
Question Answering with QED at TREC-2005

Kisuh Ahn, Johan Bos, James R. Curran∗

Dave Kor, Malvina Nissim & Bonnie Webber

School of Informatics, University of Edinburgh
∗School of Information Technologies, University of Sydney

trec-qa@inf.ed.ac.uk

Abstract

This report describes the system developed by
the University of Edinburgh and the Univer-
sity of Sydney for the TREC-2005 question
answering evaluation exercise. The backbone
of our question-answering platform is QED, a
linguistically-principled QA system. We ex-
perimented with external sources of knowl-
edge, such as Google and Wikipedia, to en-
hance the performance of QED, especially for
reranking and off-line processing of the corpus.
For factoid and list questions we performed sig-
nificantly above the median accuracy score of
all participating systems at TREC 2005.

1 Introduction

The QA evaluation exercise at TREC consists in auto-
matically finding answers for a collection of questions
arranged by different topics, or, to use the TREC termi-
nology, targets. Questions can be eitherfactoids, asking
for a unique short answer, orlist-questions, asking for
a set of answers. Each series of questions ends with an
other-question, which is a request of providing all rele-
vant information about the target which was not already
asked in the other questions. Here is an example:

TARGET: Russian Submarine Kursk sinks

66.1 (factoid) When did the submarine sink?
66.2 (factoid) Who was the on-board commander of

the submarine?
66.3 (factoid) The submarine was part of which

Russian fleet?
66.4 (factoid) How many crewmen were lost in the

disaster?
66.5 (list) Which countries expressed regret about

the loss?
66.6 (factoid) In what sea did the submarine sink?

66.7 (list) Which U.S. submarines were reportedly
in the area?

66.8 other

The answers must be found in the Aquaint corpus, a col-
lection of over a million newspaper articles from three
American newspapers dating from 1998–2000. A re-
sponse is evaluated as correct if it exactly answers the
question (in an exhaustive but not overinformative way)
and if it is accompanied by an appropriate document from
the Aquaint corpus supporting the answer.

In this paper we describe the TREC-2005 entry of the
Universities of Edinburgh and Sydney for the question-
answering evaluation exercise. This is the third time we
participate in the TREC-QA campaign. Compared to the
previous years (Leidner et al., 2003; Ahn et al., 2004),
the performance of our system improved considerably.

The most interesting aspect of the QED system is that
it is linguistically principled, combining symbolic with
statistical approaches. QED uses one and the same the-
ory and implementation for the analysis of both the ques-
tion and the documents, employing detailed semantic rep-
resentations and inference techniques to match possible
answer-sentences with the question.

With respect to its architecture, QED is a fairly tradi-
tional QA system, which is composed of a standard se-
quence of modules: Question Analysis, Document Re-
trieval, Passage Analysis, Answer Extraction, Answer
Reranking. Section 2 describes QED in more detail.

Although the main focus of research is on factoid ques-
tions, this year we also put additional effort into devel-
oping techniques dedicated to process list questions (re-
sulting in a subcomponent called LiQED (Kor, 2005),
questions asking for titles of published works and other-
questions (see Section 3).

We also experimented by integrating an additional pro-
cessing pipeline that views question answering in a radi-
cally different way, namely TOQA, a QA system devel-
oped by Kisuh Ahn (see Section 4).

Finally, in Section 5, we present the results obtained at
TREC 2005 and an evaluation of the individual compo-
nents in QED.

2 The QED System

2.1 Question Analysis

Like most traditional QA systems, the first stage of pro-
cessing in QED is analysing the question. Each question
is interpreted in the context of the TREC target, and pro-
cessed along the following steps: tokenisation; syntactic
analysis; semantic interpretation; and question typing.

Tokenisation is performed with NLProcessor1. Syntac-
tic analysis is based on Combinatory Categorial Gram-
mar (CCG), using a robust wide-coverage parser (Clark
and Curran, 2004). The output of syntactic analysis is a
CCG-derivation, as shown in Figure 1 (Underneath each
word is the CCG category used in its analysis. Horizon-
tal lines show the result of category combination, each
labelled underneath with the resulting category. At the
right end of the horizontal lines a symbol denotes the
combinatorial rules used:> for forward application,<
for backward application,> B for forward composition,
and> P for the punctuation rule.).

