,Value),F)

).

We can now put the pieces together to see how satisfy/4 handles atomic
formulas built using one-place predicate symbols. In both the positive and
negative clauses we use compose to turn the formula into a list, and then
call i/4 to interpret the term. We then use memberList twice. The first
call looks up the meaning of the one-place predicate. As for the second call,
this is the only place where the positive and negative clauses differ. In the
positive clause we use the call memberList(Value,Values) to check that the
interpretation of the term is one of the possible values for the predicate in
the model (thus making the atomic formula true). In the negative clause we
use the call memberList(Value,Values) to check that the interpretation of
the term is not one of the possible values for the predicate in the model, thus
making the atomic formula false (recall that \+ is Prolog’s inbuilt negation
as failure predicate).

The clauses for two-place predicates work pretty much the same way. Of
course, we make two calls to i/4, one for each of the two argument terms:



1.3. A FIRST-ORDER MODEL CHECKER 39

satisfy(Formula,model(D,F),G,pos):-

compose(Formula,Symbol,[Arg1,Arg2]),

i(Arg1,model(D,F),G,Value1),

i(Arg2,model(D,F),G,Value2),

memberList(f(2,Symbol,Values),F),

memberList((Value1,Value2),Values).

satisfy(Formula,model(D,F),G,neg):-

compose(Formula,Symbol,[Arg1,Arg2]),

i(Arg1,model(D,F),G,Value1),

i(Arg2,model(D,F),G,Value2),

memberList(f(2,Symbol,Values),F),

\+ memberList((Value1,Value2),Values).

It only remains to discuss the clauses for equality. But given our discus-
sion of i/4, the code that follows should be transparent:

satisfy(eq(X,Y),Model,G,pos):-

i(X,Model,G,Value1),

i(Y,Model,G,Value2),

Value1=Value2.

satisfy(eq(X,Y),Model,G,neg):-

i(X,Model,G,Value1),

i(Y,Model,G,Value2),

\+ Value1=Value2.

Well, that’s the heart of (the first version of) our model checker. Before
playing with it, let’s make it a little more user-friendly. For a start, it would
be pretty painful to have to type in an entire model every time we want to
make a query. We find it most convenient to have a separate file containing
a number of example models. In the file exampleModels.pl you will find the
following three examples:

example(1,

model([d1,d2,d3,d4,d5],

[f(0,jules,d1),

f(0,vincent,d2),



40 CHAPTER 1. FIRST-ORDER LOGIC

f(0,pumpkin,d3),

f(0,honey_bunny,d4),

f(0,yolanda,d5),

f(1,customer,[d1,d2]),

f(1,robber,[d3,d4]),

f(2,love,[(d3,d4)])])).

example(2,

model([d1,d2,d3,d4,d5,d6],

[f(0,jules,d1),

f(0,vincent,d2),

f(0,pumpkin,d3),

f(0,honey_bunny,d4),

f(0,yolanda,d4),

f(1,customer,[d1,d2,d5,d6]),

f(1,robber,[d3,d4]),

f(2,love,[])])).

example(3,

model([d1,d2,d3,d4,d5,d6,d7,d8],

[f(0,mia,d1),

f(0,jody,d2),

f(0,jules,d3),

f(0,vincent,d4),

f(1,woman,[d1,d2]),

f(1,man,[d3,d4]),

f(1,joke,[d5,d6]),

f(1,episode,[d7,d8]),

f(2,in,[(d5,d7),(d5,d8)]),

f(2,tell,[(d1,d5),(d2,d6)])])).

Note that the first two of these examples are the models used in the text
to introduce our Prolog representation format for models. The third is new,
and in a different vocabulary.

So, let’s now write a driver predicate which takes a formula, a numbered
example model, a list of assignments to free variables, and checks the formula
in the example model (with respect to the assignment) and prints a result:

evaluate(Formula,Example,Assignment):-



1.3. A FIRST-ORDER MODEL CHECKER 41

example(Example,Model),

(

satisfy(Formula,Model,Assignment,pos), !,

printStatus(pos)

;

printStatus(neg)

).

printStatus(pos):- write(’Satisfied in model. ’).

printStatus(neg):- write(’Not satisfied in model. ’).

