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Preface

This book developed out of courses on computational semantics that
the authors jointly taught at the Department of Computational Lin-
guistics, University of the Saarland, Saarbrücken, Germany, in 1995 and
1998, and at ESSLLI’97, the 9th European Summer School in Logic,
Language and Information, Aix-en-Provence, France, in August 1997.
When designing these courses, we found no single source containing all
the material we wanted to present. At that time, the only notes exclu-
sively devoted to computational semantics that we knew of were Cooper
et al. (1993), probably the first systematic introduction to modern com-
putational semantics. Like the present book, these notes are Prolog
based, and cover some of the same ground, often using interestingly
different tools and techniques. However we wanted to teach the subject
in a way that emphasized inference, underspecification, and grammar
engineering and architectural issues. By the end of the 1990s we had a
first version of the book, influenced by Pereira and Shieber (1987) and
Johnson and Kay (1990) for semantic construction, and Fitting (1996)
for inference, which partially realised these goals.

The project then took on a life of its own: it expanded and grew
in a variety of (often unexpected) directions. Both the programs and
text were extensively rewritten, some parts several times. We first pre-
sented a mature, more-or-less stable, version of the newer material at
ESSLLI’01, the 13th European Summer School for Logic, Language, and
Information, Helsinki, Finland, in August 2001. We then presented it
in a more refined form at NASSLLI’02, the 2nd North American Sum-
mer School for Logic, Language, and Information, Indiana University ,
Bloomington, Indiana, USA, in June 2002. And finally, many years after
we started, we have ended up with the kind of introduction to compu-
tational semantics that we wanted all along. It has taken us a long
time to get there, but the journey was a lot of fun. We hope that this
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viii / Representation and Inference for Natural Language

comes through, and that the book will be a useful introduction to the
challenging and fascinating area known as computational semantics.
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Introduction

This book introduces a number of fundamental techniques for comput-
ing semantic representations for fragments of natural language and per-
forming inference with the result. Both the underlying theory and their
implementation in Prolog are discussed. We believe that the reader who
masters these techniques will be in a good position to appreciate (and
critically assess) ongoing developments in computational semantics.

Computational semantics is a relatively new subject, and trying to
define such a lively area (if indeed it is a single area) seems premature,
even counterproductive. However, in this book we take “semantics”
to mean “formal semantics” (that is, the business of giving model-
theoretic interpretations to fragments of natural language, usually with
the help of some intermediate level of logical representation) and “com-
putational semantics” to be the business of using a computer to actually
build such representations (semantic construction) and reason with the
result (inference). Thus this book introduces techniques for tackling the
following two questions:

1. How can we automate the process of associating semantic repre-
sentations with expressions of natural language?

2. How can we use logical representations of natural language ex-
pressions to automate the process of drawing inferences?

In the remainder of the Introduction we’ll briefly sketch how we are
going to tackle these questions, explain where we think computational
semantics belongs on the intellectual landscape, suggest how best to
make use of the text and the associated software, and (in the Notes
at the very end) give a brief historical account of the origins of com-
putational semantics. Some of the discussion that follows may not be
completely accessible at this stage, especially if you have never encoun-
tered semantics or logic before. But if this is the case, don’t worry. Con-
centrate on the straightforward parts (such as the chapter-by-chapter

xi
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outline and the advice on using this book), and then go straight on
to the chapters that follow. You can return to the Introduction later;
by then you will be in a better position to assess the perspective on
computational semantics that has guided the writing of this book.

Representation

As regards semantic construction, this book is fairly orthodox (though
see below for some caveats). We first introduce the reader to first-order
logic, and then show how various kinds of sentences of natural language
can be systematically translated into this formalism. For example, the
techniques we discuss (and the software we implement) will enable us
to take a sentence like

Every boxer loves Mia.

as input and return the following formula of first-order logic as output:

∀x(boxer(x)→ love(x,mia)).

The technical tool we shall use to drive this translation process is the
lambda calculus. We motivate and introduce the lambda calculus from
a computational perspective, and show in detail how it can be incor-
porated into an architecture for building semantic representations.

To put it another way, it’s not inaccurate to claim that roughly half
of this book is devoted to what is known as Montague semantics. Yes,
it’s true that we don’t discuss a lot of topics that would ordinarily be
taught in a first course on Montague semantics (for example, we don’t
discuss intensional semantics). But in our view Richard Montague was
not merely the father of formal semantics (or model-theoretic semantics,
as it is often called), he was also the father of computational semantics.
Richard Montague made many pioneering contributions to the study of
semantics, but in our view the most important was the conceptual leap
that opened the door to genuine computational semantics: he showed
that the process of constructing semantic representations for expres-
sions of natural language could be formulated algorithmically . Many
philosophers before Montague (and many philosophers since) have used
(various kinds of) logic to throw light on (various aspects of) natural
language. But before Montague’s work, such comparisons were essen-
tially analogies. Montague showed how to link logic and language in a
systematic way, and it is this aspect of his work that lies at the heart
of this book.

Inference

But this book is not just about representation, it is also about inference.
Now, inference is a vast topic, and it is difficult to be precise about what
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is (and is not) covered by this term. But, roughly speaking, we view
inference as the process of making implicit information explicit . To
keep this book to a manageable size we have focused on one particular
aspect of this process, namely the making of logical inferences. We
have done so by formulating three inference tasks—the querying task,
the consistency checking task, and the informativity checking task—
and have looked at inference in natural language through the lens they
provide. For example, it is intuitively clear that the discourse

Every boxer loves Mia. Butch is a boxer. Butch does not love Mia.

is incoherent. But why is it incoherent? As we shall show in Chap-
ter 1, the consistency checking task gives us an important theoretical
handle on this type of incoherency. Moreover in the second half of the
book we shall create a computational architecture that makes use of
sophisticated automated reasoning tools to give us a useful (partial)
grasp on consistency checking (partial, because of the undecidability of
first-order logic). We conclude the book by showing how our semantic
construction software (part of Richard Montague’s legacy) and our in-
ference architecture (the legacy of John Alan Robinson and the other
pioneers of automated reasoning) can be integrated.

Comments and caveats

Well, that’s where we heading—but before moving on, two remarks
should be made. First, above we talked about semantic construction
and inference as if they were independent, but in fact they’re not. In-
deed, how semantic construction and inference are interleaved is an
extremely deep and difficult problem, and we certainly don’t claim to
have solved it in this book. Nonetheless, we do believe that the is-
sues this problem raises need to be explored computationally, and that
architectures of the type discussed here—that is, architectures which
draw on both semantic construction and inference modules—will be-
come fundamental research tools.

Second, the working definition of computational semantics given
above isn’t quite as innocent as it looks. Many formal semanticists claim
that intermediate levels of logical representation are essentially redun-
dant. Richard Montague himself, in his paper “English as a Formal
Language”, showed how a small fragment of English could be model-
theoretically interpreted without first translating it into an interme-
diate logical representation. Moreover, in his paper “Universal Gram-
mar”, he showed that (given certain assumptions) it is always possible
to interpret fragments of natural language in this way.

Nonetheless, we feel justified in emphasising the role of intermedi-
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ate logical representations. For a start, the move to a computational
perspective on formal semantics certainly increases the practical im-
portance of the representation level. Logical representations—that is,
formulas of a logical language—encapsulate meaning in a clean and
compact way. They make it possible to use well understood proof sys-
tems to perform inference, and we shall learn how to exploit this pos-
sibility. Models may be the heart of traditional formal semantics, but
representations are central to its computational cousin.

Moreover—and this is something that we hope becomes increasingly
clear in the course of the book—we feel that the computational per-
spective vividly brings out the theoretical importance of representa-
tions. The success of Discourse Representation Theory (DRT) over the
past two decades, the explosion of interest in underspecification (which
we explore in Chapter 3) and the exploration of glue languages such
as linear logic to drive the process of semantic construction all bear
witness to an important lesson: semanticists ignore representations at
their peril. Representations are well-defined mathematical entities that
(among other things) can be manipulated computationally, explored
geometrically, and specified indirectly with the aid of constraints. The
fact that representations are theoretically eliminable does not mean
they should not be taken seriously.

But why computational semantics?

Our discussion so far has taken it for granted that computational se-
mantics is an interesting subject, one well worth studying. But it is
probably a good idea to be explicit about why we think this is so.

We believe that the tools and techniques of computational semantics
are going to play an increasingly important role in the development of
semantics. Now, semantics has made enormous strides since the pio-
neering work of Richard Montague in the late 1960s and early 1970s.
Nonetheless, we believe that its further development is likely to become
increasingly reliant on the use of computational tools. Modern formal
semantics is still a paper-and-pencil enterprise: semanticists typically
examine in detail a topic that interests them (for example, the seman-
tics of tense, or aspect, or focus, or generalized quantifiers), abstract
away from other semantic phenomena, and analyse the chosen phe-
nomenon in detail. This “work narrow, but deep” methodology has
undeniably served semanticists well, and has lead to important insights
about many semantic phenomena. Nonetheless, we don’t believe that
it can unveil all that needs to be known about natural language seman-
tics, and we don’t think it is at all suitable for research that straddles
the (fuzzy and permeable) border between semantics and pragmatics
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(the study of how language is actually used). Rather, we believe that
in the coming years it will become increasingly important to study the
interaction of various semantic (and pragmatic) phenomena, and to
model, as precisely as possible, the role played by inference.

Now, it’s easy to say that this is what should be done—actually do-
ing it, however, is difficult. Indeed, as long as semanticists rely purely
on pencil-and-paper methods, it is hard to see how this style of research
can produce detailed results. In our view, computational modelling is
required. That is, we believe that flexible computational architectures
which make it possible to experiment with semantic representations,
semantic construction strategies, and inference, must be designed and
implemented. To give an analogy, nowadays it is possible to use sophis-
ticated graphics programs when studying large molecules (such as pro-
teins). Such programs make it possible to grasp the three-dimensional
structure of the molecule, and hence to think at a more abstract level
about their properties and the reactions they can enter into. Semanti-
cists need analogous tools. The ability to formulate detailed semantic
theories, and to compute rapidly what they predict, could open up
a new phase of research in semantics. It could also revolutionise the
teaching of semantics.

Two comments. First, note that we’re not claiming that semanticists
should abandon their traditional “work narrow, but deep” strategy;
this style of research is indispensable. Rather, we are suggesting that
it should be augmented by a computer-aided “work broad, and model
the interactions” approach. Second—before anyone gets their hopes up
prematurely—we would like to emphasise that the software discussed
in this book does not constitute a genuine research architecture. The
design and implementation of the type of “Semantic Workbenches”
we have in mind is a serious task, one far beyond the scope of an
introduction to computational semantics. But we certainly do hope that
the software provided here will inspire readers to design and implement
more ambitious systems.

Computational semantics and computational linguistics

So that’s our answer to the question “Why computational semantics?”.
But although this answer might well interest (or enrage!) formal seman-
ticists, there is another group of researchers who may find it unconvinc-
ing. Which group? Computational linguists. We wouldn’t be surprised
to learn that some computational linguists are dubious about our aims
and methods. Where is the statistics? Where is the use of corpora? Why
analyse sentences in such depth? Does inference really require the use
of such powerful formalisms as first-order logic? Indeed, does inference
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really require logic at all? We would like to make two brief remarks
here, for we certainly do view the techniques taught in this book as an
integral part of computational linguistics.

Firstly, what we teach in this book is certainly compatible with sta-
tistically-oriented approaches to computational linguistics. In essence,
we provide some fundamental semantic construction tools (the use of
lambda calculus, coupled with methods for coping with scope ambigui-
ties) and inference tools (an architecture for using theorem provers and
model builders in parallel) and put them to work. In this book these
components are used via a simple Definite Clause Grammar (DCG)
architecture, but they certainly don’t have to be. They can be—and
have been—combined with such tools as speech recognisers and wide
coverage statistical parsers to build more interesting systems.

Secondly, we believe that the methods taught in this book are
not merely compatible, but might actually turn out to be useful to
statistically-oriented work. This book was born from the conviction
that formal semantics has given rise to the deepest insights into the
semantics of natural language that we currently have—and an ac-
companying belief that a computational perspective is needed to fully
unleash their potential. So we find it natural (and important) to look
for points of contact with mainstream computational linguistics. For
example, many computational linguists want to extend the statistical
revolution of the late 1980s and early 1990s (which transformed such
areas as speech processing and parsing) to the semantic domain. We
don’t see any conflict between this goal and the ideas explored in this
book. Indeed, we believe that techniques from computational seman-
tics may be important in exploring statistical approaches to semantics:
detailed training corpora will be needed, and the techniques of com-
putational semantics may be helpful in producing the requisite “gold
standard” material.

It is true that these remarks are somewhat speculative. Nonetheless,
in our view the low cost of massive computational power, the ubiqui-
tous presence of the internet, the sophistication of current automated
reasoning tools, and the superb linguistic resources now so widely avail-
able, all add up to a new era in semantic research. Understanding how
natural language works is one of the toughest (and most interesting)
problems there is. It’s time to get all hands on deck.

Outline

The key aim of this book is to develop a working toolkit for computa-
tional semantics. We develop this toolkit as follows:
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Chapter 1. First-Order Logic. We begin by introducing the syntax
and semantics of first-order logic, the semantic representation language
used in this book. We then define and discuss the three inference tasks
we are interested in: the querying task, the consistency checking task,
and the informativity checking task. Following this, we implement a
first-order model checker in Prolog. A model checker is a program that
checks whether a formula is true in a given model, or to put it another
way, it is a piece of software that performs the querying task.

Chapter 2. Lambda Calculus. Here we start studying semantic con-
struction. We outline the methodology underlying our work (namely,
compositionality) and motivate our use of DCGs (Definite Clause
Grammars). We then write two rather naive programs that build se-
mantic representations for a very small fragment of English. These
experiments lead us to the lambda calculus, the tool that drives this
book’s approach to semantic construction. We implement β-conversion,
the computational core of the lambda calculus, and then integrate it
into the grammatical architecture that will be used throughout the
book.

Chapter 3. Underspecified Representations. Here we investigate
a fundamental problem for computational semantics: scope ambigu-
ities. These are semantic ambiguities that can arise in syntactically
unambiguous expressions, and they pose a problem for compositional
approaches to semantic construction. We illustrate the problem, and
present four (increasingly more sophisticated) solutions: Montague’s
use of quantifier raising, Cooper storage, Keller storage, and hole se-
mantics. We integrate storage and hole semantics into our grammar
architecture.

Chapter 4. Propositional Inference. Here we turn to the second
major theme of the book: inference. Our approach to inference will be
based on first-order theorem proving and model building, and in this
chapter we lay the conceptual foundations for the work of Chapter 5 in
the simpler setting of propositional logic. We introduce a signed tableau
and a resolution system for propositional calculus, implement both
in Prolog, and conclude with a discussion of a number of theoretical
issues.

Chapter 5. First-Order Inference. In this chapter we explore in-
ference in the setting of full first-order logic—and, as we swiftly learn,
that’s a computationally demanding setting. We extend the proposi-
tional and resolution theorem provers to deal with first-order logic, but
we also see that home-brewed theorem provers simply don’t have the
muscle for tackling the consistency and informativity checking tasks
in a serious way. So we change tack: instead of building our own, we
show the reader how to integrate the sophisticated inference tools cre-
ated by the automated reasoning community into an inference architec-
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ture for computational semantics. By the end of the chapter, we have
constructed an architecture for consistency and informativity check-
ing that works by calling (sophisticated) theorem provers and model
builders in parallel.

Chapter 6. Putting It All Together. In this chapter we bring
together the software developed in earlier chapters and develop a se-
ries of programs bearing the name Curt (which stands for Clever Use
of Reasoning Tools). Curt starts out as a real baby—it can build se-
mantic representations and detect scope ambiguities, but alas, nothing
more. No matter! By making use of our inference architecture, (and
the model checker developed in Chapter 1), we are able, step-by-step,
to extend Curt’s abilities so that it can handle consistency checking,
informativity checking, eliminate logically equivalent readings, incor-
porate background knowledge, and answer simple questions.

Here’s how the chapters fit together:

Chapter 1

Chapter 2, 3 Chapter 4, 5

Chapter 6

That is, Chapter 1 provides the foundation for everything that fol-
lows. Chapter 2 and 3 are the representation track of the book, and
should be read together. Similarly, Chapters 4 and 5 are the infer-
ence track of the book, and again, these two chapters should be read
together. The representation and inference tracks are independent of
each other, and can be read in either order. Finally, Chapter 6 draws
on all that has gone before.

Each chapter concludes with Notes that list references and briefly
discuss more advanced topics. Four appendices at the end of the book
provide background information.



“blackburnbos”
2004/12/13
page xix

i

i

i

i

i

i

i

i

Introduction / xix

Using this book

We have tried to make this book relatively self-contained. In fact, there
is only one real prerequisite that is not introduced here, namely the
Prolog programming language. To gain the most out of the computa-
tional side of this book, you will need to have some knowledge of this
language, and access to a Prolog interpreter. Many good books on Pro-
log are available, but we’d like to draw your attention to Learn Prolog
Now! , by Patrick Blackburn, Johan Bos, and Kristina Striegnitz. Writ-
ten in parallel with the present book, it contains everything needed
to understand the code presented here. Learn Prolog Now! is available
free on the internet at

http://www.learnprolognow.org/

For the Prolog interpreters that handle our software, see Appendix A.
Apart from Prolog, we believe that this book covers everything most

readers will need. Indeed, we believe that even readers with fairly mod-
est backgrounds in linguistics and logic should be able to follow the
discussion. We have taught this material both to linguistics students
(with rather weak logical and computational backgrounds) and to com-
puter science students (with stronger logical backgrounds, but no prior
exposure to linguistics). Our experience suggests that as long as the in-
structor is sensitive to the type of background knowledge the students
have, it is possible to successfully teach this material. Moreover, the
Notes at the end of each chapter provide many references for supple-
mentary reading. So if you are using this book for self study and get
stuck at some point, try looking at these.

But there is one point we would like to strongly emphasise to all
our readers: please take the computational component seriously. Yes,
it is certainly possible to read this book with only half an eye on the
computational developments. Moreover, we’ll also admit that even if
you’re allergic to computers and computer programming, but want to
learn about semantics in a way that emphasises inference, you can use
this book for that purpose without worrying too much about the Prolog
programs.

Still, while you can read the book this way, we feel it’s a bit of a
shame to do so—after all, this is a book on computational semantics,
and the reader who does not make the effort to get to grips with the
computational issues it discusses is getting (at most) fifty percent of
what this book has to offer. Now, there’s no denying that for some read-
ers the computational side will be the hard part—readers with weak
computational backgrounds will have to put in some extra work (apart
from anything else, they’ll have to learn something about Prolog). But
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the effort is well worth making. Thinking about problems computa-
tionally often reveals new perspectives on old ideas. For example, our
account of the lambda calculus in Chapter 2 makes no appeal to types,
function valued functions, or higher-order logic—rather, lambda calcu-
lus is presented as a beautiful piece of data-abstraction that emerges
naturally from a declarative analysis of semantic construction. To give
another example, the various techniques developed for handling scope
ambiguities (from Montague’s method, through storage methods, to
modern underspecification methods) display a conceptually clear evo-
lutionary line when viewed computationally.

Thus the computational side of this book should not be viewed as an
optional extra. Indeed, we might say that the ideal reader of this book
is someone who treats the text as documentation. Such a reader might
not wish to understand all the details of the programs provided, but he
or she would certainly want to play with them, perhaps by extending
the grammars, by experimenting with novel semantic constructions, by
applying the inference architecture to novel tasks, or by applying these
ideas to other languages. In short, don’t think of this as a book. Think
of it as a tool-kit for exploring computational semantics. And then put
it to work.

Web support

We have set up webpage for this book. The URL is

http://www.blackburnbos.org/

There you will find our Prolog programs, pointers to other useful soft-
ware (such as Prolog interpreters, theorem provers and model builders),
and any corrections to the text that need to be made. From time to
time we will place material there that extends the present text. For
example, Blackburn and Bos (2003), which can be read as a sort of
‘alternative introduction’ to this book, can be found on the website.

Notes

Modern logic and semantics stem from the work of Gottlob Frege (1848-
1925). On the logical side, Frege introduced the use of variable binding
quantifiers (we shall see such quantifiers in the following chapter when
we introduce first-order logic), and on the semantic side he introduced
a number of concepts (such as the distinction between the “sense” and
the “reference” of an expression) that are still important today. Readers
wanting a taste of Frege’s work could try Frege (1892). Translations of
this paper have been widely anthologised (for example you can find it
in Martinich (1996) under the title “On Sense and Nominatum”).
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Frege’s logical work and his ideas on the foundations of mathematics
became increasingly influential from roughly 1900 onwards, and their
influence endures till this day. But his pioneering work on semantics
took longer to bear fruit. While some important early work was done
(for example, by the philosopher Bertrand Russell) the next big steps
were not taken till the middle of the 20th century.

With the benefit of hindsight we can see that this delay was not
accidental, for a key idea was missing: the notion of interpretation in
a model . As we shall see in the following chapter, nowadays logic is
conceived of as having two main components. First, there is some kind
of formal logical language (for example, a language of first-order logic
that makes use of such symbols such as ∀, ∃, ∧, → and so on). But
in addition, crucial use is made of what are known as models, sim-
ple mathematical structures that act as pictures of the world (or at
least, that part of the world we happen to be interested in for our
application). At the heart of much modern logic is the idea of giving
a precise mathematical definition of how formal logical languages are
linked with models—or to put it more semantically, to specify how
formal languages are to be interpreted in models (such a definition is
usually called a satisfaction definition). One of the fundamental facts
that any theory of semantics is going to have to get to grips with is that
natural languages (like English) can be used to talk about the world
around us (for example, English speakers use the word “woman” for
adult human females). When we link a logical language with a model
via a satisfaction definition we gain a precise mathematical handle on
the language-world relationship.

In 1933 Alfred Tarski (1902–1983) gave the first fully explicit satis-
faction definition (see Tarski (1935) for a German translation of the Pol-
ish original). Its importance was quickly realised by both philosophers
and mathematicians, and stimulated serious work on semantics. In par-
ticular, Rudolf Carnap (1891–1979), produced an important body of
work. For example, his book “Meaning and Necessity” (Carnap, 1947)
is still well worth looking at: among other things it discusses the se-
mantics of belief and necessity (two key examples of intensionality in
natural language), examines the notion of “meaning postulate” in de-
tail (such postulates would nowadays be thought of as axioms encoding
world knowledge or lexical knowledge), and speculates on the possibil-
ity of extending Tarski’s model-based approach to semantics to handle
pragmatics too.

But it was with the work of Richard Montague (1930–1971) that se-
mantics finally came of age. Although Montague only wrote a handful of
papers on the subject, they were destined to shape subsequent research.
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Three of his papers, “Pragmatics” (Montague, 1968), “On the Nature
of Certain Philosophical Entities” (Montague, 1969), and “Pragmat-
ics and Intensional Logic” (Montague, 1970b) are technically sophisti-
cated developments of the program initiated by Carnap. (And as the
titles of two of these papers indicate, Montague was able to extend the
model-based approach to semantics to cover a pragmatic phenomenon,
namely indexicality.) But it is his last three papers “English as a For-
mal Language” (Montague, 1970a), “Universal Grammar” (Montague,
1970c), and “The Proper Treatment of Quantification in Ordinary En-
glish” (Montague, 1973) that sound a genuinely new note, for it is here
that Montague unveils what has become known as the method of frag-
ments. What does this mean? Simply that in these papers Montague
defined grammars for small portions of English, and showed how the
sentences generated by these grammars could be interpreted in models.
In “English as a Formal Language” Montague interpreted the English
fragment directly (that is, without first translating into an intermedi-
ate logical representation) whereas in “Universal Grammar” and “The
Proper Treatment of Quantification in Ordinary English” he first trans-
lated into higher-order logic. But this difference is far less important
than what is common to them all: in all three papers the interpretation
process required is completely explicit . In essence, all three papers give
interpretation algorithms for fragments of English. To be sure, nobody
would claim that the interpretations offered by Montague cover all as-
pects of what we might want to call meaning, and it is also true that
the fragments given by Montague were rather small. But such consid-
erations should not blind us to the fact that in these papers something
very important has taken place: we see the first glimpse of a possible
mechanism underlying natural language semantics.

It is not possible here to give a detailed account of developments
in semantics since the work of Montague. Perhaps the most important
development, and certainly the one of most relevance to computational
semantics, was the birth of Discourse Representation Theory (see Heim
(1982), Kamp (1984), and Kamp and Reyle (1993)). DRT (as it is usu-
ally called) has enabled Montague’s program to be extended from the
level of sentences to entire discourses, and has also enabled semantics
to make further inroads on the domain of pragmatics. But DRT and
many other interesting developments are beyond the scope of the book,
so we refer the reader to Partee (1997a) and Partee (1997b), two useful
discussions of Montague’s work and the research it inspired.

We now turn our attention from the development of formal seman-
tics to research conducted in two computational disciplines, namely
computational linguistics and Artificial Intelligence (AI). The formal



“blackburnbos”
2004/12/13
page xxiii

i

i

i

i

i

i

i

i

Introduction / xxiii

semantic tradition has been the primary source of much that we teach
in this book, but the way we view this material has been indelibly
marked by ideas from computational linguistics and AI. So let’s round
out the picture with a quick look at these traditions.

One of the basic themes of this book is the usefulness of logic as a tool
for representation and inference. But this is not a new idea—it’s a main-
stay of classical AI. It’s interesting to look through some of the more
influential AI textbooks, say Nilsson (1980), Winston (1981), Char-
niak and McDermott (1985), Rich and Knight (1990), and Russell and
Norvig (1995). All take first-order logic as a fundamental framework for
representation and inference (and not merely for natural language tasks
either), and discuss inference procedures for first-order logic (notably
resolution) in varying degrees of detail. Weaker formalisms (such as se-
mantic nets) are sometimes used and (especially in the later texts) the
point is explicitly made that such formalisms are essentially fragments
of first-order logic with good computational properties (for example,
semantic nets are a forerunner of what are nowadays known as descrip-
tion logics; see Baader et al. (2003)).

In short, many of the fundamental ideas on logic and inference un-
derlying these texts are close to those taught here. Indeed, much what
divides this book from these earlier introductions (apart from the ob-
vious fact that the texts just mentioned cover a wide range of top-
ics in AI, such as learning, planning, and image recognition, whereas
ours focuses exclusively on computational semantics) is simply due to
the explosive pace of contemporary research. When we talk about se-
mantic construction, we can draw on ideas (such as constraint-based
underspecification) that hadn’t been developed when these books were
written. And when we advocate the use of first-order logic and theorem
proving, we can point the reader to provers (and indeed, newer tools
such as model builders) whose performance dwarfs anything available
earlier. Moreover, in this book we emphasise the importance of develop-
ing architectures by finding the best available components and linking
them. This style of development wasn’t so practical in the 1980s and
early 1990s; nowadays, given the ubiquity of the internet, it seems likely
to become the default option.

So there is a broad similarity of aims and methods between what we
teach in this book and much that is done in computational linguistics
and AI—and given the fundamental role played by logic in these disci-
plines, we don’t find this surprising. If anything, what is surprising is
how long it has taken for a real alliance between computational linguis-
tics and formal semantics to be forged. For until the 1990s there seem
to have been few systematic attempts by researchers in computational
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linguistics (and AI) to make contact with ideas from formal seman-
tics (and attempts by formal semanticists to make serious contact with
ideas from computational linguistics and AI seem to have been even
thinner on the ground). That said, there are some interesting examples
of earlier work in computational linguistics that falls (or almost falls)
under our working definition of computational semantics. Let’s look at
a few.

Hobbs and Rosenschein (1978), a paper entitled “Making Compu-
tational Sense of Montague’s Intensional Logic”, suggests that Mon-
tague semantics is best thought of in terms of procedural semantics
rather than model-theoretic semantics; to add substance to this idea,
the paper contains a translation of Montague’s intensional logic into
the functional programming language Lisp. In Schubert and Pelletier
(1982), motivated by the need to carry out inference, the authors de-
fine a simple translation from a fragment of English (specified using a
context-free grammar) into what they call conventional logic. In Lands-
bergen (1982), on the other hand, the motivation is machine translation.
Montague’s logic is used as an interlingua: the source language is trans-
lated into it, and the resulting logical expression is used to help build a
sentence in the target language. In Main and Benson (1983), ideas from
Montague semantics are used in a question answering system. Also from
this period is Gunji (1981), a PhD thesis which is not only a pioneering
contribution to computational semantics, but to computational prag-
matics as well. Gunji, realising that a database in a computer can be
regarded as a model, defines a system in which incoming sentences are
translated into Montague-style logic. While the database is essentially
read-only memory as far as his semantic procedures are caused (that is,
logical formulas are evaluated in the database without altering it, much
as in a standard database query) there are also pragmatic procedures
that can modify the model (or as Gunji puts it, induce context changes)
which may well affect the semantic evaluations of later sentences.

It is also interesting to look through anthologies on computational
linguistics for evidence of interest in computational semantics. Actually,
one such collection “Computational Semantics. An Introduction to Ar-
tificial Intelligence and Natural Language Comprehension” (Charniak
and Wilks, 1976) contains in its title the earliest usage of the term
“computational semantics” that we know of. A collection of classic
papers that is well worth consulting is Grosz et al. (1986), and the
more recent collection Rosner and Johnson (1992) also contains much
of relevance. Finally, mention must be made of the collected papers of
Robert Moore, a researcher who has made many contributions to com-
putational semantics, ranging from work on semantic construction to
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intensional semantics (see Moore (1995)).
But it was sometime during the 1990s that computational semantics

really began to acquire its own identity. For a start, more solid bridges
between formal semantics and computational linguistics began to ap-
pear. For example, though the Handbook of Contemporary Semantic
Theory (Lappin, 1997) for the most part contains articles on tradi-
tional themes in formal semantics, it also contains an article devoted
to the use of attribute-value structure unification (a standard tech-
nique in computational linguistics) to build semantic representations
(see Nerbonne (1997)). And in the other direction, Jurafsky and Mar-
tin (2000), which has established itself as the standard introduction
to speech and language processing, teaches an approach to semantic
construction that is based on first-order logic and lambda calculus (see
in particular Chapters 14 and 15) and refers to the work of Richard
Montague and other researchers in formal semantics.

But perhaps the most important coming-of-age landmark was the
founding of the International Workshop on Computational Semantics
(IWCS) by Harry Bunt. The first was in 1995, and the workshop (which
is held in Tilburg in the Netherlands) has taken place every two years
ever since. It is the main meeting place for the computational seman-
tics community, and selected proceedings of two of these meetings are
available in book form (see Bunt and Muskens (1999) and Bunt et al.
(2001)). A more specialised workshop, Inference in Computational Se-
mantics (ICoS), was held in Amsterdam, The Netherlands in 1999,
and since then ICoS has been held in Schloss Dagstuhl, Germany (in
2000), in Siena, Italy (in 2001), and in Nancy, France (in 2003). Selected
proceedings of the first three meetings are available as special journal
issues (see Monz and De Rijke (2000), Bos and Kohlhase (2003) and
Kohlhase (2004)). Finally, in 1999 the Association for Computational
Linguistics approved the creation of SIGSEM, a Special Interest Group
in Computational Semantics. See

http://www.aclweb.org/sigsem

for further information.
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First-Order Logic

First-order logic is the formalism used in this book to represent the
meaning of natural language sentences and to carry out various infer-
ence tasks. In this chapter we introduce first-order logic from a model-
theoretic (that is, semantic) perspective, and write a Prolog program
for handling the simplest of the three inference tasks we shall discuss,
the querying task.

In more detail, this is what we’ll do. First, we define the syntax
and semantics of first-order logic. We pay particular attention to the
intuitions and technicalities that lie behind the satisfaction definition, a
mathematically precise specification of how first-order languages are to
be interpreted in models. We then introduce the three inference tasks
we are interested in: the querying task, the consistency checking task,
and the informativity checking task. All three tasks are defined model-
theoretically. Following this, we write a first-order model checker. This
is a tool for handling the querying task: the model checker takes as
input a first-order formula and a first-order model, and checks whether
the formula is satisfied in the model. By the time we’ve done all that,
the reader will have a fairly clear idea of what first-order logic is, and
it becomes profitable to consider more general issues. So, to close the
chapter, we discuss the strengths and weaknesses of first-order logic as
a tool for computational semantics.

1.1 First-Order Logic

In this section we discuss the syntax and semantics of first-order logic.
That is, we introduce vocabularies, first-order models and first-order
languages, and tie these concepts together via the crucial satisfaction
definition, which spells out how first-order languages are to be inter-
preted in models. We then discuss three extensions of the basic formal-
ism: function symbols, equality , and sorted first-order logic.

1
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Vocabularies

The main goal of this section is to define how first-order formulas (that
is, certain kinds of descriptions) are evaluated in first-order models
(that is, mathematical idealisations of situations). Simplifying some-
what (we’ll be more precise later), the purpose of the evaluation process
is to tell us whether a description is true or false in a given situation.

We shall soon be able to do this—but we need to exercise a little
care. Intuitively, it doesn’t make much sense to ask whether or not an
arbitrary description is true in an arbitrary situation. Some descrip-
tions and situations simply don’t belong together. For example, sup-
pose we are given a formula (that is, a description) from a first-order
language intended for talking about the various relationships and prop-
erties (such as loving , being a robber , and being a customer) that hold
of and between Mia, Honey Bunny, Vincent, and Yolanda. If we are
then given a model (that is, a situation) which records information
about something completely different (for example, which household
cleaning products are best at getting rid of particularly nasty stains)
then it doesn’t really make much sense to evaluate this particular for-
mula in that particular model. Vocabularies (or signatures as they are
sometimes called) allow us to avoid such problems; they tell us which
first-order languages and models belong together.

Here is our first vocabulary:

{ (love,2),
(customer,1),
(robber,1),
(mia,0),
(vincent,0),
(honey-bunny,0),
(yolanda,0) }.

Intuitively, this vocabulary is telling us two important things: the
topic of conversation, and the language the conversation is going to be
conducted in. Let’s spell this out a little.

First, the vocabulary tells us what we’re going to be talking about.
In the present case, we’re going to be talking about the love relation.
The 2 indicates that we think of loving as a binary relation (a relation
of arity 2 ). That is, we view loving as a relation that can hold between
two individuals. We are also going to be talking about being a customer
and being a robber . The 1s indicate that we think of these as unary re-
lations (or relations of arity 1 ). To put it another way, we view these as
properties that can hold of single individuals. In addition to these rela-
tions and properties, we’re also going to be talking about four specific
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individuals, namely Mia, Vincent , Honey Bunny , and Yolanda; the 0s
indicate that these are individuals and not properties or relations.

Second, the vocabulary also tells us how we are going to talk about
these things. In this case it tells us that we will be using a symbol love
for talking about the love relation, the symbols customer and robber
for talking about customers and robbers, and four constant symbols
(or names), namely mia, vincent, honey-bunny, and yolanda for
referring to Mia, Vincent, Honey Bunny, and Yolanda, respectively.

Incidentally, note that in this vocabulary there are no examples of a
symbol being used in two different ways. For example, there is no sym-
bol (say flub) being used both to refer to individuals and for talking
about a binary relation. And indeed, the usual convention in first-order
logic is not to allow symbols to be used in multiple ways: the same sym-
bol is never used to talk about relations of different arity, or to talk
about relations and refer to individuals. Prolog programmers, of course,
will be used to the opposite convention: when writing Prolog programs
it’s not at all unusual (and indeed, it can be very useful) to use the
same symbol as (say) both a two place predicate and as a three place
predicate.

Summing up, a vocabulary gives us all the information needed to
define the class of models of interest (that is, the kinds of situations
we want to describe) and the relevant first-order language (that is, the
kinds of descriptions we can use). So let’s now look at what first-order
models and languages actually are.

Exercise 1.1.1 Consider the following situation: Vincent is relaxed. The gun

rests on the back of the seat, pointing at Marvin. Jules is driving. Marvin is

tense. Devise a vocabulary suitable for talking about this situation. Give the
vocabulary in the set-theoretic notation used in the text.

Exercise 1.1.2 Devise a simple Prolog notation for representing vocabular-
ies (for example, take our set-theoretic notation and use Prolog lists in place
of the curly-brackets and ordered pairs). Write a program which checks that
something written in your notation really is a first-order vocabulary. For ex-
ample, it should check that each symbol is associated with a number giving
its arity, and that no symbol is used in two different ways.