>

N

>

N

>

N

N/N N/N N/N N

Russian submarine Kursk sinks

>P
S[wq]

>

S[wq]

>B
S[q]/PP

>

S[q]/(S[b]\NP)

>

NP[nb]

S[wq]/(S[q]/PP) (S[q]/(S[b]\NP))/NP NP[nb]/N N (S[b]\NP)/PP .

When did the submarine sink ?

Figure 1: CCG derivation for question 66.1

The example in Figure 1 shows the target incorrectly
analysed as a noun (N), due to “sinks” being incorrectly
assigned the category N, and the question correctly anal-
ysed as a wh-question (category S[wq]).

Semantic interpretation is based on Discourse Repre-
sentation Theory, DRT (Kamp and Reyle, 1993), and se-
mantic representations are built on the basis of the CCG-
derivation output by the parser (Bos et al., 2004; Bos,
2005). DRSs are defined as ordered pairs of a set of dis-
course referents and a set of DRS-conditions. See Fig-
ure 2 for an example DRS for question 66.1 and its target.

1 A product from Infogistics, see http://www.
infogistics.com/textanalysis.html

x0 x1 x2 x3 e4

nn(x1,x0)
nn(x2,x0)

russian(x0)
submarine(x1)

kursk(x2)
sink(x0)

answer(x3,date,date)
temprel(e4,x3)

arg1(e4,x1)
sink(e4)

Figure 2: Discourse Representation Structure for ques-
tion 66.1

The top of Figure 2 shows the set of discourse refer-
ents (four of semantic type “individual” and one of se-
mantic type “event”), while the bottom shows the set of
DRS-conditions. The first six conditions come from the
target, where “sink” has been incorrectly analysed as a
noun, yielding “sink(x0)”, and the other four from the
question, where “sink” has been correctly analysed as an
event “sink(x4)” whose subject is correctly resolved to
the same russian submarine as in the target “arg1(e4,x1)”.

The question type is determined on the basis of the se-
mantic content of the question. In QED we distinguish a
hierarchy of 12 main question types:reason , manner ,
definition , color , count , measure , date ,
location , name, abbreviation , publication ,
andgeneral . Each of these main types is further di-
vided into various subtypes. Questions introduce a spe-
cial DRS-condition of the formanswer(x,T,S) for a
question typeT and subtypeS. We call this theanswer
slot; answer slots play an important role in answer ex-
traction.

2.2 Document Prefetching and Passage Selection

The Aquaint document collection, which forms the ba-
sis for TREC-2005, was pre-processed and tokenised off-
line with NLProcessor. The result was indexed with the
Lemur search engine (Ogilvie and Callan, 2002). Using
ranked document retrieval, we obtained the best 1,000
documents from Lemur, supplying the target phrase as
a query. Hence for the entire series of questions related
to a single target, the same set of documents was used.

Since our approach involves full parsing to obtain de-
tailed semantic representations in later stages, we need
to reduce the amount of text to be processed to a frac-
tion of each document. Passages spanning two sentences
were selected from the returned documents based on the
presence of at least one of the words from the target
phrase, which were weighted (based on the number of

target words found) to get an overall ranking of the pas-
sages. Again, the passages are the same for all the ques-
tions associated with the same target.

Document retrieval as such is relatively unimportant
for the success of QED. At this stage of processing we
aim for high recall and ignore precision, by selecting a
high number of documents and passages, and narrowing
down this pool of potential answers as late as possible in
the processing pipeline.

2.3 Passage Analysis

As with the questions, we used the CCG-parser to parse
the passages and then build DRSs on the basis of the
derivations output by the parser. The CCG-parser also
performs POS-tagging (Curran and Clark, 2003a) and
named entity recognition (Curran and Clark, 2003b),
identifying named entities from the standard MUC-7 data
set (locations, organisations, persons, dates, times and
monetary amounts).