For convenience, we have also included a predicate evaluate/2, defined
as follows:

evaluate(Formula,Example):-

evaluate(Formula,Example,[]).

That is, it calls evaluate/3 with an empty assignment list. This saves typing
if we want to evaluate a sentence.

Of course, we should also test our model checker. So we shall create a file
(a test suite) containing entries of the following form:

test(ex(X,robber(X)),1,[],pos).

The first argument of test/4 is the formula to be evaluated, the second is
the example model on which it has to be evaluated (here model 1), the third
is a list of assignments (here empty) to free variables in the formula, and the
fourth records whether the formula is satisfied or not (pos indicates it should
be satisfied).

Giving the command

?- modelCheckerTestSuite.

will force Prolog to evaluate all the examples in the test suite, and print
out the results. The output will be a series of entries of the following form:

Input formula:

1 ex(A, robber(A))

Example Model: 1

Status: Satisfied in model.

Model Checker says: Satisfied in model.



42 CHAPTER 1. FIRST-ORDER LOGIC

The fourth line of output (Status) is the information (recorded in the test
suite) that the formula should be satisfied. The fifth line (Model Checker

says) shows that the model checker got this particular example right.
We won’t discuss the code for evaluate/0. It’s essentially a fail/0

driven iteration through the test suite file, that uses the evaluate/3 predi-
cate defined above to perform the actual model checking. You can find the
code in modelChecker1.pl.

Exercise 1.3.4 Systematically test the model checker on these models. If you
need inspiration, use evaluate to run the test suite and examine the output care-
fully. As you will see, this version of the model checker does not handle all the
examples in the way the test suite demands. Try to work out why not.

Exercise 1.3.5 Try the model checker on example model 1 with the examples

ex(X,and(customer(X)),ex(Y,robber(Y)))

ex(X,and(customer(X),ex(Y,robber(Y))))

ex(X,and(customer(X)),ex(X,robber(X)))

ex(X,and(customer(X),ex(X,robber(X))))

The model checker handles all four example correctly: that is, it says that all four
examples are satisfied in model 1. Fine—but why is it handling them correctly?
In particular, in the last two examples we reuse the variable X, binding different
occurrences to different quantifiers. What is it about the code that lets the model
checker know that the X in customer(X) is intended to play a different role than
the X in robber(X)?

Exercise 1.3.6 Our model checker handles → by rewriting φ → ψ as ¬φ ∨ ψ.
Provide clauses for → (analogous to those given in the text for ∧ and ∨) that
directly mirror what the satisfaction definition tells us about this connective.

Exercise 1.3.7 Our model checker handles ∀ by rewriting ∀xφ as ¬∃x¬φ. Provide
clauses for ∀ (analogous to those given in the text for ∃) that directly mirror what
the satisfaction definition tells us about this quantifier.

Refining the Model Checker

Our first model checker (modelChecker1.pl) is a reasonably well-behaved
tool that is faithful to the main ideas of the first-order satisfaction definition.
And there are some interesting ways of using it. For example, we can use it to



1.3. A FIRST-ORDER MODEL CHECKER 43

Programs for the model checker

modelChecker1.pl

The main file containing the code for the model checker
for first-order logic. Consult this file to run the model
checker—it will load all other files it requires.

comsemPredicates.pl

Definitions of auxiliary predicates.

exampleModels.pl

Contains example models in various vocabularies.

modelCheckerTestSuite.pl

Contains formulas to be evaluated on the example models.

find elements in a model’s domain that satisfy certain descriptions. Consider
the following query:

?- satisfy(robber(X),

model([d1,d2,d3],

[f(0,pumpkin,d1),

f(0,jules,d2),

f(1,customer,[d2]),

f(1,robber,[d1,d3])]),

[g(X,Value)],

pos).

Value = d1 ? ;

Value = d3 ? ;

no

Note the assignment list [g(X,Value)] used in the query: X is given the
value Value, and this is a Prolog variable. So Prolog is forced to search for



44 CHAPTER 1. FIRST-ORDER LOGIC

an instantiation when evaluating the query, and via backtracking finds all
instantiations for Value that satisfy the formula (namely d1 and d3). This
is a useful technique, as we will shall see in Chapter 6 when we use it in a
simple dialogue system.

