
Question Answering with QED and Wee at TREC-2004

Kisuh Ahn, Johan Bos, Stephen Clark, James R. Curran∗

Tiphaine Dalmas, Jochen L. Leidner, Matthew B. Smillie, Bonnie Webber

School of Informatics, University of Edinburgh
∗School of Information Technologies, University of Sydney

trec-qa@inf.ed.ac.uk

Abstract

This report describes the experiments of the
University of Edinburgh and the University of
Sydney at the TREC-2004 question answering
evaluation exercise. Our system combines two
approaches: one with deep linguistic analysis
using IR on the AQUAINT corpus applied to
answer extraction from text passages, and one
with a shallow linguistic analysis and shallow
inference applied to a large set of snippets re-
trieved from the web. The results of our exper-
iments support the following claims: (1) Web-
based IR is a good alternative to “traditional”
IR; and (2) deep linguistic analysis improves
quality of exact answers.

1 Introduction

In this report we describe the TREC-2004 entry of the
Universities of Edinburgh and Sydney for the question-
answering evaluation exercise. This year we experi-
mented with two complementary QA streams: ourQED
system developed in previous years (Leidner et al., 2004),
using traditional IR and deep linguistic processing (see
Figure 1), andWee, a system developed by Tiphaine Dal-
mas, using Google and shallow linguistic processing. We
were interested in comparing the performances of these
two streams, as well as finding out whether they could
be successfully combined. We therefore aimed to submit
three runs:

• Run A: Wee

• Run B: hybrid Wee and QED

• Run C: QED

In the remaining of this paper we will first describe
the two systems in detail: Section 2 describes QED, and

Section 3 is devoted to Wee. Then we will present and
discuss our results in Section 4.

2 The QED System

2.1 Pre-processing and Indexing

TheACQUAINT document collection which forms the ba-
sis for TREC-2004 was pre-processed with a set of Perl
scripts, one per newspaper collection, to identify and
normalize meta-information. This meta-information in-
cluded the document ID and paragraph number, the title,
publication date and story location. The markup for these
last three fields was inconsistent, or even absent, in the
various collections, and so collection-specific extraction
scripts were required.

The collection was tokenized offline using a combina-
tion of the Penn Treebank sed script and Tiphaine Dal-
mas’ Haskell tokenizer. Ratnaparkhi’s MXTERMINA-
TOR program was used to perform sentence boundary de-
tection (Reynar and Ratnaparkhi, 1997). The result was
indexed with the Managing Gigabytes (MG 1.3g) search
engine (Witten et al., 1999). For our TREC-2004 ex-
periments, we used case-sensitive indexing without stop-
word removal and without stemming.

2.2 Retrieval and Passage Segmentation

Using ranked document retrieval, we obtained the best
100 documents from MG, using the query generated from
the question. Since our approach involves full parsing to
obtain detailed semantic representations in later stages,
we need to reduce the amount of text to be processed to
a fraction of each document. To this end, we have imple-
mented QTILE, a simple query-based text segmentation
and passage ranking tool. This “tiler” uses the words in
the query to extract from the set of documents returned
by MG, a set of segments (“tiles”). It does this by shift-
ing a sliding window sentence by sentence over the text
stream, retaining all window tiles that contain at least one

mailto:trec-qa@inf.ed.ac.uk

Retriever Tiler

Indexer

WordNet

Semantic Analysis

Passages

Query Construction

Answer Extraction

Reranker

NE model

POS model

Parse model

C&C

Document
Collection

Preprocessor

Tokenizer

Questions

Documents

Answers

Figure 1: The QED system architecture. (Dashed lines represent processing streams for questions, while solid lines
represent processing streams for answers.)

of the words in the query as well as all upper-case query
words.

Each tile gets assigned a score based on the follow-
ing: the number of non-stopword query word tokens (as
opposed to types) found in the tile; capitalization agree-
ment between the appearance of a term in the query and
its appearance in the tile; and the occurrence of 2-grams
and 3-grams in both question and tile. The score for ev-
ery tile is multiplied with a window function (currently a
simple triangle function) which weights sentences in the
centre of a window higher than in the periphery.