Each passage is translated into a single DRS; hence a
DRS can span several sentences. A set of DRS normali-
sation rules are applied in a post-processing step, thereby
dealing with active-passive alternations, inferred seman-
tic information, normalisation of date expressions, and
the disambiguation of noun-noun compounds. The re-
sulting DRS is enriched with information about the orig-
inal surface word-forms and POS-tags.

2.4 Answer Extraction

The answer extraction component takes as input a DRS
for the question, and the set of DRSs for selected pas-
sages. It extracts answer candidates from the passages by
matching the question-DRS and a passage-DRS, using a
relaxed unification method and a scoring mechanism in-
dicating how well the DRSs match each other.

Matching takes advantage of Prolog unification, us-
ing Prolog variables for all discourse referents in the
question-DRSs, and Prolog atoms in passage-DRSs. It
attempts to unify all terms of the question-DRSs with
terms in a passage-DRS, using an A∗ search algorithm.
Each potential answer is associated with a score. High
scores are obtained for perfect matches (i.e., standard
unification) between terms of the question and passage,
low scores for less perfect matches (i.e., obtained by “re-
laxed” unification). Less perfect matches are granted for
different semantic types, predicates with different argu-
ment order, or terms with symbols that are semantically
related (hypernymy) according to WordNet (Fellbaum,
1998).

After a successful match, the answer slot is identified
with a particular discourse referent in the passage-DRS.
This is made possible by the fact that DRS-conditions
and discourse referents are co-indexed with the surface
word-forms of the source passage text. This information

is used to generate an answer string, simply by collecting
the words that belong to DRS-conditions with discourse
referents denoting the answer. Finally, all answer can-
didates are output in an ordered list. Duplicate answers
are eliminated, but answer frequency information (F) is
retained and added to each answer in this final list. Fig-
ure 3 shows an example output file.

2.5 Reranking

The basic ranking algorithm for potential answers is
fairly straightforward. Only two features are used: the
matching score, and the frequency of similar answers. If
there are different answers with the same matching score,
frequency will be used to order them.

This simple method yields a reasonable ranking. How-
ever, in many cases the correct answer is ranked high but
not highest, as for 99.3:

TARGET: Woody Guthrie

99.3 Where was Guthrie born?’

Initially, QED produced the following ranked answer
candidates for 99.3 (answer 2 and 4 are correct):

1. Britain
2. Okemah, Okla.
3. Newport
4. Oklahoma
5. New York

To deal with this problem, we experimented with exter-
nal additional knowledge, namely the World Wide Web
accessed via the Google API, to generate a possibly more
accurate ranking. This technique is also known as “an-
swer validation”, and can be seen as a tie-breaker between
the top-N answers.

In more detail, this method works as follows. For
each of the N-best answer candidates, we take the se-
mantic representation of the question and fill the answer
slot with the answer candidate. From this we generate
a set of declarative sentences (covering all morphologi-
cal variations). The generated sentences are submitted as
strict (within quotes) queries for Google. Any informa-
tion from the target which is not included in the generated
sentence (for this example “Woody”) is added as a query
term in order to constrain the search space. The queries
and number of hits returned for each of the queries (in
brackets) are shown below.

1. Woody “Guthrie born in Britain” (0)
Woody “Guthrie are OR is OR was OR were born in
Britain” (0)

2. Woody “Guthrie born in Okemah, Okla.” (1)
Woody “Guthrie are OR is OR was OR were born in
Okemah, Okla.” (10)

3. Woody “Guthrie born in Newport” (0)
Woody “Guthrie are OR is OR was OR were born in New-
port” (0)

Document Score F Answer
XIE20000822.0059 0.755556 2 Russian President Vladimir Putin on Tuesday declared Wednesday a day of

mourning for the crew of the sunken nuclear submarine Kursk. ” The Russian
nuclear submarine Kursk sank in the Barents Sea onAugust 12, 2000, its crew perished.

NYT20000814.0435 0.733333 4 In1989a Soviet nuclear submarine sank off north Norway, killing 42 of the
69-man crew. The Komsomolets submarine, the prototype of the Mike-class sub,
now lies rusting, along with its nuclear torpedoes, on the sea bed of the Barents.

NYT20000828.0399 0.688889 7 Given that secrecy, and the likelihood that the Russians will not fully share
what they learn even if they recover the wreckage, it will be difficult to learn
with any certainty what happened to the Kursk. In1968, an American submarine,
the Scorpion, sank in the Atlantic near the Azores.

