Lecture 5: Arithmetic

- Theory
- Introduce Prolog`s built-in abilities for performing arithmetic
- Apply these to simple list processing problems, using accumulators
- Look at tail-recursive predicates and explain why they are more efficient than predicates that are not tail-recursive
- Exercises
- Exercises of LPN: 5.1, 5.2, 5.3
- Practical work

Arithmetic in Prolog

- Prolog provides a number of basic arithmetic tools
- Integer and real numbers

Arithmetic

$$
\begin{aligned}
& 2+3=5 \\
& 3 \times 4=12 \\
& 5-3=2 \\
& 3-5=-2 \\
& 4: 2=2 \\
& 1 \text { is the remainder when } 7 \text { is } \\
& \quad \text { divided by } 2
\end{aligned}
$$

Prolog

?- 5 is $2+3$.
?- 12 is $3 * 4$.
?- 2 is $5-3$.
?- -2 is $3-5$.
?- 2 is $4 / 2$.
?- 1 is $\bmod (7,2)$.

Example queries

$?-10$ is $5+5$.
yes
$?-4$ is $2+3$.
no
$?-X$ is $3^{*} 4$.
$X=12$
yes
$?-R$ is $\bmod (7,2)$.
$R=1$
yes

Defining predicates with arithmetic

addThreeAndDouble(X, Y):-
Y is $(X+3) * 2$.

Defining predicates with arithmetic

addThreeAndDouble(X, Y):-
Y is $(X+3) * 2$.
?- addThreeAndDouble(1,X).
X=8
yes
?- addThreeAndDouble(2,X).
$X=10$
yes

A closer look

- It is important to know that,,$+- /$ and * do not carry out any arithmetic
- Expressions such as 3+2, 4-7, 5/5 are ordinary Prolog terms
- Functor: +, -, l, *
- Arity: 2
- Arguments: integers

A closer look

?- $X=3+2$.

A closer look

?- $X=3+2$.
$X=3+2$
yes
?-

A closer look

$$
\begin{aligned}
& ?-X=3+2 . \\
& X=3+2 \\
& \text { yes } \\
& ?-3+2=x .
\end{aligned}
$$

A closer look

$$
\begin{aligned}
& ?-X=3+2 . \\
& X=3+2 \\
& \text { yes } \\
& ?-3+2=X . \\
& X=3+2 \\
& \text { yes } \\
& ?-
\end{aligned}
$$

The is/2 predicate

- To force Prolog to actually evaluate arithmetic expressions, we have to use
is
just as we did in the other examples
- This is an instruction for Prolog to carry out calculations
- Because this is not an ordinary Prolog predicate, there are some restrictions

The is/2 predicate

?- X is $3+2$.

The is/2 predicate

?- X is $3+2$.
$X=5$
yes
?-

The is/2 predicate

$$
\begin{aligned}
& ?-X \text { is } 3+2 . \\
& X=5 \\
& \text { yes } \\
& ?-3+2 \text { is } X .
\end{aligned}
$$

The is/2 predicate

$$
\begin{aligned}
& ?-\mathrm{X} \text { is } 3+2 . \\
& \mathrm{X}=5 \\
& \text { yes } \\
& ?-3+2 \text { is } \mathrm{X} \text {. } \\
& \text { ERROR: is/2: Arguments are not sufficiently instantiated } \\
& \text { ?- }
\end{aligned}
$$

The is/2 predicate

$$
\begin{aligned}
& ?-\mathrm{X} \text { is } 3+2 \text {. } \\
& \mathrm{X}=5 \\
& \text { yes } \\
& \text { ?- } 3+2 \text { is } \mathrm{X} \text {. } \\
& \text { ERROR: is/2: Arguments are not sufficiently instantiated } \\
& \text { ?- Result is } 2+2+2+2+2 \text {. }
\end{aligned}
$$