First-Order Models

Suppose we’ve fixed some vocabulary. What should a first-order model
for this vocabulary be?

Our previous discussion has pretty much given the answer. Intu-
itively, a model is a situation. That is, it is a semantic entity: it con-
tains the kinds of things we want to talk about. Thus a model for a
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given vocabulary gives us two pieces of information. First, it tells us
which collection of entities we are talking about; this collection is usu-
ally called the domain of the model, or D for short. Second, for each
symbol in the vocabulary, it gives us an appropriate semantic value,
built from the items in D. This task is carried out by a function F
which specifies, for each symbol in the vocabulary, an appropriate se-
mantic value; we call such functions interpretation functions. Thus, in
set-theoretic terms, a model M is an ordered pair (D,F ) consisting
of a non-empty domain D and an interpretation function F specifying
semantic values in D.

What are appropriate semantic values? There’s no mystery here.
As constants are essentially the analogs in first-order logic of ordinary
names (that is, we will use constants to pick out individuals) each
constant should be interpreted as an element of D. (That is, for each
constant symbol c in the vocabulary, F (c) ∈ D.) As n-place relation
symbols are intended to denote n-place relations, each n-place relation
symbol R should be interpreted as an n-place relation on D. (To put
it set-theoretically, F (R) should be a set of n-tuples of elements of D.)

Let’s consider an example. We shall define a simple model for the
vocabulary given above. Let D be {d1, d2, d3, d4}. That is, this four
element set is the domain of our little model.

Next, we must specify an interpretation function F . Here’s one:

F (mia) = d1

F (honey-bunny) = d2

F (vincent) = d3

F (yolanda) = d4

F (customer) = {d1, d3}
F (robber) = {d2, d4}
F (love) = {(d4, d2), (d3, d1)}.

Note that every symbol in the vocabulary does indeed have an ap-
propriate semantic value: the four names pick out individuals, the two
arity 1 symbols pick out subsets of D (that is, properties, or 1-place
relations on D) and the arity 2 symbol picks out a 2-place relation on
D. In this model d1 is Mia, d2 is Honey Bunny, d3 is Vincent and d4 is
Yolanda. Both Honey Bunny and Yolanda are robbers, while both Mia
and Vincent are customers. Yolanda loves Honey Bunny and Vincent
loves Mia. Sadly, Honey Bunny does not love Yolanda, Mia does not
love Vincent, and nobody loves themselves.

Here’s a second model for the same vocabulary. We’ll use the same
domain (that is, D = {d1, d2, d3, d4}) but change the interpretation
function. To emphasise that the interpretation function has changed,
we’ll use a different symbol (namely F2) for it:



“blackburnbos”
2004/12/13
page 5

i

i

i

i

i

i

i

i

First-Order Logic / 5

F2(mia) = d2

F2(honey-bunny) = d1

F2(vincent) = d4

F2(yolanda) = d3

F2(customer) = {d1, d2, d4}
F2(robber) = {d3}
F2(love) = ∅.

In this model, three of the individuals are customers, only one is a
robber, and nobody loves anybody (the love relation is empty).

Note that in both the models we have defined so far, every en-
tity in D is named by exactly one constant. It’s important to re-
alise that models don’t have to be like this. Consider the model with
D3 = {d1, d2, d3, d4, d5} and the following interpretation function F3:

F3(mia) = d2

F3(honey-bunny) = d1

F3(vincent) = d4

F3(yolanda) = d1

F3(customer) = {d1, d2, d4}
F3(robber) = {d3, d5}
F3(love) = {(d3, d4)}.

In this model, not every entity has a name: both d3 and d5 are
anonymous. Moreover, d1 has two names. But this is a perfectly good
first-order model. For a start, there simply is no requirement that every
entity in a model must have a name; roughly speaking, we only bother
to name entities of special interest. (So to speak, the domain is made
up of stars, who are named, and extras, who are not.) Moreover, there
simply is no requirement that each entity in a model must be named
by at most one constant; just as in real life, one and the same entity
may have several names. Incidentally, note that although d3 and d5 are
anonymous, we do know something about them: they are both robbers.

Exercise 1.1.3 Once again consider the following situation: Vincent is re-

laxed. The gun rests on the back of the seat, pointing at Marvin. Jules is driving.

Marvin is tense. Using the vocabulary you devised in Exercise 1.1.1, present
this situation as a model (use the set-theoretic notation used in the text).

Exercise 1.1.4 Consider the following situation: There are four blocks. Two

of the blocks are cubical, and two are pyramid shaped. The cubical blocks are

small and red. The larger of the two pyramids is green, the smaller is yellow.

Three of the blocks are sitting directly on the table, but the small pyramid is

sitting on a cube. Devise a suitable vocabulary and present this situation as
a model (use the set-theoretic notation used in the text).
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First-Order Languages

Given some vocabulary, we build the first-order language over that vo-
cabulary out of the following ingredients:

1. All the symbols in the vocabulary. We call these symbols the
non-logical symbols of the language.

2. A countably infinite collection of variables x, y, z, w, . . . , and so
on.

3. The boolean connectives ¬ (negation), ∧ (conjunction), ∨ (dis-
junction), and → (implication).

4. The quantifiers ∀ (the universal quantifier) and ∃ (the existential
quantifier).

5. The round brackets ) and ( and the comma. (These are essentially
punctuation marks; they are used to group symbols.)

Items 2–5 are common to all first-order languages: the only thing
that distinguishes one first-order language from another is the choice
of non-logical symbols (that is, the choice of vocabulary). The boolean
connectives, are named after George Boole, a 19th century pioneer of
modern mathematical logic. Incidentally, countably infinite means that
our supply of variables can be indexed by the natural numbers: we can
think of the variables at our disposal as x1, x2, x3, x4,. . . , and so on.
So we’ll never run out of variables: there will always be an additional
new variable at our disposal should we need it.

So, suppose we’ve chosen some vocabulary. How do we mix these in-
gredients together? That is, what is the syntax of first-order languages?
First of all, we define a first-order term τ to be any constant or any
variable. (Later in this section, when we introduce function symbols,
we’ll see that some first-order languages allow us to form more richly
structured terms than this.) Roughly speaking, terms are the noun
phrases of first-order languages: constants can be thought of as first-
order analogs of proper names, and variables as first-order analogs of
pronouns.

What next? Well, we are then allowed to combine our ‘noun phrases’
with our ‘predicates’ (that is, the various relation symbols in the vo-
cabulary) to form atomic formulas:

If R is a relation symbol of arity n, and τ1, . . . , τn are terms, then
R(τ1, · · · , τn) is an atomic (or basic) formula.

Intuitively, an atomic formula is the first-order counterpart of a nat-
ural language sentence consisting of a single clause (that is, what tra-
ditional grammars call a simple sentence). The intended meaning of
R(τ1, · · · , τn) is that the entities named by the terms τ1, · · · , τn stand
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in the relation (or have the property) named by the symbol R. For
example

love(pumpkin,honey-bunny)

means that the entity named pumpkin stands in the relation denoted
by love to the entity named honey-bunny—or more simply, that
Pumpkin loves Honey Bunny. And

robber(honey-bunny)

means that the entity named honey-bunny has the property denoted
by robber—or more simply, that Honey Bunny is a robber.

Now that we know how to build atomic formulas, we can define more
complex descriptions. The following inductive definition tells us exactly
which well formed formulas (or wffs, or simply formulas) we can form.

1. All atomic formulas are wffs.

2. If φ and ψ are wffs then so are ¬φ, (φ∧ψ), (φ∨ψ), and (φ→ ψ).

3. If φ is a wff, and x is a variable, then both ∃xφ and ∀xφ are wffs.
(We call φ the matrix of such wffs.)

4. Nothing else is a wff.

Roughly speaking, formulas built using ¬ correspond to natural lan-
guage expressions of the form “it is not the case that . . . ”; for example,
the formula

¬love(pumpkin,honey-bunny)

means it is not the case that Pumpkin loves Honey Bunny, or more
simply, Pumpkin does not love Honey Bunny. Formulas built using ∧
correspond to natural language expressions of the form “. . . and . . . ”;
for example

(love(pumpkin,honey-bunny) ∧ love(vincent,mia))

means Pumpkin loves Honey Bunny and Vincent loves Mia. Formulas
built using ∨ correspond to expressions of the form “. . . or . . . ”; for
example

(love(pumpkin,honey-bunny) ∨ love(vincent,mia))

means Pumpkin loves Honey Bunny or Vincent loves Mia. Formulas
built using → correspond to expressions of the form “if . . . then . . . ”;
for example

(love(pumpkin,honey-bunny) → love(vincent,mia))

means if Pumpkin loves Honey Bunny then Vincent loves Mia.
First-order formulas of the form ∃xφ and ∀xφ are called quantified

formulas. Roughly speaking, formulas of the form ∃xφ correspond to
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natural language expressions of the form “Some . . . ” (or “Something
. . . ”, or “Somebody . . . ”, and so on). For example

∃xlove(x,honey-bunny)

means someone loves Honey Bunny. Formulas of the form ∀xφ corre-
spond to natural language expressions of the form “all . . . ” (or “every
. . . ”, or “Everything . . . ”, and so on). For example

∀xlove(x,honey-bunny)

means everyone loves Honey Bunny. And the quantifiers can be com-
bined to good effect:

∃x∀ylove(x,y)

means someone loves everybody, and

∀x∃ylove(x,y)

means everybody loves someone.
In what follows, we sometimes need to talk about the subformulas

of a given formula. The subformulas of a formula φ are φ itself and all
the formulas used to build φ. For example, the subformulas of

¬∀yperson(y)

are person(y), ∀yperson(y), and ¬∀yperson(y). However, we shall
leave it to the reader to give a precise inductive definition of subfor-
mulahood (see Exercise 1.1.8) and turn instead to a more important
topic: the distinction between free and bound variables.

Consider the following formula:

¬(customer(x) ∨ (∀x(robber(x) ∧ ∀yperson(y)))).

The first occurrence of x is free. The second and third occurrences
of x are bound ; they are bound by the first occurrence of the quantifier
∀. The first and second occurrences of the variable y are also bound;
they are bound by the second occurrence of the quantifier ∀. Here’s the
full inductive definition:

1. Any occurrence of any variable is free in any atomic formula.

2. If an occurrence of any variable is free in φ or in ψ, then that
same occurrence is free in ¬φ, (φ ∧ ψ), (φ ∨ ψ), and (φ→ ψ).

3. If an occurrence of a variable x is free in φ, then that occurrence is
free in ∀yφ and ∃yφ (for any variable y distinct from x). However,
no occurrence of x is free in ∀xφ and ∃xφ.

4. The only free variables in a formula φ are those whose freeness
follows from the preceding clauses. Any variable in a formula that
is not free is said to be bound.
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We can now give the following definition: if a formula contains no oc-
currences of free variables, then it is called a sentence of first-order
logic.

Although they are both called variables, free and bound variables
are really very different. (In fact, some formulations of first-order logic
use two distinct kinds of symbol for what we have lumped together
under the heading “variable”.) Here’s an analogy. Try thinking of a
free variable as something like the pronoun She in

She even has a stud in her tongue.

Uttered in isolation, this would be somewhat puzzling, as we don’t know
who She refers to. But of course, such an utterance would be made in
an appropriate context. This context might be either non-linguistic (for
example, the speaker might be pointing to a heavily tattooed biker,
in which case we would say that She was being used deictically or
demonstratively) or linguistic (perhaps the speaker’s previous sentence
was Honey Bunny is heavily into body piercing, in which case the name
Honey Bunny supplies a suitable anchor for an anaphoric interpretation
of She).

What’s the point of the analogy? Just as the pronoun She required
something else (namely, contextual information) to supply a suitable
referent, so will formulas containing free variables. Simply supplying a
model won’t be enough; we need additional information on how to link
the free variables to the entities in the model.

Sentences, on the other hand, are relatively self-contained. For ex-
ample, consider the sentence ∀xrobber(x). This is a claim that every
individual is a robber. Roughly speaking, the bound variable x in rob-
ber(x) acts as a sort of placeholder. In fact, the choice of x as a variable
here is completely arbitrary: for example, the sentence ∀yrobber(y)
means exactly the same thing. Both sentences are simply a way of stat-
ing that no matter what entity we take the second occurrence of x (or
y) as standing for, that entity will be a robber. Our discussion of the
interpretation of first-order languages in first-order models will make
these distinctions precise (indeed, most of the real work involved in
interpreting first-order logic centres on the correct handling of free and
bound variables).

But before turning to semantic issues, a few more remarks on first-
order syntax are worth making. First, in what follows, we won’t always
keep to the official first-order syntax defined above. In particular, we’ll
generally try to use as few brackets as possible, as this tends to improve
readability. For example, we would rarely write

(customer(vincent) ∧ robber(pumpkin)),
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which is the official syntax. Instead, we would (almost invariably) drop
the outermost brackets and write

customer(vincent) ∧ robber(pumpkin).

To help reduce the bracket count even further, we assume the follow-
ing precedence conventions for the boolean connectives: ¬ binds more
tightly than ∨ and ∧, both of which in turn bind more tightly than →.
What this means, for example, is that the formula

∀x(¬customer(x) ∧ robber(x) → robber(x))

is shorthand for

∀x((¬customer(x) ∧ robber(x)) → robber(x)).

In addition, we sometimes use the square brackets ] and [ as well as
the official round brackets, as this can make the intended grouping of
symbols easier to grasp visually. Further conventions are introduced in
Exercise 1.2.3.

Second, the following terminology is quite useful: in a formula of the
form φ ∨ ψ the subformulas φ and ψ are called disjuncts, in a formula
of the form φ ∧ ψ the subformulas φ and ψ are called conjuncts, and
(most useful of all) in a formula of the form φ→ ψ the subformula φ is
called the antecedent of the implication and the subformula ψ is called
the consequent .

Finally, we remark that there is a natural division in first-order lan-
guages between formulas which do not contain quantifiers, and formulas
which do. Intuitively, formulas which don’t contain quantifiers are sim-
pler: after all, then we don’t need to bother about variable binding and
the free/bound distinction. And indeed, as we shall learn in Chapter 4,
in important respects the quantifier-free fragment of a first-order lan-
guage is much simpler than the full first-order language of which it is
a part.

Logicians have a special name for the quantifier-free part of first-
order logic: they call it propositional logic. We suspect that most read-
ers will have had some prior exposure to propositional logic, but for
those who haven’t, Appendix B discusses it and introduces the nota-
tional simplifications standardly used when working with this impor-
tant sublogic.

Exercise 1.1.5 Represent the following English sentences in first-order
logic:

1. If someone is happy, then Vincent is happy.

2. If someone is happy, and Vincent is not happy, then Jules is happy or

Butch is happy.
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3. Everyone is happy, or Butch and Pumpkin are fighting, or Vincent has a

weird experience.

4. Some cars are damaged and there are bullet holes in some of the walls.

5. All the hamburger are tasty, all the fries are good, and some of the milk-

shakes are excellent.

6. Everybody in the basement is wearing a leather jacket or a dog collar.

Exercise 1.1.6 Consider the sentence Either Butch and Pumpkin are fight-
ing or Vincent has a weird experience. Arguably the sense of Either . . . or

. . . used in this sentence is stronger than the use of plain . . . or . . . in the
sentence Butch and Pumpkin are fighting or Vincent has a weird experience.
Explain the difference, and show how the stronger sense of Either . . . or . . .

can be represented in first-order logic.

Exercise 1.1.7 Which occurrences of variables are bound, and which are
free, in the following formulas:

1. robber(y)

2. love(x,y)

3. love(x,y) → robber(y)

4. ∀y(love(x,y) → robber(y))

5. ∃w∀y(love(w,y) → robber(y)).

Exercise 1.1.8 Give an inductive definition of subformulahood. That is,
for each kind of formula in the language (atomic, boolean, and quantified)
specify exactly what its subformulas are.

Exercise 1.1.9 Use the inductive definition given in the text to prove that
any occurrence of a variable in any formula must be either free or bound.

The Satisfaction Definition

Given a model of appropriate vocabulary, any sentence over this vo-
cabulary is either true or false in that model. To put it more formally,
there is a relation called truth which holds, or does not hold, between
sentences and models of the same vocabulary. Now, using the informal
explanation given above of what the boolean connectives and quan-
tifiers mean, it is sometimes obvious how to check whether a given
sentence is true in a given model: for example, to check the truth of
∀xrobber(x) in a model we simply need to check that every individual
in the model is in fact a robber.

But an intuition-driven approach to the truth of first-order sentences
is not adequate for our purposes. For a start, when faced with a complex
first-order sentence containing many connectives and quantifiers, our
intuitions are likely to fade. Moreover, in this book we are interested in
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computing with logic: we want a mathematically precise definition of
when a first-order sentence is true in a model, a definition that lends
itself to computational implementation.

Now, the obvious thing to try to do would be to give an inductive
definition of first-order truth in a model; that is, it seems natural to
define the truth (or falsity) of a sentence in terms of the truth (or fal-
sity) of the subsentences of which it is composed. But there’s a snag:
we cannot give a direct inductive definition of truth, for the matrix
of a quantified sentence typically won’t be a sentence. For example,
∀xrobber(x) is a sentence, but its matrix robber(x) is not. Thus an
inductive truth definition defined solely in terms of sentences couldn’t
explain why ∀xrobber(x) was true in a model, for there are no sub-
sentences for such a definition to bite on.

Instead we proceed indirectly. We define a three place relation—
called satisfaction—which holds between a formula, a model, and an
assignment of values to variables. Given a model M = (D,F ), an as-
signment of values to variables in M (or more simply, an assignment
in M) is a function g from the set of variables to D. Assignments are
a technical device which tell us what the free variables stand for. By
making use of assignment functions, we can inductively interpret arbi-
trary formulas in a natural way, and this will make it possible to define
the concept of truth for sentences.

But before going further, one point is worth stressing: the reader
should not view assignment functions simply as a technical fix designed
to get round the problem of defining truth. Moreover, the reader should
not think of satisfaction as being a poor relation of truth. If anything,
satisfaction, not truth, is the fundamental notion, at least as far as
natural language is concerned. Why is this?

The key to the answer is the word context . As we said earlier, free
variables can be thought of as analogs of pronouns, whose values need
to be supplied by context. An assignment of values to variables can
be thought of as a (highly idealised) mathematical model of context;
it rolls up all the contextual information into one easy to handle unit,
specifying a denotation for every free variable. Thus if we want to use
first-order logic to model natural language semantics, it is sensible to
think in terms of three components: first-order formulas (descriptions),
first-order models (situations) and variable assignments (contexts). The
idea of assignment-functions-as-contexts is important in contemporary
formal semantics; it has a long history and has been explored in a
number of interesting directions (see the Notes at the end of the chapter
for further discussion).

But let’s return to the satisfaction definition. Suppose we’ve fixed
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our vocabulary. (That is, from now on, when we talk of a model M ,
we mean a model of this vocabulary, and whenever we talk of formulas,
we mean the formulas built from the symbols in that vocabulary.) We
now give two further technical definitions which will enable us to state
the satisfaction definition concisely.

First, let M = (D,F ) be a model, let g be an assignment in M , and
let τ be a term. Then the interpretation of τ with respect to M and
g is F (τ) if τ is a constant, and g(τ) if τ is a variable. We denote the
interpretation of τ by Ig

F (τ).
The second idea we need is that of a variant of an assignment of

values to variables. So, let g be an assignment in some model M , and
let x be a variable. If g′ is also an assignment in M , and for all variables
y distinct from x we have that g′(y)= g(y), then we say that g′ is an
x-variant of g. Variant assignments are the technical tool that allows
us to try out new values for a given variable (say x) while keeping the
values assigned to all other variables the same.

We are now ready for the satisfaction definition. Let φ be a formula,
let M = (D,F ) be a model, and let g be an assignment in M . Then the
relation M, g |= φ (φ is satisfied in M with respect to the assignment
g) is defined inductively as follows:

M, g |= R(τ1, · · · , τn) iff (Ig
F (τ1), · · · , Ig

F (τn)) ∈ F (R)
M, g |= ¬φ iff not M, g |= φ
M, g |= φ ∧ ψ iff M, g |= φ and M, g |= ψ
M, g |= φ ∨ ψ iff M, g |= φ or M, g |= ψ
M, g |= φ→ ψ iff not M, g |= φ or M, g |= ψ
M, g |= ∃xφ iff M, g′ |= φ, for some x-variant g′ of g
M, g |= ∀xφ iff M, g′ |= φ, for all x-variants g′ of g.

(Here “iff” is shorthand for “if and only if”. That is, we are say-
ing that the relationship on left-hand side holds precisely when the
relationship on the right-hand side does too.) Note the crucial—and
intuitive—role played by the x-variants in the clauses for the quanti-
fiers. The clause for the existential quantifier boils down to this: ∃xφ is
satisfied in a given model, with respect to an assignment g, if and only if
there is some x-variant g′ of g that satisfies φ in the model. That is, we
have to try to find some value for x that satisfies φ in the model, while
keeping the assignments to all other variables the same. Similarly, the
clause for the universal quantifier says that ∀xφ is satisfied in a given
model, with respect to an assignment g, if and only if all x-variants g ′

of g satisfy φ in the model. That is, no matter what x stands for, φ has
to be satisfied in M .

We can now define what it means for a sentence to be true in a
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model:

A sentence φ is true in a model M if and only if for any assignment g
of values to variables in M , we have that M, g |= φ. If φ is true in M

we write M |= φ

This is an elegant definition of truth that beautifully mirrors the
special, self-contained nature of sentences. It hinges on the following
observation: it simply doesn’t matter which variable assignment we use
to compute the satisfaction of sentences. Sentences contain no free vari-
ables, so the only free variables we will encounter when evaluating one
are those produced when evaluating its quantified subformulas (if it
has any). But the satisfaction definition tells us what to do with such
free variables: simply try out variants of the current assignment and
see whether they satisfy the matrix or not. In short, start with what-
ever assignment you like—the result will be the same. It is reasonably
straightforward to make this informal argument precise, and the reader
is asked to do so in Exercise 1.1.15.

Still, for all the elegance of the truth definition, satisfaction is the
fundamental concept. Not only is satisfaction the technical engine pow-
ering the definition of truth, but from the perspective of natural lan-
guage semantics it is the fundamental notion. By making explicit the
role of variable assignments, it holds up a simple mirror to the process
of evaluating descriptions in situations while making use of contextual
information.

Exercise 1.1.10 Consider the model with D = {d1, d2, d3, d4, d5} and the
following interpretation function F :

F (mia) = d2

F (honey-bunny) = d1

F (vincent) = d4

F (yolanda) = d1

F (customer) = {d1, d2, d4}
F (robber) = {d3, d5}
F (love) = {(d3, d4)}.

Are the following sentences true or false in this model?

1. ∃xlove(x,vincent)

2. ∀x(robber(x)→ ¬customer(x))

3. ∃x∃y(robber(x) ∧ ¬robber(y) ∧ love(x,y)).

Exercise 1.1.11 Give a model that makes all the following sentences true:

1. has-gun(vincent)

2. ∀x(has-gun(x) → aggressive(x))

3. has-motorbike(butch)

4. ∀y(has-motorbike(y) ∨ aggressive(y))
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5. ¬has-motorbike(jules).

Exercise 1.1.12 Our presentation of first-order logic did not introduce all
the boolean connectives the reader is likely to encounter. For example, we did
not introduce the symbol↔, the bi-implication (or if and only if ) connective.
A formula of the form φ↔ ψ has the following satisfaction condition:

M, g |= φ↔ ψ iff either M, g |= φ and M, g |= ψ,

or not M, g |= φ and not M, g |= ψ.

That is, a bi-implication holds whenever both φ and ψ are satisfied (in some
model M with respect to g), or when neither φ nor ψ are satisfied (in some
model M with respect to g).

But we did not lose out by not introducing the bi-implication connective,
for anything we can say with its help we can say without: (φ→ ψ)∧ (ψ → φ)
means exactly the same thing as φ↔ ψ. To be more precise, (φ→ ψ)∧ (ψ →
φ) is satisfied in a model M with respect to an assignment g precisely when
φ↔ ψ is. Prove this.

Exercise 1.1.13 Two other booleans we did not introduce are ⊥ and >.
Syntactically, these expressions behave like atomic formulas. Semantically, ⊥
is never satisfied in any model with respect to any assignment whatsoever,
and > is satisfied in every model with respect to every assignment (that is,
we can gloss ⊥ as “always false”, and > as “always true”).

Show that φ →⊥ means the same thing as ¬φ (that is, show that two
expressions are satisfied with respect to exactly the same models and assign-
ments). Furthermore, show that > means the same thing as ⊥ ∨¬ ⊥.

Exercise 1.1.14 When we informally discussed the semantics of bound vari-
ables we claimed that in any model of appropriate vocabulary, ∀xrobber(x)
and ∀yrobber(y) mean exactly the same thing. We can now be more precise:
we claim that the first sentence is true in precisely the same models as the
second sentence. Prove this.

Exercise 1.1.15 We claimed that when evaluating sentences, it doesn’t
matter which variable assignment we start with. Formally, we are claim-
ing that given any sentence φ and any model M (of the same vocabulary),
and any variable assignments g and g′ in M , then M, g |= φ iff M, g′ |= φ.

We want the reader to do two things. First, show that the claim is false if φ
is not a sentence but a formula containing free variables. Second, show that
the claim is true if φ is a sentence.

Exercise 1.1.16 For any formula φ, given two assignments g and g′ which
differ only in what they assign to variables not in φ, and any model M (of
appropriate vocabulary) then we have that M, g |= φ iff M, g′ |= φ. Prove
this.
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This result tells us that we don’t need to worry about entire variable
assignments, but only about the (finite) part of the assignment containing
information about the (finitely many) variables that actually occur in the
formulas being evaluated. Indeed, instead of mentioning entire assignment
functions and writing things like M, g |= φ, logicians often prefer to specify
only what has been assigned to the free variables in the formula being evalu-
ated. For example, if φ is a formula with only x and y free, a logician would
be likely to write things like M |= φ[x ← d1, y ← d4] (assign d1 to the free
variable x, and d4 to the free variable y).

Function Symbols, Equality, and Sorted First-Order Logic

We have now presented the core ideas of first-order logic, but before
moving on we’ll discuss three extensions of the basic formalism: first-
order logic with function symbols, first-order logic with equality, and
sorted first-order logic.

Let’s first look at function symbols. Suppose we want to talk about
Butch, Butch’s father, Butch’s grandfather, Butch’s great grandfather,
and so on. Now, if we know the names of all these people this is easy
to do—but what if we don’t? A natural solution is to add a 1-place
function symbol father to the language. Then if butch is the constant
that names Butch, father(butch) is a term that picks out Butch’s
father, father(father(butch)) picks out Butch’s grandfather, and
so on. That is, function symbols are a syntactic device that let us form
recursively structured terms, thus letting us express many concepts in
a natural way.

Let’s make this precise. First, we shall suppose that it is the task of
the vocabulary to tell us which function symbols we have at our dis-
posal, and what the arity of each of these symbols is. Second, given this
information, we say (as before) that a model M is a pair (D,F ) where
F interprets the constants and relation symbols as described earlier,
and, in addition, F assigns to each function symbol f an appropriate
semantic entity. What’s an appropriate interpretation for an n-place
function symbol? Simply a function that takes n-tuples of elements of
D as input, and returns an element of D as output. Third, we need
to say what terms we can form using these new symbols. Here’s the
definition we require:

1. All constants and variables are terms.

2. If f is a function symbol of arity n, and τ1,. . . , τn are terms, then
f(τ1, . . . , τn) is also a term.

3. Nothing else is a term.

A term is said to be closed if and only if it contains no variables.
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Only one task remains: interpreting these new terms. In fact we
need simply extend our earlier definition of Ig

F in the obvious way.
Given a model M and an assignment g in M , we define (as before)
Ig
F (τ) to be F (τ) if τ is a constant, and g(τ) if τ is a variable. On

the other hand, if τ is a term of the form f(τ1, . . . , τn), then we define
Ig
F (τ) to be F (f)(Ig

F (τ1), . . . , I
g
F (τn)). That is, we apply the n-place

function F (f)—the function interpreting f—to the interpretation of
the n argument terms.

Function symbols are a natural extension to first-order languages,
as the fatherhood example should suggest. However, in this book we
won’t use them in our analyses of natural language semantics, we’ll
use them for more technical purposes. In particular, function symbols
play an important role in Chapter 5, where (in the guise of Skolem
functions) they will help us formulate inference systems for first-order
logic suitable for computational implementation.

Let’s now turn to equality. The first-order languages we have so far
defined have a curious expressive shortcoming: we have no way to assert
that two terms denote the same entity. This is real weakness as far as
natural language semantics is concerned—for example, we may wish to
assert that Marsellus’s wife and Mia are the same person. What are we
to do?

The solution is straightforward. Given any language of first-order
logic (with or without function symbols) we can turn it into a first-
order language with equality by adding the special two place relation
symbol =. We use this relation symbol in the natural infix way: that
is, if τ1 and τ2 are terms then we write τ1 = τ2 instead of the rather
ugly = (τ1, τ2). Beyond this notational convention, there’s nothing to
say about the syntax of = ; it’s just a two-place relation symbol. But
what about its semantics?

Here matters are more interesting. Although, syntactically, = is just
a 2-place relation symbol, it is a very special one. In fact (unlike love,
or hate, or any other two-place relation symbol) we are not free to
interpret it how we please. In fact, given any model M , any assignment
g in M , and any terms τ1 and τ2, we shall insist that

M, g |= τ1 = τ2 iff Ig
F (τ1) = Ig

F (τ2).

That is, the atomic formula τ1 = τ2 is satisfied if and only if τ1 and τ2
have exactly the same interpretation. In short, = really means equality.
In fact, = is usually regarded as a logical symbol on a par with ¬ or ∀,
for like these symbols it has a fixed interpretation, and a semantically
fundamental one at that.

So we can now assert that two names pick out the same individual.
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For example, to say that Yolanda is Honey Bunny we use the formula

yolanda=honey-bunny,

and (if we make use of the 1-place function symbol wife to mean wife-
of) we can say that Mia is Marsellus’s wife as follows:

mia=wife(marsellus).

The final extension of the basic first-order formalism we shall con-
sider is sorted first-order logic. Sometimes the things we want to talk
about are divided into natural subclasses—for example, objects in the
world can be categorised as either animate or inanimate. In such cases,
it can be natural to work with first-order languages with special vari-
ables which can only be interpreted by the individuals in a particular
subclass. Why? Because the use of such sorted variables enables us to
make simple and direct statements about (say) animate and inanimate
objects. For example, to say that All animate objects breath we could
simply use the expression

∀abreath(a)

where we are using the “a” as a variable which can only be interpreted
as an animate object. The use of the special variable enables us to
make a direct universal statement about all the individuals of a certain
sort (here, animate objects). Similarly, if we wanted to say that no
inanimate object talks we could use the expression

¬∃italk(i).

Here we are using “i” as a variable which can only be interpreted as an
inanimate object, and once again the fact that the variable is restricted
in its interpretation enables us to say what we want simply and directly.

So, sorted notation is convenient and compact, and indeed we shall
briefly make use of it in Chapter 3 when we discuss hole semantics.
Nonetheless, though sometimes convenient, anything that can be said
in sorted first-order logic can also be said in ordinary first-order logic.
For example, consider again the sentence All animate objects breath.
To represent this sentence in ordinary first-order logic, simply use the
following expression:

∀x(animate(x)→breath(x)).

Although the variable x can be interpreted by any object (animate or
inanimate), we achieve the desired restriction to animate objects by
making use of the unary relation symbol animate. Needless to say,
we insist that this symbol be interpreted by the set of animate ob-
jects. Similarly, to say that no inanimate object talks we could use the
ordinary first-order expression
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¬∃x(inanimate(x)∧talk(x)).

Once again, instead of making use of a special sort of variable that is
restricted in its interpretation, we have made use of an extra unary
relation symbol (here, inanimate) which we insist be interpreted by
the individuals in the relevant sort. The strategy suggested by these
examples is completely general: instead of making use of variables that
are restricted in their interpretation to certain sorts of object, we can
introduce special relation symbols to pick out the sorts we are interested
in.

We mostly work with ordinary (unsorted) first-order logic in this
book. For references on sorted first-order logic, see the Notes at the
end of the chapter.

Exercise 1.1.17 Use function symbols and equality to say that Butch’s
mother is Mia’s grandmother.

Exercise 1.1.18 There is a famous analysis, due to the philosopher Bertrand
Russell, of the meaning of the determiner the in sentences like The robber is

screaming. Russell claims that this sentence would be true in some situation
if (a) there was at least one robber in the situation, (b) there was at most
one robber in the situation, and (c) that robber was screaming. Write down
a first-order sentence which expresses this analysis of The robber is screaming.
Note: you will have to use the equality symbol.

1.2 Three Inference Tasks

Now that we know what first-order languages are, we have at our dis-
posal a fundamental tool for representing the meaning of natural lan-
guage expressions. But first-order logic can help with more than just
representation: it also gives us a grip on inference, and this is the topic
to which we now turn. We shall introduce three inference tasks: query-
ing , consistency checking , and informativity checking . The three tasks
are fundamental to computational semantics, and can be combined in
various ways to deal with many interesting problems in the semantics
of natural language.

By the end of the section the reader will have a good understand-
ing of what these three tasks are. We shall learn that the querying
task is relatively simple and can be handled by a piece of software
called a model checker. We shall also learn that the consistency and in-
formativity checking tasks are closely related, that both are extremely
difficult (indeed, undecidable), and that developing computational tools
to deal with them will force us to move on from the model-theoretic
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perspective of this chapter to the proof-theoretic perspective developed
in Chapters 4 and 5.

The Querying Task

The querying task is the simplest of the three inference tasks we shall
consider. It is defined as follows:

The Querying Task Given a model M and a first-order formula φ,
is φ satisfied in M or not?

And now we must consider two further questions: Why is this task
interesting? And can we deal with it computationally?

Models are situations and first-order formulas are descriptions. Thus
to ask whether a description holds or does not hold in a given situation
is to ask a fundamental question. Moreover, it is a question that can be
very useful; this may become clearer if we think in terms of databases
rather than situations.

A database is a structured collection of facts; databases vary in how
(and to what extent) they are structured, but if you think of a conven-
tional database as a first-order model you will not go far wrong. Now,
real databases are (often huge) repositories of content, and this content
is typically accessed by posing queries in specialised languages called
database query languages. The querying task we defined above is essen-
tially a more abstract version of what goes on in conventional database
querying, with first-order logic playing the role of the database query
language, and models playing the role of databases.

But what does this have to do with natural language? Here’s one
link. Suppose we have represented some situation of interest as a model
(maybe this model is some pre-existing database, or maybe it’s some-
thing we have dynamically constructed to keep track of a dialogue). But
however the model got there, it embodies content we are interested in,
and it is natural to try and use this content to provide answers to ques-
tions. Now (as we shall learn in Chapter 6) it is possible to translate
some kinds of natural language questions into first-order logic. And if
we do this, we have a way of answering them: we see if their translations
are satisfied in the model. In Chapter 6 we construct a simple question
answering system based on this idea.

Now for the second question: is querying a task we can compute?
The answer is basically yes, but there are two points we need to be
careful about.

First, note that we defined the querying task for arbitrary formulas,
not just for sentences. And if a formula contains free variables we can’t
simply evaluate it in a model—we also need to stipulate what the free
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variables stand for. Second, we don’t have a remotest chance of writing
software for querying arbitrary models. Many (in fact, most) models
are infinite, and while it is possible to give useful finite representations
of some infinite models, most are too big and unruly to be worked
with computationally. Hence we should confine our attention to finite
models (and given our models-as-databases analogy, this is a reasonable
restriction to make).

If we remember to pay attention to the free variables, and confine
our attention to finite models, then it certainly is possible to write a
program which performs the querying task. Such a program is called
a model checker , and in the following section we shall write a first-
order model checker in Prolog. We shall use this model checker when
we discuss question answering in Chapter 6.

A final remark. People with traditional logical backgrounds may be
surprised that we have defined querying as an inference task: tradi-
tional logic texts typically don’t define this task, and many logicians
wouldn’t consider evaluating a formula in a model to be a form of in-
ference. In our view, however, querying is a paradigmatic example of
inference. Consider what it involves. On the one hand, we have the
model, a repository (of a possibly vast amount) of low-level informa-
tion about entities, relationships, and properties. On the other hand we
have formulas, which may describe aspects of the situation in an ab-
stract, logically complex, way. Given even a not-very-large model and a
not-particularly-complex formula, it may be far from obvious whether
or not the formula is satisfied in the model. Computing whether a for-
mula is satisfied (or not satisfied) in a model is thus a beautiful example
of a process which makes implicit information explicit. Hence querying
can be viewed as a form of inference.