Figure 3: QED extracted answers for question 66.1

4. Woody “Guthrie born in Oklahoma” (7)
Woody “Guthrie are OR is OR was OR were born in Ok-
lahoma” (42)

5. Woody “Guthrie born in New York” (0)
Woody “Guthrie are OR is OR was OR were born in New
York” (2)

The returned Google-counts are used as the deciding fac-
tors to rerank the N-best answers. Note that we generate
several queries for each answer candidate and we sum
the returned hits. In this example, the answers would be
reranked as follows:

1. Oklahoma (7+42)
2. Okemah, Okla. (1+10)
3. New York (0+2)
4. Britain (0+0)
5. Newport (0+0)

For this example, reranking correctly promoted “Okla-
hama” to best answer.

3 Dedicated Processing

3.1 Processing Publication-Questions

For questions of typepublication (titles of creative
works, such as books, records, plays, etc.), one of the
way answer candidates are recognised by the answer ex-
traction module is by quotation marks. However not all
titles in the corpus are decorated with quotes.

To overcome this problem we adopted a strategy
that exploits information encoded inhttp://www.
amazon.com , a commercial website equipped with a
large database containing information on several types
of publications, especially useful for printed material and
music. This database is accessible via an API. The basic
strategy is to collect a list of titles relevant to the ques-
tion target and to mark them with quotes in the corpus.
QED also assigns a subtype to questions of type publica-
tion, e.g. book, so we used predetermined rules to map
such subtypes to Amazon categories. The selected cate-
gory (e.g. music) together with the question target (e.g.
Nirvana), was then searched over the whole of Amazon’s

database. All resulting hits were collected and matched
back into the portions of the Aquaint corpus retrieved for
a given question. Quotes were then added around each
successful match in the text.

For all questions that underwent such procedure, we
parsed the quotes-enriched passages a second time, since
the parser has further clues to determine whether a given
phrase is an instance of a publication. After this, the stan-
dard procedure followed.

3.2 Processing List Questions

This year, besides using QED to generate answers for list
questions, we also introduced a new approach to answer-
ing list questions. List questions are interesting because
they offer an opportunity for a Question Answering sys-
tem to directly examine the relationship between a ques-
tion and its answers. The new approach takes a ques-
tion and an existing set of answers, generated by QED in
our case, and uses these answers as examples to identify
more answers of similar nature. In essence, this is a boot-
strapping method for expanding our initial set of answers.
This approach is built into our new list question anwering
module, LiQED (Kor, 2005).

The general approach takes a question and an initial
set of potential answers, identifies some context that is
shared between the question and two or more answers,
then extrapolates from this shared context to expand on
the initial set of answers with new and distinct answers.
This shared context can be expressed in several forms,
such as text patterns, logical forms or branches in parse
trees. The initial set of answers can contain a mix of
both correct and wrong answers. Typically, only shared
contexts from correct answers are identified. The rea-
son, using parlance from physics, is that typically wrong
answers create ”interference” while correct answers mu-
tually ”reinforce” each other. In general, this approach
requires a minimum of two correct answers in the answer
set before any shared context can be identified. Although
we did not implement this, the identified shared context
can conceivably be used in reverse to verify correct an-
swers in the initial answer set.

Specifically for LiQED, the shared context we use
comprises surface text patterns. In essence the new mod-
ule takes answers generated by QED as examples, auto-
matically identifies common shared surface text patterns
and finally uses these patterns to look for more answers.
This is achieved for each question in two phases: a pat-
tern generation phase, and an answer extraction phase.

