
Lecture 6: More Lists

•  Theory
–  Define append/3, a predicate for concatenating

two lists, and illustrate what can be done with it
–  Discuss two ways of reversing a list

•  A naïve way using append/3
•  A more efficient method using accumulators

Lecture 6: More Lists

•  Exercises
–  Exercises of LPN: 6.1, 6.2, 6.3, 6.4, 6.5, 6.6
–  Practical work

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Append

•  We will define an important predicate
append/3 whose arguments are all lists

•  Declaratively, append(L1,L2,L3) is true
if list L3 is the result of concatenating
the lists L1 and L2 together
?- append([a,b,c,d],[3,4,5],[a,b,c,d,3,4,5]).
yes

?- append([a,b,c],[3,4,5],[a,b,c,d,3,4,5]).
no

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Append, viewed procedurally

•  From a procedural perspective, the
most obvious use of append/3 is to
concatenate two lists together

•  We can do this simply by using a
variable as third argument
?- append([a,b,c,d],[1,2,3,4,5], X).
X=[a,b,c,d,1,2,3,4,5]
yes

?-

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Definition of append/3

•  Recursive definition
–  Base clause: appending the empty list to any list

produces that same list
–  The recursive step says that when concatenating

a non-empty list [H|T] with a list L, the result is a
list with head H and the result of concatenating
T and L

append([], L, L).
append([H|L1], L2, [H|L3]):-
 append(L1, L2, L3).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

How append/3 works

•  Two ways to find out:
– Use trace/0 on some examples
– Draw a search tree!

Let’s consider a simple example

?- append([a,b,c],[1,2,3], R).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Search tree example

?- append([a,b,c],[1,2,3], R).

append([], L, L).
append([H|L1], L2, [H|L3]):-
 append(L1, L2, L3).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Search tree example

?- append([a,b,c],[1,2,3], R).
 / \

append([], L, L).
append([H|L1], L2, [H|L3]):-
 append(L1, L2, L3).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Search tree example

?- append([a,b,c],[1,2,3], R).
 / \
† R = [a|R0]

 ?- append([b,c],[1,2,3],R0)

append([], L, L).
append([H|L1], L2, [H|L3]):-
 append(L1, L2, L3).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Search tree example

?- append([a,b,c],[1,2,3], R).
 / \
† R = [a|R0]

 ?- append([b,c],[1,2,3],R0)
 / \

append([], L, L).
append([H|L1], L2, [H|L3]):-
 append(L1, L2, L3).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Search tree example

?- append([a,b,c],[1,2,3], R).
 / \
† R = [a|R0]

 ?- append([b,c],[1,2,3],R0)
 / \

 † R0=[b|R1]
 ?- append([c],[1,2,3],R1)

append([], L, L).
append([H|L1], L2, [H|L3]):-
 append(L1, L2, L3).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Search tree example

?- append([a,b,c],[1,2,3], R).
 / \
† R = [a|R0]

 ?- append([b,c],[1,2,3],R0)
 / \

 † R0=[b|R1]
 ?- append([c],[1,2,3],R1)

 / \

append([], L, L).
append([H|L1], L2, [H|L3]):-
 append(L1, L2, L3).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Search tree example

?- append([a,b,c],[1,2,3], R).
 / \
† R = [a|R0]

 ?- append([b,c],[1,2,3],R0)
 / \

 † R0=[b|R1]
 ?- append([c],[1,2,3],R1)

 / \
 † R1=[c|R2]

 ?- append([],[1,2,3],R2)

append([], L, L).
append([H|L1], L2, [H|L3]):-
 append(L1, L2, L3).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Search tree example

?- append([a,b,c],[1,2,3], R).
 / \
† R = [a|R0]

 ?- append([b,c],[1,2,3],R0)
 / \

 † R0=[b|R1]
 ?- append([c],[1,2,3],R1)

 / \
 † R1=[c|R2]

 ?- append([],[1,2,3],R2)
 / \

append([], L, L).
append([H|L1], L2, [H|L3]):-
 append(L1, L2, L3).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Search tree example

?- append([a,b,c],[1,2,3], R).
 / \
† R = [a|R0]