Nonetheless, although well behaved, this version of the model checker is
not sufficiently robust, nor does it always return the correct answer. However
its weak points are rather subtle, so let’s sit back and think our way through
the following problems carefully.

First Problem Consider the following queries:

?- evaluate(X,1).

?- evaluate(imp(X,Y),4).

Now, as the first query asks the model checker to evaluate a Prolog vari-
able, and the second asks it to evaluate a ‘formula’, one of whose subformulas
is a Prolog variable, you may think that these examples are too silly to worry
about. But let’s face it, these are the type of queries a Prolog programmer
might be tempted to make (perhaps hoping to generate a formula that is
satisfied in model 1). And (like any other) query, they should be handled
gracefully—but they’re not. Instead they send Prolog into an infinite loop
and you will probably get a stack overflow message (if you don’t understand
why this happens, do Exercise 1.3.8 right away). This is unacceptable, and
needs to be fixed.

Second Problem Here’s a closely related problem. Consider the following
queries:

?- evaluate(mia,3).

?- evaluate(forall(mia,vincent),2).

Now, obviously these are not sensible queries: constants are not formulas,
and cannot be checked in models. But we have the right to expect that our
model checker responds correctly to these queries—and it doesn’t. Instead,
our basic model checker returns the message Not satisfied in model to
both queries.



1.3. A FIRST-ORDER MODEL CHECKER 45

Why is this wrong? Because neither expression is the sort of entity that

can enter into a satisfaction relation with a model. Neither is in the ‘satisfied’
relation with any model, nor in the ‘not satisfied’ relation either. They’re
simply not formulas. So the model checker should come back with a different
message that signals this, something like Cannot be evaluated. And of
course, if the model checker is to produce such a message, it needs to be
able to detect when its input is a legitimate formula. The next problem pins
down what is required more precisely.

Third Problem We run into problems if we ask our model checker to
verify formulas built from items that don’t belong to the vocabulary. For
example, suppose we try evaluating the atomic formula

tasty(royale_with_cheese)

in any of the example models. Then our basic model checker will say Not

satisfied in model. This response is incorrect: the satisfaction relation is
not defined between formulas and models of different vocabularies. Rather
our model checker should throw out this formula and say something like
“Hey, I don’t know anything about these symbols!”. So, not only does the
model checker need to be able to verify that its input is a formula (as we
know from the second problem), it also needs to be able to verify that it’s a
formula built over a vocabulary that is appropriate for the model.

Fourth Problem Suppose we make the following query:

?- evaluate(customer(X),1).

Our model checker will answer Not satisfied in model. This is wrong: X
is a free variable, we have not assigned a value to it (recall that evaluate/2
evaluates with respect to the empty list of assignments), and hence the sat-
isfaction relation is not defined. So our model checker should answer Cannot
be evaluated, or something similar.

Well, those are the the main problems, and they can be fixed. In fact,
modelChecker2.pl handles such examples correctly, and produces appropri-
ate messages. We won’t discuss the code of modelChecker2.pl, but we will
ask the reader to do the following exercises. They will enable you better un-
derstand where modelChecker1.pl goes wrong, and how modelChecker2.pl

fixes matters up. Happy hacking!



46 CHAPTER 1. FIRST-ORDER LOGIC

Exercise 1.3.8 Why does our basic model checker get in an infinite loop when
given the following queries:

?- evaluate(X,1).

?- evaluate(imp(X,Y),4).

And what happens and why with examples like ex(X,or(customer(X),Z)) and
ex(X,or(Z,customer(X))). If the answers are not apparent from the code, carry
out traces (in most Prolog shells, the trace mode can be activated by commanding
“?- trace.” and deactivated by “?- notrace.”).

Exercise 1.3.9 What happens if you use the basic model checker to evaluate
constants as formulas, and why? If this is unclear, perform a trace.

Exercise 1.3.10 [hard] Modify the basic model checker so that it classifies the
kind of example examined in the previous two exercises as ill-formed input.

Exercise 1.3.11 Try out the new model checker (modelChecker2.pl) on the for-
mulas customer(X) and not(customer(X)). Why (exactly) has problem 4 van-
ished?