The Consistency Checking Task

Consistency is a commonly used concept in linguistics (especially in
semantics) and its central meaning is something like this: a consistent
description is one that “makes sense”, or “is intelligible”, or “describes
something realisable”. For example, Mia is a robber is obviously consis-
tent, for it describes a possible state of affairs, namely a situation in
which Mia is a robber. An inconsistent description, on the other hand
“doesn’t make sense”, or “attempts to describe something impossible”.
For example, Mia is a robber and Mia is not a robber is clearly inconsis-
tent. This description tears itself apart: it simultaneously affirms and
denies that Mia is a robber, and hence fails to describe a possible sit-
uation.

Consistency and inconsistency are important in computational se-
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mantics. Suppose we are analysing a discourse sentence by sentence.
If at some stage we detect an inconsistency, this may be a sign that
something has gone wrong with the communicative process. To give a
blatant example, the discourse

Mia is happy. Mia is not happy.

is obviously strange. It is hard to know what to do with the ‘informa-
tion’ it contains—but naively accepting it and attempting to carry on
is probably not the best strategy. Thus we would like to be able to
detect inconsistency when it arises, for it typically signals trouble.

But the ‘definitions’ given above of consistency and inconsistency are
imprecise. If we are to work with these notions computationally, we need
to pin them down clearly. Can the logical tools we have been discussing
help us define precise analogs of these concepts, analogs which do justice
to the key intuitions? They can: it is natural to identify the pre-theoretic
concept of consistency with the model-theoretic concept of satisfiability ,
and to identify inconsistency with unsatisfiability .

A first-order formula is called satisfiable if it is satisfied in at least
one model. As we have encouraged the reader to think of models as ide-
alised situations, this means that satisfiable formulas are those which
describe conceivable, or possible, or realisable situations. For example,
robber(mia) describes a realisable situation, for any model in which
Mia is a robber satisfies it. A formula that is not satisfiable in any
model is called unsatisfiable. That is, unsatisfiable formulas describe
inconceivable, or impossible, or unrealisable situations. For example,
robber(mia) ∧ ¬robber(mia) describes something that is unrealis-
able: there simply aren’t any models in which Mia both is and is not a
robber.

It is useful to extend the concepts of satisfiability and unsatisfiability
to finite sets of formulas. A finite set of formulas {φ1, . . . , φn} is satis-
fiable if φ1 ∧ · · · ∧ φn is satisfiable; that is, satisfiability for finite sets
of formulas mean “lump together all the information in the set using
conjunction and see if the result is satisfiable”. Similarly, a finite set of
formulas {φ1, . . . , φn} is unsatisfiable if φ1 ∧ · · · ∧ φn is unsatisfiable.

Note that satisfiability (and unsatisfiability) are model-theoretic or
(as it is sometimes put) semantic concepts. That is, both concepts are
defined using the notion of satisfaction in a model, and nothing else.
Furthermore, note that satisfiability (and unsatisfiability) are mathe-
matically precise concepts: we know exactly what first-order languages
and first-order models are, and we know exactly what it means when
we claim that a formula is satisfied in a model. Finally, it seems rea-
sonable to claim that the notion of a formula being satisfied in a model
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is a good analog of the pre-theoretic notion of descriptions that de-
scribe realisable states of affairs. Hence for the remainder of the book
we shall identify the mathematical notions “satisfiable” and “unsatisfi-
able” with the pre-theoretical notions “consistent” and “inconsistent”
respectively, and accordingly, we define the consistency checking task
as follows:

The Consistency Checking Task Given a first-order formula φ, is φ
consistent (that is: satisfiable) or inconsistent (that is: unsatisfiable)?

Some logicians might prefer to call this the satisfiability checking
task. But we prefer to talk about consistency checking, for it empha-
sises the pre-theoretic notion we are trying to capture. Incidentally,
consistency checking for finite sets of formulas is done in the obvious
way: we take the conjunction of the finite set, and test whether or not
it is satisfiable.

But is consistency checking something we can compute? The answer
is no, not fully. Consistency checking for first-order logic turns out
to be a very hard problem indeed. In fact, a well-known theorem of
mathematical logic tells us that there is no algorithm capable of solving
this problem for all possible input formulas. It is a classic example of
a computationally undecidable task.

We are not going to prove this undecidability result (see the Notes
at the end of the chapter for pointers to some nice proofs), but the fol-
lowing remarks should help you appreciate why the problem is so hard.
Note that the consistency checking task is highly abstract compared to
the querying task. Whereas the querying task is about manipulating
two concrete entities (a finite model and a formula), the consistency
checking task is a search problem—and what a search problem! Given
a formula, we have to determine if somewhere out there in the (vast)
mathematical universe of models, a satisfying model exists. Now, even
if a finite satisfying model exists, there are a lot of finite models; how
do we find the one we’re looking for? And anyway, some satisfiable for-
mulas only have infinite satisfying models (see Exercise 1.2.1); how on
earth can we find such models computationally?

Hopefully these remarks have given you some sense of why first-order
consistency checking is difficult. Indeed, given what we have just said,
it may seem that we should simply give up and go home! Remark-
ably, however, all is not lost. As we shall learn in Chapters 4 and 5,
it is possible to take a different perspective on consistency checking, a
proof-theoretic (or syntactic) perspective rather than a model-theoretic
perspective. That is, it turns out to be possible to re-analyse consistency
checking from a perspective that emphasises symbol manipulation, not
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model existence. The proof-theoretic perspective makes it possible to
create software that offers a useful partial solution to the consistency
checking problem, and (as we shall see in Chapter 6) such software is
useful in computational semantics.

The Informativity Checking Task

The main goal of this section is to get to grips with the pre-theoretic
concept of informativity (and uninformativity). We’ll start by defin-
ing the model-theoretic concepts of validity and invalidity, and valid
and invalid arguments. We’ll then show that these concepts offer us a
natural way of thinking about informativity.

A valid formula is a formula that is satisfied in all models (of the
appropriate vocabulary) given any variable assignment. To put it the
other way around: if φ is a valid formula, it is impossible to find a sit-
uation and a context in which φ is not satisfied. For example, consider
robber(x) ∨ ¬robber(x). In any model, given any variable assign-
ment, one (and indeed, only one) of the two disjuncts must be true,
and hence the whole formula will be satisfied too. We indicate that a
formula φ is valid by writing |= φ. A formula that is not valid is called
invalid. That is, invalid formulas are those which fail to be satisfied in
at least one model. For example robber(x) is an invalid formula: it is
not possible to satisfy it in any model where there are no robbers. We
indicate that a formula φ is invalid by writing 6|= φ.

There is a clear sense in which validities are logical: nothing can affect
them, they carry a cast-iron guarantee of satisfiability. But logic is often
thought of in terms of the more dynamic notion of valid arguments, a
movement, or inference, from premises to conclusions. This notion can
also be captured model-theoretically. Suppose φ1, . . . , φn, and ψ are a
finite collection of first-order formulas. Then we say that the argument
with premises φ1, . . . , φn and conclusion ψ is a valid argument if and
only if whenever all the premises are satisfied in some model, using
some variable assignment, then the conclusion is satisfied in the same
model using the same variable assignment. The notation

φ1, . . . , φn |= ψ

means that the argument with premises φ1, . . . , φn and conclusion ψ is
valid. Incidentally, there are many ways of speaking of valid arguments.
For example, it is also common to say that ψ is a valid inference from
the premises φ1, . . . , φn, or that ψ is a logical consequence of φ1, . . . , φn,
or that ψ is a semantic consequence of φ1, . . . , φn.

An argument that is not valid is called invalid . That is, an argument
with premises φ1, . . . , φn and conclusion ψ is an invalid argument if it
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is possible to find a model and a variable assignment which satisfies all
the premises but not the conclusion. We indicate that an argument is
invalid by writing

φ1, . . . , φn 6|= ψ.

Validity and valid arguments are closely related. For example, the
argument with premises ∀x(robber(x) → customer(x)) and rob-
ber(mia) and the conclusion customer(mia) is valid. That is:

∀x(robber(x) → customer(x)), robber(mia) |= customer(mia).

But now consider the following (valid) formula:

|= ∀x(robber(x) → customer(x)) ∧ robber(mia) → customer(mia).

Pretty clearly, the validity of the formula mirrors the validity of the
argument. And indeed, as this example suggests, with the help of the
boolean connectives ∧ and → we can convert any valid argument into
a validity. This is an example of the Semantic Deduction Theorem in
action. This theorem is fully stated (and the reader is asked to prove
it) in Exercise 1.2.2 below.

Validity and valid arguments are central concepts in model theory.
Logicians regard validities as important because validities embody the
abstract patterns that underly logical truth, and they regard valid ar-
guments as important because of the light they throw on mathematical
reasoning. (In a nutshell: for logicians, validities and valid arguments
are the good guys.) However, it is possible to view validity and valid
argumentation in a less positive way, and this brings us to the linguis-
tically important concepts of informativity and uninformativity.

There is a clear sense in which valid formulas are uninformative. Pre-
cisely because they are satisfied in all models, valid formulas don’t tell
us anything at all about any particular model. That is, valid formulas
don’t rule out possibilities—they’re boringly vanilla. Thus we shall in-
troduce an alternative name for valid formulas: we shall often call them
uninformative formulas, and we shall call invalid formulas informative
formulas. (So the good guys have become the bad guys and vice-versa.)
Moreover, as the concept of informativity turns out to be linguistically
relevant, we shall define the following task:

The Informativity Checking Task Given a first-order formula φ,
is φ informative (that is: invalid) or uninformative (that is: valid)?

Valid arguments can be accused of uninformativity too. If φ1, . . . , φn

|= ψ, and we already know that φ1, . . . , φn, then there is a sense in
which learning ψ doesn’t tell us anything new. For this reason we shall
introduce the following alternative terminology: if φ1, . . . , φn |= ψ, then
we shall say that ψ is uninformative with respect to. φ1, . . . , φn. On
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the other hand, suppose that φ1, . . . , φn 6|= ψ, and that we already
know that φ1, . . . , φn. Then if we are told ψ, we clearly have learned
something new. Hence, if φ1, . . . , φn 6|= ψ, then we shall say that ψ is
informative with respect to. φ1, . . . , φn.

By appealing to the Semantic Deduction Theorem, we can reduce
testing ψ for informativity (or uninformativity) with respect to φ1, . . . ,
φn to ordinary informativity checking. For the theorem tells us that ψ
is informative with respect to φ1, . . . , φn if and only if φ1∧· · ·∧φn → ψ
is an informative formula. So we can always reduce informativity issues
to a task involving a single formula, and this is the strategy we shall
follow in Chapter 6.

But why should computational linguists care about informativity?
The point is this: like inconsistency, uninformativity can be a sign that
something is going wrong with the communicative process. If later
sentences in a discourse are consequences of earlier ones, this should
probably make us suspicious, not happy. To give a particularly blatant
example, consider the discourse

Mia is married. Mia is married. Mia is married.

Obviously we should not clap our hands here and say “How elegant!
The second sentence is a logical consequence of the first, and the third
is a logical consequence of the second!” This is a clear example of mal-
functioning discourse. It patently fails to convey any new information.
If it was produced by a natural language generation system, we would
suspect the system needed debugging. If it was uttered by a person, we
would probably look for another conversational partner.

Now, it is important not to overstate the case here. In general, lack
of informativity is not such a reliable indicator of communicative prob-
lems as inconsistency. For a start, sometimes we may be interested in
discourses that embody valid argumentation (for example, if we are
working with mathematical text). Furthermore, sometimes it is appro-
priate to rephrase the same information in different ways. For example,
consider this little discourse:

Mia is married. She has a husband.

The second sentence is uninformative with respect to the first, but
this discourse would be perfectly acceptable in many circumstances.
Nonetheless, although uninformativity is not a failsafe indicator of trou-
ble, it is often important to detect whether or not genuinely new infor-
mation is being transmitted. So we need tools for carrying out infor-
mativity checking.

And this brings us to the next question: is informativity checking
computable? And once again the answer is no, not fully. Like the con-



“blackburnbos”
2004/12/13
page 27

i

i

i

i

i

i

i

i

First-Order Logic / 27

sistency checking task, the informativity checking task is undecidable.
We’re not going to prove this result, but given our previous discussion it
is probably clear that informativity checking is likely to be tough. After
all, informativity checking is a highly abstract task: validity means sat-
isfiable in all models, and there are an awful lot of awfully big models
out there.

This sounds like bad news, but once again there is light at the end
of the tunnel. As we shall learn in Chapters 4 and 5, it is possible to
take a proof-theoretic perspective on informativity checking. Instead of
viewing informativity in terms of satisfaction in all models, it is possible
to reanalyse it in terms of certain kinds of symbol manipulation. This
proof-theoretic perspective makes it possible to create software that
offers practical partial solutions to the informativity checking problem,
and (as we shall see in Chapter 6) we can apply this software to lin-
guistic issues.

Exercise 1.2.1 Consider the following formula:

∀x∃ybiggerthan(x,y) ∧ ∀x¬biggerthan(x,x)
∧ ∀x∀y∀z(biggerthan(x,y) ∧ biggerthan(y,z) → biggerthan(x,z)).

Is this formula satisfiable? Is it satisfiable in a finite model?

Exercise 1.2.2 The Semantic Deduction Theorem for first-order logic says
that φ1, . . . , φn |= ψ if and only if |= (φ1 ∧ · · · ∧ φn) → ψ. (That is, we
can lump together the premises using ∧, and then use → to state that this
information implies the conclusion.) Prove the Semantic Deduction Theorem.

Exercise 1.2.3 We say that two formulas φ and ψ are logically equivalent
if and only if φ |= ψ and ψ |= φ. For all formulas φ, ψ, and θ:

1. Show that φ ∧ ψ is logically equivalent to ψ ∧ φ, and that φ ∨ ψ is
logically equivalent to ψ ∨ φ (that is, show that ∧ and ∨ are both
commutative).

2. Show that (φ ∧ ψ) ∧ θ is logically equivalent to φ ∧ (ψ ∧ θ), and that
(φ ∨ ψ) ∨ θ is logically equivalent to φ ∨ (ψ ∨ θ) (that is, show that ∧
and ∨ are both associative).

3. Show that φ→ ψ is logically equivalent to ¬φ∨ψ (that is, show that→
can be regarded as a symbol defined in terms of ¬ and ∨). Furthermore,
show that ¬(φ→ ψ) is logically equivalent to φ ∧ ¬ψ.

4. Show that ∀xφ and ¬∃x¬φ are logically equivalent, and that so are
∃xφ and ¬∀x¬φ (that is, show that either quantifier can be defined in
terms of the other with the help of ¬).

These equivalences come in useful in the course of the book. Equiva-
lences 3 and 4 will enable us to take two handy shortcuts when implementing
our model checker. And because ∧ and ∨ are associative, it is natural to drop
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brackets and write conjunctions such as φ1 ∧ φ2 ∧ φ3 ∧ φ4 and disjunctions
such as ψ1 ∨ ψ2 ∨ ψ3 ∨ ψ4. We often adopt this convention.

Exercise 1.2.4 Show that ¬(φ ∨ ψ) is logically equivalent to ¬φ ∧ ¬ψ, and
that ¬(φ ∧ ψ) is logically equivalent to ¬φ ∨ ¬ψ. (These equivalences are
called the De Morgan laws, and we will make use of them when we discuss
resolution theorem proving in Chapters 4 and 5.)

Exercise 1.2.5 Show that θ∨(φ∧ψ) is logically equivalent to (θ∨φ)∧(θ∨ψ),
that (φ ∧ ψ) ∨ θ is logically equivalent to (φ ∨ θ) ∧ (ψ ∨ θ), that θ ∧ (φ ∨ ψ)
is logically equivalent to (θ ∧ φ) ∨ (θ ∧ ψ) and that (φ ∨ ψ) ∧ θ is logically
equivalent to (φ∧ θ)∨ (ψ ∧ θ). (These equivalences are called the distributive
laws, and we will make use of two of them when we discuss resolution theorem
proving in Chapters 4 and 5.)

Relating Consistency and Informativity

Now for an important observation. As we’ve just learned, two of the
inference tasks that interest us (namely the consistency checking task
and the informativity checking task) are extremely difficult. Indeed,
in order to make progress with them, we’re going to have to rethink
them from a symbol manipulation perspective (we’ll do this in Chap-
ters 4 and 5). But one piece of good news is at hand: the two tasks are
intimately related, and knowing how to solve one helps us to solve the
other.

Here are the key observations:

1. φ is consistent (that is, satisfiable) if and only if ¬φ is informative
(that is, invalid).

2. φ is inconsistent (that is, unsatisfiable) if and only if ¬φ is unin-
formative (that is, valid).

3. φ is informative (that is, invalid) if and only if ¬φ is consistent
(that is, satisfiable).

4. φ is uninformative (that is, valid) if and only if ¬φ is inconsistent
(that is, unsatisfiable).

Why do these relationships hold? Consider, for example, the first.
Suppose φ is consistent. This means it is satisfiable in at least one
model. But this is the same as saying that there is at least one model
where ¬φ is not satisfied. Which is precisely to say that ¬φ is infor-
mative. The remaining three equivalences are variations on this theme,
and the reader is invited to explore them in Exercise 1.2.6.

These relationships are useful in practice. For example, in Chap-
ters 4 and 5 we discuss theorem provers. A theorem prover is a piece
of software whose primary task is to determine whether a first-order
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formula is uninformative (that is, valid). But, by making use of the
relationships just listed, it is clear that it can do something else as well.
Suppose we want to know whether φ is inconsistent. Then, using the
second of the relationships listed above, we can try to establish this by
giving ¬φ to the theorem prover. If the theorem prover tells us that ¬φ
is uninformative, then we know that φ is inconsistent.

Exercise 1.2.6 In the text we gave a simple argument establishing the first
of the relationships listed above, namely that φ is consistent if and only if
¬φ is informative. Establish the truth of the remaining three relationships.

Exercise 1.2.7 The following terminology is useful: if φ1, . . . , φn |= ¬ψ,
then we shall say that ψ is inconsistent with respect to φ1, . . . , φn. Show that
ψ is inconsistent with respect to φ1, . . . , φn if and only if ¬ψ is uninformative
with respect to φ1, . . . , φn. Moreover, if φ1, . . . , φn 6|= ¬ψ, then we shall say
that ψ is consistent with respect to φ1, . . . , φn. Show that ψ is consistent
with respect to φ1, . . . , φn if and only if ¬ψ is informative with respect to
φ1, . . . , φn.

1.3 A First-Order Model Checker

In the previous section we learned that the querying task (for finite
models) is a lot simpler computationally than the consistency and in-
formativity checking tasks. In this section we build a tool for handling
querying: we write a first-order model checker in Prolog. The model
checker takes the Prolog representation of a (finite) model and the
Prolog representation of a first-order formula and tests whether or not
the formula is satisfied in the model (there is a mechanism for assigning
values to any free variables the formula contains). Our checker won’t
handle function symbols (this extension is left as an exercise) but it
will handle equality.

We are going to provide two versions of the model checker. The first
version will be (so to speak) correct so long as you’re not too nasty
to it. That is, as long as you are sensible about the formulas you give
it (taking care, for example, only to give it formulas built over the
appropriate vocabulary) it will produce the right result. But we want a
robust model checker, one that is faithful to the nuances implicit in the
first-order satisfaction definition. So we shall explore the limitations of
the first version, and then provide a more refined version that deals
with the remaining problems.

How should we implement a model checker? We have three principal
tasks. First, we must decide how to represent models in Prolog. Second,
we must decide how to represent first-order formulas in Prolog. Third,
we must specify how (Prolog representations of) first-order formulas
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are to be evaluated in (Prolog representations of) models with respect
to (Prolog representations of) variable assignments. Let’s turn to these
tasks straight away. The Prolog representations introduced here will be
used throughout the book.

Representing Models in Prolog

Suppose we have fixed our vocabulary—for example, suppose we have
decided to work with this one:

{ (love,2),
(customer,1),
(robber,1),
(jules,0),
(vincent,0),
(pumpkin,0),
(honey-bunny,0)
(yolanda,0) }.

How should we represent models of this vocabulary in Prolog? Here is
an example:

model([d1,d2,d3,d4,d5],

[f(0,jules,d1),

f(0,vincent,d2),

f(0,pumpkin,d3),

f(0,honey_bunny,d4),

f(0,yolanda,d5),

f(1,customer,[d1,d2]),

f(1,robber,[d3,d4]),

f(2,love,[(d3,d4)])]).

This represents a model with a domain D containing five elements.
The domain elements (d1–d5) are explicitly given in the list which is
the first argument of model/2. The second argument of model/2 is also
a list. This second list specifies the interpretation function F . In partic-
ular, it tells us that d1 is Jules, that d2 is Vincent, that d3 is Pumpkin,
that d4 is Honey Bunny, and that d5 is Yolanda. It also tells us that
both Jules and Vincent are customers, that both Pumpkin and Honey
Bunny are robbers, and that Pumpkin loves Honey Bunny. Recall that
in Section 1.1 we formally defined a model M to be an ordered pair
(D,F ). As this example makes clear, our Prolog representation mirrors
the form of the set-theoretic definition.

Let’s look at a second example, again for the same vocabulary.

model([d1,d2,d3,d4,d5,d6],

[f(0,jules,d1),

f(0,vincent,d2),



“blackburnbos”
2004/12/13
page 31

i

i

i

i

i

i

i

i

First-Order Logic / 31

f(0,pumpkin,d3),

f(0,honey_bunny,d4),

f(0,yolanda,d4),

f(1,customer,[d1,d2,d5,d6]),

f(1,robber,[d3,d4]),

f(2,love,[])]).

Note that although the domain contains six elements, only four of
them are named by constants: both d5 and d6 are nameless. However,
we do know something about the anonymous d5 and d6: both of them
are customers (so you might like to think of this model as a situation in
which Jules and Vincent are the customers of interest, and d5 and d6 are
playing some sort of supporting role). Next, note that d4 has two names,
namely Yolanda and Honey Bunny. Finally, observe that the 2-place
love relation is empty: the empty list in f(2,love,[]) signals this. As
these observations make clear, our Prolog representation of first-order
models correctly embodies the nuances of the set-theoretic definition:
it permits us to handle nameless and multiply-named entities, and to
explicitly state that a relation is empty. So we have taken a useful step
towards our goal of faithfully implementing the first-order satisfaction
definition.

Exercise 1.3.1 Give the set-theoretic description of the models that the
two Prolog terms given above represent.

Exercise 1.3.2 Suppose we are working with the following vocabulary:

{(works-for,2),
(boxer,1),
(problem-solver,1),
(the-wolf,0),
(marsellus,0),
(butch,0)}.

Represent each of the following two models over this vocabulary as Prolog
terms.

1. D = {d1, d2, d3},
F (the-wolf) = d1,
F (marsellus) = d2,
F (butch) = d3,
F (boxer) = {d3},
F (problem-solver) = {d1}
F (works-for) = ∅.

2. D = {entity-1, entity-2, entity-3}
F (the-wolf) = entity-3,
F (marsellus) = entity-1,
F (butch) = entity-2,
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F (boxer) = {entity-2, entity-3},
F (problem-solver) = {entity-2},
F (works-for) = {(entity-3, entity-1), (entity-2, entity-1)}.

Exercise 1.3.3 Write a Prolog program which when given a term, deter-
mines whether or not the term represents a model. That is, your program
should check that the term is of the model/2 format, that the first argument
is a list containing no multiple instances of symbols, that the second argu-
ment is a list whose members are all three-place predicates with functor f,
and so on.

Representing Formulas in Prolog

Let us now decide how to represent first-order formulas (without func-
tion symbols, but with equality) in Prolog. The first (and most fun-
damental) decision is how to represent first-order variables. We make
the following choice: First-order variables will be represented by Prolog
variables. The advantage of this is that it allows us to use Prolog’s in-
built unification mechanism to handle variables: for example, we can
assign a value to a variable simply by using unification. Its disadvan-
tage is that occasionally we will need to exercise care to block unwanted
unifications—but this is a price well worth paying.

Next, we must decide how to represent the non-logical symbols. We
do so in the obvious way: a first-order constant c will be represented
by the Prolog atom c, and a first-order relation symbol R will be rep-
resented by the Prolog atom r.

Given this convention, it is obvious how atomic formulas should be
represented. For example, love(vincent,mia) would be represented
by the Prolog term love(vincent,mia), and hate(butch,x) would
be represented by hate(butch,X).

Recall that there is also a special two-place relation symbol, namely
the equality symbol =. We shall use the Prolog term eq/2 to represent
it. For example, the Prolog representation of the first-order formula
yolanda=honey-bunny is the term eq(yolanda,honey bunny).

Next the booleans. The Prolog terms

and/2 or/2 imp/2 not/1

will be used to represent the connectives ∧, ∨, →, and ¬ respectively.
Finally, we must decide how to represent the quantifiers. Suppose φ

is a first-order formula, and Phi is its representation as a Prolog term.
Then ∀xφ will be represented as

all(X,Phi)

and ∃xφ will be represented as
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some(X,Phi).

Note that our Prolog notation is a prefix notation. For example, the
first-order formula

love(vincent,mia)∧hate(butch,x)

would be represented by

and(love(vincent,mia),hate(butch,X)).

Prefix notation makes life simpler as far as Prolog programming is
concerned, but it must be admitted that prefix notation can be pretty
hard to decipher. So we have also provided some syntactic sugar: we
have defined a Prolog infix notation, and in this notation the previous
formula would be represented by

love(vincent,mia) & hate(butch,X).

Appendix D contains a table describing the standard logical, prefix
Prolog, and infix Prolog representations of first-order formulas. When
discussing Prolog programs we shall generally work with the prefix
notation (as it is the fundamental one) but when using the programs
you can switch to infix representations if you prefer; you can find out
how to do so in Appendix A.

The Satisfaction Definition in Prolog

We turn to the final task: evaluating (Prolog representations of) for-
mulas in (Prolog representations of) models with respect to (Prolog
representations of) assignments. The predicate which carries out the
task is called satisfy/4, and the clauses of satisfy/4 mirror the first-
order satisfaction definition in a fairly natural way. The four arguments
that satisfy/4 takes are: the formula to be tested, the model (in the
representation just introduced), a list of assignments of members of
the model’s domain to any free variables the formula contains, and a
polarity feature (pos or neg) that tells whether a formula should be
positively or negatively evaluated. Two points require immediate clari-
fication: how are assignments to be represented, and what is the purpose
of that mysterious sounding polarity feature in the fourth argument of
satisfy/4?

Assignments are easily dealt with. We shall use Prolog terms of the
form g(Variable,Value) to indicate that a variable Variable has
been assigned the element Value of the model’s domain. When we
evaluate a formula, the third argument of satisfy/4 will be a list of
terms of this form, one for each of the free variables the formula con-
tains. (In effect, we’re taking advantage of Exercise 1.1.16: we’re only
specifying what is assigned to the free variables actually occurring in
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the formula we are evaluating.) If the formula being evaluated contains
no free variables (that is, if it is a sentence) the list is empty.

But what about the polarity feature in the fourth argument? The
point is this. When we evaluate a formula in a model, we use the satis-
faction definition to break it down into smaller subformulas, and then
check these smaller subformulas in the model (for example, the satis-
faction definition tells us that to check a conjunction in a model, we
should check both its conjuncts in the model). Easy? Well, yes—except
that as we work through the formula we may well encounter negations,
and a negation is a signal that what follows has to be checked as false
in the model. And going deeper into the negated subformula we may
well encounter another negation, which means that its argument has
to be evaluated as true, and so on and so forth, flipping backwards and
forwards between true and false as we work our way down towards the
atomic formulas. . .

Quite simply, the polarity feature is a flag that records whether we
are trying to see if a particular subformula is true or false in a model.
If subformula is flagged pos it means we are trying to see if it is true,
and if it is flagged neg it means that we are trying to see if it is false.
(When we give the original formula to the model checker, the fourth
argument will be pos; after all, we want to see if the formula is true in
the model.) The heart of the model checker is a series of clauses that
spell out recursively what we need to do to check the formula as true
in the model, and what we need to do to check it as false.

Let’s see how this works. The easiest place to start is with the clauses
of satisfy/4 for the boolean connectives. Here are the two clauses for
negation (recall that the Prolog :- should be read as “if”):

satisfy(not(Formula),Model,G,pos):-

satisfy(Formula,Model,G,neg).

satisfy(not(Formula),Model,G,neg):-

satisfy(Formula,Model,G,pos).

Obviously these clauses spell out the required flip-flops between true
and false.

Now for the two clauses that deal with conjunction:

satisfy(and(Formula1,Formula2),Model,G,pos):-

satisfy(Formula1,Model,G,pos),

satisfy(Formula2,Model,G,pos).

satisfy(and(Formula1,Formula2),Model,G,neg):-

satisfy(Formula1,Model,G,neg);

satisfy(Formula2,Model,G,neg).
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The first clause tells us that for a conjunction to be true in a model,
both its conjuncts need to be true there. On the other hand, as the
second clause tells us, for a conjunction to be false in a model, at
least one of its conjuncts need to be false there (note the use of the ;

symbol, Prolog’s built in “or”, in the second clause). We have simply
turned what the satisfaction definition tells us about conjunctions into
Prolog.

Now for disjunctions:

satisfy(or(Formula1,Formula2),Model,G,pos):-

satisfy(Formula1,Model,G,pos);

satisfy(Formula2,Model,G,pos).

satisfy(or(Formula1,Formula2),Model,G,neg):-

satisfy(Formula1,Model,G,neg),

satisfy(Formula2,Model,G,neg).

Again, these are a direct Prolog encoding of what the satisfaction
definition tells us. Note the use of Prolog’s built in “or” in the first
clause.

Finally, implication. We’ll handle this a little differently. As we asked
the reader to show in Exercise 1.2.3, the → connective can be defined
in terms of ¬ and ∨: for any formulas φ and ψ whatsoever, φ → ψ is
logically equivalent to ¬φ∨ψ. So, when asked to check an implication,
why not simply check the equivalent formula instead? After all, we
already have the clauses for ¬ and ∨ at our disposal. And that’s exactly
what we’ll do:

satisfy(imp(Formula1,Formula2),Model,G,Pol):-

satisfy(or(not(Formula1),Formula2),Model,G,Pol).

Of course, it’s straightforward to give a pair of clauses (analogous to
those given above for ∧ and ∨) that handle → directly. The reader is
asked to do this in Exercise 1.3.7 below.

Let’s press on and see how the quantifiers are handled. Here are the
clauses for the existential quantifier:

satisfy(some(X,Formula),model(D,F),G,pos):-

memberList(V,D),

satisfy(Formula,model(D,F),[g(X,V)|G],pos).

satisfy(some(X,Formula),model(D,F),G,neg):-

setof(V,

(

memberList(V,D),

satisfy(Formula,model(D,F),[g(X,V)|G],neg)

),
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Dom),

setof(V,memberList(V,D),Dom).

This requires some thought. Before examining the code however,
what’s the memberList/2 predicate it uses? It is one of the predicates
in the library comsemPredicates.pl. It succeeds if its first argument,
any Prolog term, is a member of its second argument, which has to be
a list. That is, it does exactly the same thing as the predicate usually
called member/2. (We have added it to our library to make our code
self sufficient, and renamed it to avoid problems when our libraries are
used with Prologs in which member/2 is provided as a primitive.)

But now that we know that, the first clause for the existential quan-
tifier should be understandable. The satisfaction definition tells us that
a formula of the form ∃xφ is true in a model with respect to an as-
signment g if there is some variant assignment g′ under which φ is
true in the model. The call memberList(V,D) instantiates the vari-
able V to some element of the domain D, and then in the following
line, with the instruction [g(X,V)|G], we try evaluating with respect
to this variant assignment. If this fails, Prolog will backtrack, the call
memberList(V,D) will provide another instantiation (if this is still pos-
sible), and we try again. In essence, we are using Prolog backtracking
to try out different variant assignments.

And with the first clause clear, the second clause becomes compre-
hensible. First, note that the satisfaction definition tells us that a for-
mula of the form ∃xφ is false in a model with respect to an assignment
g if φ is false in the model with respect to all variant assignments g ′. So,
just as in the first clause, we use memberList(V,D) and backtracking
to try out different variant assignments. However, we take care not to
forget what we’ve tried out: we use Prolog’s inbuilt setof/3 predicate
to collect all the instantiations of V that falsify the formula. But think
about it: if all instantiations make the formula false, then our setof/3
will simply be the domain D itself. In short, obtaining D as the result
of our setof/3 is the signal that we really have falsified the existential
formula.

To deal with the universal quantifier, we take a shortcut. Recall that
∀xφ is logically equivalent to ¬∃x¬φ (the reader was asked to show this
in Exercise 1.2.3). So let’s make use of this equivalence in the model
checker:

satisfy(all(X,Formula),Model,G,Pol):-

satisfy(not(some(X,not(Formula))),Model,G,Pol).

Needless to say, a pair of clauses which directly handle the universal
quantifier could be given. Exercise 1.3.8 below asks the reader to define
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them.
Let’s turn to the atomic formulas. Here are the clauses for one-place

predicate symbols:

satisfy(Formula,model(D,F),G,pos):-

compose(Formula,Symbol,[Argument]),

i(Argument,model(D,F),G,Value),

memberList(f(1,Symbol,Values),F),

memberList(Value,Values).

satisfy(Formula,model(D,F),G,neg):-

compose(Formula,Symbol,[Argument]),

i(Argument,model(D,F),G,Value),

memberList(f(1,Symbol,Values),F),

\+ memberList(Value,Values).

Before discussing this, two remarks. First, note that we have again
made use of memberList/2. Second, we have also used compose/3, a
predicate in the library file comsemPredicates.pl defined as follows:

compose(Term,Symbol,ArgList):-

Term =.. [Symbol|ArgList].

That is, compose/3 uses the built in Prolog =.. functor to flatten a
term into a list of which the first member is the functor and the other
members the arguments of the term. This is a useful thing to do, as
we can then get at the term’s internal structure using list-processing
techniques; we’ll see a lot of this in various guises throughout the book.
Note that we use compose/3 here to decompose a formula.

With these preliminaries out of the way, we can turn to the heart
of the matter. It’s the predicate i/4 that does the real work. This
predicate is a Prolog version of the interpretation function I g

F . Recall
that when presented with a term, Ig

F interprets it using the variable
assignment g if it is a variable, and with the interpretation function F
if it is a constant. And this is exactly what i/4 does:

i(X,model(_,F),G,Value):-

(

var(X),

memberList(g(Y,Value),G),

Y==X, !

;

atom(X),

memberList(f(0,X,Value),F)

).

We can now put the pieces together to see how satisfy/4 handles
atomic formulas built using one-place predicate symbols. In both the
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positive and negative clauses we use compose/3 to turn the formula
into a list, and then call i/4 to interpret the term. We then use
memberList/2 twice. The first call looks up the meaning of the one-
place predicate. As for the second call, this is the only place where the
positive and negative clauses differ. In the positive clause we use the
call memberList(Value,Values) to check that the interpretation of
the term is one of the possible values for the predicate in the model
(thus making the atomic formula true). In the negative clause we use
the call \+memberList(Value,Values) to check that the interpreta-
tion of the term is not one of the possible values for the predicate in the
model, thus making the atomic formula false (recall that \+ is Prolog’s
inbuilt negation as failure predicate).

The clauses for two-place predicates work pretty much the same way.
Of course, we make two calls to i/4, one for each of the two argument
terms:

satisfy(Formula,model(D,F),G,pos):-

compose(Formula,Symbol,[Arg1,Arg2]),

i(Arg1,model(D,F),G,Value1),

i(Arg2,model(D,F),G,Value2),

memberList(f(2,Symbol,Values),F),

memberList((Value1,Value2),Values).

satisfy(Formula,model(D,F),G,neg):-

compose(Formula,Symbol,[Arg1,Arg2]),

i(Arg1,model(D,F),G,Value1),

i(Arg2,model(D,F),G,Value2),

memberList(f(2,Symbol,Values),F),

\+ memberList((Value1,Value2),Values).