 ?- append([b,c],[1,2,3],R0)
 / \

 † R0=[b|R1]
 ?- append([c],[1,2,3],R1)

 / \
 † R1=[c|R2]

 ?- append([],[1,2,3],R2)
 / \
 R2=[1,2,3] †

append([], L, L).
append([H|L1], L2, [H|L3]):-
 append(L1, L2, L3).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Search tree example

?- append([a,b,c],[1,2,3], R).
 / \
† R = [a|R0]

 ?- append([b,c],[1,2,3],R0)
 / \

 † R0=[b|R1]
 ?- append([c],[1,2,3],R1)

 / \
 † R1=[c|R2]

 ?- append([],[1,2,3],R2)
 / \
 R2=[1,2,3] †

R2=[1,2,3]
R1=[c|R2]=[c,1,2,3]
R0=[b|R1]=[b,c,1,2,3]
 R=[a|R0]=[a,b,c,1,2,3]

append([], L, L).
append([H|L1], L2, [H|L3]):-
 append(L1, L2, L3).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Using append/3

•  Now that we understand how append/3
works, let's look at some applications

•  Splitting up a list:
?- append(X,Y, [a,b,c,d]).

X=[] Y=[a,b,c,d];
X=[a] Y=[b,c,d];
X=[a,b] Y=[c,d];
X=[a,b,c] Y=[d];
X=[a,b,c,d] Y=[];
no

Prefix and suffix

•  We can also use append/3 to define
other useful predicates

•  A nice example is finding prefixes and
suffixes of a list

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Definition of prefix/2

•  A list P is a prefix of some list L when
there is some list such that L is the
result of concatenating P with that list.

•  We use the anonymous variable
because we don't care what that list is.

prefix(P,L):-
 append(P,_,L).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Use of prefix/2

prefix(P,L):-
 append(P,_,L).

?- prefix(X, [a,b,c,d]).
X=[];
X=[a];
X=[a,b];
X=[a,b,c];
X=[a,b,c,d];
no

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Definition of suffix/2

•  A list S is a suffix of some list L when
there is some list such that L is the
result of concatenating that list with S.

•  Once again, we use the anonymous
variable because we couldn’t care less
what that list is.

suffix(S,L):-
 append(_,S,L).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Use of suffix/2

suffix(S,L):-
 append(_,S,L).

?- suffix(X, [a,b,c,d]).
X=[a,b,c,d];
X=[b,c,d];
X=[c,d];
X=[d];
X=[];
no

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Definition of sublist/2

•  Now it is very easy to write a predicate
that finds sub-lists of lists

•  The sub-lists of a list L are simply the
prefixes of suffixes of L

sublist(Sub,List):-
 suffix(Suffix,List),
 prefix(Sub,Suffix).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

append/3 and efficiency

•  The append/3 predicate is useful, and
it is important to know how to use it

•  It is of equal importance to know that
append/3 can be source of inefficiency

•  Why?
– Concatenating a list is not done in one

simple action
– But by traversing down one of the lists

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Question

•  Using append/3 we would like to
concatenate two lists:
–  List 1: [a,b,c,d,e,f,g,h,i]
–  List 2: [j,k,l]

•  The result should be a list with all the
elements of list 1 and 2, the order of the
elements is not important

•  Which of the following goals is the most
efficient way to concatenate the lists?
?- append([a,b,c,d,e,f,g,h,i],[j,k,l],R).
?- append([j,k,l],[a,b,c,d,e,f,g,h,i],R).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Answer

•  Look at the way append/3 is defined
•  It recurses on the first argument, not really

touching the second argument
•  That means it is best to call it with the

shortest list as first argument
•  Of course you don’t always know what the

shortest list is, and you can only do this when
you don’t care about the order of the
elements in the concatenated list

•  But if you do, it can help make your Prolog
code more efficient

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Reversing a List

•  We will illustrate the problem with
append/3 by using it to reverse the
elements of a list

•  That is, we will define a predicate
that changes a list [a,b,c,d,e] into
a list [e,d,c,b,a]

•  This would be a useful tool to have, as
Prolog only gives easy access to the
front of the list

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Naïve reverse

Recursive definition
1.  If we reverse the empty list, we obtain the

empty list
2.  If we reverse the list [H|T], we end up with the

list obtained by reversing T and concatenating
it with [H]

To see that this definition is correct, consider
the list [a,b,c,d].