The is/2 predicate

$?-\mathrm{X}$ is $3+2$.
$\mathrm{X}=5$
yes
$?-3+2$ is X.
ERROR: is/2: Arguments are not sufficiently instantiated
?- Result is $2+2+2+2+2$.
Result = 10
yes
?-

Restrictions on use of is/2

- We are free to use variables on the right hand side of the is predicate
- But when Prolog actually carries out the evaluation, the variables must be instantiated with a variable-free Prolog term
- This Prolog term must be an arithmetic expression

Notation

- Two final remarks on arithmetic expressions
$-3+2,4 / 2,4-5$ are just ordinary Prolog terms in a user-friendly notation: $3+2$ is really $\mathbf{+}(3,2)$ and so on.
- Also the is predicate is a two-place Prolog predicate

Notation

- Two final remarks on arithmetic expressions
$-3+2,4 / 2,4-5$ are just ordinary Prolog terms in a user-friendly notation: $3+2$ is really $\mathbf{+}(3,2)$ and so on.
- Also the is predicate is a two-place Prolog predicate

$$
\begin{aligned}
& ?-\text { is }(X,+(3,2)) . \\
& X=5 \\
& \text { yes }
\end{aligned}
$$

Arithmetic and Lists

- How long is a list?
- The empty list has length: zero;
- A non-empty list has length: one plus length of its tail.

Length of a list in Prolog

Ien([],0).
len([L|L],N):-
$\operatorname{len}(\mathrm{L}, \mathrm{X})$,
N is $X+1$.
?-

Length of a list in Prolog

Ien([],0).
len([L|L],N):-
$\operatorname{len}(\mathrm{L}, \mathrm{X})$,
N is $X+1$.
?- $\operatorname{len}([a, b, c, d, e,[a, x], t], X)$.

Length of a list in Prolog

Ien([],0).
len([L|L],N):-
$\operatorname{len}(\mathrm{L}, \mathrm{X})$,
N is $X+1$.
?- len([a,b,c,d,e,[a,x],t],X).
X=7
yes
?-

Accumulators

- This is quite a good program - Easy to understand - Relatively efficient
- But there is another method of finding the length of a list
- Introduce the idea of accumulators
- Accumulators are variables that hold intermediate results

Defining acclen/3

- The predicate acclen/3 has three arguments
- The list whose length we want to find
- The length of the list, an integer
- An accumulator, keeping track of the intermediate values for the length

Defining acclen/3

- The accumulator of acclen/3
- Initial value of the accumulator is 0
- Add 1 to accumulator each time we can recursively take the head of a list
- When we reach the empty list, the accumulator contains the length of the list

Length of a list in Prolog

acclen([],Acc,Length):Length = Acc.
acclen([L|L],OldAcc,Length):-
NewAcc is OldAcc + 1, acclen(L,NewAcc,Length).

Length of a list in Prolog

acclen([],Acc,Length):Length = Acc.
add 1 to the accumulator each time we take off a head
from the list
acclen([|L],OldAcc,Length):-
NewAcc is OldAcc + 1, acclen(L,NewAcc,Length).

Length of a list in Prolog

acclen([],Acc,Length):-
Length = Acc.
When we reach the empty list, the accumulator contains the length of the list
acclen([L|L],OldAcc,Length):-
NewAcc is OldAcc + 1, acclen(L,NewAcc,Length).

Length of a list in Prolog

acclen([],Acc,Acc).

acclen([|LL],OldAcc,Length):-
NewAcc is OldAcc + 1, acclen(L,NewAcc,Length).
?-

Length of a list in Prolog

acclen([],Acc,Acc).

acclen([|L],OldAcc,Length):-
NewAcc is OldAcc + 1, acclen(L,NewAcc,Length).

```
?-acclen([a,b,c],0,Len).
Len=3
yes
```

?-

Search tree for acclen/3

?- acclen([a,b,c],0,Len).
acclen([],Acc,Acc).
acclen([L|L],OldAcc,Length):NewAcc is OldAcc + 1, acclen(L,NewAcc,Length).