The tiler is implemented in C++, with linear asymp-
totic time complexity and constant space requirements.
For TREC-2004 we used a window size of 3 sentences
and pass forward the top-scoring 100 tiles (with dupli-
cates eliminated using a hash signature test).

2.3 Syntactic and Semantic Analysis

We used the C&C parser to parse the question and the text
segments returned by the tiler and Wee. The C&C parser
does POS-tagging (Curran and Clark, 2003a) and named
entity recognition (Curran and Clark, 2003b), identifying
named entities from the standard MUC-7 data set (loca-
tions, organisations, persons, dates, times and monetary
amounts) and then returns CCG derivations, which are
mapped into semantic representations (Bos et al., 2004).
This linguistic analysis is applied both to the question un-
der consideration and the text passages that might contain
an answer to the question. The semantic analysis forms

the basis for query generation, which is basically a list of
the lemmas of the content expressions.

Our semantic formalism is based on Discourse Rep-
resentation Theory (Kamp and Reyle, 1993), but we
use extended Discourse Representation Structure (DRS),
combining semantic information with syntactic and sor-
tal information. DRSs are defined as ordered pairs of a
set of discourse referents and a set of DRS-conditions.
The following types of basic DRS-conditions are consid-
ered: pred(x,S) , card(x,S) , event(e,S) , and
argN(e,x) , rel(x,y,S) , where e, x , y are dis-
course referents,S a constant, andN a number between
1 and 3. Questions introduce a special DRS-condition of
the formanswer(x,T) for a question typeT. We call
this theanswer literal; answer literals play an important
role in answer extraction.

Implemented in Prolog, we reached a semantic cover-
age of around 95%. Each passage or question is trans-
lated into one single DRS; hence DRSs can span several
sentences. To deal with pronouns in the questions, ba-
sic techniques for pronoun resolution are implemented as
well. A set of DRS normalisation rules are applied in a
post-processing step, thereby dealing with active-passive
alternations, question typing, inferred semantic informa-
tion, and the disambiguating of noun-noun compounds.
The resulting DRS is enriched with information about the
original surface word-forms and POS-tags (see Figure 2).

id([’QID’:36.3,
’TRECTYPE’:
’FACTOID’],1).

%%% Khmer Rouge
%%% Who was its first leader ?

sem(1,

[p(1001,’Khmer’),
p(1002,’Rouge’),
p(2001,’Who’),
p(2002,was),
p(2003,its),
p(2004,first),
p(2005,leader),
p(2006,?)],

[i(1001,’NNP’),
i(1002,’NNP’),
i(2001,’WP’),
i(2002,’VBD’),
i(2003,’PRP$’),
i(2004,’JJ’),
i(2005,’NN’),
i(2006,’.’)],

[drs([1000:x0,
2001:x2,
2002:e3,
2003:x1],

[1000:pred(x0,topic),
1001:ne(x0,’I-PER’),
1001:pred(x0,’Khmer’),
1002:ne(x0,’I-PER’),
1002:pred(x0,’Rouge’),
1002:pred(x0,single),
2001:answer(x2,general,person),
2002:arg1(e3,x2),
2002:arg2(e3,x1),
2002:event(e3,be),
2003:pred(x0,neuter),
2003:pred(x0,single),
2003:rel(x1,x0,of),
2004:pred(x1,first),
2005:pred(x1,leader),
2005:pred(x1,single)])]

).

Figure 2: Example of an extended DRS for TREC-2004
question 36.3. The words and POS-tags are co-indexed
with the discourse referents and DRS-conditions, and the
DRS is enriched with information produced by the named
entity recogniser.

2.4 Question Analysis: Evaluation

The C&C parser used in the system has been trained on
the CCG version of the WSJ Penn Treebank Wall Street
Journal Corpus. The original parser performs extremely
poorly on questions, due to the small number of ques-
tions in the Treebank. However, in Clark et al. (2004) we
show how the parser can be rapidly ported to the question
domain.