–  If we reverse the tail of this list we get [d,c,b].
–  Concatenating this with [a] yields [d,c,b,a]

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Naïve reverse in Prolog

•  This definition is correct, but it does
an awful lot of work

•  It spends a lot of time carrying out
appends

•  But there is a better way…

naiveReverse([],[]).
naiveReverse([H|T],R):-
 naiveReverse(T,RT),
 append(RT,[H],R).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Reverse using an accumulator

•  The better way is using an accumulator
•  The accumulator will be a list, and

when we start reversing it will be empty
•  We simply take the head of the list that

we want to reverse and add it to the
head of the accumulator list

•  We continue this until we reach the
empty list

•  At this point the accumulator will
contain the reversed list!

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Reverse using an accumulator

•  The better way is using an accumulator
•  The accumulator will be a list, and

when we start reversing it will be empty
•  We simply take the head of the list that

we want to reverse and add it to the
head of the accumulator list

•  We continue this until we reach the
empty list

•  At this point the accumulator will
contain the reversed list!

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Reverse using an accumulator

•  The better way is using an accumulator
•  The accumulator will be a list, and

when we start reversing it will be empty
•  We simply take the head of the list that

we want to reverse and add it to the
head of the accumulator list

•  We continue this until we reach the
empty list

•  At this point the accumulator will
contain the reversed list!

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Reverse using an accumulator

•  The better way is using an accumulator
•  The accumulator will be a list, and

when we start reversing it will be empty
•  We simply take the head of the list that

we want to reverse and add it to the
head of the accumulator list

•  We continue this until we reach the
empty list

•  At this point the accumulator will
contain the reversed list!

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Reverse using an accumulator

•  The better way is using an accumulator
•  The accumulator will be a list, and

when we start reversing it will be empty
•  We simply take the head of the list that

we want to reverse and add it to the
head of the accumulator list

•  We continue this until we reach the
empty list

•  At this point the accumulator will
contain the reversed list!

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Reverse using an accumulator

accReverse([],L,L).
accReverse([H|T],Acc,Rev):-
 accReverse(T,[H|Acc],Rev).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Adding a wrapper predicate

accReverse([],L,L).
accReverse([H|T],Acc,Rev):-
 accReverse(T,[H|Acc],Rev).

reverse(L1,L2):-
 accReverse(L1,[],L2).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Illustration of the accumulator

•  List: [a,b,c,d] Accumulator: []

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Illustration of the accumulator

•  List: [a,b,c,d]
•  List: [b,c,d]

Accumulator: []
Accumulator: [a]

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Illustration of the accumulator

•  List: [a,b,c,d]
•  List: [b,c,d]
•  List: [c,d]

Accumulator: []
Accumulator: [a]
Accumulator: [b,a]

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Illustration of the accumulator

•  List: [a,b,c,d]
•  List: [b,c,d]
•  List: [c,d]
•  List: [d]

Accumulator: []
Accumulator: [a]
Accumulator: [b,a]
Accumulator: [c,b,a]

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Illustration of the accumulator

•  List: [a,b,c,d]
•  List: [b,c,d]
•  List: [c,d]
•  List: [d]
•  List: []

Accumulator: []
Accumulator: [a]
Accumulator: [b,a]
Accumulator: [c,b,a]
Accumulator: [d,c,b,a]

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Summary of this lecture

•  The append/3 is a useful predicate,
don't be scared of using it

•  However, it can be a source of
inefficiency

•  The use of accumulators is often better
•  We will encounter a very efficient way

of concatenating list in later lectures,
where we will explore the use of
"difference lists"

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Next lecture

•  Definite Clause Grammars
–  Introduce context free grammars and

some related concepts
–  Introduce DCGs, definite clause

grammars, a built-in Prolog mechanism for
working with context free grammars