It only remains to discuss the clauses for equality. But given our
discussion of i/4, the code that follows should be transparent:

satisfy(eq(X,Y),Model,G,pos):-

i(X,Model,G,Value1),

i(Y,Model,G,Value2),

Value1=Value2.

satisfy(eq(X,Y),Model,G,neg):-

i(X,Model,G,Value1),

i(Y,Model,G,Value2),

\+ Value1=Value2.

Well, that’s the heart of (the first version of) our model checker.
Before playing with it, let’s make it a little more user-friendly. For a
start, it would be pretty painful to have to type in an entire model every
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time we want to make a query. We find it convenient to have a separate
file containing a number of example models, and in exampleModels.pl

you will find four. Here’s the third:

example(3,

model([d1,d2,d3,d4,d5,d6,d7,d8],

[f(0,mia,d1),

f(0,jody,d2),

f(0,jules,d3),

f(0,vincent,d4),

f(1,woman,[d1,d2]),

f(1,man,[d3,d4]),

f(1,joke,[d5,d6]),

f(1,episode,[d7,d8]),

f(2,in,[(d5,d7),(d5,d8)]),

f(2,tell,[(d1,d5),(d2,d6)])])).

So, let’s now write a predicate which takes a formula, a numbered
example model, a list of assignments to free variables, and checks the
formula in the example model (with respect to the assignment) and
prints a result:

evaluate(Formula,Example,Assignment):-

example(Example,Model),

satisfy(Formula,Model,Assignment,Result),

printStatus(Result).

Of course, we should also test our model checker. So we shall create
a test suite file called modelCheckerTestSuite.pl containing entries
of the following form:

test(some(X,robber(X)),1,[],pos).

The first argument of test/4 is the formula to be evaluated, the second
is the example model on which it has to be evaluated (here model 1),
the third is a list of assignments (here empty) to free variables in the
formula, and the fourth records whether the formula is satisfied or not
(pos indicates it should be satisfied).

Giving the command

?- modelCheckerTestSuite.

will force Prolog to evaluate all the examples in the test suite, and print
out the results. The output will be a series of entries of the following
form:

Input formula:

1 some(A, robber(A))

Example Model: 1

Status: Satisfied in model.
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Model Checker says: Satisfied in model.

The fourth line of output (Status) is the information (recorded in the
test suite) that the formula should be satisfied. The fifth line (Model
Checker says) shows that the model checker got this particular exam-
ple right.

We won’t discuss the code for modelCheckerTestSuite/0. It’s es-
sentially a fail/0 driven iteration through the test suite file, that uses
the evaluate/3 predicate defined above to perform the actual model
checking. You can find the code in modelChecker1.pl.

Exercise 1.3.4 Systematically test the model checker on these models. If
you need inspiration, use modelCheckerTestSuite/0 to run the test suite
and examine the output carefully. As you will see, this version of the model
checker does not handle all the examples in the way the test suite demands.
Try to work out why not.

Exercise 1.3.5 If you did the previous exercise, you will have seen that the
model checker sometimes prints out the message Satisfied in model more
than once. Why is this? Is this a useful feature or not?

Exercise 1.3.6 Try the model checker on example model 1 with the exam-
ples:

and(some(X,customer(X)),some(Y,robber(Y)))

some(X,and(customer(X),some(Y,robber(Y))))

and(some(X,customer(X)),some(X,robber(X)))

some(X,and(customer(X),some(X,robber(X)))).

The model checker handles all four example correctly: that is, it says that
all four examples are satisfied in model 1. Fine—but why is it handling them
correctly? In particular, in the last two examples we reuse the variable X,
binding different occurrences to different quantifiers. What is it about the
code that lets the model checker know that the X in customer(X) is intended
to play a different role than the X in robber(X)?

Exercise 1.3.7 Our model checker handles→ by rewriting φ→ ψ as ¬φ∨ψ.
Provide clauses for→ (analogous to those given in the text for ∧ and ∨) that
directly mirror what the satisfaction definition tells us about this connective.

Exercise 1.3.8 Our model checker handles ∀ by rewriting ∀xφ as ¬∃x¬φ.
Provide clauses for ∀ (analogous to those given in the text for ∃) that directly
mirror what the satisfaction definition tells us about this quantifier.
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Programs for the model checker

modelChecker1.pl

The main file containing the code for the model checker for first-
order logic. Consult this file to run the model checker—it will
load all other files it requires.

comsemPredicates.pl

Definitions of auxiliary predicates.

exampleModels.pl

Contains example models in various vocabularies.

modelCheckerTestSuite.pl

Contains formulas to be evaluated on the example models.

Refining the Model Checker

Our first model checker (modelChecker1.pl) is a reasonably well-
behaved tool that is faithful to the main ideas of the first-order satis-
faction definition. To put it another way: it is a piece of software for
handling the querying task. Actually, it does rather more than handle
the querying task: we can also use it to find elements in a model’s
domain that satisfy certain descriptions. Consider the following query:

?- satisfy(robber(X),

model([d1,d2,d3],

[f(0,pumpkin,d1),

f(0,jules,d2),

f(1,customer,[d2]),

f(1,robber,[d1,d3])]),

[g(X,Value)],

pos).

Value = d1 ? ;

Value = d3 ? ;

no

Note the assignment list [g(X,Value)] used in the query: X is given the
value Value, and this is a Prolog variable. So Prolog is forced to search
for an instantiation when evaluating the query, and via backtracking
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finds all instantiations for Value that satisfy the formula (namely d1

and d3). This is a useful technique, as we will shall see in Chapter 6
when we use it in a simple question answering system.

Nonetheless, although well behaved, this version of the model checker
is not sufficiently robust, nor does it always return the correct answer.
However, its weak points are rather subtle, so let’s sit back and think
our way through the following problems carefully.

First Problem Consider the following queries:

?- evaluate(X,1).

?- evaluate(imp(X,Y),4).

Now, as the first query asks the model checker to evaluate a Prolog
variable, and the second asks it to evaluate a ‘formula’, whose subfor-
mulas are Prolog variables, you may think that these examples are too
silly to worry about. But let’s face it, these are the type of queries a
Prolog programmer might be tempted to make (perhaps hoping to gen-
erate a formula that is satisfied in model 1). And (like any other) query,
they should be handled gracefully—but they’re not. Instead they send
Prolog into an infinite loop and you will probably get a stack overflow
message (if you don’t understand why this happens, do Exercise 1.3.9
right away). This is unacceptable, and needs to be fixed.

Second Problem Here’s a closely related problem. Consider the fol-
lowing queries:

?- evaluate(mia,3).

?- evaluate(all(mia,vincent),2).

Now, obviously these are not sensible queries: constants are not for-
mulas, and cannot be checked in models. But we have the right to
expect that our model checker responds correctly to these queries—
and it doesn’t. Instead, our basic model checker returns the message no
(that is, not satisfied in the given model) to both queries.

Why is this wrong? Because neither expression is the sort of entity
that can enter into a satisfaction relation with a model. Neither is in the
“satisfied” relation with any model, nor in the “not satisfied” relation
either. They’re simply not formulas. So the model checker should come
back with a different message that signals this, something like Cannot

be evaluated. And of course, if the model checker is to produce such
a message, it needs to be able to detect when its input is a legitimate
formula. The next problem pins down what is required more precisely.
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Third Problem We run into problems if we ask our model checker to
verify formulas built from items that don’t belong to the vocabulary.
For example, suppose we try evaluating the atomic formula

tasty(royale_with_cheese)

in any of the example models. Then our basic model checker will say
Not satisfied in model. This response is incorrect: the satisfaction
relation is not defined between formulas and models of different vocab-
ularies. Rather our model checker should throw out this formula and
say something like “Hey, I don’t know anything about these symbols!”.
So, not only does the model checker need to be able to verify that its
input is a formula (as we know from the second problem), it also needs
to be able to verify that it’s a formula built over a vocabulary that is
appropriate for the model.

Fourth Problem Suppose we make the following query:

?- evaluate(customer(X),1).

Our model checker will answer Not satisfied in model. This is
wrong: X is a free variable, we have not assigned a value to it (recall that
evaluate/2 evaluates with respect to the empty list of assignments),
and hence the satisfaction relation is not defined. So our model checker
should answer Cannot be evaluated, or something similar.

Well, those are the main problems, and they can be fixed. In fact,
modelChecker2.pl handles such examples correctly, and produces ap-
propriate messages. We won’t discuss the code of modelChecker2.pl,
but we will ask the reader to do the following exercises. They will en-
able you better understand where modelChecker1.pl goes wrong, and
how modelChecker2.pl fixes matters up. Happy hacking!

Exercise 1.3.9 Why does our basic model checker get in an infinite loop
when given the following queries:

?- evaluate(X,1).

?- evaluate(imp(X,Y),4).

And what happens and why with examples like some(X,or(customer(X),Z))
and some(X,or(Z,customer(X))). If the answers are not apparent from the
code, carry out traces (in most Prolog shells, the trace mode can be activated
by “?- trace.” and deactivated by “?- notrace.”).

Exercise 1.3.10 What happens if you use the basic model checker to eval-
uate constants as formulas, and why? If this is unclear, perform a trace.

Exercise 1.3.11 Modify the basic model checker so that it classifies the
kinds of examples examined in the previous two exercises as ill-formed input.
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Exercise 1.3.12 Try out the new model checker (modelChecker2.pl) on the
formulas customer(X) and not(customer(X)). Why has problem 4 vanished?

Programs for the refined model checker

modelChecker2.pl

This file contains the code for the revised model checker for first-
order logic. This version rejects ill-formed formulas and handles
a number of other problems. Consult this file to run the model
checker—it will load all other files it requires.

comsemPredicates.pl

Definitions of auxiliary predicates.

exampleModels.pl

Contains example models in various vocabularies.

modelCheckerTestSuite.pl

Contains formulas to be evaluated on the example models.

1.4 First-Order Logic and Natural Language

By this stage, the reader should have a reasonable grasp of the syntax
and semantics of first-order logic, so it is time to raise a more basic
question: just how good is first-order logic as a tool for exploring natu-
ral language semantics computationally? We shall approach this ques-
tion from two directions. First we consider what first-order logic can
offer the study of inference, and then we consider its representational
capabilities.

Inferential Capabilities

First-order logic is sometimes called classical logic, and it deserves this
name: it is the most widely studied and best understood of all logical
formalisms. Moreover, it is understood from a wide range of perspec-
tives. For example, the discipline called model theory (which takes as
its starting point the satisfaction definition discussed in this chapter)
has mapped the expressive power of first-order logic in extraordinary
mathematical detail.
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Nor have the inferential properties of first-order logic been neglected:
the research areas of proof theory and automated reasoning both ex-
plore this topic. As we mentioned earlier (and as we shall further dis-
cuss in Chapters 4 and 5), the primary task that faces us when dealing
with the consistency and informativity checking tasks (which we de-
fined model-theoretically) is to reformulate them as concrete symbol
manipulation tasks. Proof theorists and researchers in automated rea-
soning have devised many ways of doing this, and have explored the
advantages, disadvantages, and interrelationships between the various
methods in detail.

Some of the methods they have developed (notably the tableau
and resolution methods discussed in Chapters 4 and 5) have proved
useful computationally. Although no complete computational solution
to the consistency checking task (or equivalently, the informativity
checking task) exists, resolution and tableau-based theorem provers for
first-order logic have proved effective in practice, and in recent years
there have been dramatic improvements in their performance. More-
over, more recently, the automated reasoning community has started
to develop tools called model builders, and (as we shall see in Chap-
ters 5 and 6) these newer tools are also relevant to our inference tasks.
So one important reason for computational semanticists to be inter-
ested in first-order logic is simply this: if you use first-order logic, a
wide range of sophisticated inference tools lies at your disposal.

But there are other reasons for being interested in first-order logic.
One of the most important is this: working with first-order logic makes
it straightforward to incorporate background knowledge into the infer-
ence process.

Here’s an example. When discussing informativity we gave the
following example of an uninformative-but-sometimes-acceptable dis-
course:

Mia is married. She has a husband.

But why is this uninformative? Recall that by an uninformative formula
we mean a valid formula (that is, one that is satisfied in every model).
But

married(mia)→has-husband(mia)

is not valid. Why not? Because we are free to interpret married and
has-husband so that they have no connection with each other, and in
some of these interpretations the formula will be false.

But it is clear that such arbitrary interpretations of married and
has-husband are somehow cheating. After all, as any speaker of En-
glish knows, the meanings of married and has-husband are inti-
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mately linked. But can we capture this linkage, and can first-order
logic help?

It can, and here’s how. Speakers of English have the following knowl-
edge, expressed here as a formula of first-order logic:

∀x(woman(x) ∧ married(x) → has-husband(x)).

If we take this knowledge, and add to it the information that Mia is a
woman, then we do have a valid inference: the two premises

∀x(woman(x) ∧ married(x) → has-husband(x))

and

woman(mia)

have as a logical consequence that

married(mia)→has-husband(mia).

That is, in any model where the premises are true (and these are the
models of interest, for they are the ones that reflect what we know)
then the conclusion is true also. In short, the uninformativity of our
little discourse actually rests on an inference that draws on background
knowledge. Modelling the discourse in first-order logic makes this in-
ferential interplay explicit.

There are other logics besides first-order logic which are interesting
from an inferential perspective, such as the family of logics variously
known as modal, hybrid, and description logics. If you work with the
simplest form of such logics (that is, the propositional versions of such
logics) the consistency and informativity checking tasks typically can
be fully computed. Moreover, the description logic community has pro-
duced an impressive range of efficient computational tools for dealing
with these (and other) inferential tasks. And such logics have been suc-
cessfully used to tackle problems in computational semantics (in fact,
as various AI formalisms such as semantic nets are essentially forerun-
ner of modern description logics, there is actually a very long history
of applying such logics in computational semantics, albeit sometimes
in disguised form).

But there is a price to pay. An interesting thing about first-order
logic (as we shall shortly see) is that it has enough expressive power
to handle a significant portion of natural language semantics. Propo-
sitional modal, hybrid and description logics don’t have the expressive
power for detailed semantic analyses. They are likely to play an increas-
ingly important role in computational semantics, but they are probably
best suited to giving efficient solutions to relatively specialised tasks.
It is possible that stronger versions of such logics (in particular, log-
ics which combine the resources of modal, hybrid, or description logic
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with those of first-order logic) may turn out to be a good general set-
ting for semantic analysis, but at present few computational tools for
performing inference in such systems are available.

Summing up, if you are interested in exploring the role of infer-
ence in natural language semantics, then first-order logic is probably
the most interesting starting point. Moreover, the key first-order in-
ference techniques (such as tableaus and resolution) are not parochial.
Although initially developed for first-order logic, they have been suc-
cessfully adapted to many other logics. So studying first-order inference
is a useful first step towards understanding inference in other logics.

But what is first-order logic like from a representational perspective?
This is the question to which we now turn.

Representational Capabilities

Assessing the representational capabilities of first-order logic for natu-
ral language semantics is not straightforward: it would be easy to write
a whole chapter (indeed, a whole book) on the topic. But, roughly
speaking, our views are as follows. First-order logic does have its short-
comings when it comes to representing the meaning of natural language
expressions, and we shall draw attention to an important example.
Nonetheless, first-order logic is capable of doing an awful lot of work
for us. It’s not called classical logic for nothing: it is an extremely flex-
ible tool.

It is common to come across complaints about first-order logic of
the following kind: first-order logic is inadequate for natural language
semantics because it cannot handle times (or intervals, or events, or
modal phenomena, or epistemic states, or . . . ). Take such complaints
with a (large) grain of salt. They are often wrong, and it is important
to understand why.

The key lies in the notion of the model. We have encouraged the
reader to think of models as mathematical idealisations of situations,
but while this is a useful intuition pump, it is less than the whole truth.
The full story is far simpler: models can provide abstract pictures of
just about anything. Let’s look at a small example—a model which
represents the way someone’s emotional state evolves over three days.
Let D = {d1, d2, d3, d4} and let F be as follows:

F (mia) = d1

F (monday) = d2

F (tuesday) = d3

F (wednesday) = d4

F (person) = {d1}
F (day) = {d2, d3, d4}
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F (precede) = {(d2, d3), (d3, d4), (d2, d4)}
F (happy) = {(d1, d2), (d1, d4)}.

That is, there are four entities in this model: one of them (d1) is
a person called Mia, and three of them (d2, d3, and d4) are the days
of the week Monday, Tuesday and Wednesday. The model also tells us
that (as we would expect) Monday precedes Tuesday, Tuesday precedes
Wednesday, and Monday precedes Wednesday. Finally, it tells us that
Mia was happy on both Monday and Wednesday (presumably some-
thing unpleasant happened on Tuesday). In short, the last clause of F
spells out how Mia’s emotional state evolves over time.

Though simple, this example illustrates something crucial: models
can provide pictures of virtually anything we find interesting. Do you
feel that the analysis of tense and aspect in natural language requires
time to be thought of as a collection of intervals, linked by such rela-
tions as overlap, inclusion, and precedence? Very well then—work with
models containing intervals related in these ways. Moreover, though you
could use some specialised interval-based temporal logic to talk about
these structures, you are also free (should you so desire) to talk about
these models using a first-order language of appropriate vocabulary. Or
perhaps you feel that temporal semantics requires the use of events?
Very well then—work with models containing interrelated events. And
once again, you can (if you wish) talk about these models using a first-
order language of appropriate vocabulary. Or perhaps you feel that the
possible world semantics introduced by philosophical logicians to anal-
yse such concepts as necessity and belief is a promising way of handling
these aspects of natural language. Very well then—work with models
containing possible worlds linked in the ways you find useful. And while
you could talk about such models with some sort of modal language,
you are also free to talk about these models using a first-order language
of appropriate vocabulary. Models and their associated first-order lan-
guages are a playground, not a jail. They provide a space where we are
free to experiment with our ideas and ontological assumptions as we
attempt to come to grips with natural language semantics. The major
limitations are those imposed by our imagination.

Moreover, clever use of models sometimes enables first-order logic to
provide useful approximate solutions to demands for expressive power
that, strictly speaking, it cannot handle. A classic example is second-
order (and more generally, higher-order) quantification. First-order
logic is called “first-order” because it only permits us to quantify over
first-order entities; that is, the elements of the model’s domain. It does
not let us quantify over second-order entities such as sets of domain
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elements (properties), or sets of pairs of domain elements (two-place
relations), sets of triples of domain elements (three-place relations),
and so on. Second-order logic allows us to do all this. For example, in
second-order logic we can express such sentences as Butch has every

property that a good boxer has by means of the following expression:

∀P∀x((good-boxer(x) → P(x)) → P(butch)).

Here P is a second-order variable ranging over properties (that is, sub-
sets of the domain) while x is an ordinary first-order variable. Hence
this formula says: “for any property P and any individual x, if x is a
good boxer implies that x has property P, then Butch has property P
too”.

So, have we finally found an unambiguous example of something that
first-order logic cannot do? Surprisingly, no. There is a way in which
first-order logic can come to grips with second-order entities—and once
again, it’s models that come to the rescue. Quite simply, if we want to
quantify over properties, why not introduce models containing domain
elements that play the role of properties? That is, why not introduce
first-order entities whose job it is to mimic second-order entities? After
all, we’ve just seen that domain elements can be thought of as times
(and intervals, events, possible worlds, and so on); maybe we can view
them as properties (and two-place relations, and three-place relations,
and so on) as well?

In fact, it has been known since the 1950s that this can be done
in an elegant way: it is possible to give a first-order interpretation to
second-order logic (and more generally, to higher-order logic). More-
over, in some respects this first-order treatment of second-order logic
is better behaved than the standard interpretation. In particular, both
model-theoretically and proof-theoretically, the first-order perspective
on second-order quantification leads to a simpler and better behaved
logic than the standard perspective does. Now, it may be that the
first-order analysis of second-order quantification isn’t as strong as it
should be (on the other hand, it could also be argued that the stan-
dard analysis of second-order quantification is too strong). But the fact
remains that the first-order perspective allows us to get to grips with
some aspects of second-order logic. It may be an approximation, but it
is an interesting one. For further information on this topic, consult the
references cited in the Notes at the end of the chapter.

It’s not hard to give further examples of how clever use of models
enables us to handle demands for expressive power which at first glance
seem to lie beyond the grasp of first-order logic. For example, first-order
logic offers an elegant handle on partiality ; that is, sentences which are
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neither true nor false but rather undefined in some situation (see the
Notes at the end of the chapter for further information). But instead
of multiplying examples of what first-order logic can do, let’s look at
something it can’t.

Natural languages are rich in quantifiers: as well as being able to say
things like some robbers and every robber, we can also say things like
two robbers, three robbers, most robbers, many robbers and few robbers.
Some of these quantifiers (notably counting quantifiers such as two and
three) can be handled by first-order logic; others, however, provably
can’t. For example, if we take most to mean “more than half the entities
in the model”, which seems a reasonable interpretation, then even if
we restrict our attention to finite models, it is impossible to express
this idea in first-order logic (see the Notes for references). Thus a full
analysis of natural language semantics will require richer logics capable
of handling such generalized quantifiers. But while a lot is known about
the theory of such quantifiers (see the Notes), as yet few computational
tools are available, so we won’t consider generalized quantifiers further
in this book.

So, first-order logic isn’t capable of expressing everything of interest
to natural language semantics: generalized quantifiers are an important
counterexample. Nonetheless, a surprisingly wide range of other impor-
tant phenomena can be given a first-order treatment. All in all, it’s an
excellent starting point for computational semantics.

Notes

There are many good introductions to first-order logic, and the best
advice we can give the reader is to spend some time browsing in a li-
brary to see what’s on offer. That said, there are three references we
particularly recommend. For an unhurried introduction that motivates
the subject linguistically, try the first volume of Gamut (1991a). For
a wide-ranging discursive overview, try Hodges (1983). This survey ar-
ticle covers a lot of ground—from propositional logic to Lindström’s
celebrated characterization of first-order logic. But although parts of
the article cover advanced material, the clarity of the writing should
enable most readers to follow. The reader who wants a more focused,
traditional approach could try Enderton (2001). This is a solid and
well-written introduction to first-order logic; among other things it will
give you a firm grasp of the mathematical underpinnings of inductive
definitions, and a taste of model theory.

As we said in the text, logicians traditionally wouldn’t regard the
querying task as an inference task. But there’s another group of re-
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searchers who certainly would view it this way, namely computer sci-
entists. Model checking has become important in computer science in
recent years. The classic application is hardware verification; that is,
checking whether a piece of hardware, such as a computer chip, re-
ally works the way it is intended to. The chip design is represented as
a (very large) model. (Remember what we said in the text? Models
can be used to represent just about anything!) The properties the chip
is supposed to possess is represented as a formula. Then the formula
is evaluated in the model. If the formula is false, there is a problem
with the chip design, which hopefully can be tracked down and rec-
tified. However, computer scientist don’t use first-order logic in such
applications; specialised temporal logics, or modal logics equipped with
fixed-point operators, are used instead. For an informal introduction to
model checking, with lots of interesting motivation, try Halpern and
Vardi (1991). For a more detailed introduction, try Chapter 3 of Huth
and Ryan (2000).

Another group of computer scientists who would probably agree that
querying is best viewed as a form of inference are researchers in database
theory . As we said in the text, if you think of a model as a database,
and a first-order language as a database query language, you will not
go far wrong. For an excellent introduction to database theory that
adopts this logical perspective, see Abiteboul et al. (1995). The basic
difference between work in databases and the more traditional per-
spective adopted in the text is that database researchers are typically
interested in working with restricted fragments of first-order logic in
which querying can be efficiently implemented.

The mention of efficiency brings us to an important point. We re-
marked that the querying task was far easier than the informativity
or consistency checking tasks. This is true, but the querying task is
by no means computationally straightforward: in fact it is a PSPACE-
complete problem (see Vardi (1982)). This means that on some input
it may take time exponential in the size of the formula (that is, the
number of symbols the formula contains) to verify whether or not it
is satisfied. Complexity theorists believe that PSPACE-complete prob-
lems are even harder than NP-complete problems, so even our easiest
inference task turns out to be highly non-trivial. (Complexity theorists
classify problems as being in NP if they can be solved in polynomial
time on a non-deterministic machine. NP-complete problems are the
most difficult problems in NP. See Papadimitriou (1994) for formal
definitions and discussion of these complexity classes.)

To our surprise, while preparing these Notes we were only able to
find one other implementation of model checking for full first-order
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logic, namely the checker due to Jan Jaspars which you can find at

http://staff.science.uva.nl/~jaspars/animations/

Many highly sophisticated model checkers exist, but such checkers are
typically for various forms of modal or temporal logic, or are database
query languages (in effect, model checkers for various fragments of first-
order logic). It would be interesting to know of other implementations
of the full first-order satisfaction definition.

In the text we remarked that the informativity and consistency
checking tasks are inter-definable (that is, if you can solve one, you
can solve the other) and that both tasks are in fact undecidable. You
can find proofs of this fundamental result in Enderton (2001) and Boo-
los and Jeffrey (1989).

Readers with a background in philosophy of language or pragmatics
will recognise that our account of informativity echoes ideas of Grice
(1975). It was Grice who first emphasized the importance of informa-
tivity in communication, and his ideas have influenced our discussion.
But a caveat should be made. What is informative is highly dependent
on context. In the account given in the text, in essence we identified
“informative” with “being a logical consequence of the information at
an agent’s disposal”. But we really need to be more subtle here. Con-
versational agents are not usually aware of all the consequences of their
beliefs, so our approach will for many purposes be too strong. A more
detailed theory, which gives a fine-grained account of how agents update
their beliefs, is required; for discussion of some of the issues involved
see Cherniak (1986), Harman (1986) and Wassermann (1999).

The querying task, and the consistency and informativity checking
tasks, rest on different assumptions about the way that semantic con-
tent is to be stored computationally: the querying task assumes that
content is stored as a model, whereas the consistency and informativity
checking tasks assume that it is stored as a (collection of) formula(s).
In a real application it might well be useful to use both methods. We
haven’t discussed this possibility here, but that is simply because we
wanted to introduce the individual tasks as clearly as possible in their
own terms. In Chapter 6, when we discuss the Helpful Curt program,
we’ll see that such mixed methods can be useful: Helpful Curt makes
use of querying and consistency checking to provide answers to ques-
tions posed by the user.

While our account has emphasized first-order logic, we also men-
tioned that logic from the modal/hybrid/description family of logics
may turn out to be useful to computational semantics. For an intro-
duction to modal logic, see Blackburn et al. (2001b). For hybrid logic,
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see Blackburn (2000). For description logic, see the excellent Handbook
of Description Logic (Baader et al., 2003). One of the articles in this
collection, Franconi (2002), surveys applications of description logic in
natural language. Recent papers not covered by this survey include
Gardent and Jacquey (2003), Koller et al. (2004), and Gardent and
Striegnitz (2003).

We mentioned that nowadays it is uncontroversial to view modal
and temporal phenomena from a first-order perspective. For a classic
statement of the first-order perspective on temporal phenomena, see
Van Benthem (1991). The essence of the first-order perspective is that
many so-called ‘non-classical’ logics (such as modal logic and temporal
logic) are often just a different notation for a restricted fragment of
first-order logic. And other fragments of first-order logic may well turn
out to be important to computational semantics. For example, Pratt-
Hartmann (2003) shows that a surprising amount can be done with
the two-variable fragment of first-order logic. This is the fragment of
first-order logic consisting of all formulas containing not more than two
variables; its informativity and consistency checking problems are both
decidable.

The quasi-reduction of second-order logic to first-order logic has been
known for more than 50 years: it was introduced in Henkin (1950), a
classic of mathematical logic. For a clear introduction to this topic,
see Chapter 4 of Enderton (2001). For more advanced material, see
Doets and Van Benthem (1983) and Shapiro (1999). For information
on partial logic, and reductions of partial logic to first-order logic, see
Langholm (1988) and Muskens (1996).

As an example of a phenomenon in natural language that lies beyond
the scope of first-order logic, we mentioned the generalized quantifier
most. The proof that the meaning of most cannot be captured in first-
order logic can be found in Barwise and Cooper (1981); this classic pa-
per contains other examples in a similar vein, and is well worth reading.
For an overview of modern generalized quantifier theory, see Keenan
and Westerst̊ahl (1997). Another natural language phenomenon which
is typically viewed as requiring more than the capabilities of first-order
logic is the semantics of plural noun phrases. Actually, the trade-offs in-
volved here between first- and second-order expressivity are subtle, and
lie well beyond the scope of this book; we refer the reader to Lønning
(1997) for a detailed account.

As we mentioned in the text, the ideas that variable assignment
functions can be viewed as a mechanism for representing context has
proved important to natural language semantics. The pioneering work
was carried out by Hans Kamp in his Discourse Representation Theory
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(see Kamp (1984) and Kamp and Reyle (1993)) and Irene Heim in her
File Change Semantics (see Heim (1982)). These theories rethought
the way that quantification (and in particular, existential quantifica-
tion) could be logically modelled. This work inspired the development
of Dynamic Predicate Logic (see Groenendijk and Stokhof (1991)) in
which first-order formulas were viewed as programs that modify as-
signment functions. For a detailed discussion of these developments,
see Van Eijck and Kamp (1997) and Muskens et al. (1997).

One final comment may be helpful for some readers. In the text we
carefully stated that we had a countably infinite collection of first-order
variables at our disposal, and we also made a number of statements to
the effect that most models were infinite. Lying behind these comments
is the fundamental set-theoretical result that there is an infinite hier-
archy of ever bigger infinities. If you have never encountered set-theory
before, this claim may well strike you as bizarre, but in fact the ideas
involved are not particularly difficult, and any decent text book on set-
theory will explain the concepts involved (Enderton (1977) is a good
choice). Incidentally, if you haven’t previously encountered the idea of
thinking of properties as subsets, and binary relations as ordered pairs,
and so on, then this reference is a good place to find out more.
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Lambda Calculus

Now that we know something of first-order logic and how to work with
it in Prolog, it is time to turn to the first major theme of the book,
namely:

How can we automate the process of associating semantic representa-
tions with natural language expressions?

In this chapter we explore the issue concretely. We proceed by trial
and error. We first write a simple Prolog program that performs the
task in a limited way. We note where it goes wrong, and why, and
develop a more sophisticated alternative. These experiments lead us,
swiftly and directly, to formulate a version of the lambda calculus. The
lambda calculus is a tool for controlling the process of making substi-
tutions. With its help, we will be able to describe, neatly and concisely,
how semantic representations should be built. The lambda calculus is
one of the main tools used in this book, and by the end of the chap-
ter the reader should have a reasonable grasp of why it is useful to
computational semantics and how to work with it in Prolog.

2.1 Compositionality

Given a sentence of English, is there a systematic way of constructing
its semantic representation? This question is far too general, so let’s
ask a more specific one: is there a systematic way of translating simple
sentences such as Vincent loves Mia and A woman snorts into first-order
logic?

The key to answering this is to be more precise about what we mean
by “systematic”. Consider Vincent loves Mia. Its semantic content is at
least partially captured by the first-order formula love(vincent,mia).
Now, the most basic observation we can make about systematicity is the
following: the proper name Vincent contributes the constant vincent
to the representation, the transitive verb loves contributes the relation

55
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symbol love, and Mia contributes mia.
This first observation is important, and by no means as trivial as

it may seem. If we generalise it to the claim that the words making
up a sentence contribute all the bits and pieces needed to build the
sentence’s semantic representation, we have formulated a principle that
is a valuable guide to the complexities of natural language semantics.
The principle is certainly plausible. Moreover, it has the advantage of
forcing us to face up to a number of non-trivial issues sooner rather than
later (for example, what exactly does the determiner every contribute
to the representation of Every woman loves a boxer?).

Nonetheless, though important, this principle doesn’t tell us every-
thing we need to know about systematicity. For example, from the sym-
bols love, mia and vincent we can also form love(mia,vincent).
Why don’t we get this (incorrect) representation when we translate Vin-

cent loves Mia? What exactly is it about the sentence Vincent loves Mia

that forces us to translate it as love(vincent,mia)? Note that the
answer “But Vincent loves Mia means love(vincent,mia), stupid!”,
which in many circumstances would be appropriate, isn’t particularly
helpful here. Computers are stupid. We can’t appeal to their semantic
insight, because they don’t have any. If we are to have any hope of au-
tomating semantic construction, we must find another kind of answer.

The missing ingredient is a notion of syntactic structure. Vincent

loves Mia isn’t just a string of words: it has a hierarchical structure. In
particular, Vincent loves Mia is a sentence (S) that is composed of the
subject noun phrase (NP) Vincent and the verb phrase (VP) loves Mia.
This VP is in turn composed of the transitive verb (TV) loves and the
direct object NP Mia.

Given this hierarchy, it is easy to tell a coherent story—and indeed
(see below) draw a convincing picture—about why we should get the
representation love(vincent,mia), and not anything else. Why is mia
in the second argument slot of love? Because, when we combine a TV
with an NP to form a VP, we have to put the semantic representation
associated with the NP (in this case, mia) in the second argument slot
of the VP’s semantic representation (in this case, love(?,?)). Why does
vincent have to go in the first argument slot? Because this is the slot
reserved for the semantic representations of NPs that we combine with
VPs to form an S. More generally, given that we have some reason-
able syntactic story about what the pieces of the sentences are, and
which pieces combine with which other pieces, we can try to use this
information to explain how the various semantic contributions have to
be combined. In short, one reasonable explication of “systematicity” is
that it amounts to using the additional information provided by syn-
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tactic structure to spell out exactly how the semantic contributions are
to be glued together.

Vincent loves Mia (S)
love(vincent,mia)

Vincent (NP)
vincent

loves Mia (VP)
love(?,mia)

loves (TV)
love(?,?)

Mia (NP)
mia

Our discussion has led us to one of the key concepts of contempo-
rary semantic theory: compositionality . Suppose we have some sort of
theory of syntactic structure. It doesn’t matter too much what sort of
theory it is, just so long as it is hierarchical in a way that eventually
leads to the lexical items. (That is, our notion of syntactic structure
should allow us to classify the sentence into subparts, sub-subparts,
and sub-sub-subparts, . . . , and so on—ultimately into the individual
words making up the sentence.) Such structures make it possible to
tell an elegant story about where semantic representations come from.
Ultimately, semantic information flows from the lexicon, thus each lex-
ical item is associated with a representation. How is this information
combined? By making use of the hierarchy provided by the syntactic
analysis. Suppose the syntax tells us that some kind of sentential sub-
part (a VP, say) is decomposable into two sub-subparts (a TV and an
NP, say). Then our task is to describe how the semantic representation
of the VP subpart is to be built out of the representation of its two
sub-subparts. If we succeed in doing this for all the grammatical con-
structions covered by the syntax, we will have given a compositional
semantics for the language under discussion (or at least, for that frag-
ment of the language covered by our syntactic analysis).

Natural Language Syntax via Definite Clause Grammars

So, is there a systematic way of translating simple sentences such as
Vincent loves Mia and A woman snorts into first-order logic? We don’t
yet have a method, but at least we now have a plausible strategy for
finding one. We need to:

Task 1 Specify a reasonable syntax for the fragment of natural lan-
guage of interest.



“blackburnbos”
2004/12/13
page 58

i

i

i

i

i

i

i

i

58 / Representation and Inference for Natural Language

Task 2 Specify semantic representations for the lexical items.

Task 3 Specify the translation compositionally. That is, we should
specify the translation of all expressions in terms of the transla-
tion of their parts, where “parts” refers to the substructure given
to us by the syntax.

Moreover, all three tasks need to be carried out in a way that leads
naturally to computational implementation.

As this is a book on computational semantics, tasks 2 and 3 are
where our real interests lie, and most of our energy will be devoted to
them. But since compositional semantics presupposes syntax, we need
a way of handling task 1. What should we do?

We have opted for a particularly simple solution: in this book the
syntactic analysis of a sentence will be a tree whose non-leaf nodes
represent complex syntactic categories (such as sentence, noun phrase
and verb phrase) and whose leaves represent lexical items (these are
associated with basic syntactic categories such as noun, transitive verb,
determiner, proper name and intransitive verb). The tree the reader has
just seen is a typical example. This approach has an obvious drawback
(namely, the reader won’t learn anything interesting about syntax) but
it also has an important advantage: we will be able to make use of
Definite Clause Grammars (DCGs), the in-built Prolog mechanism for
grammar specification and parsing.

Here is a DCG for the fragment of English we shall use in our initial
semantic construction experiments. (This DCG, decorated with Prolog
code for semantic operations, can be found in the files experiment1.pl,
experiment2.pl, and experiment3.pl.)

s --> np, vp. noun --> [woman].

np --> pn. noun --> [foot,massage].

np --> det, noun. vp --> iv.

pn --> [vincent]. vp --> tv, np.

pn --> [mia]. iv --> [snorts].

det --> [a]. iv --> [walks].

det --> [every]. tv --> [loves].

tv --> [likes].