The novel porting method relies on the separation of
the CCG parsing task into two subtasks:supertagging, in
which CCG lexical categories are assigned to words, and
then a final parsing phase in which the lexical categories
are combined together, producing a parse tree. Since lex-
ical categories contain so much syntactic information, su-
pertagging can be thought of asalmost parsing, to borrow
a phrase from the TAG parsing literature (Bangalore and
Joshi, 1994).

Clark et al. (2004) show that, by marking up new data
at the lexical category level only, and using a newly
trained supertagger with the original parsing model, high
accuracy can be achieved for parsing questions. The ad-
vantage of this method is that marking up lexical category
data is easier than marking up full derivation trees.

In order to adapt the supertagger to questions, we took
around 1,500 questions from the TREC competitions for
the years 2000–2003. The questions were automatically
POS-tagged and then annotated with lexical categories by
Clark, who also corrected any errors made by the POS
tagger. The creation of the new question corpus took
only a few weeks. The supertagger was then retrained
on this new question data. The combination of the new
supertagger with the original parsing model is sufficient
to produce a highly accurate parser of questions.

This is shown by the parser’s performance on the
TREC-2004 questions. Of the 286 factoid and list ques-
tions, the parser produced 277 analyses, yielding a se-
mantic coverage of 97%. The number of reasonably cor-
rect question-DRSs produced for these analyses was 252
(88% of the total). Incorrect analyses were due to tokeni-
sation problems, POS-tagging errors, CCG-categories
that did not appear in the training set, and pronoun res-
olution. Of the 143 cases of pronouns appearing in the
questions, 127 (89%) were correctly resolved. The others
were resolved incorrectly due to number disagreement of
target and pronoun.

2.5 Answer Extraction

The answer extraction component takes as input a DRS
for the question, and a set of DRSs for selected passages.
It extracts answer candidates from the passages by match-
ing the question-DRS and a passage-DRS, using a relaxed
unification method and a scoring mechanism indicating
how well the DRSs match each other.

Matching takes advantage of Prolog unification, us-
ing Prolog variables for all discourse referents in the
question-DRSs, and Prolog atoms in passage-DRSs. It at-
tempts to unify all terms of the question-DRSs with terms
in a passage-DRS, using an A∗ search algorithm. Each
potential answer is associated with a score, which we
call the DRS score. High scores are obtained for perfect
matches (i.e., standard unification) between terms of the
question and passage, low scores for less perfect matches
(i.e., obtained by “relaxed” unification). Less perfect
matches are granted for different semantic types, predi-
cates with different argument order, or terms with sym-
bols that are semantically familiar according to WordNet
(Fellbaum, 1998).

After a successful match, the answer literal is identi-
fied with a particular discourse referent in the passage-
DRS. This is possible because the DRS-conditions and
discourse referents are co-indexed with the surface word-
forms of the source passage text (see Figure 2). This in-
formation is used to generate an answer string, simply by
collecting the words that belong to DRS-conditions with
discourse referents denoting the answer. Finally, all an-
swer candidates are output in an ordered list. Duplicate
answers are eliminated, but answer frequency informa-
tion is added to each answer in this final list.

Figure 3 shows an example output file. The columns
designate the question-id, the source, the ranking score,
the DRS score, the frequency of the answer, and a list
of sequences of surface word-form, lemma, POS-tag and
word index. The best answer is selected from this file
by calculating a weighted score of the DRS score and
frequency. The weights differ per question type, and were
determined by running experiments over the TREC-2003
data.

3 The Wee System

3.1 Overall Strategy

Wee is a web based Question Answering system inter-
facing an information fusion module, QAAM (Question
Answering Answer Model). QAAM is based on the
Model-View-Controller design pattern which states that
data processing and data rendering should be properly
distinguished when engineering a system that deals with
both. We apply this pattern to Question Answering: re-
sults found on the web are merged into a model and vari-
ous controllers can access this model and propose a view
to the end user. A model may contain several answers at
different levels of granularity or aggregation, as well as
alternative answers. It may also contain background in-
formation, i.e. information that does not correspond to a
direct answer but may help for further interpretation.