Programs for the refined model checker

modelChecker2.pl

This file contains the code for the revised model checker
for first-order logic. This version rejects ill-formed formu-
las and handles a number of other problems. Consult this
file to run the model checker—it will load all other files it
requires.

comsemPredicates.pl

Definitions of auxiliary predicates.

exampleModels.pl

Contains example models in various vocabularies.

modelCheckerTestSuite.pl

Contains formulas to be evaluated on the example models.



1.4. FIRST-ORDER LOGIC AND NATURAL LANGUAGE 47

1.4 First-Order Logic and Natural Language

By this stage, the reader should have a reasonable grasp of the syntax and
semantics of first-order logic, so it is time to raise a more basic question:
just how good is first-order logic as a tool for exploring natural language
semantics from a computational perspective? We now discuss this. First
we take an inferential perspective, and then we consider first-order logic’s
representational capabilities.

Inferential Capabilities

First-order logic is sometimes called classical logic, and it merits the de-
scription: it is the most widely studied and best understood of all logical
formalisms. Moreover, it is understood from a wide range of perspectives.
For example, the discipline called model theory (which takes as its starting
point the satisfaction definition discussed in this chapter) has mapped the
expressive powers of first-order logic in extraordinary mathematical detail.

Nor have the inferential properties of first-order logic been neglected: the
discipline called proof theory explores this topic. As we mentioned earlier
(and as we shall further discuss in Chapters 4 and 5), the primary task that
faces us when dealing with the consistency and informativeness checking
tasks (which were defined in model-theoretic terms) is to reformulate them
as concrete symbol manipulation tasks. Proof theorists and researchers in
automated reasoning have devised many ways of doing this, and explored
their properties and interrelationships in detail.

Some of the methods they have developed (notably the tableau and res-

olution methods discussed in Chapters 4 and 5) have proved useful compu-
tationally. Although no complete computational solution to the consistency
checking task (or equivalently, the informativeness checking task) exists, res-
olution and tableau based theorem provers for first-order logic have proved
effective in practice, and in recent years there have been dramatic improve-
ments in their performance. So one reason for being interested in first-order
logic is simply this: if you use first-order logic, a wide range of sophisticated
inference tools are at your disposal.

But there are other reasons for being interested in first-order logic. One of
the most important is this: working with first-order logic makes it straight-
forward to incorporate background knowledge (such as world knowledge and
lexical knowledge) into the inference process.



48 CHAPTER 1. FIRST-ORDER LOGIC

Here’s an example. When discussing informativeness we gave the follow-
ing example of an uninformative-but-sometimes-acceptable discourse:

Mia is married. She has a husband.

But why is this uninformative? Recall that by an uninformative formula we
mean a valid formula (that is, one that is satisfied in every model). But

married(mia)→has-husband(mia).

is not valid. Why not? Because we are free to interpret married and has-
husband so that they have no connection with each other, and in some of
these interpretations the formula will be false.

But it is clear that such arbitrary interpretations of married and has-
husband are somehow cheating. After all, as any speaker of English knows,
the meanings of married and has-husband are intimately linked. But can
we capture this linkage, and can first-order logic help?

It can, and here’s how. Speakers of English have the following piece of
lexical knowledge (that is, knowledge of the meanings of words and how they
are inter-related), expressed here as a formula of first-order logic:

∀x(woman(x) ∧ married(x) → has-husband(x)).

If we take this lexical knowledge, and add to it the world knowledge that
Mia is a woman, then we do have a valid inference: the two premises

∀x(woman(x) ∧ married(x) → has-husband(x))

and

woman(mia)

have as a logical consequence that

married(mia)→has-husband(mia).

That is, in any model where the premises are true (and these are the models
of interest, for they are the ones that reflect our lexical and world knowledge)
then the conclusion is true also. In short, the uninformativeness of our little
discourse actually rests on an inference that draws on both lexical knowledge
and world knowledge. Modeling the discourse in first-order logic makes this
inferential interplay explicit.



1.4. FIRST-ORDER LOGIC AND NATURAL LANGUAGE 49

There are other logics besides first-order logic which are interesting from
an inferential perspective, such as the family of logics variously known as
modal, hybrid, and description logics. If you work with the simplest form of
such logics (that is, the propositional versions of such logics) the consistency
and informativeness checking tasks typically can be fully computed. More-
over, the description logic community has produced an impressive range of
efficient computational tools for dealing with these (and other) inferential
tasks. And such logics have been successfully used to tackle problems in
computational semantics.