This grammar tells us how to build certain kinds of sentences (s) out
of noun phrases (np), verb phrases (vp), proper names (pn), determiners
(det), nouns (noun), intransitive verbs (iv), and transitive verbs (tv),
and gives us a tiny lexicon to play with. For example, the grammar
accepts the simple sentence

Vincent walks.
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because Vincent is declared as a proper name, and proper names are
noun phrases according to this grammar; walks is an intransitive verb,
and hence a verb phrase; and sentences can consist of a noun phrase
followed by a verb phrase.

But the real joy of DCGs is that they provide us with a lot more
than a natural notation for specifying grammars. Because they are part
and parcel of Prolog, we can actually compute with them. For example,
by posing the query

s([mia,likes,a,foot,massage],[])

we can test whether Mia likes a foot massage is accepted by the gram-
mar, and the query

s(X,[])

generates all grammatical sentences.
With a little effort, we can do a lot more. In particular, by making use

of the DCG extra argument mechanism (consult an introductory text
on Prolog if you’re unsure what this means) we can associate semantic
representations with lexical items very straightforwardly. The normal
Prolog unification mechanism then gives us the basic tool needed to
combine semantic representations, and to pass them up towards sen-
tence level. In short, working with DCGs both frees us from having
to implement parsers, and makes available a powerful mechanism for
combining representations, so we’ll be able to devote our attention to
semantic construction.

It is worth emphasising, however, that the semantic construction
methods discussed in this book are compatible with a wide range of
theories of natural language syntax, and with a wide range of program-
ming languages. In essence, we exploit the recursive structure of trees
to build representations compositionally: where the trees actually come
from is relatively unimportant, as is the programming language used
to encode the construction process. We have chosen to fill in the syn-
tactical component using Prolog DCGs—but a wide range of options
is available and we urge our readers to experiment.

Exercise 2.1.1 How many sentences are accepted by this grammar? How
many noun phrases? How many verb phrases? Check your answers by gen-
erating the relevant items.

2.2 Two Experiments

How can we systematically associate first-order formulas with the sen-
tences produced by our little grammar? Let’s just plunge in and try,
and see how far our knowledge of DCGs and Prolog will take us.
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Experiment 1

First the lexical items. We need to associate Vincent with the constant
vincent, Mia with the constant mia, walks with the unary relation
symbol walk, and loves with the binary relation symbol love. The
following piece of DCG code makes these associations. Note that the
arity of walk and love are explicitly included as part of the Prolog
representation.

pn(vincent)--> [vincent].

pn(mia)--> [mia].

iv(snort(_))--> [snorts].

tv(love(_,_))--> [loves].

How do we build semantic representations for sentences? Let’s first
consider how to build representations for quantifier-free sentences
such as Mia loves Vincent. The main problem is to steer the con-
stants into the correct slots of the relation symbol. (Remember, we
want Vincent loves Mia to be represented by love(vincent,mia), not
love(mia,vincent).) Here’s a first (rather naive) attempt. Let’s di-
rectly encode the idea that when we combine a TV with an NP to form
a VP, we have to put the semantic representation associated with the
NP in the second argument slot of the VP’s semantic representation,
and that we use the first argument slot for the semantic representations
of NPs that we combine with VPs to form Ss.

Prolog has a built in predicate arg/3 such that arg(N,P,I) is true
if I is the Nth argument of P. This is a useful tool for manipulating
pieces of syntax, and with its help we can cope with simple quantifier
free sentences rather easily. Here’s the needed extension of the DCG:

s(Sem)--> np(SemNP), vp(Sem),

{

arg(1,Sem,SemNP)

}.

np(Sem)--> pn(Sem).

vp(Sem)--> tv(Sem), np(SemNP),

{

arg(2,Sem,SemNP)

}.

vp(Sem)--> iv(Sem).

These clauses work by adding an extra argument to the DCG (here,
the position filled by the variables Sem and SemNP) to percolate up the
required semantic information using Prolog unification. Note that while
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the second and the fourth clauses perform only this percolation task, the
first and third clauses, which deal with branching rules, have more work
to do: they use arg/3 to steer the arguments into the correct slots. This
is done by associating extra pieces of code with the DCG rules, namely
arg(1,Sem,SemNP) and arg(2,Sem,SemNP). (These are normal Prolog
goals, and are added to the DCG rules in curly brackets to make them
distinguishable from the grammar symbols.) This program captures,
in a brutally direct way, the idea that the semantic contribution of
the object NP goes into the second argument slot of TVs, while the
semantic contribution of subject NPs belongs in the first argument
slot.

It works. For example, if we pose the query:

?- s(Sem,[mia,snorts],[]).

we obtain the (correct) response:

Sem = snort(mia).

But this is far too easy—let’s try to extend our fragment with the
determiners a and every. First, we need to extend the lexical entries for
these words, and the entries for the common nouns they combine with:

det(some(_,and(_,_)))--> [a].

det(all(_,imp(_,_)))--> [every].

noun(woman(_))--> [woman].

noun(footmassage(_))--> [foot,massage].

NPs formed by combining a determiner with a noun are called quan-
tified noun phrases.

Next, we need to say how the semantic contributions of determiners
and noun phrases should be combined. We can do this by using arg/3

four times to get the instantiation of the different argument positions
correct:

np(Sem)--> det(Sem), noun(SemNoun),

{

arg(1,SemNoun,X),

arg(1,Sem,X),

arg(2,Sem,Matrix),

arg(1,Matrix,SemNoun)

}.

The key idea is that the representation associated with the NP will
be the representation associated with the determiner (note that the
Sem variable is shared between np and det), but with this represen-
tation fleshed out with additional information from the noun. The
Prolog variable X is a name for the existentially quantified variable
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the determiner introduces into the semantic representation; the code
arg(1,SemNoun,X) and arg(1,Sem,X) unifies the argument place of
the noun with this variable. The code arg(2,Sem,Matrix) simply says
that the second argument of Sem will be the matrix of the NP semantic
representation, and more detail is added by arg(1,Matrix,SemNoun):
it says that the first slot of the matrix will be filled in by the semantic
representation of the noun. So if we pose the query

?- np(Sem,[a,woman],[]).

we obtain the response

Sem = some(X,and(woman(X),Y)).

Note that the output is an incomplete first-order formula. We don’t
yet have a full first-order formula (the Prolog variable Y has yet to be
instantiated) but we do know that we are existentially quantifying over
the set of women.

Given that such incomplete first-order formulas are the semantic
representations associated with quantified NPs, it is fairly clear what
must happen when we combine a quantified NP with a VP to form an
S: the VP must provide the missing piece of information. (That is, it
must provide an instantiation for Y.) The following clause does this:

s(Sem)--> np(Sem), vp(SemVP),

{

arg(1,SemVP,X),

arg(1,Sem,X),

arg(2,Sem,Matrix),

arg(2,Matrix,SemVP)

}.

Unfortunately, while the underlying idea is essentially correct, things
have just started going badly wrong. Until now, we’ve simply been
extending the rules of our original DCG with semantic information—
and we’ve already dealt with s --> np, vp. If we add this second
version of s --> np, vp (and it seems we need to) we are duplicating
syntactic information. This is uneconomical and inelegant. Worse, this
second sentential rule interacts in an unintended way with the rule

np(Sem)--> pn(Sem).

As the reader should check, as well as assigning the correct semantic
representation to A woman snorts, our DCG also assigns the splendidly
useless string of symbols

snort(some(X,and(woman(X),Y))).

But this isn’t the end of our troubles. We already have a rule for
forming VPs out of TVs and NPs, but we will need a second rule to
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cope with quantified NPs in object position, namely:

vp(Sem)--> tv(SemTV), np(Sem),

{

arg(2,SemTV,X),

arg(1,Sem,X),

arg(2,Sem,Matrix),

arg(2,Matrix,SemTV)

}.

If we add this rule, we can assign correct representations to all the
sentences in our fragment. However we will also produce a lot of non-
sense (for example, A woman loves a foot massage is assigned four rep-
resentations, three of which are just jumbles of symbols) and we are
being systematically forced into syntactically unmotivated duplication
of rules. This doesn’t look promising. Let’s try something else.

Exercise 2.2.1 The code for experiment 1 is in experiment1.pl. Generate
the semantic representations of the sentences and noun phrases yielded by
the grammar.

Experiment 2

Although our first experiment was ultimately unsuccessful, it did teach
us something useful: to build representations, we need to work with
incomplete first-order formulas, and we need a way of manipulating
the missing information. Consider the representations associated with
determiners. In experiment 1 we associated a with some(_,and(_,_)).
That is, the determiner contributes the skeleton of a first-order for-
mula whose first slot needs to be instantiated with a variable, whose
second slot needs to be filled with the semantic representation of a
noun, and whose third slot needs to be filled by the semantic repre-
sentation of a VP. However in experiment 1 we didn’t manipulate this
missing information directly. Instead we took a shortcut: we thought in
terms of argument position so that we could make use of arg/3. Let’s
avoid plausible looking shortcuts. The idea of missing information is
evidently important, so let’s take care to always associate it with an
explicit Prolog variable. Perhaps this direct approach will make seman-
tic construction easier.

Let’s first apply this idea to the determiners. We shall need three
extra arguments: one for the bound variable, one for the contribution
made by the noun, and one for the contribution made by the VP. Inci-
dentally, these last two contributions have a standard name: the contri-
bution made by the noun is called the restriction and the contribution
made by the VP is called the nuclear scope. We reflect this terminology
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in our choice of variable names:

det(X,Restr,Scope,some(X,and(Restr,Scope)))--> [a].

det(X,Restr,Scope,all(X,imp(Restr,Scope)))--> [every].

But the same idea applies to common nouns, intransitive verbs, and
transitive verbs too. For example, instead of associating woman with
woman( ), we should state that the translation of woman is woman(y)
for some particular choice of variable y—and we should explicitly keep
track of which variable we choose. (That is, although the y appears free
in woman(y), we actually want to have some sort of hold on it.) Sim-
ilarly, we want to associate a transitive verb like loves with love(y,z)
for some particular choice of variables y and z, and again, we should
keep track of the choices we made. So the following lexical entries are
called for:

noun(X,woman(X))--> [woman].

iv(Y,snort(Y))--> [snorts].

tv(Y,Z,love(Y,Z))--> [loves].

Given these changes, we need to redefine the rules for producing
sentences and verb phrases.

s(Sem)--> np(X,SemVP,Sem), vp(X,SemVP).

vp(X,Sem)--> tv(X,Y,SemTV), np(Y,SemTV,Sem).

vp(X,Sem)--> iv(X,Sem).

The semantic construction rule associated with the sentential rule,
for example, tells us that Sem, the semantic representation of the sen-
tence, is essentially going to be that of the noun phrase (that’s where
the value of the Sem variable will trickle up from) but that, in addition,
the bound variable X used in Sem must be the same as the variable used
in the verb phrase semantic representation SemVP. Moreover, it tells
us that SemVP will be used to fill in the information missing from the
semantic representation of the noun phrase.

So far so good, but now we need a little trickery. Experiment 1
failed because there was no obvious way of making use of the semantic
representations supplied by quantified noun phrases and proper names
in a single sentential rule. Here we only have a single sentential rule, so
evidently the methods of experiment 2 avoid this problem. Here’s how
it’s done:

np(X,Scope,Sem)--> det(X,Restr,Scope,Sem), noun(X,Restr).

np(SemPN,Sem,Sem)--> pn(SemPN).

Note that we have given all noun phrases—regardless of whether
they are quantifying phrases or proper names—the same arity in the
grammar rules. (That is, there really is only one np predicate in this
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grammar, not two predicates that happen to make use of the same
atom as their functor name.)

It should be clear how the first rule works. The skeleton of a quanti-
fied noun phrase is provided by the determiner. The restriction of this
determiner is filled by the noun. The resultant noun phrase representa-
tion is thus a skeleton with two marked slots: X marks the bound vari-
able, while Scope marks the missing nuclear scope information. This
Scope variable will be instantiated by the verb phrase representation
when the sentential rule is applied.

The second rule is trickier. The easiest way to understand it is to
consider what happens when we combine a proper name noun phrase
with a verb phrase to form a sentence. Recall that this is our sentential
rule:

s(Sem)--> np(X,SemVP,Sem), vp(X,SemVP).

Hence when we have a noun phrase of the form np(SemPN,Sem,Sem),
two things happen. First, because of the doubled Sem variable, the
semantic representation of the verb phrase (that is, SemVP) becomes the
semantic representation associated with the sentence. Secondly, because
X is unified with SemPN, the semantics of the proper name (a first-
order constant) is substituted into the verb phrase representation. So
the doubled Sem variable performs a sort of role reversal. Intuitively,
whereas the representation for sentences that have a quantified noun
phrase as subject is essentially the subject’s representation filled out
by the verb phrase representation, the reverse is the case when we have
a proper name as subject. In such cases, the verb phrase is boss. The
sentence representation is essentially the verb phrase representation,
and the role of the proper name is simply to obediently instantiate the
empty slot in the verb phrase representation.

Our second experiment has fared far better than our first. It is clearly
a good idea to explicitly mark missing information; this gives us the
control required to fill it in and manoeuvre it into place. Nonetheless,
experiment 2 uses the idea clumsily. Much of the work is done by the
rules. These state how semantic information is to be combined, and
(as our NP rule for proper names shows) this may require rule-specific
Prolog tricks such as variable doubling. Moreover, it is hard to think
about the resulting grammar in a modular way. For example, when
we explained why the NP rules took the form they do, we did so by
explaining what was eventually going to happen when the S rule was
used. Now, perhaps we weren’t forced to do this—nonetheless, we find
it difficult to give an intuitive explanation of this rule any other way.

This suggests we are missing something. Maybe a more disciplined
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approach to missing information would reduce—or even eliminate—the
need for rule-specific combination methods? Indeed, this exactly what
happens if we make use of the lambda calculus.

Exercise 2.2.2 Using either pen and paper or a tracer, compare the se-
quence of variable instantiations this program performs when building repre-
sentations for Vincent snorts and A woman snorts, and Vincent loves Mia and
Vincent loves a woman.

Programs for the first two experiments

experiment1.pl

The code of our first experiment in semantic construction for a
small fragment of English.

experiment2.pl

The second experiment in semantic construction.

2.3 The Lambda Calculus

We shall view lambda calculus as a notational extension of first-order
logic that allows us to bind variables using a new variable binding
operator λ. Occurrences of variables bound by λ should be thought of
as placeholders for missing information: they explicitly mark where we
should substitute the various bits and pieces obtained in the course of
semantic construction. An operation called β-conversion performs the
required substitutions. We suggest that the reader thinks of the lambda
calculus as a special programming language dedicated to a single task:
gluing together the items needed to build semantic representations.

Here is a simple lambda expression:

λx.man(x).

The prefix λx. binds the occurrence of x in man(x). We often say that
the prefix λx. abstracts over the variable x. We call expressions with
such prefixes lambda abstractions (or, more simply, abstractions). In our
example, the binding of the free x variable in man(x) explicitly indicates
that man has an argument slot where we may perform substitutions.
More generally, the purpose of abstracting over variables is to mark the
slots where we want substitutions to be made.
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We use the symbol @ to indicate the substitutions we wish to carry
out. Consider the following example:

λx.man(x)@vincent.

This compound expression consists of the abstraction λx.man(x)
and the constant vincent glued together by the @ symbol (that is,
we use infix notation for the @-operator). Such expressions are called
functional applications; the left-hand expression is called the func-
tor , and the right-hand expression the argument. We often say that
the functor is applied to its argument: for example, the expression
λx.man(x)@vincent is the application of the functor λx.man(x) to
the argument vincent.

But what is such an expression good for? It is an instruction to
throw away the λx. prefix of the functor, and to replace every occur-
rence of x that was bound by this prefix by the argument; we shall call
this substitution process β-conversion (other common names include
β-reduction and λ-conversion). Performing the β-conversion specified
by the previous expression yields:

man(vincent).

Abstraction, functional application, and β-conversion underly much
of our subsequent work. In fact, as we shall soon see, the business of
specifying semantic representations for lexical items is essentially going
to boil down to devising lambda abstractions that specify the missing
information, while functional application coupled with β-conversion will
be the engine used to combine semantic representations composition-
ally.

The previous example was rather simple, and in some respects rather
misleading. For a start, the argument was simply the constant vincent,
but (as we shall soon see) arguments can be complex expressions con-
taining occurrences of λ and @. Moreover, the λx. in λx.man(x) is
simply used to mark the missing term in the predicate man, but as
experiments 1 and 2 made clear, to deal with noun phrases and deter-
miners (and indeed, many other things) we need to mark more complex
kinds of missing information. However, λ will be used for such tasks too.
For example, our semantic representation of the noun phrase a woman

will be: λy.∃x(woman(x)∧y@x). Here we are using the variable y to in-
dicate that some information is missing (namely, the nuclear scope, to
use the linguistic terminology mentioned earlier) and to show exactly
where this information has to be plugged in when it is found (it will be
applied to the argument x and conjoined to the formula woman(x)).

We are almost ready to examine some linguistic examples, but before
doing so an important point needs to be made: the lambda expressions
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λx.man(x), λu.man(u), and λv.man(v) are intended to be equivalent,
and so are λu.∃x(woman(x)∧u@x) and λv.∃x(woman(x)∧v@x). All
these expressions are functors which when applied to an argument A,
replace the bound variable by the argument. No matter which argument
A we choose, the result of applying any of the first three expressions to
A and then β-converting should be man(A), and the result of applying
either of the last two expressions to A should be ∃x(woman(x)∧A@x).
To put it another way, replacing the bound variables in a lambda ex-
pression (for example, replacing the variable x in λx.man(x) by u to
obtain λu.man(u)) is a process which yields a lambda expression which
is capable of performing exactly the same gluing tasks.

This shouldn’t be surprising—it’s the way bound variables always
work. For example, we saw in Chapter 1 that ∀xrobber(x) and
∀yrobber(y) mean exactly the same thing, and mathematics stu-
dents will be used to relabelling variables when calculating integrals.
A bound variable is essentially a placeholder: the particular variable
used is not intended to have any significance. For this reason bound
variables are sometimes called dummy variables.

The process of relabelling bound variables (any bound variable:
it doesn’t matter whether it is bound by ∀ or ∃ or λ) is called α-
conversion. If a lambda expression E can be obtained from a lambda
expression E ′ by α-conversion then we say that E and E ′ are α-
equivalent (or that they are alphabetic variants). Thus λx.man(x),
λy.man(y), and λz.man(z) are all α-equivalent, and so are the expres-
sions λy.∃x(woman(x)∧y@x) and λz.∃y(woman(y)∧z@y). In what
follows we often treat α-equivalent expressions as if they were iden-
tical. For example, we will sometimes say that the lexical entry for
some word is a lambda expression E , but when we actually work out
some semantic construction, we might use an α-equivalent expression
E ′ instead of E itself. As λ-bound variables are merely placeholders,
this clearly should be allowed. But the reader needs to understand that
it’s not merely permissible to work like this, it can be vital to do so if
β-conversion is to work as intended.

Why? Well, suppose that the expression F in λx.F is a complex
expression containing many occurrences of λ, ∀ and ∃. It could happen
that when we apply λx.F to an argument A, some occurrence of a
variable that is free in A becomes bound by a lambda operator or a
quantifier when we substitute it into F . Later in the chapter we’ll see
a concrete example—for now we’ll simply say that we don’t want this
to happen. Such accidental bindings (as they are usually called) defeat
the purpose of working with the lambda calculus. The whole point of
developing the lambda calculus was to gain control over the process
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of performing substitutions. We don’t want to lose control by foolishly
allowing unintended interactions.

And such interactions need never be a problem. We don’t need to use
λx.F as the functor: any α-equivalent expression will do. By relabelling
all the bound variables in λx.F we can always obtain an α-equivalent
functor that doesn’t bind any of the variables that occur free in A, and
accidental binding is prevented. Thus, strictly speaking, it is not merely
functional application coupled with β-conversion that drives the process
of semantic construction in this book, but functional application and
β-conversion coupled with α-conversion.

That’s all we need to know about the lambda calculus for the time
being—though it is worth mentioning that the lambda calculus can be
introduced from a different, more logically oriented, perspective. The
logical perspective is important (we discuss it briefly in the Notes at
the end of the chapter) nonetheless it is not the only legitimate per-
spective on lambda calculus. Indeed, as far as computational seman-
tics is concerned, it is the computational perspective we have adopted
here—lambda calculus as glue language—that makes the lambda calcu-
lus interesting. So let’s ignore the logical perspective for now and try
putting our glue language to work. Here’s a good place to start: does
lambda calculus solve the problem we started with? That is, does it get
rid of the difficulties we encountered in experiments 1 and 2?

Let’s see. What is involved in building the semantic representation
for every boxer walks using lambdas? The first step is to assign lambda
expressions to the different basic syntactic categories. We assign the
determiner every, the common noun boxer, and the intransitive verb
walks the following lambda expressions:

every: λu.λv.∀x(u@x→v@x)

boxer: λy.boxer(y)

walks: λz.walk(z).

Before going further, pause a moment. These expressions should re-
mind you of the representations we used in our experiments. For exam-
ple, in experiment 2 we gave the determiner every the representation

det(X,Restr,Scope,all(X,imp(Restr,Scope))).

If we use the Prolog variable U instead of Restr, and V instead of
Scope this becomes

det(X,U,V,all(X,imp(U,V)))

which is quite similar to λu.λv.∀x(u@x→v@x).
But there are also important differences. The experiment 2 represen-

tation is a Prolog-specific encoding of missing information. In contrast,
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lambda expressions are programming language independent (we could
work with them in Java, C++ or Haskell, for example). Moreover, ex-
periment 2 ‘solved’ the problem of combining missing information on
a rule-by-rule basis. As will soon be clear, functional application and
β-conversion provide a completely general solution to this problem.

Let’s return to every boxer walks. According to our grammar, a de-
terminer and a common noun can combine to form a noun phrase. Our
semantic analysis couldn’t be simpler: we will associate the NP node
with the functional application that has the determiner representation
as functor and the noun representation as argument.

every boxer (NP)
λu.λv.∀x(u@x→v@x)@λy.boxer(y)

every (Det)
λu.λv.∀x(u@x→v@x)

boxer (Noun)
λy.boxer(y)

Now, applications are instructions to carry out β-conversion, so let’s
do what is required. (Note that as there are no free occurrences of vari-
ables in the argument expression, there is no risk of accidental variable
capture, so we don’t need to α-convert the functor.) Performing the
demanded substitution yields:

every boxer: λv.∀x(λy.boxer(y)@x→v@x).

But this expression contains the subexpression λy.boxer(y)@x.
Now, the argument x is a free variable, but x does not occur bound in
the functor λy.boxer(y), so we don’t need to α-convert the functor.
So we can simply go ahead and perform the required β-conversion, and
when we do so we obtain:

every boxer: λv.∀x(boxer(x)→v@x).

We can’t perform any more β-conversions, so let’s carry on with
the analysis of the sentence. Now, we know that we want the S node
to be associated with ∀x(boxer(x)→walk(x)). How do we get this
representation?

We obtain it by a procedure analogous to the one just performed
at the NP node. First, we associate the S node with the application
that has the NP representation just obtained as functor, and the VP
representation as argument:

every boxer walks: λv.∀x(boxer(x)→v@x)@λz.walk(z).

Performing β-conversion yields:

every boxer walks: ∀x(boxer(x)→λz.walk(z)@x).
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We can then perform β-conversion on the expression λz.walk(z)@x,
and when we do so we obtain the desired representation:

every boxer walks: ∀x(boxer(x)→walk(x)),

which is what we wanted. Here is the entire semantic construction pro-
cess in diagrammatic format (with the β-conversions already carried
out):

every boxer walks (S)
∀x(boxer(x)→walk(x))

every boxer (NP)
λv.∀x(boxer(x)→v@x)

walks (VP)
λz.walk(z)

every (Det)
λu.λv.∀x(u@x→v@x)

boxer (Noun)
λy.boxer(y)

It is worth reflecting on this example, for it shows that in two impor-
tant respects semantic construction is getting simpler. First, the process
of combining two representations is now uniform: we simply say which
of the representations is the functor and which the argument, where-
upon combination is carried out by applying functor to argument and
β-converting. Second, more of the load of semantic analysis is now car-
ried by the lexicon: it is here that we use the lambda calculus to make
the missing information stipulations.

Are there clouds on the horizon? For example, while the semantic
representation of a quantifying noun phrase such as a woman can be
used as a functor, surely the semantic representation of an NP like Vin-

cent will have to be used as an argument? We avoided this problem
in experiment 2 by the variable doubling trick used in the NP rule for
proper names—but that was a Prolog specific approach, incompatible
with the use of lambda calculus. Maybe—horrible thought!—we’re go-
ing to be forced to duplicate syntactic rules again, just as we did in
experiment 1.

In fact, there’s no problem at all. The lambda calculus offers a de-
lightfully simple functorial representation for proper names, as the fol-
lowing examples show:

Mia: λu.(u@mia)

Vincent: λu.(u@vincent).

These representations are abstractions, thus they can be used as
functors. However note what such functors do: they are instructions
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to substitute their argument in the slot marked u, which amounts to
applying their own arguments to themselves! Because the lambda cal-
culus offers us the means to specify such role-reversing functors, the
spectre of syntactic rule duplication vanishes.

As an example of these new representations in action, let us build a
representation for Vincent loves Mia. We shall assume that TV seman-
tic representations take their object NP’s semantic representation as
argument, so we assign loves the following lambda expression:

λw.λz.(w@λx.love(z,x)).

And as in the previous example, the subject NP’s semantic repre-
sentation takes the VP’s semantic representation as argument, so we
can build the following tree:

Vincent loves Mia (S)
love(vincent,mia)

Vincent (NP)
λu.u@vincent

loves Mia (VP)
λz.(love(z,mia))

loves (TV)
λw.λz.(w@λx.love(z,x))

Mia (NP)
λu.u@mia

Let’s sum up what we have achieved. Our decision to move be-
yond the approach of experiment 2 to the more disciplined approach
of the lambda calculus was sensible. For a start, we don’t need to
spend any more time thinking about how to combine two semantic
representations—functional application and β-conversion give us a gen-
eral mechanism for doing so. Moreover, much of the real work is now
being done at the lexical level; indeed, even the bothersome problem
of finding a decent way of handling NP representations uniformly now
has a simple lexical solution.

In fact, for the remainder of this book, the following version of the
three tasks listed earlier will underly our approach to semantic con-
struction:

Task 1 Specify a DCG for the fragment of natural language of interest.

Task 2 Specify semantic representations for the lexical items with the
help of the lambda calculus.

Task 3 Specify the semantic representation R′ of a syntactic item R
whose parts are F and A with the help of functional application.
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That is, specify which of the subparts is to be thought of as
functor (here it’s F), which as argument (here it’s A) and then
define R′ to be F ′@A′, where F ′ is the semantic representation
of F and A′ is the semantic representation of A.

We must now show that the second and third tasks lend themselves
naturally to computational implementation.

Exercise 2.3.1 Work in detail through the functional applications and β-
conversions required to build the semantic representations for the VP and
the S in the tree for Vincent loves Mia. Make sure you fully understand the
semantic representation used for TVs.

2.4 Implementing Lambda Calculus

Our decision to perform semantic construction with the aid of an ab-
stract glue language (the lambda calculus) has pleasant consequences
for grammar writing. But how can we make the approach computa-
tional?

The answer is clear: we should wrap the key combinatorial mecha-
nisms (functional application, β-conversion, and α-conversion) into a
simple black box. When thinking about semantics we should be free
to concentrate on the interesting issues—we shouldn’t have to worry
about the mechanics of gluing semantic representations together.

In this section we build such a black box. We first show how to
represent lambda abstractions and functional applications in Prolog,
we then write (a first version of) a β-conversion predicate, and finally
we write an α-conversion predicate. The required black box is simply
the β-conversion predicate modified to call the α-conversion predicate
before carrying out reductions.

Lambda expressions in Prolog

Let’s get to work. First we have to decide how to represent a lambda
abstraction λx.E in Prolog. We do so as follows:

lam(X,E).

That is, we use the Prolog functor lam/2 instead of λ, the Prolog vari-
able X instead of x, and write E (the Prolog representation of E) in the
second argument place of lam.

Next we have to decide how to represent functional application F@A
in Prolog. We do so as follows:

app(F,A).

That is, we use the Prolog functor app/2 instead of @, write F (the
Prolog representation of F) as its first argument, and A (the Prolog
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representation of A) as its second argument. (So our fundamental Pro-
log notation for functional application is a prefix notation. But, as with
first-order notation, we have provided a Prolog infix notation too. Ap-
pendix D gives the details. When using the programs you can toggle to
infix notation if you find it more readable; Appendix A tells you how.)

With these notational decisions taken, we have all we need to start
writing DCGs that build lambda expressions. Let’s first see what the
syntactic rules will look like. (This following DCG is part of the file
experiment3.pl.) Actually, there’s practically nothing that needs to
be said here. If we use the syntactic rules in the manner suggested by
(our new version of) task 3, all we need is the following:

s(app(NP,VP))--> np(NP), vp(VP).

np(PN)--> pn(PN).

np(app(Det,Noun))--> det(Det), noun(Noun).

vp(IV)--> iv(IV).

vp(app(TV,NP))--> tv(TV), np(NP).

Note that the unary branching rules just percolate up their seman-
tic representation (here coded as Prolog variables PN, IV and so on),
while the binary branching rules use the app/2 term to build semantic
representations out of the component semantic representations in the
manner suggested by task 3. Compared with experiments 1 and 2, this
is completely transparent: we simply apply function to argument to get
the desired result.

The real work is done at the lexical level. The entries for nouns and
intransitive verbs practically write themselves:

noun(lam(X,footmassage(X)))--> [foot,massage].

noun(lam(X,woman(X)))--> [woman].

iv(lam(X,walk(X)))--> [walks].

And here’s the code stating that λx.(x@vincent) is the translation
of Vincent, and λx.(x@mia) the translation of Mia:

pn(lam(X,app(X,vincent)))--> [vincent].

pn(lam(X,app(X,mia)))--> [mia].

Next, recall that the lambda expressions for the determiners every

and a are λu.λv.∀x(u@x→v@x) and λu.λv.∃x(u@x∧v@x). We express
these in Prolog as follows.

det(lam(U,lam(V,all(X,imp(app(U,X),app(V,X))))))--> [every].

det(lam(U,lam(V,some(X,and(app(U,X),app(V,X))))))--> [a].

And now we have enough to start experimenting with semantic con-
struction: we simply pass the semantic information up the tree from
the lexicon, and app/2 explicitly records how it all fits together. Here
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is an example query:

?- s(Sem,[mia,snorts],[]).

Sem = app(lam(_A,app(_A,mia)),lam(_B,snort(_B)))

So far so good—but we’re certainly not finished yet. While the out-
put is correct, we don’t want to produce representations crammed full
of lambdas and applications: we want genuine first-order formulas. So
we need a way of getting rid of the glue after it has served its purpose.
Let’s start developing the tools needed to do this.

Implementing β-conversion

The crucial tool we need is a predicate that carries out β-conversion.
For example, when given

app(lam(U,app(U,mia)),lam(X,snort(X)))

as input (this is the rather messy expression just produced by our
DCG), it should carry out the required β-conversions to produce

snort(mia),

which is the first-order expression we really want. But how can we
define such a predicate?

The crucial idea is to make use of a stack that keeps track of all
expressions that need to be used as arguments at some point. (A stack
is a data structure that stores information in a last-in/first-out manner:
the last item pushed onto the stack will be the first item popped off it.
Prolog lists can naturally be thought of as stacks, the head of the list
being the top of the stack). Let’s look at some examples. Here’s what
should happen when we β-convert app(lam(X,smoke(X)),mia):

Expression Stack
app(lam(X,smoke(X)),mia) []

lam(X,smoke(X)) [mia]

smoke(mia) []

As this example shows, at the start of the β-conversion process the
stack is empty. When the lambda expression we are working with is
an application (as in the first line), its argument is pushed onto the
stack and the outermost occurrence of app/2 is discarded. When the
formula we are working with is an abstraction (as in the second line)
the initial lambda is thrown away, and the item at the top of the stack
(here mia) is popped and substituted for the newly-freed variable (here
X). If the expression we are working with is neither an application nor
an abstraction (as in the third line) we halt.
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Now, the previous example obviously works correctly, but it is so
simple you might be tempted to think that it is overkill to use a stack.
But it’s not. Consider this example:

Expression Stack
app(app(lam(Z,lam(Y,invite(Y,Z))),mia),vincent) []

app(lam(Z,lam(Y,invite(Y,Z))),mia) [vincent]

lam(Z,lam(Y,invite(Y,Z))) [mia,vincent]

lam(Y,invite(Y,mia)) [vincent]

invite(vincent,mia) []

Note the way the last-in/first-out discipline of the stack ensures that
the arguments are correctly substituted. In this example, vincent is
the argument of the outermost functional application. But we can’t
substitute vincent at this stage as the functor expression

app(lam(Z,lam(Y,invite(Y,Z))),mia)

is not an abstraction. Instead, we must first β-convert this functor (this
involves substituting mia into the Z slot). As we see in line four, once
this has been done the functor is in the correct syntactic form (that
is, its outermost operator is now a lambda) and so we can substitute
vincent for Y. In short, the stack keeps track of which functor corre-
sponds to which argument.

Here’s another example. This shows what happens when the seman-
tic representation of a proper name is applied to a complex argument:

Expression Stack
app(lam(U,app(U,mia)),lam(X,smoke(X))) []

lam(U,app(U,mia)) [lam(X,smoke(X))]

app(lam(X,smoke(X)),mia) []

lam(X,smoke(X)) [mia]

smoke(mia) []

Finally, what are we to do when the expression we need to β-convert
is not an application? This means we cannot push anything onto the
stack, and thus we are blocked—but there may well be subexpressions
that can be β-converted. The answer is clear: we simply split the ex-
pression into its component parts, and recursively apply our stack-based
algorithm to both components. When the recursion bottoms out, we
put the pieces back together. Here’s an example:
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Expression Stack
lam(X,app(lam(Y,run(Y)),X)) []

Expression Stack
X []

Expression Stack
app(lam(Y,run(Y)),X) []

lam(Y,run(Y)) [X]

run(X) []

lam(X,run(X)) []

Well, that’s the idea—let’s now turn it into Prolog. Here’s the base
clause:

betaConvert(X,Y,[]):-

var(X),

Y=X.

Why is this correct? As we have just seen, functors are not always in
the required syntactic form (they don’t always have λ as the outermost
operator), so we sometimes need to β-convert the functor first. Bear-
ing this is mind, consider the base clause. Variables cannot be further
reduced, so the result of β-converting a variable is the variable itself.
Moreover, the stack must be empty at this point, for a non-empty stack
would only make sense if the expression to be reduced was a lambda-
abstraction, which a variable simply isn’t.

Now for the second clause. If we’re not dealing with a variable, and
if the expression is an application (that is, of the form app(Fun,Arg)),
then we push the argument onto the stack and go on with reducing the
functor. (Of course, we only do this if the functor is not a variable, as
variables cannot be further reduced.) The following code does this:

betaConvert(Expression,Result,Stack):-

nonvar(Expression),

Expression = app(Functor,Argument),

nonvar(Functor),

betaConvert(Functor,Result,[Argument|Stack]).

Now for the third clause. Whereas an application pushes an element
on the stack, an abstraction lam(X,Formula) pops an element off the
stack and substitutes it for X. We implement the substitution process by
unifying X with the element at the top of the stack. Note that this clause
can only be entered if the stack is non-empty: the use of [X|Stack] as
the third argument guarantees that there is at least one element on the
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stack (and the choice of the Prolog variable X to mark the top of the
stack forces the desired unification):

betaConvert(Expression,Result,[X|Stack]):-

nonvar(Expression),

Expression = lam(X,Formula),

betaConvert(Formula,Result,Stack).

Finally, we need a clause that deals with other kinds of complex
expression (such as conjunctions) and with lambda-abstractions when
the stack is empty. In such cases we use compose/3 to break down the
complex expression into a list of subexpressions, carry out β-conversion
on all elements of this list using betaConvertList/3, and then re-
assemble using compose/3:

betaConvert(Expression,Result,[]):-

nonvar(Expression),

\+ (Expression = app(X,_), nonvar(X)),

compose(Expression,Functor,SubExpressions),

betaConvertList(SubExpressions,ResultSubExpressions),

compose(Result,Functor,ResultSubExpressions).