A QAAM model is a graph where nodes represent con-
cepts and edges express relationships between them. For

instance, for the infamous questionWhere is the Taj Ma-
hal?, a QAAM model may contain the following nodes:
{Agra, India, history, women, Atlantic City, New Jersey,
casino, resort}. We discuss below what relations are used
and how they are inferred.

Once a model is generated, a controller can query it
and render the provided information. We have a special
renderer for TREC, but other renderers can be developed
as well: full text renderer, summarizer, multi-media ren-
derer (that grabs pictures on the web related to the in-
formation contained by the model), more interesting: a
dialog controller that goes back and forth between the
user and the model, and can eventually enrich the current
model by launching new QA processes.

The Wee/QAAM architecture consists of three parts:
(1) question analysis and web retrieval, (2) model gen-
eration and (3) rendering. The final rendering consists in
finding a supporting document and collecting answers for
one target.

3.2 Question Analysis

Linguistic processing Before being tokenized, each
question is reformulated using the target and the ques-
tion type provided by TREC, by inserting the target as
a topicalised expression at the end of the question. This
technique allows us to introduce the target into the ques-
tion without performing pronoun resolution. In the worst
case, the question contains redundant information which
will in any case be filtered by the query generation mod-
ule. This was done for both factoid and list questions. For
’other’ questions, the reformulated question is simply the
target, understood by default as a definition question.

The question is then tokenized and POS-tagged. We
tried out two POS-taggers (C&C and Lingua POS-TAG).
It is known that standard POS-taggers do not perform
well on questions (for instance, they tend to mistag auxil-
iary verbs). Therefore, we chose to split the POS-tagging
into two steps: using an off-the-shelf tagger followed by
a supertagger that we developed ourselves. The supertag-
ger takes as a parameter the tagset of the first tagger and
map it onto a smaller set of supertags. This mapping
takes into account standard errors from POS taggers and
corrects them. Finally, tokens are transformed to lower
case except tokens corresponding to named entities, and
grouped by their tag family. Also, quotes are preserved
and verbs inflected.

Question typing Wee performs question typing based
on five features: the wh-type, the wh-complement, the
lexical head of the first NP and lexical head of the aux-
iliary verb group, the modifier of the first NP (if there is
one), and the list of the remaining NPs. This is basically
done by a series of look-up processes, which terminate
when a question is fully disambiguated. (If this process

1394 NYT19990821.0176 0.0687983 0.50 8 Degnan Degnan NNP 157001
1394 NYT19990821.0176 0.0687983 0.43 3 the the DT 158010 nation nation NN 158011
1394 APW19990616.0182 0.0923594 0.37 1 Tarzan Tarzan NNP 21011
1394 APW20000827.0133 0.0651768 0.37 2 English English NN 219015
1394 APW20000827.0133 0.0651768 0.37 1 Additionally Additionally NNP 220001
1394 APW20000827.0133 0.0651768 0.37 4 the the DT 220010 U.S. U.S. NNP 220011

Figure 3: Example output file of answer extraction.

temperature
currency
monetary value
percentage
weight
distance
duration
frequency
size
age
speed
numeric
quantity
code
spatial
any spatial

time
any time
composition
effect
purpose
explanation
famous for
quote
title
formula
hyponym
translation
acronym
term
definition
proper name

Figure 4: Question types used in Wee

fails, definition will be selected as question type).
The question types used in Wee are listed in Figure 4.

We distinguish two types of location and time ques-
tions. Any time corresponds to a simplewhenquestion
which requires some query expansion.Timemeans there
is already a lexical item indicating a time unit, such as
in What year was Xor When is X’s birthday. The same
distinction is made for location questions (whereversus
what country).

Web query generation The query sent to the web com-
bines the question phrases and expansion keywords se-
lected according to the question type. We used Google
as a web search engine, exploiting its special operators,
for instancei..j to search on numbers (e.g.1900..2000
searches for all numbers between 1900 and 2000). We
did not use Google’sdefineoperator, as it often leads to
no results, either because no dictionary has the requested
entry or because the word is rare or spelled incorrectly.
But we used the number range operator for all the ques-
tions expecting a numeric answer.