In the pattern generation phase, we identify sentences
in the Aquaint corpus that contain the question target
and one answer. We noticed that a significant number
of sentences contain some form of long distance depen-
dency separating the question target and answer. In order
to capture these dependencies, our text patterns are able
to match either one contiguous fragment or two separate
fragments within a single sentence. This is achieved by
only considering relevant terms that fall within a three-
chunk window around either a question target or an an-
swer. The functionR(x) measures the relevance of each
term by determining if the term frequently occurs near
the question target and/or answer:

R(x) =
1
N

N

∑
i=1

wq

(
1−

D(xi ,T i
q)

S(T i
q)

)
+wa

(
1− D(xi ,T i

a)
S(T i

a)

)
In the formula above,N is the number of occurrences of
termx in the Aquaint corpus.Tq andTa are respectively
the set of terms found in the question target and the po-
tential answer.D(x,T) measures the distance between
termx and the nearest term inT while S(T) is the longest
span within a sentence between two terms inT or the start
or end of the sentence.wq andwa are weights that give
importance to either the question target or answer. Us-
ing a threshold, we retain the most relevant terms in each
sentence. This leavesN sentence fragments that are com-
pared in a pairwise manner using the Smith-Waterman
(Smith and Waterman, 1981) and Gotoh (Gotoh, 1982)
word alignment algorithm, to identify common patterns.
We filter away irrelevant patterns, leaving only patterns
that contain both the question target and answer as our
set of automatically generated patterns.

Figure 4 shows some of the patterns generated for the
question ”What movies was Bing Crosby in?”. Square
brackets in the pattern indicate there is some long dis-
tance dependency gap between question target and an-
swer, asterisk characters indicate a small gap of 1–3
terms. Using these generated surface text patterns, we
search the Aquaint corpus again for matching sentences.
The text patterns narrow down to a three-chunk window
in the sentence that potentially contains an answer.

To extract the answers, we use a simplified form of
ensemble learning by combining evidence from our text
patterns, a named entity tagger and other external in-
formation sources. For example, with questions expect-

ing organization names as answers, we can extract an-
swers by choosing all distinct phrases that fall within
the three-chunk window and are labeled as organizations
by a named entity tagger. External sources of informa-
tion include book and film titles extracted from Ama-
zon as well as hyponyms extracted using Google queries
(Hearst, 1992).

3.3 Processing Other-Questions

Other-questions were and still are the poor relation of
QED. Not much effort is put into processing these: an-
swers to other-questions are sentences identified in the
corpus that contain the target as subject or object. No so-
phisticated techniques were used to filter out duplicated
or repeated answers. All nuggets that the system had al-
ready provided as answers to other questions for the same
target were considered as redundant and removed. We
considered this setting as a baseline for answering other-
questions.

To improve on the baseline we collected a set of “im-
portant” words, and used this set to select interesting an-
swers from the set of answers generated by the base-
line. The important words were extracted by the cor-
rectly judged answers generated for the other-questions
of TREC-2004, that is cue words that might make a sen-
tence worth considering. Example of such “important”
words are ‘first’, ‘best’, ‘award’, ‘invented’, and similar.
This list was collected by semi-automatically producing
a word-frequency list and removing stop words.

As an additional improvement, we exploited the online
encyclopedia, Wikipedia (http://en.wikipedia.
org/wiki/Main_Page). For a given question, the
system sent the TREC target as a query to the Wikipedia’s
built-in search engine. If there was a direct match be-
tween the target and the Wikipedia topic retrieved by
the search engine, then the system fetched the found
Wikipedia article. Otherwise, the article of the clos-
est Wikipedia topic, as judged by the built-in Wikipedia
search engine was used. Finally, if there was no match at
all, the system did not attempt to answer the question.

The Wikipedia article is an XML file whose meta-data
includes information about the categories the article be-
longs to. Wikipedia categories are vast and somewhat
unconstrained, since the individual who authors the arti-
cle can specify any number of pre-existing or even new
categories. This makes such information a possibly very
rich and valuable description of the target entity.

Finally, in order to extract an appropriate supporting
document for the information provided, we used boolean
search with the category descriptions as the queries to the
orginial Aquaint document collection. This was done by
first finding interesting facts about a target in Wikipedia,
and then aiming to localise these nuggets of information
in the TREC corpus.

<BING CROSBY> ’s ‘‘ <ANSWER> ’’
[‘‘ <ANSWER> to] [bob hope and <BING CROSBY>]
bob hope and <BING CROSBY> * ‘‘ <ANSWER>
bob hope and <BING CROSBY> * <ANSWER>
the ‘‘ <ANSWER> * ’’ <BING CROSBY>

Figure 4:Answer-finding text patterns for ”What movies was Bing Crosby in?”