The definition of betaConvertList/3 is the obvious recursion:

betaConvertList([],[]).

betaConvertList([Expression|Others],[Result|Results]):-

betaConvert(Expression,Result),

betaConvertList(Others,Results).

Last of all, here’s a predicate which initialises the β-conversion pro-
cess with an empty stack:

betaConvert(X,Y):-

betaConvert(X,Y,[]).

Let’s try out the s(Sem,[mia,snorts],[]) query again—except
this time, we’ll feed the output into our new β-conversion predicate:

?- s(Sem,[mia,snorts],[]), betaConvert(Sem,Reduced).

Sem = app(lam(A,app(A,mia)),lam(B,snort(B)))

Reduced = snort(mia)

yes

This, of course, is exactly what we wanted.

Implementing α-conversion

The stack-based approach to β-conversion just discussed is the heart
of the black box we are constructing. Nonetheless, as it stands, our
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implementation of β-conversion is not fully correct. Why not? Because
we have ignored the need to perform α-conversion.

As we mentioned earlier, when performing β-conversion we have to
take care that none of the free variables in the argument becomes acci-
dentally bound by lambdas or quantifiers in the functor. There is a very
easy way to prevent such problems: before carrying out β-conversion we
should change all the bound variables in the functor (both those bound
by lambdas, and those bound by quantifiers) to variables not used in the
argument. Doing so guarantees that accidental bindings simply cannot
occur—and not doing so can have disastrous consequences for semantic
construction.

Here’s a typical example of what can go wrong. Let’s start with
the following representations for the NP every man and the VP loves a

woman:

every man (NP): λu.∀y(man(y)→u@y),
loves a woman (VP): λx.∃y(woman(y)∧love(x,y)).

Applying the NP representation to the VP representation gives us
the following representation for the sentence:

λu.∀y(man(y)→u@y)@λx.∃y(woman(y)∧love(x,y)).

Let’s reduce this to something more readable. Substituting the ar-
gument into u yields:

∀y(man(y)→λx.∃y(woman(y)∧love(x,y))@y).

So far so good—but now things can go badly wrong if we are careless.
We need to perform β-conversion on the following subexpression:

λx.∃y(woman(y)∧love(x,y))@y.

At this point, warning bells should start to clang. In this subexpres-
sion, the argument is the free variable y. But now look at the functor:
y occurs existentially quantified, so if we substitute x for its argument
y we end up with:

∀y(man(y)→∃y(woman(y)∧love(y,y))).

This certainly does not express the intended meaning of the sentence
every man loves a woman (it says something along the lines of “ev-
erything is not a man or some woman loves herself”). The existential
quantifier has ‘stolen’ the y, which really should have been bound by
the outermost universal quantifier.

But we don’t have to fall into this trap. Indeed, avoiding it is simplic-
ity itself: all we have to do is α-convert the functor of the subexpression
so that it does not bind the variable y. For example, if we decided to
replace y by z in the functor, instead of reducing the expression
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λx.∃y(woman(y)∧love(x,y))@y

(which is what leads to trouble) then our task is instead to reduce the
following α-equivalent expression

λx.∃z(woman(z)∧love(x,z))@y.

Doing it this way yields

∀y(man(y)→ ∃z(woman(z)∧love(y,z))),

which is a sensible semantic representation for every man loves a woman.
The consequences for our implementation are clear. Two tasks re-

main before our desired black box is ready: we must implement a predi-
cate which carries out α-conversion, and we must alter the β-conversion
predicate so that it uses the α-conversion predicate before carrying out
reductions.

So the first question is: how do we implement α-conversion? In
essence we recursively strip down the expression that needs to be α-
converted and relabel bound variables as we encounter them. Along
the way we will need to do some administration to keep track of free
and bound variables (remember we only want to rename bound vari-
ables). We shall do this with the help of a list of substitutions and a
(difference-) list of free variables. These lists will be empty at the be-
ginning of the conversion process (they will be initialised by the main
predicate for α-conversion, alphaConvert/2):

alphaConvert(Expression,Converted):-

alphaConvert(Expression,[],[]-_,Converted).

And now we simply carry on and define clauses covering all possible
kinds of expressions that could be encountered. First, what happens
if we encounter a variable? Well, if the variable is part of the list of
substitutions, we simply substitute it. Otherwise, it must be a free
variable, and we leave it as it is and add it to the list of free variables.
This is coded as follows:

alphaConvert(X,Sub,Free1-Free2,Y):-

var(X),

(

memberList(sub(Z,Y),Sub),

X==Z, !,

Free2=Free1

;

Y=X,

Free2=[X|Free1]

).

Let’s now deal with the crucial case of the variable binders (the ex-
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istential quantifier, the universal quantifier, and the lambda-operator).
As we would expect, these are the expressions that introduce substitu-
tions: the new variable Y will be substituted for X.

alphaConvert(Expression,Subs,Free1-Free2,some(Y,F2)):-

nonvar(Expression),

Expression = some(X,F1),

alphaConvert(F1,[sub(X,Y)|Subs],Free1-Free2,F2).

alphaConvert(Expression,Subs,Free1-Free2,all(Y,F2)):-

nonvar(Expression),

Expression = all(X,F1),

alphaConvert(F1,[sub(X,Y)|Subs],Free1-Free2,F2).

alphaConvert(Expression,Subs,Free1-Free2,lam(Y,F2)):-

nonvar(Expression),

Expression = lam(X,F1),

alphaConvert(F1,[sub(X,Y)|Subs],Free1-Free2,F2).

Other complex expressions (such as conjunctions) are broken down
into their parts (using compose/3), and α-converted as well, using a
predicated called alphaConvertList/4. This part of the code is very
much like that used in the analogous part of our β-conversion predicate:

alphaConvert(F1,Subs,Free1-Free2,F2):-

nonvar(F1),

\+ F1 = some(_,_),

\+ F1 = all(_,_),

\+ F1 = lam(_,_),

compose(F1,Symbol,Args1),

alphaConvertList(Args1,Subs,Free1-Free2,Args2),

compose(F2,Symbol,Args2).

And alphaConvertList/4 has the expected recursive definition:

alphaConvertList([],_,Free-Free,[]).

alphaConvertList([X|L1],Subs,Free1-Free3,[Y|L2]):-

alphaConvert(X,Subs,Free1-Free2,Y),

alphaConvertList(L1,Subs,Free2-Free3,L2).

And that’s all there is to it. As this predicate creates brand new
symbols every time it encounters a binding, its output is exactly what
we want. For example, in the following query the some/2 and the all/2
bind the same variable X. In the output they each bind a distinct, brand
new, variable:

?- alphaConvert(some(X,and(man(X),all(X,woman(X)))),R).



“blackburnbos”
2004/12/13
page 82

i

i

i

i

i

i

i

i

82 / Representation and Inference for Natural Language

R = some(_A,and(man(_A),all(_B,woman(_B))))

yes

The Black Box

Fine—but now that we are able to perform α-conversion, how do we
use it to make our β-conversion predicate correct? In the obvious way.
Here is the clause of our β-conversion predicate that handles the case
for applications:

betaConvert(Expression,Result,Stack):-

nonvar(Expression),

Expression = app(Functor,Argument),

nonvar(Functor),

betaConvert(Functor,Result,[Argument|Stack]).

We simply have to add a line which uses alphaConvert/2 to relabel
all bound variables in the functor using fresh new symbols:

betaConvert(Expression,Result,Stack):-

nonvar(Expression),

Expression = app(Functor,Argument),

nonvar(Functor),

alphaConvert(Functor,Converted),

betaConvert(Converted,Result,[Argument|Stack]).

And that’s our black box completed.
Of course, we should test that it really works. There is a test suite

containing entries of the following form:

expression(app(lam(A,lam(B,like(B,A))),mia),

lam(C,like(C,mia))).

The first argument of expression/2 is the lambda expression to
be β-converted, the second is the result (or more accurately, one of the
possible results). If you load the file betaConversion.pl and then issue
the command

?- betaConvertTestSuite.

Prolog will evaluate all the examples in the test suite, and the output
will be a series of entries of the following form:

Expression: app(lam(_716,app(_716,mia)),lam(_722,walk(_722)))

Expected: walk(mia)

Converted: walk(mia)

Result: ok

This tells us that our betaConvert/2 predicate has been applied to
Expression (that is, the first argument of expression/2) to produce
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Converted, and because this matches what we Expected (that is, the
second argument of expression/2) the Result is ok.

Fine—but why did we say that the second argument of expression/2
was “one of the possible results”? Well, consider the following exam-
ple:

Expression: app(lam(_716,lam(_719,like(_719,_716))),mia)

Expected: lam(_725,like(_725,mia))

Converted: lam(_939,like(_939,mia))

Result: ok

Here Expected and Converted are not identical—but the result is
clearly right as the two expressions are α-equivalent. So when we say
that Expected and Converted should “match”, what we really mean
is that they have to be α-equivalent.

How do we test that two expressions are α-equivalent? It’s a two-step
process. We first check that any free variables used in the expressions
are identical, and occur at the same position. We then check that (if
we ignore the differences in the variables that are bound) the two ex-
pressions have the same syntactic structure. The following code does
this:

alphabeticVariants(Term1,Term2):-

alphaConvert(Term1,[],[]-Free1,Term3),

alphaConvert(Term2,[],[]-Free2,Term4),

Free1==Free2,

numbervars(Term3,0,_),

numbervars(Term4,0,_),

Term3=Term4.

The first three lines of this code check that the free variables in Term1

and Term2 (the two terms we want to prove are α-equivalent) are iden-
tical and occur in same position; this is done with the help of our
alphaConvert/4 predicate. Note that this part of the process gives
us two new terms (Term3 and Term4) and the next step is to check
whether these new terms have the same syntactic structure. We do this
by making use of the built-in predicate numbervars/3. This instan-
tiates all Prolog variables with unique non-variables, and once that’s
done, we use unification to check whether the instantiated terms Term3
and Term4 are identical.

One thing may be unclear. Why do we use numbervars/3 to substi-
tute non-variables for variables? Why not simply try unifying the terms
after we have checked that the free variables are the same? Because this
won’t work. Consider the formulas ∃x∀yR(x,y) and ∃x∀yR(y,x). These
are not α-equivalents, but Prolog would cheerfully unify the variable x
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and y and declare that they were! By first substituting non-variables
for variables we prevent such problems.

This concludes our discussion of the λ-calculus. As should now be
clear, it is a tool that every computational semanticist should be fa-
miliar with. It gives us a transparent and concise notation for specify-
ing semantic representations, and comes with simple and well-defined
mechanisms for gluing them together. Moreover, as we have seen, the
key mechanisms can be wrapped up into a black box. To be sure, we
have spent the last few pages looking under the hood at how it all
works, but having done that we can now slam the hood firmly shut
again. We don’t need to worry anymore about whether variables unify,
or how we can guarantee that there won’t be clashes that lead to errors
in the semantic construction process. It’s plug-and-play time. We’re
free to start thinking about computational semantics.

Exercise 2.4.1 The β-conversion code is in file betaConversion.pl. It con-
tains a commented-out sequence of print instructions that displays the con-
tents of the stack. Comment in these print instructions and then try out
the examples in file betaConversionTestSuite.pl (which was designed by
David Milward). Incidentally, don’t just run the test suite—read it as well.
Some of the examples are very instructive, and the file contains comments
on many of them.

Exercise 2.4.2 In the text we learned that failing to apply α-conversion be-
fore reducing β-expressions can yield the incorrect representations. In fact,
if we try to work with our first version of betaConvert/2 (the one that
doesn’t call on alphaConvert/2) we also encounter a host of additional
Prolog-specific problems.

The β-conversion code is in file betaConversion.pl. By commenting out a
single marked line in this file, α-conversion can be turned off. Do the following
experiments.

1. Enrich the DCG with a rule for and. Use λu.λv.λx.(u@x ∧ v@x) as
its semantic representation. Show that with α-conversion switched on,
your DCG gives the correct representation for Vincent and Mia dance.
Then explain why Prolog fails to build any representation at all when
α-conversion is turned off.

2. Run betaConversionTestSuite/0 with α-conversion turned off. You
will encounter some surprising behaviour (for example, in one case
Prolog fails to terminate). Explain these failures.

Exercise 2.4.3 Give the Prolog code for lexical entries of ditransitive verbs
such as offer in Vincent offers Mia a drink.

Exercise 2.4.4 Find a suitable lambda expression for the lexical entry of
the determiner no, and then give the corresponding Prolog code.
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Exercise 2.4.5 Extend the DCG so that it covers sentences such as everyone

dances and somebody snorts.

Exercise 2.4.6 Pereira and Shieber (see Notes at the end of the chapter)
provide a simpler approach to the semantics for transitive verbs. Firstly,
lam(X,lam(Y,love(X,Y))) is their semantic representation for the verb love.
Secondly, they use the following grammar rule to deal with transitive verbs:

vp(lam(X,app(NP,TV)))--> tv(lam(X,TV)), np(NP).

Explain how this works. Is it really unproblematic?

Exercise 2.4.7 In the text, when we used the black box with our DCG we
carried out β-conversion only after the representation had been built for the
entire sentence. Change the DCG (which you can find in experiment3.pl) so
that β-conversion is interleaved with semantic construction. This can be done
by making β-conversion part and parcel of the grammar rules. For instance,
change the rule for sentences to

s(S)--> np(NP), vp(VP), {betaConvert(app(NP,VP),S)}.

Exercise 2.4.8 Food for thought. What happens when you functionally ap-
ply λx.(x@x) to itself and β-convert? And what happens when you function-
ally apply λx.((x@x)@x) to itself and β-convert?

Programs for implementing the lambda calculus

experiment3.pl

DCG with lambda calculus for a small fragment of English.

betaConversion.pl

Implementation of β-conversion.

alphaConversion.pl

Implementation of α-conversion.

betaConversionTestSuite.pl

Examples to test our implementation of β-conversion.

comsemPredicates.pl

Definitions of some auxiliary predicates.
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2.5 Grammar Engineering

With our Prolog notation for lambda abstraction and functional appli-
cation, and our black box for β-conversion, we have the basic semantic
construction tools we need. So it is time to move on from the baby
DCGs we have been playing with and define a more interesting gram-
mar fragment.

But let’s do it right—we should try to observe some basic principles
of grammar engineering. That is, we should strive for a grammar that is
modular (each component should have a clear role to play and a clean
interface with the other components), extendible (it should be straight-
forward to enrich the grammar should the need arise) and reusable (we
should be able to reuse a significant portion of the grammar, even when
we change the underlying semantic representation language).

Grammar engineering principles have strongly influenced the design
of the larger grammar we shall now discuss—and this is not purely for
pedagogical reasons. In the course of writing this book we have exper-
imented with many ways of computing semantic representations (for
example, in the following chapter we will consider three different tech-
niques for coping with scope ambiguities). Moreover, we have checked
that our approach is compatible with other semantic representation
languages (notably the Discourse Representation Structures, used in
DRT, though this is not a topic we shall explore in this book). As
we have learned (often the hard way) incorporating such extensions,
and keeping track of what is going on, requires a disciplined approach
towards grammar design. In the end we opted for a fairly simple two-
dimensional grammar architecture consisting of a collection of syntax
rules and corresponding semantic rules, and a lexicon with correspond-
ing lexical semantics.

The syntax rules are DCG rules annotated with additional gram-
matical information. These rules will not change in the course of the
book. The lexicon lists information about words belonging to various
syntactic categories in an easily extractable form; this component will
also stay fixed throughout the book. The syntax rules together with
the lexical entries constitute the syntactic part of the grammar.

The semantic part of the grammar consists of the semantic rules and
the lambda definitions that define the lexical semantics. The semantic
rules state how the semantic representation of a complex category is
computed out of the semantic representations of its parts. The seman-
tic lexicon is where we state what we have previously called “lexical
entries”. It is here that we will do most of our semantic work, and our
modifications will largely be confined to this level.
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The diagram below illustrates the modular design of the syntax-se-
mantics interface.

grammar

lexicon

syntax semantics

englishLexicon.pl semLexLambda.pl

englishGrammar.pl semRulesLambda.pl

lambda.pl

As the diagram shows, the information guiding the semantic con-
struction process is spread across five files. The top level file lambda.pl,
contains the implementation of the lambda calculus we have discussed,
and makes use of the linguistic information provided by the four lower
level files. We’ll first discuss how these lower level files represent the
various kinds of linguistic information, and then we’ll see how the top
level file wraps everything together.

The Syntax Rules

Let’s first examine the core DCG rules that we shall use (we won’t
show all the rules, as many of them are fairly similar; consult the file
englishGrammar.pl for the complete set). The rules license a num-
ber of semantically important constructions, such as proper names,
determiners, pronouns, relative clauses, the copula construction, and
coordination. These DCG rules resemble those we used earlier in this
chapter, but there are some important differences. First of all, in order
to deal with agreement, morphology, and coordination, we will decorate
syntactic categories with a list of attribute-value pairs expressing this
grammatical information. And secondly, all syntax rules come with a
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hook to a semantic rule, in the form of the combine/2 notation. Here
is an example illustrating both these extensions:

s([coord:no,sem:Sem])-->

np([coord:_,num:Num,sem:NP]),

vp([coord:_,inf:fin,num:Num,sem:VP]),

{combine(s:Sem,[np:NP,vp:VP])}.

This rule is of course the familiar S → NP VP rule, but it tells
us slightly more: that this S is a non-coordinating sentence, that the
number feature of NP and VP are constrained to be of the same value,
and that the inflectional form of the VP must be finite. It also tells
us (here is where combine/2 is used) that the S semantics is formed
by combining the NP and the VP semantics. We will see how this
combination is actually to be carried out when we examine the contents
of the file semRulesLambda.pl; in the meantime, we’ll simply remark
that factoring out the definition of the combine/2 predicate in this
manner helps keep things modular.

Let’s now consider some of the coordination rules. Implementing
coordination in DCGs requires special attention because left-recursive
syntax rules (that is, rules of the form X → X Y) will cause Prolog to
fall into an infinite loop. The way we solve this is simple and effective:
we introduces a feature coord that can either have the value yes or no.

np([coord:yes,num:pl,sem:NP])-->

np([coord:no,num:sg,sem:NP1]),

coord([type:conj,sem:C]),

np([coord:_,num:_,sem:NP2]),

{combine(np:NP,[np:NP1,coord:C,np:NP2])}.

np([coord:yes,num:sg,sem:NP])-->

np([coord:no,num:sg,sem:NP1]),

coord([type:disj,sem:C]),

np([coord:_,num:sg,sem:NP2]),

{combine(np:NP,[np:NP1,coord:C,np:NP2])}.

Note that these rules show a further interesting point about English
noun phrases in coordination, namely that their grammatical number
is determined by the kind of coordinating particle that is used. So,
the NP Mia and Vincent will receive the value pl for the feature num,
whereas Mia or Vincent gets the value sg.

Let’s look at some lexical rules. These are rules that apply to termi-
nal symbols, the actual strings that the DCG is trying to analyse:

noun([sem:Sem])-->

{lexEntry(noun,[symbol:Symbol,syntax:Word])},

Word,
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{semLex(noun,[symbol:Symbol,sem:Sem])}.

First we call the lexicon to check if a string belongs to the syntactic cat-
egory being searched for (this gives us Word). What does the semLex/2
predicate do? Think of it as a semantic macro which is used to con-
struct the actual semantic representation for the noun. In fact, each
lexical category is associated with such a macro; there are semantic
macros for intransitive verbs, transitive verbs, determiners, and so on.

Why do things this way? Because it helps us to keep things modular.
If we want to change the semantic representation used for (say) tran-
sitive verbs, we simply change the appropriate semantic macro (and
if there are a lot of transitive verbs in our lexicon, this saves a lot of
work). Indeed, because of our use of semantic macros, it is possible to
make far more substantial changes to the underlying semantic represen-
tation formalism without much difficulty. For example, in the following
chapter we will see that a richer notion of semantic representation is
needed if we are to deal with the problems raised by scope ambiguities.
We’ll be able to define the richer representations we shall require, and
make them work with our semantic construction machinery simply by
changing the semantic macros (and the way combine/2 is defined).

What are the shortcomings of our grammar? One in particular
should be mentioned. We have implemented only a limited amount of
inflectional morphology—all our examples are relentlessly third-person
present-tense. This is a shame (tense and its interaction with temporal
reference is a particularly rich source of semantic examples). Nonethe-
less, we shall not be short of interesting things to do. Even this small
set of rules assigns tree structures to an interesting range of English
sentences:

Mia knows every owner of a hash bar.

Vincent or Mia dances.

Every boxer that kills a criminal loves a woman.

Vincent does not love a boxer or criminal that snorts.

Vincent does not love a boxer or a criminal that snorts.

If a boxer snorts then a woman collapses.

The Semantic Rules

Let’s turn to the semantic rules, that is, the contents of the file
semRulesLambda.pl. This is where the combine/2 predicate is de-
fined. Here the news is extremely pleasant. For a start, the required
semantic annotations are utterly straightforward; they are simply the
obvious “apply the function to the argument statements” expressed
with the help of app/2.
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combine(s:app(A,B),[np:A,vp:B]).

That is, we simply apply the NP semantics to the VP semantics.
None of the rules are much more complex than this. The rules for
coordination are the most complex, but even these are straightforward
as the following example shows:

combine(np:app(app(B,A),C),[np:A,coord:B,np:C]).

The unary rules, of course, are even simpler for they merely pass the
representation up to the mother node. For example:

combine(np:A,[pn:A]).

Moreover, because the definition of combine/2 pins down the funda-
mentals of the semantic construction process, it is easy to experiment
with other forms of semantic construction. To give a simple example, we
can experiment with carrying out β-conversion directly after we have
combined two representations simply by redefining combine/2. Here,
for example, is the new clause that would be used for building sentence
representations:

combine(s:Converted,[np:A,vp:B]):-

betaConvert(app(A,B),Converted).

In short, the architecture is modular. In the following chapter we
will exploit this modularity in a more far-reaching fashion to deal with
quantifier scope.

The Lexicon

Let’s now turn to the lexicon (that is, englishLexicon.pl). The gen-
eral format of a lexical entry is lexEntry(Cat,Features) where Cat is
the syntactic category, and Features is a list of attribute-value pairs.
This list contains further information about the lexical entry, such as
the symbols that will be used in the semantic representation, the surface
form of the lexical entry, and other grammatical information specific to
the type of lexical entry.

We will go through a few examples to give an idea of how the lexicon
is set up. Let’s first consider nouns, proper names, and adjectives:

lexEntry(noun,[symbol:burger,syntax:[burger]]).

lexEntry(noun,[symbol:boxer,syntax:[boxer]]).

lexEntry(noun,[symbol:car,syntax:[car]]).

lexEntry(pn,[symbol:mia,syntax:[mia]]).

lexEntry(pn,[symbol:yolanda,syntax:[yolanda]]).

lexEntry(pn,[symbol:vincent,syntax:[vincent,vega]]).
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lexEntry(adj,[symbol:big,syntax:[big]]).

lexEntry(adj,[symbol:kahuna,syntax:[kahuna]]).

lexEntry(adj,[symbol:married,syntax:[married]]).

As these examples show, nouns, proper names, and adjectives in our
lexicon come with two features: symbol, the relation symbol used to
compute the semantic representation), and syntax, a list of words de-
scribing the appearance of the lexical entry in a phrase. Note that
we use a list for the syntax feature in order to deal with multi-word
lexemes—for example, for the compound name Vincent Vega.

Other types of lexical entries make use of different features. For ex-
ample, the entries for determiners have information about the syntactic
mood and the type of quantification that they introduce:

lexEntry(det,[syntax:[every],mood:decl,type:uni]).

lexEntry(det,[syntax:[a],mood:decl,type:indef]).

lexEntry(det,[syntax:[the],mood:decl,type:def]).

lexEntry(det,[syntax:[which],mood:int,type:wh]).

Moreover, note that there is no feature symbol in the entries for de-
terminers. Why is that? Well, the semantic contribution of determiners
is not simply a constant or relation symbol, but rather a relatively
complex expression that is dependent on the underlying representation
language. Hence we shall specify the semantics of these categories in
the semantic lexicon.

Let’s now have a look at the verbs. First, the transitive verbs. These
entries contain information about morphological inflection (the feature
inf with possible values inf for infinite forms and fin for finite forms)
and number (the feature num with possible values sg for singular and
pl for plural). Consider for instance the verb to clean in the lexicon:

lexEntry(tv,[symbol:clean,syntax:[clean],inf:inf,num:sg]).

lexEntry(tv,[symbol:clean,syntax:[cleans],inf:fin,num:sg]).

lexEntry(tv,[symbol:clean,syntax:[clean],inf:fin,num:pl]).

As a final example consider the lexical entries for the auxiliary verbs:

lexEntry(av,[syntax:[does],inf:fin,num:sg,pol:pos]).

lexEntry(av,[syntax:[does,not],inf:fin,num:sg,pol:neg]).

lexEntry(av,[syntax:[did],inf:fin,num:sg,pol:pos]).

lexEntry(av,[syntax:[did,not],inf:fin,num:sg,pol:neg]).

The auxiliary verbs come with the additional feature pol, express-
ing the polarity, whose value is either pos or neg. This information
is used for constructing the appropriate semantic representations for
expressions with auxiliary verbs.

This way of setting up a lexicon offers natural expansion options.
For example, if we decided to develop a grammar that dealt with both
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singular and plural forms of nouns (which we won’t do in this book,
though see Exercise 2.5.5), it is just a matter of extending the general
format of entries with one or more fields.

The Semantic Lexicon

We now come to the most important part of the grammar, the semantic
lexicon. As the introduction of combine/2 has reduced the process of
combining semantic representations to an elegant triviality, and as the
only semantic information the lexicon supplies is the relevant constant
and relation symbols, the semantic lexicon is where the real seman-
tic work will be done. And, as we have already discussed, this work
boils down to devising suitable semantic macros. Let’s consider some
examples right away.

semLex(pn,M):-

M = [symbol:Sym,

sem:lam(U,app(U,Sym))].

semLex(noun,M):-

M = [symbol:Sym,

sem:lam(X,Formula)],

compose(Formula,Sym,[X]).

semLex(tv,M):-

M = [symbol:Sym,

sem:lam(K,lam(Y,app(K,lam(X,Formula))))],

compose(Formula,Sym,[Y,X]).

The semantic macro for proper names is straightforward. For in-
stance, for Mia, the value mia will be associated with the feature
symbol, and hence the representation lam(U,app(U,mia)) will be as-
sociated with the feature sem. The second macro builds a semantic
representation for any noun given the predicate symbol Sym, turning
this into a formula lambda-abstracted with respect to a single variable.
The representation is built using the compose/3 predicate to coerce it
into the required lambda expression. For example, the symbol boxer
would give the representation lam(X,boxer(X)).

As we’ve already mentioned, the semantic lexicon also has self-
contained entries for the determiners. Here they are:

semLex(det,M):-

M = [type:uni,

sem:lam(U,lam(V,all(X,imp(app(U,X),app(V,X)))))].

semLex(det,M):-
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M = [type:indef,

sem:lam(P,lam(Q,some(X,and(app(P,X),app(Q,X)))))].

These, of course, are just the old-style lexical entries we are used to. For
a complete listing of the semantic lexicon we have just been discussing,
see the file semLexLambda.pl. We shall see other types of lexical se-
mantics as we work our way through the book.

Wrapping Everything Together

Finally we turn to the main level program.

lambda:-

readLine(Sentence),

lambda(Sentence,Sems),

setof(Sem,t([sem:Sem],Sentence,[]),Sems),

printRepresentations(Sems).

This uses readLine/1 to read in a sentence, computes all semantic
representations, and finally prints out all semantic representations in
a nicely ordered way. The readLine/1 predicate allows us to type in
sentences in a natural way (rather than the lists used with DCGs in
the earlier experiments). For example:

?- lambda.

> Mia knows a boxer.

1 some(A,and(boxer(A),know(mia,A)))

The sentence test suite is in file sentenceTestSuite.pl, which con-
tains entries of the form:

sentence([a,man,walks],1).

The test suite can be started with lambdaTestSuite/0.

And that’s the architecture. From now on, the syntax rules and the
lexicon will be used unchanged. To put it another way: from now on,
the locus of change will be the semantic lexicon and the semantic rules.
In particular, it is here that we will develop our treatments of quantifier
scope in the following chapter.

Exercise 2.5.1 Find out how copula verbs are handled in the lexicon and
grammar, and how the semantic representations for sentences like Mia is a

boxer and Mia is not Vincent are generated.

Exercise 2.5.2 Extend the grammar so that it handles expressions of the
form Vincent is male, Mia and Vincent are cool, and Marsellus or Butch is big.
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Exercise 2.5.3 Extend the grammar so that it handles expressions of the
form Vincent and Jules are in a restaurant and Butch is on a motorbike.

Exercise 2.5.4 Add the preposition without to the lexicon, and define a
new semantic macro that takes the implicit negation of this preposition into
account. For instance, a man without a weapon should receive a representation
such as ∃x(man(x)∧¬∃y(weapon(y)∧with(x,y))).

Exercise 2.5.5 Extend the grammar (the syntax rules and the lexicon) to
cover plural forms of nouns. Introduce a new feature in the lexical entries to
express number information. Then add entries for determiners and classify
them as combining with singular nouns only (for instance the determiner a),
combining with plural nouns only (for instance both, or all), or combining
with either (for example the).

Notes

Compositionality is a simple and natural idea—and one capable of
arousing an enormous amount of controversy. Traditionally attributed
to Gottlob Frege (the formulation “the meaning of the whole is a func-
tion of the meaning of its parts” is often called Frege’s principle) it
received a precise mathematical formulation in Richard Montague’s
paper “Universal Grammar” (Montague, 1970c). For a detailed and ac-
cessible overview of the compositionality concept, see Janssen (1997).
For evidence that there are still interesting issues to be resolved about
this venerable concept, see Pagin and Westerst̊ahl (2001), a special
issue of the Journal of Logic, Language and Information devoted to
compositionality.

Compositional approaches to semantic analysis use syntactic struc-
ture to guide the semantic construction process. In this book we have
opted for a relatively simple notion of syntactic structure (finite trees
whose nodes are labelled with categories) and an easy-to-use (but not
particularly sophisticated) mechanism for grammar specification and
parsing (namely, DCGs), but we did not discuss why these were (or were
not) good choices, nor consider alternatives. To find out more about
what syntactic structure is, and how to determine what sort of syntac-
tic structure a sentence has, consult either Radford (1997) or Burton-
Roberts (1986); the first is a thorough introduction to syntax from the
perspective of contemporary Chomskyan theorising, whereas the sec-
ond is a hands-on introduction to determining the kinds of trees (and
other structures) that constitute the syntactic structure of English.
Both books are clearly written and should be accessible even if you
have little or no linguistic background. For more on processing syntax,
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Programs for the full grammar fragment

lambda.pl

This is the main file for the implementation of the lambda cal-
culus using the extended grammar

readLine.pl

Module for converting strings into lists.

sentenceTestSuite.pl

Test suite with sentences.

semLexLambda.pl

Semantic lexicon for lambda.pl.

semRulesLambda.pl

Semantic rules for lambda.pl.

englishLexicon.pl

Our standard English lexical entries. Contains entries for nouns,
proper names, intransitive and transitive verbs, prepositions, and
pronouns.

englishGrammar.pl

Our standard grammatical rules for a fragment of English. Rules
cover basic sentences, noun phrases, relative clauses and modifi-
cation of prepositional phrases, verb phrases, and a limited form
of coordination.
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Gazdar and Mellish (1989) is a good choice. It is Prolog based, and dis-
cusses DCGs, more sophisticated alternatives to DCGs, attribute-value
structures (an important generalization of the attribute-value pairs we
made use of in our grammar architecture) and also contains chapters
on semantic and pragmatic processing. Finally, for a clear and up-to-
date introduction to all aspects of speech and language processing, see
Jurafsky and Martin (2000). As we remarked in the Introduction, this
is the standard textbook on speech and language processing, and the
approach it takes to semantic construction is based on first-order logic
and lambda calculus (see in particular Chapters 14 and 15). Chapter 15
also contains brief discussions of how semantic construction can be in-
tegrated with Earley Parsers (an efficient approach to natural language
parsing), and of how compositional approaches to semantic analysis can
be adapted for use in practical systems.

The idea of using the lambda calculus to specify the meanings of lex-
ical entries, and using functional application and β-conversion as the
basic mechanism for combining representations, is due to Richard Mon-
tague; it is used in both “Universal Grammar” (Montague, 1970c) and
“The Proper Treatment of Quantification in Ordinary English” (Mon-
tague, 1973) (as we said in the Introduction, what we presented in
this chapter is essentially the computational heart of Montague se-
mantics). Montague’s original papers are well worth reading (they are
collected in Montague (1974)). Nonetheless, they are densely written
and many readers will be better off approaching Montague semantics
via either Dowty et al. (1981) or Gamut (1991b); both contain good,
careful, textbook level expositions of Montague’s key ideas. For more
detailed discussion, try Janssen (1986a) and Janssen (1986b), or the
more up-to-date and wide ranging Carpenter (1997). For an overview
of Montague’s work, and an account of the major directions in which
his work has been developed, see Partee (1997a).

As we shall shortly discuss, much of the literature on λ-calculus
is logical or mathematical in nature. In this book we have tried to
emphasise that there is a down-to-earth computational perspective on
λ-calculus too. Not only is the lambda calculus a useful tool for glu-
ing representations together, but the basic ideas emerge, with seeming
inevitability, when one sits down and actually tries to do semantic con-
struction in Prolog—or at least, that is what we have tried to suggest
by approaching lambda calculus via experiments 1 and 2. We hasten
to add that this “seeming inevitability” is clear only with the benefit
of hindsight. The links between the ideas of logic programming and
Montague semantics seem to have first been explicitly drawn in Pereira
and Shieber (1987).
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However our account hasn’t discussed one interesting issue: what
do lambda expressions actually mean? Hopefully the reader now has
a pretty firm grasp of what one can do with lambda expressions—
but are we forced to think of lambda expressions purely procedurally?
As we are associating lambda expressions with expressions of natural
language, it would be nice if we could give them some kind of model-
theoretic interpretation.

Actually, there’s something even more basic we haven’t done: we
haven’t been particularly precise about what counts as a λ-expression!
Moreover—as readers who did Exercise 2.4.8 will be aware—if one takes
an “anything goes” attitude, it is possible to form some pretty wild (and
indeed, wildly pretty) expressions, such as λx.(x@x) which when ap-
plied to itself and β-converted yields itself, and λx.((x@x)@x) which
when applied to itself and β-converted yields ever longer lambda ex-
pressions.

Let’s briefly discuss such issues. The main point we wish to make is
that there are two major variants of the lambda calculus, namely the
untyped lambda calculus, and the typed lambda calculus. Both can be
given model-theoretic interpretations in terms of functions and argu-
ments, and both can be regarded as programming languages—but the
version of typed lambda calculus most widely used in natural language
semantics also has a simple logical interpretation. Both the untyped
and typed lambda calculus were developed in the 1930s by Alonzo
Church and his then students Barkley Rosser and Stephen Kleene;
Church (1941) is the first expository account.

The untyped lambda calculus adopts an “anything goes” attitude to
functional application and β-conversion. For example, λx.((x@x)@x)
is a perfectly reasonable expression in untyped lambda calculus, and
it is fine to apply it to itself and β-convert. Doing so leads to a non-
terminating computation—but this merely reflects the fact that the
untyped lambda calculus is a full-blown programming language (and
as every programmer knows, non-terminating programs are a fact of
life). Indeed, when you get down to it, the untyped lambda calculus
is what lies at the heart of the functional programming language Lisp.
Writing a (pure) Lisp program is all about defining functions, and the
core mechanism Lisp offers for this purpose is lambda abstraction (for a
classic introduction to functional programming from a Lisp-as-lambda-
calculus perspective, see Abelson and Sussman (1985)).