Search tree for acclen/3

?- acclen([a,b,c],0,Len). l 1
acclen([],Acc,Acc).
acclen([_LL],OldAcc,Length):-
NewAcc is OldAcc + 1, acclen(L,NewAcc,Length).

Search tree for acclen/3

?- acclen([a,b,c],0,Len).
acclen([],Acc,Acc).
acclen([_|L],OldAcc,Length):NewAcc is OldAcc + 1, acclen(L,NewAcc,Length).

Search tree for acclen/3

?- acclen([a,b,c],0,Len).

no
acclen([],Acc,Acc).
acclen([|L],OldAcc,Length):NewAcc is OldAcc + 1 , acclen(L,NewAcc,Length).

Search tree for acclen/3

?- acclen([a,b,c],0,Len).

no

acclen([],Acc,Acc).

acclen([|L],OldAcc,Length):NewAcc is OldAcc + 1, acclen(L,NewAcc,Length).

Search tree for acclen/3

?- acclen([a,b,c],0,Len).

।
?- acclen([b,c], 1,Len). / ।
no
acclen([],Acc,Acc).
acclen([|L],OldAcc,Length):NewAcc is OldAcc + 1, acclen(L,NewAcc,Length).
?- acclen([c],2,Len).
।
?- acclen([],3,Len).
I
Len=3

Adding a wrapper predicate

acclen([],Acc,Acc).
acclen([_|L],OldAcc,Length):-
NewAcc is OldAcc + 1, acclen(L,NewAcc,Length).
length(List,Length):acclen(List,0,Length).
?-length([a,b,c], X).
$X=3$
yes

Tail recursion

- Why is acclen/3 better than len/2 ?
- acclen/3 is tail-recursive, and len/2 is not
- Difference:
- In tail recursive predicates the results is fully calculated once we reach the base clause
- In recursive predicates that are not tail recursive, there are still goals on the stack when we reach the base clause

Comparison

Not tail-recursive
len([],0).
len([|L],NewLength):len(L,Length), NewLength is Length +1 .

Tai7-recursive

$$
\begin{aligned}
& \text { acclen([],Acc,Acc). } \\
& \text { acclen([LLL],OldAcc,Length):- } \\
& \text { NewAcc is OldAcc }+1 \text {, } \\
& \text { acclen(L,NewAcc,Length). }
\end{aligned}
$$

Search tree for len/2

?- Ien([a,b,c], Len). len([],0). len([_|L],NewLength):len(L,Length),
NewLength is Length +1 .

Search tree for len/2

$$
\begin{array}{cc}
?-\operatorname{len}([a, b, c], \text { Len }) . \\
\text { / } & \text { I } \\
\text { no } & ?-\operatorname{len}([b, c], \text { Len1) } \\
& \text { Len is Len1 + } 1 .
\end{array}
$$

len([],0).

len([_|L],NewLength):-
len(L,Length),
NewLength is Length +1 .

Search tree for len/2

```
```

?- len([a,b,c], Len).

```
```

?- len([a,b,c], Len).
/ \
/ \
no ?- len([b,c],Len1),
no ?- len([b,c],Len1),
Len is Len1 + 1.
Len is Len1 + 1.
| \
| \
no
no
?- len([c], Len2),
?- len([c], Len2),
Len1 is Len2+1,
Len1 is Len2+1,
Len is Len1+1.

```
```

 Len is Len1+1.
    ```
```

len([],0). len([_|L],NewLength):len(L,Length),
NewLength is Length +1 .

Search tree for len/2

?- Ien([a,b,c], Len).

no ?- len([b,c],Len1),
Len is Len $1+1$.
/
no
?- len([c], Len2),
Len1 is Len2+1,
Len is Len $1+1$.
no ?- len([], Len3),
Len2 is Len3+1,
Len1 is Len2+1,
Len is Len $1+1$.

len([],0).

 len([_|L],NewLength):len(L,Length), NewLength is Length +1 .
Search tree for len/2