But there is a price to pay. The interesting thing about first-order logic is
not merely that it is well behaved inferentially, but that (as we shall shortly
see) it offers expressive capabilities capable of handling a significant portion
of natural language semantics. Propositional modal, hybrid and description
logics don’t have the expressivity for such detailed semantic analysis. They
are likely to play an increasingly important role in computational semantics,
but they are probably best suited for giving efficient solutions to relatively
specialized tasks. It is possible that stronger versions of such logics (in par-
ticular, logics which combine the resources of modal, hybrid, or description
logic with those of first-order logic) may turn out to be a good general setting
for semantic analysis, but at present few computational tools for performing
inference in such systems are available.

Summing up, if you are interested in exploring the role of inference in nat-
ural language semantics, then first-order logic is probably the most interest-
ing starting point. Moreover, the key first-order inferential techniques (such
as tableau and resolution) are not parochial. Although initially developed
for first-order logic, they have been successfully transferred to other logical
systems (such as the modal/hybrid/description logic family). So studying
first-order inference techniques is a useful first step towards understanding
inference in other potentially useful logics.

But what is first-order logic like from a representational perspective? This
is the question to which we now turn.

Representational Capabilities

Assessing the representational capabilities of first-order logic for natural lan-
guage semantics is not straightforward: it would be easy to write a whole
chapter (indeed, a whole book) on the topic. But, roughly speaking, our
views are as follows. First-order logic does have shortcomings as a natural



50 CHAPTER 1. FIRST-ORDER LOGIC

language representational formalism, and we shall draw attention to an im-
portant example. Nonetheless, first-order logic is capable of doing a lot of
work for us. It’s not called classical logic for nothing: it is an extremely
flexible tool.

It is quite common to come across complaints about first-order logic of the
following kind: first-order logic is inadequate for natural language semantics
because it cannot handle times (or intervals, or events, or modal phenomena,
or epistemic states, or . . . ). Take such complaints with a (large) grain of salt.
They are often wrong, and it is important to understand why.

The key lies in the notion of the model. We have encouraged the reader
to think of models as mathematical idealizations of situations, but while this
is a useful intuition pump, it is less than the whole truth. The full story
is far simpler: models can provide abstract pictures of just about anything.
Let’s look at a small example—a model which represents the way someone’s
emotional state evolves over three days. Let D = {d1, d2, d3, d4}) and let F
be as follows:

F (mia) = d1

F (monday) = d2

F (tuesday) = d3

F (wednesday) = d4

F (person) = {d1}
F (day) = {d2, d3, d4}
F (precede) = {(d2, d3), (d3, d4), (d2, d4)}
F (happy) = {(d1, d2), (d1, d3)}

That is, there are four entities in this model: one of them (d1) is a per-
son called Mia, and three of them (d2, d3, and d4) are the days of the week
Monday, Tuesday and Wednesday. The model also tells us that (as we would
expect) Monday precedes Tuesday, Tuesday precedes Wednesday, and Mon-
day precedes Wednesday. Finally, it tells us that Mia was happy on both
Monday and Wednesday (presumably something unpleasant happened on
Tuesday). In short, the last clause of F spells out how Mia’s emotional state
evolves over time.

Though simple, this example illustrates something crucial: models can
provide pictures of virtually anything we find interesting. Do you feel that the
analysis of tense and aspect in natural language requires time to be thought
of as a collection of intervals, linked by such relations as overlap, inclusion,



1.4. FIRST-ORDER LOGIC AND NATURAL LANGUAGE 51

and precedence? Very well then—work with models containing intervals
related in these ways. Moreover, you are then free (if you so desire) to talk
about these models using a first-order language of appropriate signature. Or
perhaps you feel that temporal semantics requires the use of events? Very
well then—work with models containing interrelated events. And once again,
you can (if you wish) talk about these models using a first-order language of
appropriate signature. Or perhaps you feel that the ‘possible world semantics’
introduced by philosophical logicians to analyze such concepts as necessity
and belief is a promising way to handle these aspects of natural language.
Very well then—work with models containing possible worlds linked in the
ways you find useful. And while you could talk about such models with some
sort of modal language, you are also free to talk about these models using
a first-order language of appropriate signature. Models and their associated
first-order languages are a playground, not a jail. They provide a space
where we are free to experiment with our ideas and ontological assumptions
as we attempt to come to grips with natural language semantics. The major
limitations are those imposed by our imagination.