4 Topic-based QA

TOQA (Topic Oriented Question Answering) is a self-
contained question answering system and was used in
TREC 2005 to complement QED. The philosophy of
TOQA is to rely heavily on off-line processing of the
Aquaint corpus, to yield speedy answer retrieval in real-
time. For the present exercise, TOQA was ran in an inde-
pendent pipeline to produce answer candidates that were
combined with QED answer candidates to form the best
answer-candidate pool. TOQA is still a system in devel-
opment, and only factoid questions pertaining to named-
entity answers were processed with TOQA.

4.1 Off-Line Processing

TOQA does most of its work off-line. This preprocessing
stage is aimed at identifying all types of expressions in
the Aquaint corpus that could serve as potential answers
in a question-answering exercise. We call thesetopics.
TOQA extracts topics together with their contexts creat-
ing a new document for each distinct topic. The docu-
ment for an identified topic is the set of all the sentences
found in the corpus that say something about this topic.
Each of these documents is then indexed to enable effi-
cient retrieval. To constrain the search space, separate in-
dices are created depending on the different topic types.
For the present version of the system, only expressions
that have been identified as relating to some named en-
tity type, such asperson, locationandorganization, have
been targeted as topics.

4.2 Answer Retrieval

Answering questions in TOQA boils down to retrieving
the most relevant topic document created in the afore-
mentioned process. The title of the retrieved document
(the topic itself), serves as the succinct answer to the
question. Note that the answer can be retrieved using an
ordinary information retrieval method. First, the index
to be used is decided by the answer-type of the question
identified. Then, the base query is formulated by con-
catenating the target words to the question, from which
the stop-words had been removed. Finally, this query is
fed into the off-the-shelf IR component Lemur Version
2.2 (Ogilvie and Callan, 2002) to retrieve the relevant an-
swer candidates.

4.3 Document Retrieval

As explained, TOQA does not rely on the original pas-
sage or document for the answer extraction, but rather
on a newly created set of documents that contains in-
formation originally spread across several documents of
the Aquaint collection. For this reason, the document
supporting the answer that TOQA provides can only be
found via a post-processing phase. This consists in form-
ing a new query by combining the base query for which
the answer was retrieved with the retrieved answer candi-
date. This new query is then used with Lemur to retrieve
the most relevant Aquaint document.

5 Evaluation

5.1 Experimental Setup

Three runs were submitted, all with different parameters
with respect to the treatment of factoids, list, and other-
questions. Let’s first consider the factoid questions:

FACTOID-questions (run descriptions)
Run A (Edin2005A) QED
Run B (Edin2005B) QED + Google reranking
Run C (Edin2005C) QED + Google reranking +

TOQA + paraphrases

We expected Run B to outperform Run A by gaining
around 10% in accuracy, based on results on the training
data of TREC 2004. Run C was partly an experimental
run using newly developed techniques that we hadn’t had
tested thoroughly, such as the use of paraphrases in back-
ground knowledge, and TOQA.

For list questions, our first run comprises the top
twelve answers generated by QED and serves as a base-
line for comparison. Our second run is a combination of
the top ten answers from QED and LiQED while our final
run takes the top seven answers from QED, LiQED and
TOQA. The number of answers were mainly chosen to
balance precision and recall of the combined answer set.

LIST questions (run descriptions)
Run A (Edin2005A) QED’s top twelve
Run B (Edin2005B) QED’s top ten +

LiQED’s top ten
Run C (Edin2005C) QED’s top seven +

LiQED’s top seven +
TOQA’s top seven

For list questions we expected Run B to have better re-
sults than Run A (a prediction based on training data of
TREC 2004). Run C was again an experimental run.

OTHER-questions (run descriptions)
Run A (Edin2005A) QED
Run B (Edin2005B) QED + important-word-filter
Run C (Edin2005C) QED + important-word-filter +

WIKIPEDIA

Finally, for the other-questions, we expected Run B to
perform considerably better than Run A, and Run C better
than Run B.