Much to everyone’s surprise, the untyped lambda calculus turned
out to have a model-theoretic semantics, and a very beautiful one at
that. Clearly, any reasonable semantics should treat abstractions as
functions—the difficulty is to find suitable collections of functions in



“blackburnbos”
2004/12/13
page 98

i

i

i

i

i

i

i

i

98 / Representation and Inference for Natural Language

which the idea of self-application can be captured (after all, we want
to be able to model the self-applicative behaviour of expressions like
λx.((x@x)@x) correctly). In standard set theory, functions cannot be
applied to themselves, so constructing function spaces with the struc-
ture necessary to model self-application is no easy task. However Dana
Scott showed the way forwards with his D∞ model (see Scott (1970)
and Scott (1973)) and since then a number of other model construction
techniques have been developed.

The idea of giving model-theoretic interpretations to the untyped
lambda calculus (and other programming languages) gave rise to a new
branch of theoretical computer science called denotational semantics
of programming languages. This emerged around the same time that
Montague was doing his pioneering work on natural language semantics
(that is, in the late 1960s and early 1970s) and the two fields, though
different, have a lot in common. The classic introduction to denotational
semantics is Stoy (1977). Though dated, this is well worth looking at,
and has an interesting Foreword by Dana Scott. For a more recent (and
more wide ranging) text, try Nielson and Nielson (1992).

But the style of lambda calculus that has had the most impact on
natural language semantics is typed lambda calculus. Actually, typed
lambda calculi come in many flavours; the one we shall discuss is called
the simply typed lambda calculus with explicit (or Church-style) typing ,
for ever since the work Richard Montague, this has generally been the
tool of choice for natural language semanticists. For an important early
paper on this style of typed lambda calculus, see Church (1940).

The key feature of this style of typed lambda calculus is that it
adopts a very restrictive approach to functional application. Instead of
“Anything goes”, the motto is “If it don’t fit, don’t force it”, and typed
systems have exacting notions about what fits. Let’s discuss the idea
of (simple explicit) typing in a little more detail.

To build the lambda expressions we have used in this book in such
a system of typed lambda calculus, we would proceed as follows. First
we would specify the set of types. There would be infinitely many of
these, namely (1) the type e of individuals, (2) the type t of truth
values, and (3) for any types τ1 and τ2, the function type 〈τ1, τ2〉. Our
logical language would contain all the familiar first-order symbols, but
in addition it would contain an infinite collection of variables of each
type (the ordinary first-order variables, which range over individuals,
would now be thought of as the set of type e variables), and (crucially)
it would also contain the λ and @ operators.

In the typed lambda calculus, every expression receives a unique
type. The key clauses that ensure this are the definitions of abstraction
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and functional application. First, if E is a lambda expression of type
τ2, and v is a variable of type τ1 then λv.E is a lambda expression of
type 〈τ1, τ2〉. Therefore, it matters which type of variable we abstract
over: abstracting with respect to different types of variables results in
abstractions with different types. Second, if E is a lambda expression of
type 〈τ1, τ2〉, and E ′ is a lambda expression of type τ1 then (and only
then!) are we permitted to functionally apply E to E ′. If we do this,
the application has type τ2. In short, we are only allowed to perform
functional application when the types of E and E ′ fit together correctly .
The intuition is that the types tell us what the domain and range of each
expression is, and if these don’t match, application is not permitted.
Note, moreover, that the type of the expression that results from the
application is determined by the types of E and E ′. In effect, we have
taken the (wild and crazy) untyped lambda calculus and tamed it with
a strict typing discipline.

This has a number of consequences. For a start, self-application is
impossible. (This is obvious. After all, to use E as a functor, it must
have a function type, say 〈τ1, τ2〉. But then its argument must have type
τ1. So E can’t be used as one of its own arguments, as every expression
has a unique type, and we know that E has type 〈τ1, τ2〉.) Moreover,
it can be shown that unending sequences of β-conversions of the type
we noted in the untyped lambda calculus simply aren’t possible in
the typed lambda calculus (that is, all computations in simply typed
lambda calculus terminate, or to put it another way, typed lambda
calculus is a weaker programming language than the untyped lambda
calculus).

But for natural language semantics perhaps the most interest conse-
quence of (simple explicit) typing is that it becomes extremely straight-
forward to give a model-theoretic semantics to such systems. To do so,
simply take any first-order model M . The denotation De of type e ex-
pressions are the elements of the model, the permitted denotations Dt

of the type t expressions are True and False, and the permitted deno-
tations D〈τ1,τ2〉 of type 〈τ1, τ2〉 expressions are functions whose domain
is Dτ1

and whose range is Dτ2
. In short, expressions of the simply typed

lambda calculus are interpreted using an inductively defined function
hierarchy.

Which particular functions are actually used in this hierarchy? Con-
sider the expression λx.man(x), where x is an ordinary first-order vari-
able. Now, man(x) is a formula, something that (given a variable as-
signment) can be True or False, so this has type t. As was already
mentioned, first-order variables are viewed as type e variables, hence it
follows that the abstraction λx.man(x) has type 〈e, t〉. That is, it must
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be interpreted by a function from the set of individuals to the set of
truth values. But which one? In fact, it would standardly be interpreted
by the function which, when given an individual from the domain of
quantification as argument, returns True if that individual is a man,
and False otherwise. That is, it is interpreted using the function which
exactly characterises the subset of the model consisting of all men, or
to put it another way, it is interpreted by the property of manhood.
And this, of course, is precisely what the standard first-order seman-
tics uses to interpret man. In short, the functional interpretation of
lambda expressions is set up so that, via the mechanism of such char-
acteristic functions, it meshes perfectly with the ordinary first-order
interpretation.

By building over this base in a fairly straightforward way, the inter-
pretation can be extended to cover all lambda expressions. For example,
the expression

λu.∃x(woman(x)∧u@x)

(that is, the kind of expression associated with NPs) would be inter-
preted as a function which takes as argument the type of function that
u denotes (and u denotes type 〈e, t〉 functions, that is, properties such
as run) and returns a type t value (that is, either True or False).
For example, if we combine this expression with λy.run(y), we get
∃x(woman(x)∧run(x)), which is either true of false in a model. Ad-
mittedly, thinking in terms of functions that take other functions as
arguments and return functions as values can get rather involved, but
the basic idea is straightforward, and for applications in natural lan-
guage semantics, only a very small part of the function hierarchy tends
to be used.

And something else interesting happens. Recall that we allowed our-
selves variables over all types. Well, as we’ve already said, quantifica-
tion over entities of type e corresponds to first-order quantification. But
what about quantification over entities of type 〈e, t〉 for example? As we
just discussed, these are (characteristic functions of) properties—so if
we quantify across such entities (and we are allowed to) we are carrying
out what is known as monadic second-order quantification. Similarly,
if we quantify across entities of type 〈e, 〈e, t〉〉 we are quantifying across
two-place relations (after all, entities of this type combine with two
entities to give a truth value, and that is what a two-place relation
like love does), so we are carrying out what is known as dyadic second-
order quantification. And in fact, as we can quantify across entities
of arbitrary types, we’re not merely able to perform various kinds of
second-order quantification, we’re actually at the controls of a system
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of higher-order logic (or ω-order logic, or classical type theory , as it is
often called).

Now, arguably natural language semantics never requires types much
above order three or so—nonetheless the ability to take a logical per-
spective on higher-order types really is useful. Most importantly of all,
it means that the consistency and informativity checking tasks (and
indeed the querying task) that we introduced in the previous chapter
can be extended to all types. Why? Because now an expression such as
λx.man(x) is not only a useful piece of glue, it can also be regarded as
a well-formed expression of higher-order logic with a model-theoretic
interpretation (and indeed, Richard Montague treated lambda expres-
sions in exactly this way). Moreover, given background knowledge, it
makes complete sense to say (for example) that λx.person(x) is a
logical consequence of λx.man(x). The significance of this is that (the-
oretically at least) it clears the way for systematic use of inference at
the subsentential level. The example just given shows an entailment
relation between the nouns man and person, and in a similar way
implications can hold between NPs, VPs, PPs and so on.

To sum up our discussion: throughout this chapter we have talked
about the lambda calculus as a mechanism for marking missing in-
formation, and we have exploited the mechanisms of functional appli-
cation and β-conversion as a way of moving missing information to
where we want it. But there is nothing mysterious or ill-defined about
this metaphor. It is possible to give precise mathematical models of
missing information in terms of functions and arguments: an abstrac-
tion is interpreted as a function, and the missing information is simply
the argument we will later supply it with. Indeed, a variety of models
are possible, depending on whether one wants to work with typed or
untyped versions of the lambda calculus. Furthermore, if we take the
typed route, we end up in a wonderful playground called higher-order
logic.

Now for an important question: have we been working with typed or
untyped lambda calculus in this book? In a nutshell, we’ve been working
with untyped lambda calculus (in particular, our implementation of β-
conversion handles arbitrary untyped expressions) but we’ve been using
it as if it were a typed system (that is, we made use of the standard
Montague-style lambda expressions for the lexical entries). Why did we
do this? Why didn’t we define a system of typed lambda calculus right
from the start?

There are two main reasons. For a start, we wanted to show the
reader how naturally lambda calculus emerges as a computational solu-
tion to the semantic construction task—and we don’t think that talking
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about types adds much of interest to this story. But there is a more fun-
damental reason. As will become increasingly clear, logic in this book
is viewed as a tool to be used , and in particular, to be used compu-
tationally. Now it is true that expressions such as λx.man(x) can be
viewed as logical expressions, and that in theory this opens the door to
applying our inference tasks at the subsentential level. Unfortunately,
higher-order theorem proving is not as well developed as first-order
theorem proving, so this theoretical possibility is of somewhat limited
practical import at present. Hence, as we can’t do much useful com-
putation with higher-order logic, at present we prefer to downplay the
logical perspective on lambda expressions and present them simply as
useful glue. However we shall say a little more about higher-order theo-
rem proving and its relevance to computational semantics in the Notes
to Chapter 6.

The mathematical and logical literature on the lambda calculus is
vast. Here are some of the more obvious points of entry. The bible of
untyped lambda calculus is Barendregt (1984), and Barendregt (1992)
contains a wealth of material on typed systems. However these are
highly technical accounts, perhaps best suited for occasional reference.
For a more approachable account of both typed and untyped systems,
try Hindley and Seldin (1986). This is an extremely well-written book,
and if you would like to learn more about the topics we have just
mentioned (and related topics such as implicitly typed systems and
combinatoric logic) there is probably no better introduction. Another
useful source is Turner (1997); it is fairly technical, but broad in scope,
and discusses why various sorts of typing are useful in linguistics. For
logical work on the systems Montague himself used, and a number of
interesting variants, the classic source is Gallin (1975). Another read-
able source of information here (with the added attraction of linguistic
motivation) is Muskens (1996), while Fitting (2002) contains a superb
introduction to higher-order tableaus. An excellent, wide ranging, dis-
cussion of higher-order logic can be found in Doets and Van Benthem
(1983). Finally, it’s worth remarking that some semanticists find the
discipline imposed by the simply typed lambda calculus too rigid to
deal properly with all aspects of natural language semantics; for more
flexible approaches, see Chierchia et al. (1989).

Lambda calculus is the classic tool for semantic construction, but
it’s not the only tool available. One interesting alternative is the use
of attribute-value structures (or feature structures) and attribute-value
structure unification (or feature structure unification). The reader who
wants to go further in computational semantics really should be ac-
quainted with this approach. Gazdar and Mellish (1989) contains a
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good text book level introduction to its use in building syntactic and
semantic representations, and indeed, on its uses in pragmatics too. An-
other readable paper on the topic is Moore (1989). This paper compares
the approach with the use of lambda calculus, and argues in favour of
unification (for our views on lambda calculus versus unification-based
approaches, see Blackburn and Bos (2003)). More recently, linear logic
has been proposed as a glue language for semantic construction; see
Dalrymple et al. (1997).

Finally, we want to remark that the grammar architectures of the
type described in this chapter have proved extremely flexible in prac-
tice; in particular, they have been used to build Discourse Represen-
tation Structures (DRSs), the representation formalism used in Dis-
course Representation Theory, instead of standard first-order repre-
sentations. This is important because DRSs make it easier to capture
discourse level effects (such as anaphoric links) and certain pragmatic
phenomenon (such as presupposition). For more information, see Black-
burn et al. (2001a) and Bos (2004).
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Underspecified Representations

This chapter develops methods for dealing with an important seman-
tic phenomenon: scope ambiguities. Sentences with scope ambiguities
are often semantically ambiguous (that is, they have at least two non-
equivalent first-order representations) but fail to exhibit any syntactic
ambiguity (that is, they have only one syntactic analysis). As our ap-
proach to semantic construction is based on the idea of using syntactic
structure to guide semantic construction, we face an obvious problem
here: if there is no syntactic ambiguity, we will only be able to build
one of the possible representations. As scope ambiguities are common,
we need to develop ways of coping with them right away.

We are going to investigate four different approaches to scope ambi-
guities: Montague’s original method, two storage based methods, and
a modern underspecification based approach called hole semantics. We
will implement the storage based approaches and hole semantics.

But as well as developing practical solutions to a pressing problem,
this chapter tells an important story. Computational semanticists are
adopting an increasingly abstract perspective on what representations
are and how we should work with them. Once we have studied the
evolutionary line leading from Montague’s method to contemporary
underspecification-based methods, we will be in a better position to
appreciate why.

3.1 Scope Ambiguities

Scope ambiguity is a common phenomenon and can arise from many
sources. In this chapter we will mostly be concerned with quantifier
scope ambiguities. These are ambiguities that arise in sentences con-
taining more than one quantifying noun phrase; for example, Every

boxer loves a woman.
The methods of the previous chapter allow us to assign a represen-

105
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tation to this sentence as follows:

Every boxer loves a woman (S)
∀x(boxer(x)→ ∃y(woman(y)∧love(x,y)))

Every boxer (NP)
λu.∀x(boxer(x)→u@x)

loves a woman (VP)
λz.∃y(woman(y)∧love(z,y))

loves (TV)
λv.λz.(v@λx.love(z,x))

a woman (NP)
λw.∃y(woman(y)∧w@y)

The first-order formula we have constructed states that for each
boxer there is a woman that he loves:

(1) ∀x(boxer(x)→ ∃y(woman(y)∧love(x,y))).

This representation permits different women to be loved by different
boxers.

However, Every boxer loves a woman has a second meaning (or to use
the linguistic terminology, a second reading) that is captured by the
following formula:

(2) ∃y(woman(y) ∧ ∀x(boxer(x) → love(x,y))).

This says that there is one woman who is loved by all boxers.
It is clear that these readings are somehow related, and that this

relation has something to do with the relative scopes of the quanti-
fiers: both first-order representations have the same components, but
somehow the parts contributed by the two quantifying noun phrases
have been shuffled around. In the first representation the existential
quantifier contributed by a woman has ended up inside the scope of
the universal quantifier contributed by Every boxer and in the second
representation the nesting is reversed. It is common to say that in the
first reading Every boxer has scope over (or out-scopes) a woman, while
in reading (2) a woman has scope over Every boxer. Another common
way of expressing this is to say that in the first reading Every boxer has
wide scope and a woman has narrow scope; their roles are reversed in
the second reading.

Unfortunately, these scoping possibilities are not reflected syntac-
tically: the only plausible parse tree for this sentence is the one just
shown. Thus while it makes good semantic sense to say that in read-
ing (2) a woman out-scopes Every boxer, we can’t point to any syntactic
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structure that would explain why this scoping possibility exists. And as
each word in the sentence is associated with a fixed lambda expression,
and as semantic construction is simply functional application guided
by the parse tree, this means there is no way for us to produce this
second reading. This difficulty strikes at the very heart of our semantic
construction methodology.

In this chapter we examine four increasingly sophisticated (and in-
creasingly abstract) approaches to the problem. The first of these, Mon-
tague’s original method, introduces some important ideas, but as it re-
lies on the use of additional syntax rules it isn’t compatible with the
approach to grammar engineering adopted in this book. However, by
introducing a more abstract form of representation—the store—we will
be able to capture Montague’s key ideas in a computationally attrac-
tive way. Stores were introduced by Robin Cooper and are arguably the
earliest example of underspecified representations. Nonetheless, stores
are relatively concrete. By simultaneously moving to more abstract un-
derspecified representations, and replacing the essentially generative
perspective underlying storage methods with a constraint-based per-
spective, we arrive at hole semantics. As we shall see, this more abstract
view of what representations are, and how we should work with them,
has advantages. For example, in hole semantics not only can we handle
quantifier scope ambiguities, we can also handle the scope ambiguities
created by constructs such as negation, and do so in a uniform way.

But before examining these solutions let’s discuss the problem a lit-
tle further. Some readers may be having doubts: are scope ambiguities
really such a problem? Consider again Every boxer loves a woman. In a
sense, representation (1) is sufficient to cover both readings of our ex-
ample: it is ‘weaker’, since it is entailed by representation (2). Couldn’t
we argue that this weaker reading is the ‘real’ representation of the
sentence, and that the stronger reading is pragmatically inferred from
it with the help of contextual knowledge? Perhaps we don’t need novel
techniques for coping with quantifier ambiguity after all.

But while this idea is just about plausible for Every boxer loves a

woman, it doesn’t withstand closer scrutiny. Consider the sentence Every

owner of a hash bar gives every criminal a big kahuna burger. This has 18
readings. Here they are:

1 ∀x((∃y(hbar(y) ∧ of(x,y)) ∧ owner(x)) → ∀z(crim(z) → ∃u(bkb(u) ∧ give(x,z,u))))

2 ∀x(crim(x) → ∀y((∃z(hbar(z) ∧ of(y,z)) ∧ owner(y)) → ∃u(bkb(u) ∧ give(y,x,u))))

3 ∀x((∃y(hbar(y) ∧ of(x,y)) ∧ owner(x)) → ∃z(bkb(z) ∧ ∀u(crim(u) → give(x,u,z))))

4 ∀x(crim(x) → ∃y(bkb(y) ∧ ∀z((∃u(hbar(u) ∧ of(z,u)) ∧ owner(z)) → give(z,x,y))))

5 ∀x(crim(x) → ∃y(hbar(y) ∧ ∀z((of(z,y) ∧ owner(z)) → ∃u(bkb(u) ∧ give(z,x,u)))))
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6 ∀x(crim(x) → ∃y(hbar(y) ∧ ∃z(bkb(z) ∧ ∀u((of(u,y) ∧ owner(u)) → give(u,x,z)))))

7 ∀x(crim(x) → ∃y(bkb(y) ∧ ∃z(hbar(z) ∧ ∀u((of(u,z) ∧ owner(u)) → give(u,x,y)))))

8 ∃x(bkb(x) ∧ ∀y((∃z(hbar(z) ∧ of(y,z)) ∧ owner(y)) → ∀u(crim(u) → give(y,u,x))))

9 ∃x(bkb(x) ∧ ∀y(crim(y) → ∀z((∃u(hbar(u) ∧ of(z,u)) ∧ owner(z)) → give(z,y,x))))

10 ∃x(hbar(x) ∧ ∀y((of(y,x) ∧ owner(y)) → ∀z(crim(z) → ∃u(bkb(u) ∧ give(y,z,u)))))

11 ∃x(hbar(x) ∧ ∀y(crim(y) → ∀z((of(z,x) ∧ owner(z)) → ∃u(bkb(u) ∧ give(z,y,u)))))

12 ∃x(hbar(x) ∧ ∀y((of(y,x) ∧ owner(y)) → ∃z(bkb(z) ∧ ∀u(crim(u) → give(y,u,z)))))

13 ∃x(hbar(x) ∧ ∃y(bkb(y) ∧ ∀z((of(z,x) ∧ owner(z)) → ∀u(crim(u) → give(z,u,y)))))

14 ∃x(bkb(x) ∧ ∃y(hbar(y) ∧ ∀z((of(z,y) ∧ owner(z)) → ∀u(crim(u) → give(z,u,x)))))

15 ∃x(hbar(x) ∧ ∀y(crim(y) → ∃z(bkb(z) ∧ ∀u((of(u,x) ∧ owner(u)) → give(u,y,z)))))

16 ∃x(hbar(x) ∧ ∃y(bkb(y) ∧ ∀z(crim(z) → ∀u((of(u,x) ∧ owner(u)) → give(u,z,y)))))

17 ∃x(bkb(x) ∧ ∃y(hbar(y) ∧ ∀z(crim(z) → ∀u((of(u,y) ∧ owner(u)) → give(u,z,x)))))

18 ∃x(bkb(x) ∧ ∀y(crim(y) → ∃z(hbar(z) ∧ ∀u((of(u,z) ∧ owner(u)) → give(u,y,x))))).

Some of these readings turn out to be logically equivalent. In fact,
we have the following sets of logically equivalent readings: {1, 2}, {8, 9},
{6, 7}, {10, 11} and {13, 14, 16, 17}. If we take these equivalences into
account, we are left with 11 distinct readings. Moreover, if we examine
these readings closely and determine their logical relationships we dis-
cover that they are partitioned into two logically unrelated groups, as
shown in the following diagram:

13/14/16/17

12 15 18

10/11 6/7

5

8/9

4 3

1/2

The arrows in the diagram represent logical implication. Note that
each group has a strongest reading (namely {13, 14, 16, 17} and {8, 9}),
and a weakest reading (namely 5 and {1, 2}), but there is no single
weakest reading that covers all the possibilities. It is difficult to see how
a pragmatic approach could account for this example. (Incidentally,
we did not , as the reader will doubtless be relieved to hear, have to
compute these readings and determine their logical relationships by
hand. In fact, all we had to do was combine the semantic construction
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methods discussed in this chapter with the inference tools discussed in
Chapter 5. In Chapter 6 we show the reader exactly how this can be
done.)

Indeed, the idea of computing the weakest reading and relying on
pragmatics for the rest faces difficulties even when the weakest reading
exists, for there is no guarantee that it is the weakest reading that
will be generated by the methods of the previous chapter. Consider
the sentence A boxer is loved by every woman. This has two possible
readings, namely the stronger reading

∃y(boxer(y) ∧ ∀x(woman(x) → love(x,y)))

and the weaker reading

∀x(woman(x)→ ∃y(boxer(y)∧love(x,y))).

If we use the direct approach to semantic construction (that is, semantic
construction is simply functional application guided by the parse tree)
in the obvious way, we will generate the stronger reading.

3.2 Montague’s Approach

As our discussion has made clear, scope ambiguities are a genuine prob-
lem, and if we want to compute semantic representations we need a
solution. In the remainder of this chapter we shall discuss four. Start-
ing with Richard Montague’s pioneering work, we shall work our way,
via storage methods, towards a modern underspecification technique
called hole semantics. As we shall see, there is a pleasing continuity to
the way the story unfolds: each development ushers in the next.

Classical Montague semantics makes use of (and indeed, is the source
of) the direct method of semantic construction studied in the previous
chapter. However, motivated in part by quantifier scope ambiguities,
Montague also introduced a rule of quantification (often called quanti-
fier raising) that allowed a more indirect approach. The basic idea is
simple. Instead of directly combining syntactic entities with the quan-
tifying noun phrase we are interested in, we are permitted to choose an
‘indexed pronoun’ and to combine the syntactic entity with the indexed
pronoun instead. Intuitively, such indexed pronouns are ‘placeholders’
for the quantifying noun phrase. When this placeholder has moved high
enough in the tree to give us the scoping we are interested in, we are
permitted to replace it by the quantifying NP of interest.

As an example, let’s consider how to analyse Every boxer loves a

woman. Here’s the first part of the tree we need:
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Every boxer loves her-3 (S)
∀x(boxer(x)→love(x,z3))

Every boxer (NP)
λu.∀x(boxer(x)→u@x)

loves her-3 (VP)
λy.love(y,z3))

loves (TV)
λv.λy.(v@λx.love(y,x))

her-3 (NP)
λw.(w@z3)

Instead of combining loves with the quantifying term a woman we
have combined it with the placeholder pronoun her-3. This pronoun
bears an ‘index’, namely the numeral ‘3’. The placeholder pronoun is
associated with a ‘semantic placeholder’, namely λw.(w@z3). As we
shall see, it is the semantic placeholder that does most of the real
work for us. Note that the pronoun’s index appears as subscript on the
free variable in the semantic placeholder. From a semantic perspective,
choosing an indexed pronoun really amounts to opting to work with
the semantic placeholder (instead of the semantics of the quantifying
NP) and stipulating which free variable the semantic placeholder should
contain.

Now, the key point the reader should note about this tree is how
ordinary it is. True, it contains a weird looking pronoun her-3—but,
that aside, it’s just the sort of structure we’re used to. For a start,
the various elements are syntactically combined in the expected way.
Moreover λw.(w@z3), the semantic representation associated with the
placeholder pronouns, should look familiar. Recall that the semantic
representation for Mia is λw.(w@mia). Thus the placeholder pronoun
is being given the semantics of a proper name, but with an individual
variable (here z3) instead of a constant, which seems sensible. Moreover
(as the reader should check) the representations for loves her-3 and Every

boxer loves her-3 are constructed using functional application just as
we discussed in the previous chapter. In short, although some of the
representations used are unorthodox, they are combined with the other
representations in the orthodox way.

Now for the next step. We want to ensure that a woman out-scopes
Every boxer. By using the placeholder pronoun her-3, we have delayed
introducing a woman into the tree. But Every boxer is now firmly in
place, so if we replaced her-3 by a woman we would have the desired
scoping relation. Predictably, there is a rule that lets us do this: given
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a quantifying NP, and a sentence containing a placeholder pronoun, we
are allowed to construct a new sentence by substituting the quantifying
NP for the placeholder. In short, we are allowed to extend the previous
tree as follows:

Every boxer loves a woman (S)

a woman (NP)
λu.∃y(woman(y)∧u@y)

Every boxer loves her-3 (S,3)
∀x(boxer(x)→love(x,z3))

But what’s happening semantically? We know which formula we want
to be assigned to the node (namely, ∃y(woman(y) ∧ ∀x(boxer(x)
→ love(x,y)))) but how can we ensure it gets there? Let’s think the
matter through.

We want a woman to take wide scope over Every boxer semantically.
Hence we should use the semantic representation associated with a

woman as the function. (To see this, simply look at the form of its
semantic representation. When we apply it to an argument and perform
β-conversion, we will be left with an existentially quantified expression,
which is what we want.) But what should its argument be? There is
only one reasonable choice. It must be the representation associated
with Every boxer loves her-3 lambda abstracted with respect to z3:

(3) λz3.∀x(boxer(x)→love(x,z3)).

Why is this? Well, right at the bottom of the tree we made use of
the semantic placeholder λu.(u@z3). When we raised this placeholder
up the tree using functional application, we were essentially ‘recording’
what the semantic representation of a woman would have encountered
if we had used it directly. (Remember, we did nothing unusual, either
syntactically or semantically, during the raising process.) The formula
∀x(boxer(x)→love(x,z3)) is the record of these encounters. When we
are ready to ‘play back’ this recorded information, we lambda abstract
with respect to z3 (thus indicating that this variable is the crucial
one, the one originally chosen) and feed the resulting expression as an
argument to the semantic representation of a woman. β-conversion will
glue this record into its rightful place, and, as the following tree shows,
everything will work out just right:
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Every boxer loves a woman (S)
∃y(woman(y)∧∀x(boxer(x)→love(x,y)))

a woman (NP)
λu.∃y(woman(y)∧u@y)

Every boxer loves her-3 (S, 3)
λz3.∀x(boxer(x)→love(x,z3))

That’s it. Summing up, Montague’s approach makes use of syntactic
and semantic placeholders so that we can place quantifying NPs in parse
trees at exactly the level required to obtain the desired scope relations.
A neat piece of ‘lambda programming’ (we call it Montague’s trick)
ensures that the semantic information recorded by the placeholder is
re-introduced into the semantic representation correctly.

But will Montague’s approach help us computationally? As it stands,
no. Why not? Because it does not mesh well with the grammar engi-
neering principles adopted in this book. We want semantic construction
methods which we can bolt onto pretty much any grammar which pro-
duces parse trees for a fragment of natural language. Moreover, we never
want to be forced to modify a grammar: ideally we’d like to be able
to treat the syntactical component as a black box, hook our semantic
representations onto it, and then compute.

But Montague’s approach doesn’t work that way. To apply his
method directly, we have to add extra syntax rules to our grammars,
such as the rules for introducing placeholder pronouns and for eliminat-
ing placeholder pronouns in favour of quantifying noun phrases, that we
saw in our example. And if we wanted to deal with more serious scope
problems (for example, the interaction of quantifier scope ambiguities
with negation) we would probably have to add a lot of extra rules
as well. This is not only hard work, it seems linguistically misguided:
grammar rules are there to tell us about syntactic structure—but now
we’re using them to manipulate mysterious-looking placeholder entities
in a rather ad-hoc looking attempt to reduce scope issues to syntax.

But while we won’t use Montague’s approach directly, we will use it
indirectly. For as we shall now see, it is possible to exploit Montague’s
key insights in a different way.

3.3 Storage Methods

Storage methods are an elegant way of coping with quantifier scope
ambiguities: they neatly decouple scope considerations from syntactic
issues, making it unnecessary to add new grammar rules. Moreover,
both historically and pedagogically, they are the natural approach to
explore next, for they draw on the key ideas of Montague’s approach
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(in essence, they exploit semantic placeholders and Montague’s trick in
a computationally natural way) and at the same time they anticipate
key themes of modern underspecification-based methods.

Cooper Storage

Cooper storage is a technique developed by Robin Cooper for handling
quantifier scope ambiguities. In contrast to the work of the previous
section, semantic representations are built directly, without adding to
the basic syntax rules. The key idea is to associate each node of a
parse tree with a store, which contains a ‘core’ semantic representa-
tion together with the quantifiers associated with nodes lower in the
tree. After the sentence is parsed, the store is used to generate scoped
representations. The order in which the stored quantifiers are retrieved
from the store and combined with the core representation determines
the different scope assignments.

To put it another way, instead of simply associating nodes in parse
trees with a single lambda expression (as we have done until now), we
are going to associate them with a core semantic representation, to-
gether with the information required to turn this core into the kinds
of representation we are familiar with. Viewed from this perspective,
stores are simply a more abstract form of semantic representation—
representations which encode, compactly and without commitment, the
various scope possibilities; in short, they are a simple form of under-
specified representation.

Let’s make these ideas precise. Formally, a store is an n-place se-
quence. We represent stores using the angle brackets 〈 and 〉. The first
item of the sequence is the core semantic representation; it’s simply a
lambda expression. (Incidentally, if we wanted to, we could insist that
we’ve been using stores all along: we need merely say that when we pre-
viously talked of assigning a lambda expression φ to a node, we really
meant that we assigned the 1-place store 〈φ〉 to a node.) Subsequent
items in the sequence (if any) are pairs (β, i), where β is the semantic
representation of an NP (that is, another lambda expression) and i is an
index. An index is simply a label which picks out a free variable in the
core semantic representation. As we shall see, this index has the same
purpose as the indexes we used for Montague-style raised quantifiers.
We call pairs (β, i) indexed binding operators.

How do we use stores for semantic construction? Unsurprisingly, the
story starts with the quantified noun phrases (that is, noun phrases
formed with the help of a determiner). Instead of simply passing on
the store assigned to them, quantified noun phrases are free to add
new information to it before doing so. (Other sorts of NPs, such as
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proper names, aren’t allowed to do this.) More precisely, quantified
noun phrases are free to make use of the following rule:

Storage (Cooper)
If the store 〈φ, (β, j), . . . , (β′, k)〉 is a semantic representation for a
quantified NP, then the store 〈λu.(u@zi),(φ, i), (β, j) . . . (β

′, k)〉, where
i is some unique index, is also a representation for that NP.

The crucial thing to note is that the index associated with φ is
identical with the subscript on the free variable in λu.(u@zi). (After
all, if we decide to store φ away for later use, it’s sensible to keep track
of what its argument is.)

In short, from now on when we encounter a quantified NP we will
be faced by a choice. We can either pass on φ (together with any previ-
ously stored information) straight on up the tree, or we can decide to
use λu.(u@zi) as the core representation, store the quantifier φ on ice
for later use (first taking care to record which variable it is associated
with) and pass on this new package. The reader should be experiencing
a certain feeling of deja vu. We’re essentially using the pronoun rep-
resentation λu.(u@zi) as a semantic placeholder, just as we did in the
previous section. Indeed, as will presently become clear, our shiny new
storage technology re-uses the key ideas of quantifier storage in a fairly
direct way.

Incidentally, the storage rule is not recursive. It offers a simple two
way choice: either pass on the ordinary representation (that is, the store
〈φ, (β, j), . . . , (β′, k)〉) or use the storage rule to form

〈λu.(u@zi), (φ, i), (β, j) . . . (β
′, k)〉

and pass this new store on up instead. We’re not offered—and we don’t
want or need—the option of reapplying the storage rule to this new
store to form 〈λu.(u@zm), (λu.(u@zi),m), (φ, i), (β, j), . . . , (β ′, k)〉. In-
tuitively, we’re offered a straight choice between keeping the lambda
expression associated with the quantified NP in the active part of the
memory (that is, in the first slot of the store) or placing it, suitably
indexed, in the freezer for later consumption.

It’s time for an example. Let’s analyse Every boxer loves a woman

using Cooper storage. The relevant tree is given below; let’s think about
how it was built. First, note that the nodes for a woman and Every

boxer are both associated with 2-place stores. Why is this? Consider
the node for a woman. We know from our previous work that the lambda
expression associated with a woman is λu.∃y(woman(y)∧u@y). In our
new representations-are-stores world view, this means that the 1-place
store

〈λu.∃y(woman(y)∧u@y)〉
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is a legitimate interpretation for the NP a woman. But remember—this
is not our only option. We are free to use the storage rule, and this is
what we did when building the tree below: we picked a brand new free
variable (namely z7), used the placeholder λw.(w@z7) as the first item
in the store, and ‘iced’ λu.∃y(woman(y)∧u@y), first recording the fact
that z7 is the variable relevant to this expression. Note that essentially
the same story could be told for the NP Every boxer, save that there
we chose the new free variable z6.

Every boxer loves a woman (S)
〈love(z6,z7),
(λu.∀x(boxer(x)→u@x),6),
(λu.∃y(woman(y)∧u@y),7)〉

Every boxer (NP)
〈λw.(w@z6),
(λu.∀x(boxer(x)→u@x),6)〉

loves a woman (VP)
〈λu.love(u,z7),
(λu.∃y(woman(y)∧u@y),7)〉

loves (TV)
〈λz.λu.(z@λv.love(u,v))〉

a woman (NP)
〈λw.(w@z7),
(λu.∃y(woman(y)∧u@y),7)〉

Once this has been grasped, the rest is easy. In particular, if a functor
node F is associated with a store 〈φ, (β ′, j), . . . , (β′, k)〉 and its argu-
ment node A is associated with the store 〈ψ, (β ′′, l), . . . , (β′′,m)〉, then
the store associated with the node R whose parts are F and A is

〈φ@ψ, (β′, j), . . . , (β′, k), (β′′, l), . . . , (β′′,m)〉.
That is, the first slot of the store really is the active part: it’s where
the core representation is built. If you examine the above tree, you’ll
see that the stores associated with loves a woman and Every boxer

loves a woman were formed using this functional-application-in-the-
first-slot method. Note that in both cases we’ve simplified φ@ψ using
β-conversion.

But we’re not yet finished. We now have a sentence, and this sentence
is associated with an abstract unscoped representation (that is, a store),
but of course, at the end of the day we really want to get our hands on
some ordinary scoped first-order representations. How do we do this?

This is the task of retrieval, a rule which is applied to the stores
associated with sentences. Retrieval removes one of the indexed binding
operators from the freezer, and combines it with the core representation
to form a new core representation. (If the freezer is empty, then the store
associated with the S node must already be a 1-place sequence, and thus
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we already have the expression we are looking for.) It continues to do
this until it has used up all the indexed binding operators. The last core
representation obtained in this way will be the desired scoped semantic
representation.

What does the combination process involve? Suppose retrieval has
removed a binding operator indexed by i. It lambda abstracts the core
semantic representation with respect to the variable bearing the sub-
script i, and then functionally applies the newly retrieved binding op-
erator to the newly lambda-abstracted-over core representation. The
result is the new core representation, and it replaces the old core rep-
resentation as the first item in the store. More precisely:

Retrieval (Cooper)
Let σ1 and σ2 be (possibly empty) sequences of binding operators. If
the store 〈φ, σ1, (β, i), σ2〉 is associated with an expression of category
S, then the store 〈β@λzi.φ, σ1, σ2〉 is also associated with this expres-
sion.

Hey—we’re simply performing Montague’s trick with the aid of
stores!