The IR process consists in a relaxation loop that starts
with a first query that is highly specific and is relaxed
if too few answers have been found. The first query is
generated by quoting all the NP and verb expressions
and combining them with a first series of expansion key-

words. This query can then be relaxed by breaking it
down into tokens. The second query also uses a differ-
ent set of expansion keywords (usually fewer).

Web Filtering and Reranking Once a query has been
generated, we simply ask Google for 100 snippets, which
are then split into sentences and tokenized. To rerank
sentences, we use a scoring based on pattern matching,
question words count and the number of different poten-
tial answer words.

A penalty filter is also used to remove web noise, no-
tably “sponsored links” and snippets such asthe 1989
World Book Dictionary definition ofwhich indicate a
good document but are not contentful as snippets. Snip-
pets coming from certain websites are also penalized,
for instancetrec.nist.govand the Answer Bus web sites.
Those contain typical QA keywords that add noise to
our process (although for our first internal evaluation on
TREC 10, they provided many good answers).

Each sentence receives a score according to the follow-
ing four criteria:

1. Minimize the penalty score
The penalty score is computed on the basis of the
penalty filter described above and the number of dif-
ferent potential answer words (i.e. words that are
not question or stopwords). If there is no poten-
tial answer word, the sentence is highly penalized;
otherwise it gets as many points as different answer
words.

2. Maximize the question word percentage
If there are repeated question words, the sentence is
penalized; otherwise it gets a score between 0.1 and
1 indicating the percentage of question words that
have been found. If there are no question words the
score is nonetheless slightly raised (to 0.1) because
it is still better than a sentence with too many ques-
tion words. (We call those “spam snippets”.)

3. Maximize the ’be’ score
A sentence containing the inflected verbbe (e.g.
was, were, is, are) indicates a potentially useful syn-
tactic structure and therefore a good basis for an-
swer extraction. Sentences from snippets are ac-
tually more often phrases or unfinished sentences.

Therefore this is a good indicator of richer informa-
tion.

4. Maximize the clue score
To each question type is associated a list of an-
swer clues defined as regular expressions. Those
are patterns for clues, not answers. For instance,
currency is a clue to find a currency name in snip-
pet sentences but it is not an answer. So far we have
overall 183 patterns for clues that have been gath-
ered manually.

Sentences for which the penalty score is too high or
that do no have any clue are simply removed from the
candidate set. 100 web snippets usually generate around
300 sentences. After filtering, we only have around 100
sentences left. Those sentences are then passed on to the
modeling module.

3.3 Modeling

As mentioned above, Wee passes its output to QAAM
to generate a model based on a graph structure. Model-
ing consists of two steps: (1)projection, the process of
mapping a set of sentences to a set of nodes; and (2)link-
ing, the process of discovering relationships between the
nodes.

Projection The generation of relevant nodes is done by
passing pairs of sentences through the Longest Common
Substring (LCS) dynamic programming matrix. Wee is
implemented in Haskell and makes use of a lazy algo-
rithm to avoid computing a complete matrix when not
necessary. This LCS algorithm was adapted to our needs:
instead of comparing the pair of sentences character by
character, we compare them token by token using a fuzzy
match function based on a lazy version of the edit dis-
tance algorithm. For efficiency, each match is cached.

To see this, consider the subset of sentences pro-
duced from a Google query for the questionWhat dis-
eases are prions associated with?as shown in Fig-
ure 5. First a cache is computed comparing normal-
ized tokens with the edit distance algorithm. The ac-
ceptable distance is dynamic, depending on the length of
the strings compared. In our example,Encephalopathies,
ENCEPHALOPATHIESandEncephalopathyare consid-
ered equal. The LCS is then computed for each pair of
sentences. For our example we get as matching sublist of
tokens:

{{Spongiform, Encephalopathies},
{SPONGIFORM ENCEPHALOPATHIES},

{Spongiform, Encephalopathy}}.

We use the edit distance rather than NLP techniques such
as lemmatization or stemming because it allows a match
not only between words having the same root but also

between words that have been misspelled, which is quite
frequent in data coming from the web.