```
?- len([a,b,c], Len).
    no ?- len([b,c],Len1),
        Len is Len1 + 1
        / ।
                            ?- len([c], Len2),
                        Len1 is Len2+1,
                Len is Len1+1.
            /
            no
                            ?- Ien([], Len3),
                                    Len2 is Len3+1,
                                    Len1 is Len \(2+1\),
                                    Len is Len \(1+1\).
                            Len3=0, Len2=1,
                                no
                                Len1=2, Len=3
```


Search tree for acclen/3

?- acclen([a,b,c],0,Len).

।
?- acclen([b,c], 1,Len). / ।
no
acclen([],Acc,Acc).
acclen([|L],OldAcc,Length):NewAcc is OldAcc + 1, acclen(L,NewAcc,Length).
?- acclen([c],2,Len).
।
?- acclen([],3,Len).
I
Len=3

Exercises

- Exercise 5.1
- Exercise 5.2
- Exercise 5.3

Comparing Integers

- Some Prolog arithmetic predicates actually do carry out arithmetic by themselves
- These are the operators that compare integers

Comparing Integers

Arithmetic

$$
\begin{aligned}
& x<y \\
& x \leq y \\
& x=y \\
& x \neq y \\
& x \geq y \\
& x>y
\end{aligned}
$$

$$
\begin{aligned}
& X<Y \\
& X=<Y \\
& X=:=Y \\
& X==Y \\
& X>=Y \\
& X>Y
\end{aligned}
$$

Comparison Operators

- Have the obvious meaning
- Force both left and right hand argument to be evaluated

$$
\begin{aligned}
& ?-2<4+1 \\
& \text { yes } \\
& ?-4+3>5+5 . \\
& \text { no }
\end{aligned}
$$

Comparison Operators

- Have the obvious meaning
- Force both left and right hand argument to be evaluated

$$
\begin{aligned}
& ?-4=4 \\
& \text { yes } \\
& ?-2+2=4 \\
& \text { no } \\
& ?-2+2=:=4 . \\
& \text { yes }
\end{aligned}
$$

Comparing numbers

- We are going to define a predicate that takes two arguments, and is true when:
- The first argument is a list of integers
- The second argument is the highest integer in the list
- Basic idea
- We will use an accumulator
- The accumulator keeps track of the highest value encountered so far
- If we find a higher value, the accumulator will be updated

Definition of accMax/3

```
accMax([H|T],A,Max):-
    H > A,
    accMax(T,H,Max).
accMax([H|T],A,Max):-
    H=<A,
    accMax(T,A,Max).
accMax([],A,A).
```

?- accMax([1,0,5,4],0,Max).
Max=5
yes

Adding a wrapper max/2

accMax([H|T],A,Max):-
$\mathrm{H}>\mathrm{A}$,
accMax(T,H,Max).
accMax([H|T],A,Max):-
$\mathrm{H}=<\mathrm{A}$,
accMax(T,A,Max).
$\operatorname{acc} \operatorname{Max}([], \mathrm{A}, \mathrm{A})$.
$\max ([\mathrm{H} \mid \mathrm{T}], \mathrm{Max}):-$
$\operatorname{accMax}(\mathrm{T}, \mathrm{H}, \mathrm{Max})$.

?- $\max ([1,0,5,4]$, Max).
Max=5
yes
?- $\max ([-3,-1,-5,-4]$, Max).
$\operatorname{Max}=-1$
yes
?-

Summary of this lecture

- In this lecture we showed how Prolog does arithmetic
- We demonstrated the difference between tail-recursive predicates and predicates that are not tail-recursive
- We introduced the programming technique of using accumulators
- We also introduced the idea of using wrapper predicates

Next lecture

- Yes, more lists!
- Defining the append/3, a predicate that concatenates two lists
- Discuss the idea of reversing a list, first naively using append/3, then with a more efficient way using accumulators