5.2 Results at TREC 2005

Factoid Questions Factoid questions formed the ma-
jority of the questions at the TREC 2005 QA evaluation
exercise. Our results over 362 factoid questions are listed
in the table below, where U is the number of unsupported
(correct but without a supporting document), X the num-
ber of inexact and R the number of correct answers. The
last two columns show the accuracy (calculated on the
basis of R) and lenient accuracy (calculated on the basis
of U+X+R).

FACTOID-questions (results)
Run U X R Accuracy Lenient Acc.
A 5 25 76 0.210 0.293
B 9 27 78 0.215 0.315
C 12 26 77 0.213 0.318

The reranking procedure using Google improved the
results but only slightly. On the positive side, it trans-
formed 10 wrong or inexact answers in Run A into cor-
rect answers, but it also transformed 8 correct answers
into wrong, inexact, or unsupported answers. This seems
a promising way of doing reranking, but there is clearly
space for improvement.

Overall, our results were roughly as we had anticipated
and we were satisfied with the performance of QED: the
accuracy scores were significantly higher than the median
accuracy score of all participating systems (0.152). How-
ever, we were slightly disappointed with the high number
of inexact answers. Closer inspection of these cases re-
vealed that some of the QED answers would have been
judged as exact answers in previous TREC campaigns. A
case in point are compound expressions such as “Atlanta-
based” (88.1), “Dominican-born” (100.1), “Milwaukee-
based” (119.2) and “Vienna-based” (128.4), where the
expected correct answer was Atlanta, Dominican Repub-
lic, etc. Also for abbreviation-questions our system gen-
erated a relatively high number of inexact answers. These
shortcomings relative to inexact answers seem easy to
overcome.

Just for the record, we mention the results for dealing
with factoid questions that have no known answer (in the

corpus). There were 17 of those. A correct response to
these questions would be NIL. For the three runs, our sys-
tem generated a total of 43, 44 and 40 NIL answers, with
only 3, 3 and 2 being correct.

List Questions There were 93 list questions in total.
QED achieved an average F-score of 0.081 for Run A,
of 0.075 for Run B, and of 0.074 for Run C. Although
we were hoping to see Run B perform better than Run
A, this was not the case. A post-submission analysis re-
vealed that the majority of answers returned by LiQED
were evaluated as unsupported or inexact. Still all ob-
tained F-scores were higher than the median average F-
score of all runs (0.053).

Other-Questions Since we didn’t do anything sophis-
ticated for dealing with other-questions, the results were
rather meager compared to what our system achieves on
factoid and list questions: Run A yielded an F-score of
0.070, Run B of 0.095, and Run C of 0.102. Our best
score (Run C) is still below the median average F-score
of all participating systems (0.156).

5.3 Evaluating Question Analysis

Despite the detailed linguistic analysis, our approach to
question analysis is fairly robust and gives good results.
Of the 455 questions at TREC-2005 (363 factoids, 93
list), we were able to analyse 426 (93.6%) “approxi-
mately” correctly. There were 9 questions for which the
parser failed to find a derivation, and 20 questions that
got a wrong parse. The example in Figure 2 illustrates
an approximately correct output: it is an almost perfect
analysis, with the definite description “the submarine” in
the question resolved to the antecedent “Russian subma-
rine Kursk” in the target. The only mistakes are in the
target, where “sinks” is analysed as a noun and “Russian
submarine Kursk” is analysed as simple noun-noun mod-
ification. Errors like these hardly affect the performance
of the overall system.

5.4 Component Evaluation

For future work it is valuable to be able to identify which
module in the system has initial responsibility for losing
an answer. To do this thoroughly for each question is
however rather time-consuming. In the context of this
year’s TREC results, we performed an analysis into how
QED behaved with respect to one particular question-
type, namely date-questions.

There where 67 date-questions in the TREC-2005 test
set of questions (15% of the 455 total number of factoid
and list questions). For Run A, we counted the number of
correct answers available after each stage of processing
(this was not just a syntactic check, also the exactness
and relevant document were taken into account to mark
an answer as correct). The table below shows the results,

together with the loss of correct answers caused by each
component.