Next, substrings are trimmed of stop words and ques-
tion words if required. For instance, a match such
as {diseases, called, Transmissible, Spongiform, En-
cephalopathies} is trimmed to{Transmissible, Spongi-
form, Encephalopathies} becausediseasesis a question
word andcalled is considered a stop word. Substrings
are then checked against answer patterns (regular expres-
sions manually gathered for each question type) and an-
swer stop words, i.e. web stop words or usual stop words.
Phrases left after this filtering are considered as good can-
didates and are selected to be model nodes.

Linking For each pair of nodes, we select the rela-
tions that characterize them. In the current implemen-
tation of QAAM we use three relations: two nodes
can beEQUIVALENT, one canOCCURSIN the other
(and vice-versa withHASOCCURRENCE) or they can be
DIFFERENT. These relations are inferred by computing
the intersection of content words between phrases. For
instance, we have:

{Spongiform, Encephalopathy}
OCCURSIN

{Transmissible, Spongiform, Encephalopathies}

which gives us a simple notion of entailment, namely
Transmissible Spongiform Encephalopathies→ Spongi-
form Encephalopathy).

This is all based on string matching and thus very shal-
low. Nevertheless, we end up with graph partitions focus-
ing on specific topics, such as:

Transmissible Spongiform Encephalopathy or TSEs

BSE

Bovine Spongiform Encephalopathy or BSE

Spongiform Encephalopathy

This technique has the advantage of getting a better
frequency count by taking into account co-occurences of
words. We also distinguish between families of answers,
which prevents the system from producing redundant an-
swers. This selection of graph partitions is actually part
of the role of the controller in charge of the final render-
ing.

3.4 Rendering

Once a model has been generated, one can choose an ap-
propriate controller to provide one or more answers. It is
actually possible to select the whole graph, which would
correspond to a detailed answer. Alternatively, one can
simply select one representative per family (or partition)
to build a more compact answer.

http://www.portfolio.mvm.ed.ac.uk/ Transmissible Spongiform Encephalopathies .
http://kobiljak.msu.edu/CAI/Pathology/ SPONGIFORM ENCEPHALOPATHIES (PRION DISEA SES) A. IN-

TRODUCTORY CONCEPTS ; CHARACTERISTICS OF PRIONS 1.
http://www.bseinfo.org/dsp/dsp locationContent BSEInfo.org The Source For Bovine Spongiform En-

cephalopathy ...

Figure 5: Google snippets for question 10.3What diseases are prions associated with?

Interesting nodes are usually specific nodes, i.e. those
that do not have children generated byOCCURIN re-
lations. For instance, within the encephalopathy fam-
ily, {Transmissible, Spongiform, Encephalopathies, or,
TSEs} is a good candidate because many nodes in the
family have occurences in this node, but it does not occur
itself as a whole in another node.

However, for the TREC exercise we chose to output
all the nodes, in order to link the answer back to the
AQUAINT corpus, a task for which reformulations of the
same type of answer are useful: an answer that is too spe-
cific can be difficult to find in the TREC corpus. The con-
troller we used outputs each node of the graph ordered by
their partition size. Members of a large family are output
first, giving preference to the most specific nodes.

3.5 Selecting a supportive TREC document

Once we have found a web answer with Google, we still
need to find a supporting document in the AQUAINT cor-
pus collection in order to meet the requirements for the
TREC evaluation exercise. For this we implemented a
TREC controller, using the Lucene search engine on the
AQUAINT corpus.

The TREC controller outputs a web answer with two
Lucene queries. The first query looks for a co-occurrence
of the answer words and question words within a window
of 100 tokens (in a TREC document). The second query
is the relaxed version of the first: it looks for at least the
answer words and if the documents also contains some
question words, its ranking is boosted. In both queries,
the target is a required element.

The second query is only used if the first query was not
successful. For each document, we take all the sentences
where words of the query co-occur. The sentence that
maximize the co-occurrence score is output first.