Clever use of models sometimes enables first-order logic to provide use-
ful approximate solutions to expressivity demands that, strictly speaking,
it cannot handle. A classic example is second-order (and more generally,
higher-order) quantification. First-order logic is called ‘first-order’ because it
only permits us to quantify over first-order entities ; that is, elements of the
domain. It does not let us quantify over second-order entities such as sets of
domain elements (properties), or sets of pairs of domain elements (two-place
relations), sets of triples of domain elements (three-place relations), and so
on. Second-order logic allows us to do all this. For example, in second-order
logic we can express such sentences as Butch has every property that a good

boxer has by means of the following expression:

∀P∀x((good-boxer(x) → P(x)) → P(butch)).

Here P is a second order variable ranging over properties (that is, subsets of
the domain) while x is an ordinary first-order variable. Hence this formula
says: ‘for any property P and any individual x, if x is a good boxer implies
that x has property P, then Butch has property P too’.

So, it seems we’ve finally found an unambiguous example of something
that first order logic cannot do? Surprisingly, no. There is a way in which
first-order logic can come to grips with second-order entities—and once again,
it’s models that come to the rescue. Quite simply, if we want to quantify



52 CHAPTER 1. FIRST-ORDER LOGIC

over properties, why not introduce models containing domain elements that
play the role of properties. That is, why not introduce first-order entities
whose job it is to mimic second-order entities? After all, we’ve just seen that
domain elements can be thought of as times (and intervals, events, possible
worlds, and so on); maybe we can view them as properties (and two-place
relations, and three-place relations, . . . ) as well?

In fact, it has been known since the 1950s that this can be done in an
elegant way: it is possible to give a first-order interpretation of second-order
logic. Moreover, in some respects this first-order treatment of second-order
logic is better behaved that the ‘standard’ interpretation (in which properties
are domain subsets, one-place relations are sets of pairs of domain subsets,
and so on). In particular, both model-theoretically and proof-theoretically,
the first-order perspective on second-order quantification leads to a simpler
and better behaved logic than the ‘standard’ perspective does. Now, it may
be that the first-order analysis of second-order quantification isn’t as strong
as it should be (on the other hand, it could also be argued that the ‘standard’
analysis of second-order quantification is too strong). But the fact remains
that the first-order perspective allows us to get to grips with interesting
aspects of second-order logic. It may be an approximation, but it is a good
one. (For further information on this topic, consult the references cited in
the Notes at the end of the chapter.)

It’s not hard to give further examples of how clever use of models enables
us to handle expressivity demands which at first glance seem to lie beyond
the grasp of first-order logic. For example, first-order logic offers an elegant
handle on partiality ; that is, sentences which are neither true nor false but
rather undefined in some situation (see the Notes at the end of the chapter
for further information). But instead of multiplying examples of first-order
logic can do, let’s look at something it can’t.

Natural languages are rich in quantifiers: as well as being able to say
things like Some robbers and Every robber, we can also say things like Two

robbers, Three robbers, Most robbers, Many robbers and Few robbers. Some of
these quantifiers (notably counting quantifiers such as Two and Three) can
be handled by first-order logic; others, however, provably can’t. For example,
if we take Most to mean ‘more than half the entities in the model’, which
seems a reasonable interpretation, then even if we restrict our attention to
finite models, it is impossible to express this idea in first-order logic (see
the Notes for references). Thus a full analysis of natural language semantics
will require to work with richer logics capable of handling such generalized



1.4. FIRST-ORDER LOGIC AND NATURAL LANGUAGE 53

quantifiers. But while a lot is known about the theory of such quantifiers
(see the Notes) as yet few computational tools are available, so we won’t
consider generalized quantifiers further in this book.

First-order isn’t capable of expressing everything of interest to natural
language semantics: generalized quantifiers are an important counterexam-
ple. Nonetheless a surprisingly wide range of other important phenomena
can be given a first-order treatment. All in all, it’s an excellent starting
point for computational semantics.