Component Correct Acc. Loss
Question Analysis 64 0.96 4%
Document Retrieval 57 0.85 11%
Passage Selection 51 0.76 9%
Passage Analysis 46 0.69 7%
Extraction (top 10) 43 0.64 5%
Reranking 29 0.43 21%

These results suggest that substantial improvements
can be made at the beginning of the processing pipeline
(document retrieval plus passage selection) and at the end
of it (reranking) in order to obtain the most significant im-
provement.

5.5 Future Work

Given the current performance of QED and our experi-
ence with the system, we can identify the following areas
for future work.

• More fine-grained set of question types. The current
set is not specific enough to cover all varieties of
questions that occur in general QA tasks.

• Improving the Named Entity recognition module. A
large proportion of the question types rely on the
correct identification of named entities.

• Improving the document retrieval and passage selec-
tion modules.

• Given that in many cases the correct answer is
ranked high but not highest, a more sophisticated
reranking module should considerably improve the
system.

References

Kisuh Ahn, Johan Bos, Stephen Clark, James R. Cur-
ran, Tiphaine Dalmas, Jochen L. Leidner, Matthew B.
Smillie, and Bonnie Webber. 2004. Question answer-
ing with qed and wee at trec-2004. In E.M. Voorhees
and Lori P. Buckland, editors,Proceedings of the Thir-
teenth Text Retrieval Conference (TREC 2004), NIST
Special Publication 500-261, Gaithersburg, MD.

J. Bos, S. Clark, M. Steedman, J.R. Curran, and Hocken-
maier J. 2004. Wide-Coverage Semantic Representa-
tions from a CCG Parser. InProceedings of the 20th
International Conference on Computational Linguis-
tics (COLING ’04), Geneva, Switzerland.

Johan Bos. 2005. Towards wide-coverage semantic
interpretation. InProceedings of Sixth International
Workshop on Computational Semantics IWCS-6, pages
42–53.

S. Clark and J.R. Curran. 2004. Parsing the WSJ using
CCG and Log-Linear Models. InProceedings of the
42nd Annual Meeting of the Association for Computa-
tional Linguistics (ACL ’04), Barcelona, Spain.

James R. Curran and Stephen Clark. 2003a. Investigat-
ing GIS and smoothing for maximum entropy taggers.
In Proceedings of the 11th Annual Meeting of the Eu-
ropean Chapter of the Association for Computational
Linguistics (EACL’03), pages 91–98, Budapest, Hun-
gary.

James R. Curran and Stephen Clark. 2003b. Language
independent NER using a maximum entropy tagger.
In Proceedings of the Seventh Conference on Natural
Language Learning (CoNLL-03), pages 164–167, Ed-
monton, Canada.

Christiane Fellbaum, editor. 1998.WordNet. An Elec-
tronic Lexical Database. The MIT Press.

Gotoh. 1982. An improved algorithm for matching bi-
ological sequences. InJournal of Molecular Biology,
number 162, pages 705–708.

Marti A. Hearst. 1992. Automatic aquisition of hy-
ponyms from large text corpora. InProceedings of
the Fourteenth International Conference on Computa-
tional Linguistics, Nantes, France.

Hans Kamp and Uwe Reyle. 1993.From Discourse to
Logic. An Introduction to Modeltheoretic Semantics of
Natural Language, Formal Logic and DRT. Kluwer,
Dordrecht.

K. W. Kor. 2005. Improving answer precision and recall
of list questions. Master’s thesis, School of Informat-
ics, University of Edinburgh.

Jochen L. Leidner, Johan Bos, Tiphaine Dalmas,
James R. Curran, Stephen Clark, Colin J. Bannard,
Mark Steedman, and Bonnie Webber. 2003. The QED
open-domain answer retrieval system for TREC 2003.
In Proceedings of the Twelfth Text Retrieval Confer-
ence (TREC 2003), NIST Special Publication 500-255,
pages 595–599, Gaithersburg, MD.

P. Ogilvie and J. Callan. 2002. Experiments using the
lemur toolkit. InProceeding of the 2001 Text Retrieval
Conference (TREC 2001), pages 103–108.

T. F. Smith and M. S. Waterman. 1981. Identification of
common molecular subsequences.Journal of Molecu-
lar Biology, 147:195–197.