4 Evaluation and Discussion

4.1 Experimental Setup

Three runs were submitted. Run A (Edin2004A) was
solely produced by the Wee system, producing web an-
swers for which a supporting document had been found.
Run B (Edin2004B) was produced by the QED sys-
tem using text extractions produced by Wee. Run C
(Edin2004C), finally, was produced by the QED system

using traditional IR methods plus text extractions pro-
duced by Wee. In both runs B and C, the answer pro-
duced by Wee was proposed if QED was not able to find
one. We expected Run A to perform fairly well (based
on judgements on TREC 2002 questions), and Run B to
have more exact answers then Run A (which lacks a so-
phisticated linguistic analysis). We feared answers found
by Run A and B not to be supported by theACQUAINT

corpus, and hoped that Run C would score better on this
aspect of evaluation.

4.2 Results

Factoid questions formed the majority of the questions at
the TREC 2004 QA evaluation exercise. Our results over
230 factoid questions are listed in the table below, where
W is the number of wrong, U the number of unsupported,
X, the number of inexact and R the number of correct
answers.

Run W U X R Accuracy
A 166 18 25 21 0.091
B 167 14 16 33 0.143
C 194 7 8 21 0.091

As expected, the number of inexact answers was high
for runs A and B. (Closer inspection of our inexact an-
swers revealed that the judges were very strict this year in
assessing inexact answers.) The number of unsupported
answers was also substantial for both runs A and B. Run
C was slightly disappointing, we were expecting it to get
a better performance.

Our ‘best’ answer wasSaloth Sarto question 36.3Who
was its first leader?in the context of targetKhmer Rouge.
Out of 63 runs we were the only submission that got a
correct answer for this question. It is interesting to note
that the overlap of our two best runs (A and B) is only
8 correct answers. A better answer selection component
could considerably improve our overall system. The table
below shows the difference in performance of the three
runs distributed over Wee question types, summing over
correct, inexact and unsupported answers:

Question Type Total Run A Run B Run C
any time 48 27 (54%) 26 (54%) 13 (27%)
proper name 38 14 (37%) 6 (16%) 4 (10%)
any spatial 24 6 (16%) 8 (33%) 3 (12%)
hyponym 23 4 (17%) 5 (22%) 2 (09%)
quantity 21 0 (00%) 3 (14%) 3 (21%)
spatial 12 4 (33%) 3 (25%) 1 (08%)
term 11 1 (09%) 0 (00%) 1 (11%)
time 9 1 (11%) 4 (44%) 3 (33%)
definition 8 1 (12%) 2 (25%) 1 (12%)
famous for 7 1 (14%) 1 (14%) 1 (07%)
title 6 2 (33%) 3 (50%) 3 (50%)
explanation 6 0 (00%) 0 (00%) 0 (00%)
duration 4 0 (00%) 0 (00%) 0 (00%)
monetary value 3 2 (66%) 2 (66%) 1 (33%)
acronym 3 0 (00%) 0 (00%) 0 (00%)
composition 2 1 (50%) 0 (00%) 0 (00%)
purpose 2 0 (00%) 0 (00%) 0 (00%)
acronym 1 0 (00%) 0 (00%) 0 (00%)
frequency 1 0 (00%) 0 (00%) 0 (00%)
speed 1 0 (00%) 0 (00%) 0 (00%)
Total 230 64 (28%) 63 (27%) 36 (16%)

We didn’t devote much of our research time to list
questions, and the bad results clearly underline this. For
the 55 list questions we got an average F score of 0.036
for run A, 0.054 for run B, and 0.043 for run C. For our
analysis on ’other’ questions, a similar story can be told,
although the results are not as bad as for the list questions.
Over the 64 ’other’ questions we achieved an average F
score of 0.068 for run A, 0.152 for run B, and 0.194 for
run C. The latter figure is better higher than the medium
score of all the 63 submitted runs. The final scores for our
three runs were respectively 0.072 (run A), 0.123 (run B),
and 0.105 (run C).

4.3 Discussion

Compared to TREC 2003, the two major improvements
of the QED system are the use of a more fine-grained
question-type ontology, and the utilisation of the CCG
parser, accomplishing both higher coverage and precision
on both questions and answers. The Wee system, devel-
oped by Tiphaine Dalmas, was a completely new compo-
nent of our TREC-2004 setup.

In TREC 2004, the overall accuracy of factoid ques-
tions of the 63 runs submitted to the QA track ranged
between 0.009 and 0.770 (median 0.170). For list ques-
tions, the best, median, and worst average F-scores were
0.622, 0.094, and 0.000, respectively. For ’other’ ques-
tions, the F-scores ranged from 0 to 0.460 (with a median
of 0.184).

The results of the three runs indicate that using the Web
for finding answers rather than using standard IR gives
better scores for factoids, but not for definition ques-
tions. Deep linguistic processing tools gives more exact
answers, although the exactness of answers requires con-
siderable improvement in our current system.

Acknowledgements
Dalmas is supported by the School of Informatics, University
of Edinburgh. Leidner is supported by the German Academic
Exchange Service (DAAD) under scholarship D/02/01831 and
by Linguit GmbH (research contract UK-2002/2).

References
[Bangalore and Joshi1994] Srinivas Bangalore and Aravind

Joshi. 1994. Disambiguation of super parts of speech (or
supertags): Almost parsing. InProceedings of the 15th COL-
ING Conference, pages 154–160, Kyoto, Japan.

[Bos et al.2004] Johan Bos, Stephen Clark, Mark Steedman,
James R. Curran, and Julia Hockenmaier. 2004. Wide-
coverage semantic representations from a CCG parser. In
Proceedings of the 20th International Conference on Com-
putational Linguistics (COLING ’04), Geneva, Switzerland.

[Clark et al.2004] Stephen Clark, Mark Steedman, and James R.
Curran. 2004. Object-extraction and question-parsing using
ccg. InProceedings of the SIGDAT Conference on Empiri-
cal Methods in Natural Language Processing (EMNLP’04),
pages 111–118, Barcelona, Spain.

[Curran and Clark2003a] James R. Curran and Stephen Clark.
2003a. Investigating GIS and smoothing for maximum en-
tropy taggers. InProceedings of the 11th Annual Meeting of
the European Chapter of the Association for Computational
Linguistics (EACL’03), pages 91–98, Budapest, Hungary.

[Curran and Clark2003b] James R. Curran and Stephen Clark.
2003b. Language independent NER using a maximum en-
tropy tagger. InProceedings of the Seventh Conference on
Natural Language Learning (CoNLL-03), pages 164–167,
Edmonton, Canada.

[Fellbaum1998] Christiane Fellbaum, editor. 1998.WordNet.
An Electronic Lexical Database. The MIT Press.

[Kamp and Reyle1993] Hans Kamp and Uwe Reyle. 1993.
From Discourse to Logic. An Introduction to Modeltheoretic
Semantics of Natural Language, Formal Logic and DRT.
Kluwer, Dordrecht.

[Leidner et al.2004] Jochen L. Leidner, Johan Bos, Tiphaine
Dalmas, James R. Curran, Stephen Clark, Colin J. Bannard,
Mark Steedman, and Bonnie Webber. 2004. The QED
open-domain answer retrieval system for TREC 2003. In
Proceedings of the Twelfth Text Retrieval Conference (TREC
2003), NIST Special Publication 500-255, pages 595–599,
Gaithersburg, MD.

[Reynar and Ratnaparkhi1997] Jeffrey C. Reynar and Adwait
Ratnaparkhi. 1997. A maximum entropy approach to identi-
fying sentence boundaries. InProceedings of the Fifth Con-
ference on Applied Natural Language Processing, Washing-
ton, D.C.

[Witten et al.1999] Ian A. Witten, Alistair Moffat, and Timo-
thy C. Bell. 1999.Managing Gigabytes: Compressing and
Indexing Documents and Images. Morgan Kaufmann, Los
Altos, CA, 2nd edition.

	Introduction
	The QED System
	Pre-processing and Indexing
	Retrieval and Passage Segmentation
	Syntactic and Semantic Analysis
	Question Analysis: Evaluation
	Answer Extraction

	The Wee System
	Overall Strategy
	Question Analysis
	Modeling
	Rendering
	Selecting a supportive TREC document

	Evaluation and Discussion
	Experimental Setup
	Results
	Discussion