Let’s return to our example and apply the retrieval rule to the store
associated with the S node. Now, this store contains two indexed bind-
ing operators. The retrieval rule allows us to remove either of them
and to combine it with the core representation. Suppose we choose to
first retrieve the quantifier for Every boxer (that is, the indexed binding
operator in the second slot of the store). Then the retrieval rule tells
us that the following store must be associated with the S node:

〈λu.∀x(boxer(x)→u@x)@λz6.love(z6,z7),(λu.∃y(woman(y)∧u@y),7)〉.

Using β-conversion, this simplifies to:

〈∀x(boxer(x)→love(x,z7)), (λu.∃y(woman(y)∧u@y),7)〉.

No more β-conversions are possible, but there’s still a quantifier left
in store. Retrieving it produces:

〈λu.∃y(woman(y)∧u@y)@λz7.∀x(boxer(x)→love(x,z7))〉.

The result is the reading where a woman out-scopes Every boxer, as
becomes clear if we perform two more β-conversions to obtain:

〈∃y(woman(y)∧∀x(boxer(x)→love(x,y))〉.

How do we get the other reading? We simply retrieve the quantifiers
in the other order. We suggest that the reader works through the details.

Implementing Cooper Storage

We are ready to turn to computation: how do we implement Cooper
storage in Prolog?
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The first steps are straightforward. We’ll represent indexed binding
operators as terms of the form bo(Quant,Index). In such terms Quant
will be the (Prolog representation of) a lambda expression, and Index

will be a Prolog variable. Why use Prolog variables for indexes? Be-
cause it’s so simple. Recall that Prolog internally represents variables
by means of such expressions such as G218 and G328. That is, Prolog
variables carry numerical indexes, so we might as well make use of this.

Stores will be represented as lists: the head will be a lambda expres-
sion, the tail (if non-empty) a list of binding operators. So the following
Prolog list represents a store:

[walk(X),bo(lam(P,all(Y,imp(boxer(Y),app(P,X)))),X)].

But now we need to think a little. The semantic representations we
want to work with are stores, not just plain lambda expressions. So we
will need to associate stores, not lambda expressions, with the lexical
items. Moreover, we will need to define how stores are to be combined,
and ensure that all retrieval possibilities are tried out.

How are we to do this? Here’s where our grammar engineering ar-
chitecture comes to our aid: we can take care of these requirements
by making three kinds of changes, in three separate locations. Let’s go
through them all in turn.

Our first task is to make store-based semantic representations avail-
able to the lexical items. Recall that we abstracted the semantic rep-
resentation patterns we associate with the words into what we called
semantic macros. The semantic expressions for lambda-based represen-
tations were stored in the file semLexLambda.pl and a typical macro
looked like this:

semLex(iv,M):-

M = [symbol:Sym,

sem:lam(X,Formula)],

compose(Formula,Sym,[X]).

So it’s clear what we should do: create a new file (let’s call it
semLexStorage.pl) for our storage-based semantic macros. Here’s
the new semantic macro for intransitive verbs:

semLex(iv,M):-

M = [symbol:Sym,

sem:[lam(X,Formula)]],

compose(Formula,Sym,[X]).

Note that this macro is virtually identical with the lambda-based
version (the only difference is the list brackets around the semantic
representation). Indeed, all the storage-based macros differ from their
lambda-based counterparts in precisely this way. Thus we have com-
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pleted our first task, and done so effortlessly.
Our second task is to provide a new set of semantic rules defining

how stores are to be combined. Now, recall our discussion of grammar
engineering at the end of the previous chapter. There we created a file
called semRulesLambda.pl containing such items as

combine(vp:app(A,B),[tv:A,np:B]).

which defined the apply-function-to-argument semantic rules used ear-
lier. So, once again, it’s clear what we should now do: create a new
file (let’s call it semRulesCooper.pl) which contains new definitions of
combine/2 suitable for working with stores.

Let’s get to work. Actually, in many cases there is little to do. For
example, here’s the new store-based clause for verb phrases:

combine(vp:[app(A,B)|S],[tv:[A],np:[B|S]]).

This is a straightforward enhancement of our old lambda-based ver-
sion:

combine(vp:app(A,B),[tv:A,np:B]).

Sometimes, however, we need to do a little more; in particular, some-
times we need to append stores. The clause for coordination shows what
is involved in such cases:

combine(np:[app(app(B,A),C)|S3],[np:[A|S1],coord:[B],np:[C|S2]]):-

appendLists(S1,S2,S3).

But the most interesting rules are those for noun phrases formed
by determiners and nouns (these license the basic store-or-carry-on-as-
usual choice underlying the storage method) and the sentential rule
which licenses retrieval. We’ll look at both. Here are the semantic rules
for combining determiners and nouns:

combine(np:[lam(P,app(P,X)),bo(app(A,B),X)|S],[det:[A],n:[B|S]]).

combine(np:[app(A,B)|S],[det:[A],n:[B|S]]).

The content of these rules should be clear: the first puts the quantified
noun phrase on the store, the second carries out functional application.
But one remark is worth making. We have made pushing a quantifier
onto the store an optional operation; that’s why there are two semantic
rules for the same syntactic rule above. Now, we leave the reader to in-
vestigate why it is linguistically desirable to make storage optional (see
Exercise 3.3.4). But note that making it optional can lead to unneces-
sary work. Consider Every boxer loves a woman. If storage is optional,
there are actually five strategies that can be used when trying to build
representations for this sentence: leave both quantified noun phrases
in place, just store Every boxer, just store a woman, store both and re-
trieve Every boxer first, or store both and retrieve a woman first. But



“blackburnbos”
2004/12/13
page 119

i

i

i

i

i

i

i

i

Underspecified Representations / 119

this sentence only has two logically distinct readings, so three of these
options don’t lead to anything new (in fact, they’ll simply be alphabetic
variants of the two basic readings). Nonetheless, optionality is the lin-
guistically sensible path, so we’ll just have to find ways of coping with
such redundancies. At the end of the section we’ll see how to define a
filter that will eliminate alphabetic variants.

What about the semantic rule which licenses retrieval at the senten-
tial level? Here’s what we require:

combine(s:S,[np:[A|S1],vp:[B|S2]]):-

appendLists(S1,S2,S3),

sRetrieval([app(A,B)|S3],Retrieved),

betaConvert(Retrieved,S).

With this rule defined, our second task is completed (we’ll shortly see
how sRetrieva1/2 is defined).

Now for the third task: we have to ensure that this new store-based
information is correctly integrated, and that all retrieval possibilities
are tried out. Recall that in the previous chapter we created a top-level
file called lambda.pl which coordinated the lexicon, the syntax rules,
the semantic macros, and the semantic rules. Here we follow the same
strategy: we shall define a file called cooperStorage.pl which inte-
grates our (standard) lexicon and syntax rule with our (new) storage
based semantic rules and macros. This file will contain the predicate
that ensures that all retrieval possibilities are systematically explored
(and the filter for eliminating alphabetic variants).

The Prolog predicate that copes with retrieval is sRetrieval/2. Its
first argument is a store, its second argument is the derived scoped
representation. If the store contains just one element, then this is the
scoped formula—the first clause deals with this case:

sRetrieval([S],S).

Otherwise, this predicate takes a quantifier from the store using the
selectFromList/3 predicate, lambda abstracts Sem (the first item in
the list) with respect to the retrieved variable, and applies the retrieved
quantifier to the result. This process yields a new semantic representa-
tion that will be β-converted later. Note that the sRetrieval/2 pred-
icate is recursive, thus it will eventually reduce the store to a list con-
taining just one item, namely a scoped representation:

sRetrieval([Sem|Store],S):-

selectFromList(bo(Q,X),Store,NewStore),

sRetrieval([app(Q,lam(X,Sem))|NewStore],S).

But why does this generate all the quantifier scope representations?
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This is thanks to selectFromList/3. This predicate (which is included
in comsemPredicates.pl) is defined in such a way that, if there is more
than one element in the store, it succeeds when it removes any element
at all from it. Therefore, sRetrieval/2 produces (via the Prolog back-
tracking mechanism) all the scoped representations possible.

With sRetrieval/2 at our disposal we are ready to define a top-
level predicate cooperStorage/0 that wraps everything together. And
as we promised earlier, we shall include a filter to ensure that we don’t
output unnecessary alphabetic variants. Here’s the wrapper:

cooperStorage:-

readLine(Sentence),

setof(Sem,t([sem:Sem],Sentence,[]),Sems1),

filterAlphabeticVariants(Sems1,Sems2),

printRepresentations(Sems2).

That is, we use the readLine/1 predicate discussed in the last chapter
to read the sentence typed by the user, and then use the standard Prolog
setof/3 predicate to gather all the readings. With this set gathered, we
filter out the alphabetic variants, and then print the representations.

How do we filter the alphabetic variants? With the help of the
alphabeticVariants/2 predicate defined in the previous chapter:

filterAlphabeticVariants(L1,L2):-

selectFromList(X,L1,L3),

memberList(Y,L3),

alphabeticVariants(X,Y), !,

filterAlphabeticVariants(L3,L2).

filterAlphabeticVariants(L,L).

That is, we use the selectFromList/3 predicate to select an ele-
ment X from the input list L1 to produce the list L3. We then use
memberList/2 to select an element Y from L3. At this point we make use
of alphabeticVariants/2 to test whether X and Y are variants. Now,
first consider what happens if they are not alphabetic variants. This
forces backtracking, so another potential candidate Y will be selected
by memberList/2, and again we test for alphabetic variance. If none of
the candidate Ys so generated are alphabetic variants of X then back-
tracking will force us even further back, namely to selectFromList/3;
we generate another candidate X, and try again. On the other hand, if
some choice of Y is an alphabetic variant of one of our selected Xs, then
we cut (thus killing further backtracking at this level) and recursively
carry out the filtration process to the list L3 (note that L3 will contain
one item less than L1). This process continues, recursively removing all
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alphabetic variants, and ultimately the first clause must fail (why?). At
this point the second clause trivially succeeds, and we are left with a
list of representations of which no two elements are alphabetic variants.

Here’s an example of our program at work:

?- cooperStorage.

> Every boxer loves a woman.

1 all(A,imp(boxer(A),some(B,and(woman(B),love(A,B)))))

2 some(A,and(woman(A),all(B,imp(boxer(B),love(B,A)))))

Summing up, Cooper storage is a more abstract version of Mon-
tague’s approach to quantification that makes use of special represen-
tations called stores. From the perspective of computational semantics,
it has a distinct advantage over Montague’s approach: it doesn’t require
additional syntax rules. Indeed, when you get down to it, all we really
needed to do to cope with Cooper storage was to define new seman-
tic macros, new semantic rules, and wrap it all together. The diagram
below summarises our Cooper storage setup.

grammar

lexicon

syntax semantics

englishLexicon.pl semLexStorage.pl

englishGrammar.pl semRulesCooper.pl

cooperStorage.pl

Exercise 3.3.1 Try the Cooper storage implementation without filtering
out alphabetic variants. What happens and why?
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Exercise 3.3.2 How many scoped representations are retrieved for Every

piercing that is done with a needle is okay? (Take is done with as a two place
relation, and view is okay as a one place predicate.) Are they all correct?

Exercise 3.3.3 Extend the storage analysis to ditransitive verbs, and check
how many readings it gives for sentences like A boxer gives every woman a

foot massage. Are these the readings you would expect?

Exercise 3.3.4 Why should storage be optional? Think about the way
quantified noun phrases interact with negation. More concretely, think about
the possible readings of the sentence Every boxer doesn’t love a woman. How
many readings does this sentence have? How many readings does Cooper
storage assign to this sentence if storage is optional? And if storage is not
optional?

Exercise 3.3.5 According to some linguistic theories of quantifier scope,
quantified noun phrases cannot be raised out of a relative clause, and hence
cannot out-scope anything outside the clause. For instance, in the complex
noun phrase a woman that knows every boxer, it is impossible to get a reading
where every boxer out-scopes a woman. Change the semantic rule for relative
clauses so that quantified noun phrases stay in the scope of relative clauses.
(You need to do this in the file semRulesCooper.pl.)

Keller Storage

Cooper storage allows us a great deal of freedom in retrieving infor-
mation from the store. We are allowed to retrieve quantifiers in any
order we like, and the only safety-net provided is the use of co-indexed
variables and Montague’s trick.

Is this really safe? We haven’t spotted any problems so far—but
then we’ve only discussed one kind of scope ambiguity, namely those in
sentences containing a transitive verb with quantifying NPs in subject
and object position. However, there are lots of other syntactic construc-
tions that give rise to quantifier scope ambiguities, for instance relative
clauses (4) and prepositional phrases in complex noun phrases (5):

(4) Every piercing that is done with a gun goes against the entire idea

behind it.

(5) Mia knows every owner of a hash bar.

Both examples give rise to scope ambiguities. For example, in (5)
there is a reading where Mia knows all owners of (possibly different)
hash bars, and a reading where Mia knows all owners that own one and
the same hash bar. Moreover, both examples contain nested NPs. In
the first example a gun is a sub-NP of Every piercing that is done with
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a gun, while in the second, a hash bar is a sub-NP of every owner of a

hash bar.
We’ve never had to deal with nested NPs before. Is Cooper storage

delicate enough to cope with them, and does it allow us to generate
all possible readings? Let’s examine example (5) more closely and find
out. This is the store (as the reader should verify):

〈 know(mia,z2),
(λu.∀y(owner(y)∧of(y,z1)→u@y),2),
(λw.∃x(hashbar(x)∧w@x),1) 〉.

There are two ways to perform retrieval: by pulling the universal
quantifier off the store before the existential, or vice versa. Let’s explore
the first possibility. Pulling the universal quantifier off the store yields
(after β-conversion):

〈 ∀y(owner(y)∧of(y,z1)→know(mia,y)),
(λw.∃x(hashbar(x)∧w@x),1) 〉.

Retrieving the existential quantifier then yields (again, after β-
conversion):

〈 ∃x(hashbar(x)∧∀y(owner(y)∧of(y,x)→know(mia,y))) 〉.

This states that there is a hash bar of which Mia knows every owner.
This is one of the readings we would like to have. So let’s explore the
other option. If we pull the existential quantifier from the S store first
we obtain:

〈 ∃x(hashbar(x)∧know(mia,z2)),
(λu.∀y(owner(y)∧of(y,z1)→u@y),2) 〉.

Pulling the remaining quantifier off the store then yields:

〈 ∀y(owner(y)∧of(y,z1)→ ∃x(hashbar(x)∧know(mia,y))) 〉.

But this is not at all what we wanted! Cooper storage has given us
not a sentence, but a formula containing the free variable z1. What is
going wrong?

Essentially, the Cooper storage mechanism is ignoring the hierar-
chical structure of the NPs. The sub-NP a hash bar contributes the
free variable z1. However, this free variable does not stay in the core
representation: when the NP every owner of a hash bar is processed,
the variable z1 is moved out of the core representation and put on ice.
Hence lambda abstracting the core representation with respect to z1

isn’t guaranteed to take into account the contribution that z1 makes—
for z1 makes its contribution indirectly, via the stored universal quanti-
fier. Everything is fine if we retrieve this quantifier first (since this has
the effect of ‘restoring’ z1 to the core representation) but if we use the
other retrieval option it all goes horribly askew. Cooper storage doesn’t



“blackburnbos”
2004/12/13
page 124

i

i

i

i

i

i

i

i

124 / Representation and Inference for Natural Language

impose enough discipline on storage and retrieval, thus when it has to
deal with nested NPs, it over-generates.

What are we to do? An easy solution would be to build a ‘free vari-
able check’ into the retrieval process. That is, we might insist that we
can only retrieve an indexed binding operator if the variable matching
the index occurs in the core representation.

But this isn’t very principled; it deals with the symptoms, not the
cause. The heart of the problem is that Cooper storage rides roughshod
over the hierarchical structure of NPs; we should try to deal with this
head on. (Incidentally, arguably there’s also an empirical problem: the
free variable solution isn’t adequate if one extends the grammar some-
what. We won’t discuss this here but refer the reader to the Notes.)

Here’s an elegant solution due to Bill Keller: allow nested stores.
That is, allow stores to contain other stores. Intuitively, the nesting
structure of the stores should automatically track the nesting structure
of NPs in the appropriate way. Here’s the new storage rule:

Storage (Keller)
If the (nested) store 〈φ, σ〉 is an interpretation for an NP, then the
(nested) store 〈λu.(u@zi),(〈φ,σ〉,i)〉, for some unique index i, is also an
interpretation for this NP.

To see how this works, consider how we assemble the representation
associated with the complex noun phrase every owner of a hash bar:

every owner of a hash bar (NP)
〈λu.(u@z2),
(〈λu.∀y(owner(y)∧of(y,z1)→u@y),
(〈λw.∃x(hashbar(x)∧w@x)〉,1)〉,2)〉

every (DET)
〈λw.λu.∀y(w@y→u@y)〉

owner of a hash bar (N)
〈λu.(owner(u)∧of(u,z1)),
(〈λw.∃x(hashbar(x)∧w@x)〉,1)〉

owner (N)
〈λx.owner(x)〉

of a hash bar (PP)
〈λv.λu.(v@u∧of(u,z1)),
(〈λw.∃x(hashbar(x)∧w@x)〉,1)〉

As for the retrieval rule, it will now look like this:

Retrieval (Keller)
Let σ, σ1 and σ2 be (possibly empty) sequences of binding operators.
If the (nested) store 〈φ, σ1, (〈β, σ〉, i), σ2〉 is an interpretation for an
expression of category S, then 〈β@λzi.φ, σ1, σ, σ2〉 is too.
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The new retrieval rule ensures that any operators stored while pro-
cessing β become accessible for retrieval only after β itself has been
retrieved. Nesting automatically overcomes the problem of generating
readings with free variables. To see how it works in practice, let’s return
to our original example. The nested store associated with Mia knows

every owner of a hash bar is

〈 know(mia,z2),
(〈 λu.∀y(owner(y)∧of(y,z1)→u@y),

(〈 λw.∃x(hashbar(x)∧w@x) 〉,1) 〉,2) 〉.

There is only one way to perform retrieval: first pulling of the uni-
versal quantifier, followed by the existential quantifier, resulting in the
correct reading. Since this is the only possibility, the unwanted reading
as produced by Cooper storage is not generated.

But wait a minute: how do we get the reading where Mia knows all
owners of possible different hash bars? In fact, this couldn’t be easier.
All we have to do is avoid storing the sub-NP a hash bar. If we do this,
we can produce the following tree:

every owner of a hash bar (NP)
〈λu.(u@z2), (〈λu.∀y(owner(y)∧∃x(hashbar(x)∧of(z,x))→u@y)〉,2)〉

every (DET)
〈λw.λu.∀x(w@x→u@x)〉

owner of a hash bar (N)
〈λz.(owner(z)∧∃x(hashbar(x)∧of(z,x)))〉

owner (N)
〈λx.owner(x)〉

of a hash bar (PP)
〈λu.λz.(u@z∧∃x(hashbar(x)∧of(z,x)))〉

This leads to the following analysis for Mia knows every owner of a

hash bar:

〈know(mia,z2), (〈λu.∀y(owner(y)∧∃x(hashbar(x)∧of(y,x))→u@y)〉,2)〉.

There is only one operator in the store. Retrieving it yields the read-
ing we want:

〈∀y(owner(y)∧∃x(hashbar(x)∧of(y,x))→know(mia,y))〉.

Implementing Keller Storage

Now to make this computational: how do we implement Keller storage
in Prolog? In fact it’s a very simple modification of our earlier code
for Cooper storage. First, we tweak the underlying representation a lit-
tle. Keller-style indexed binding operators will be represented as terms
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of the form bo(Quant,Index). As in our implementation of Cooper
storage, Index will be a variable; Quant, however, will now be a store.
Stores will be represented as lists: the head will be a lambda expression,
the tail (if non-empty) a list of Keller-style binding operators. So the
following Prolog list represents a (Keller-style) store:

[walk(X),bo([lam(P,all(Y,imp(boxer(Y),app(P,X))))],X)].

And now there is almost nothing to do. First, we don’t need to
alter the semantic macros at all; we can continue to use the file
semLexStorage.pl unchanged. Second, only two of the semantic rules
need to be changed, namely those that deal with noun phrases:

combine(np:[app(A,B)|S],[det:[A],n:[B|S]]).

combine(np:[lam(P,app(P,X)),bo([app(A,B)|S],X)],[det:[A],n:[B|S]]).

So we’ll simply create a new file called semRulesKeller.pl which is
identical with semRulesCooper.pl except that it contains these new
rules. Third, we need a new definition of sRetrieval/2:

sRetrieval([S],S).

sRetrieval([Sem|Store],S):-

selectFromList(bo([Q|NestedStore],X),Store,TempStore),

appendLists(NestedStore,TempStore,NewStore),

sRetrieval([app(Q,lam(X,Sem))|NewStore],S).

(The main difference with the old version is the call to appendLists/3

to merge stores.) The final change we shall make is to create a new wrap-
per called kellerStorage.pl. This is just our old cooperStorage.pl

but with the new version of sRetrieval/2. The diagram below sum-
marises our Keller storage setup.

And that’s it. The over-generation problem is solved. We’ll never see
unwanted free variables again. Let’s try out our program and see what
happens:

?- kellerStorage.

> Mia knows every owner of a hash bar.

Readings:

1 all(A,imp(and(some(B,and(hashbar(B),of(A,B))),owner(A)),know(mia,A)))

2 some(A,and(hashbar(A),all(B,imp(and(of(B,A),owner(B)),know(mia,B)))))

Let’s sum up what we have learned. The original version of Cooper
storage doesn’t handle storage and retrieval in a sufficiently disciplined
way, and this causes it to generate spurious readings when faced with
nested NPs. The problem can be elegantly cured by making use of
nested stores, and implementing this idea requires only minor changes
to our earlier Cooper storage code.
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grammar

lexicon

syntax semantics

englishLexicon.pl semLexStorage.pl

englishGrammar.pl semRulesKeller.pl

kellerStorage.pl

Exercise 3.3.6 In Exercise 3.3.4 we saw that Cooper storage works better
with negated sentences if storage is made optional. Explain why optionality
is even more important for Keller storage than it is for Cooper storage.

Exercise 3.3.7 Give first-order representations for the five readings of the
sentence a man likes every woman with a five-dollar shake. Note that there are
fewer correct readings than the combinatorial possibilities of the quantifiers
involved suggests: naively, we would expect to have 3! = 6 readings for this
example. Why is one reading excluded?

3.4 Hole Semantics

Although storage methods are useful, they have their limitations. For
a start, they are not as expressive as we might wish: although Keller
storage predicts the five readings for

One criminal knows every owner of a hash bar,

we might want to insist that every owner should out-scope a hash bar,
while at the same time leaving the scope relation between subject and
object noun phrase unspecified. To put it another way, storage is essen-
tially a technique which enables us to represent all possible meanings
compactly; it doesn’t allow us to express additional constraints on pos-
sible readings.



“blackburnbos”
2004/12/13
page 128

i

i

i

i

i

i

i

i

128 / Representation and Inference for Natural Language

Moreover, storage is a technique specifically designed to handle quan-
tifier scope ambiguities. Unfortunately, many other constructs (for ex-
ample, negation) also give rise to scope ambiguities, and storage has
nothing to say about these. In Exercise 3.3.4 we saw that Cooper stor-
age couldn’t generate all the readings of Every boxer doesn’t love a

woman, and Keller storage can’t do so either (as the reader should ver-
ify). What are we to do? Inventing a special scoping mechanism for
negation, and then trying to combine it with storage, doesn’t seem an
attractive option. We would like a uniform approach to scope ambigu-
ity, not a separate mechanism for each construct—and this is another
motive for turning to the more abstract view offered by current work
on semantic underspecification.

In recent years there has been a great deal of interest in the use of
underspecified representations to cope with scope ambiguities; so much
so that it often seems as if semantics has entered an age of underspec-
ification. With the benefit of hindsight, however, we can see that the
idea of underspecified representations isn’t really new. In our work on
storage, for example, we associated stores, not simply lambda expres-
sions, with parse tree nodes; and a store is in essence an underspecified
representation. What is new is both the sophistication of the new gen-
eration of underspecified representations (as we shall see, they offer us
a great deal of flexibility and expressive power), and, more importantly,
the way such representations are now regarded by semanticists.

In the past, storage-style representations seem to have been regarded
with some unease. They were (it was conceded) a useful tool, but they
appeared to live in a conceptual no-man’s-land—not really semantic
representations, but not syntax either—that was hard to classify. The
key insight that underlies current approaches to underspecification is
that it is both fruitful and principled to view representations more ab-
stractly. That is, it is becoming increasingly clear that the level of rep-
resentations is richly structured, that computing appropriate semantic
representations demands deeper insight into this structure, and that—
far from being a sign of some fall from semantic grace—semanticists
should learn to play with representations in more refined ways.

We shall now introduce an approach to underspecification called hole
semantics. We have chosen hole semantics because it is the underspeci-
fication method we are most familiar with (the method is due to Johan
Bos) and it illustrates most of the key ideas of current approaches
to underspecification in a fairly simple way. References to other ap-
proaches to underspecification can be found in the Notes at the end of
the chapter.
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First Steps in Hole Semantics

Viewed from a distance, hole semantics shares an obvious similarity
with storage methods: at the end of the parsing stage, sentences won’t
be associated with a first-order formula. Rather, they will be associated
with an abstract representation, called an underspecified semantic rep-
resentation (or USR) from which the desired first-order representation
can be read off. Viewed closer up, however, it becomes clear that hole
semantics adopts a more radical perspective on representation than
storage does.

Hole semantics is a constraint-based approach to semantic represen-
tation. That is, a hole semantics USR is essentially a set of constraints:
any first-order formula which fulfils these constraints—which govern
how the components making up first-order formulas (that is, quanti-
fiers, boolean connectives, relation symbols, variables, and constants)
can be plugged together—is a permissible semantic representation for
the sentence. This contrasts sharply with the essentially generative ap-
proach offered by storage (Here’s the store! Enumerate the readings!)
and is the source of much of hole semantics’s power.

Now for the key question—what sort of formalism will we use for
USRs? That is, what language will we use to express constraints on our
semantic representations (that is, on first-order formulas)? The answer
may come as a surprise: we are going to use (sorted) first-order logic!
This is worth repeating: yes, we are going to use a (sorted) first-order
language called the underspecified representation language (URL) to
impose constraints on the structure of the first-order formulas used for
semantic representations. Let’s think this through a bit.

In this book, our semantic representation languages (SRLs) are al-
ways first-order languages (with equality) over some vocabulary. Now,
the basic idea of hole semantics is to impose constraints on SRL formu-
las. We are going to design a (sorted) first-order language (the URL)
for talking about the structure of SRL formulas. The vocabulary of
the URL will contain special symbols for talking about the quantifiers,
connectives, relation symbols, constants and variables of the SRL, and
a special symbol ≤ for saying how different subparts of an SRL for-
mula are to be related. That is, the URL is designed for talking about
the way the subformulas that make up an SRL formula are embedded
inside one another; it enables us to describe SRL formula trees.

What’s a formula tree? Simply the natural tree structure that every
first-order formula has. For example, snort(mia) ∨ ¬smoke(vincent)
can be thought of as the following tree:
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∨

snort(mia) ¬

smoke(vincent)

As will become clear, we think of SRL formulas as containing holes
(that is, certain nodes in the formula trees) that need to be filled with
certain kinds of subformulas. To put it another way, we will typically
want to be able to insist that some hole must dominate (that is, be
higher in the formula tree) than certain other nodes. For example, we
might want to insist that a hole dominates an existentially quantified
subformula. Such dominance constraints lie at the heart of hole se-
mantics: they tell us how the subformulas that make up the semantic
representation can be plugged together.

It’s time to get to work. Suppose we have fixed the vocabulary of
our SRL (the first-order language in which semantic representations will
be written). Then the vocabulary of the underspecified representation
language (URL) for this SRL consists of the following items:

1. The 2-place predicates :not and ≤.

2. The 3-place predicates :imp, :and, :or, :all, :some and :eq.

3. Moreover, every constant in the SRL vocabulary is also a URL
constant. (For example, if mia is an SRL constant, then mia is
also a URL constant.)

4. Finally, if the SRL vocabulary contains a relation symbol pred
of arity n, then :pred is a n+1-place URL symbol. (For example,
if love is a two place relation symbol in the SRL, then :love
will be a three place relation in the URL.)

Why define the URL vocabulary this way? Because it gives us all
we need to talk about the subformula structure of SRL formulas. In
particular, the symbols :not, :imp, :and, :or, :all, :some and :eq
enable us to talk about occurrences of the symbols ¬, →, ∧, ∨, ∀, ∃, and
= in SRL (sub)formulas. Furthermore, note that we have taken care to
systematically mirror the SRL vocabulary in the URL vocabulary: each
SRL constant is also used as a URL constant, and each SRL n-place
relation symbol is used (with a : symbol in front of it) as an n + 1-
place URL relation symbol. Don’t worry about why we want the extra
argument place in the URL relation symbols—that will soon become
apparent. The important point for now is simply that this notation
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makes it possible to talk about all items in the SRL vocabulary. Last
(but certainly not least) we have the ≤ symbol. We shall use this to
state the dominance constraints.

Now, we could define our URL simply to be the ordinary first-order
language built over the vocabulary just defined. But it will make things
a little more readable if we define our URL to be a sorted first-order
language (the reader may wish to consult our discussion of sorted first-
order logic in Chapter 1).

Let’s be more precise. Our URL will have three sorts, namely holes
(hole variables will be written h, h′, h1, h2, and so on), labels (label
variables will be written l, l′, l1, l2, and so on) and meta-variables (these
will be written v, v′, v1, v2, and so on). We shall also use the following
terminology. First, by a node we mean a hole or a label. Second, we
define a meta-term of the URL to be either a meta-variable or a URL
constant (that is, a constant from the SRL vocabulary). We call such
terms meta-terms since meta-variables will be used to talk about SRL
variables, and URL constants will denote SRL constants in the obvious
way (for example, we will talk about the SRL constant mia using the
URL constant mia).

Actually, in this chapter we won’t need to use all the sorted first-
order formulas that can be constructed over this vocabulary. We’ll
mainly be interested in the fragment of this language consisting of
all the existentially closed conjunctive formulas, for such formulas will
be our underspecified representations (USRs). So, what exactly are the
USRs we shall use? First, a basic USR is defined as follows:

1. If l is a label, and h is a hole, then l≤h is a basic USR;

2. If l is a label, and n and n′ are nodes, then l:not(n), l:imp(n,n′),
l:and(n,n′), and l:or(n,n′) are basic USRs;

3. If l is a label, and t and t′ are meta-terms, then l:eq(t,t′) is a
basic USR;

4. If l is a label, and S is a symbol in the SRL language with arity n,
and t1 . . . tn are meta-terms, then l:S(t1,. . . ,tn) is a basic USR.

5. If l is a label, and v is a meta-variable, and n a hole or a label,
then l:some(v,n) and l:all(v,n) are basic USRs.

6. Nothing else is a basic USR.

Note that clauses 2–5 have the same form: a label variable in front
of something that talks about an SRL symbol. Such formulas assert
that the node in the SRL formula tree denoted by the label variable
is decorated by the symbol in question. (Incidentally, this is why n-
ary SRL relation symbols become n + 1-ary URL symbols—the extra
argument slot occurs before the : symbol and is filled by the label
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variable.) In short, these basic formulas allow us to talk about the
formulas that nodes of SRL formula trees are decorated with. We call
the basic USRs defined by clauses 2–5 labelled formulas.

What about item 1? This makes use of the crucial ≤ symbol. A USR
of the form l ≤ h says that a certain position h in the SRL formula tree
needs to be higher up than the syntactic position labelled l. That is:
the hole h needs to dominate the node labelled l. As we shall shortly
see, such requirements are fundamental to the way hole semantics is
used. We call basic USRs of this form dominance constraints.

Now that we know what the basic USRs at our disposal are, we can
define the remaining USRs as follows:

1. All basic USRs are USRs;

2. If φ is a USR, and n is a node then ∃nφ is a USR;

3. If φ is a USR, and v is a meta-variable then ∃vφ is a USR;

4. If φ and ψ are USRs, then (φ ∧ ψ) is a USR;

5. Nothing else is a USR.

In short, as promised above, the only USRs we shall use in this chapter
are the existentially closed conjunctive formulas of our three sorted
URL language.

An example

We’ve introduced a lot of machinery—it’s high time we saw how to put
it to work. Here’s a familiar example: how does hole semantics handle
Every boxer loves a woman? This is the USR for this sentence:

∃l1∃l2∃v1(l1:all(v1,l2) ∧ ∃l3∃h1(l2:imp(l3,h1) ∧ l3:boxer(v1)
∧ ∃l4∃l5∃v2(l4:some(v2,l5) ∧ ∃l6∃h2(l5:and(l6,h2) ∧ l6:woman(v2)
∧ ∃l7(l7:love(v1,v2) ∧ l7≤h1 ∧ l7≤h2 ∧ ∃h0(l1≤h0 ∧ l4≤h0)))))).

This is not very readable, but we can improve matters by moving
the quantifiers to the front:

∃h0∃h1∃h2∃l1∃l2∃l3∃l4∃l5∃l6∃l7∃v1∃v2(l1:all(v1,l2) ∧ l2:imp(l3,h1)
∧ l3:boxer(v1) ∧ l4:some(v2,l5) ∧ l5:and(l6,h2) ∧ l6:woman(v2)
∧ l7:love(v1,v2)∧ l7≤h1 ∧ l7≤h2 ∧ l1≤h0 ∧ l4≤h0).

This is a lot nicer—but what does it mean? It tells us how we are per-
mitted to plug together the various components to build the required
first-order semantic representation. Before going further, one conven-
tion needs to be mentioned: the hole h0 is the variable that we reserve
for the SRL formula that we will eventually build (we call this hole the
top hole). Thus the outermost quantifier says that there exist certain
SRL formula(s), namely the one(s) that represent the meaning of Every

boxer loves a woman.
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But what should these formula(s) look like? The basic USRs that
make up this formula will tell us. From the conjunct

l1:all(v1,l2)

we learn that there must be a universally quantified subformula in the
SRL formula we are trying to build. Moreover, this conjunct tells us
that the matrix of this universal formula is the formula labelled l2. And
what is l2? Well, from l2:imp(l3,h1) we learn that it is an implication.
Moreover, from l3:boxer(v1) we learn that the antecedent of this im-
plication is an atomic symbol made up from boxer and some variable.
Note, however, that we don’t have precise information about the con-
sequent formula: h1 is a hole variable. This hole will eventually need to
be plugged by some subformula, but we don’t yet know how to do this.

What else are we told? Well, from

l4:some(v2,l5)

we learn that there is also an existentially quantified subformula in the
semantic representation. From l5:and(l6,h2) we learn that this existen-
tially quantified subformula is a conjunction, and from l6:woman(v2)
we learn that the first conjunct is an atomic symbol made up from
woman and some variable. Note that we don’t have precise informa-
tion about the second conjunct: once again, a hole variable, namely h2,
has been used to mark this spot. Finally, from

l7:love(v1,v2)

we learn that the semantic representation contains the two place rela-
tion symbol love, and that both its arguments are variables.

And now for the crucial step—what do the dominance constraints
tell us? That is, what do we learn from the conjuncts

l7≤h1 ∧ l7≤h2 ∧ l1≤h0 ∧ l4≤h0?

First, recall that l7 names the node in the SRL formula tree where
the two place relation symbol love occurs. Further, recall that h1 and
h2 are the holes in the universal and existential SRL subformulas re-
spectively. Hence the conjuncts l7≤h1 and l7≤h2 tell us that the love
node is dominated by both holes (so both quantifiers have scope over
this subformula). Next, recall that l1 names the universally quantified
subformula and that l2 names the existentially quantified subformula.
Hence the conjuncts l1≤h0 and ∧ l4≤h0 tell us that both quantified
subformulas occur in the semantic representation (as h0 is the name of
the representation we are trying to build).

But to really understand what is going on, we should put all this in-
formation into visual form. Indeed, we strongly encourage the reader to
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view hole semantics USRs simply as a linear notation for the following
type of picture:

h0

l1 l4

l1:all(v1,l2) l4:some(v2,l5)

l2:imp(l3,h1) l5:and(l6,h2)

l3:boxer(v1) l6:woman(v2)

l7

l7:love(v1,v2)

Now the constraints imposed on possible SRL formulas should be a
lot more comprehensible. As we can see, the formula l7:love(v1,v2) is
forced to be out-scoped by the consequent of the universal quantifier’s
scope, and the second conjunct of the existential quantifier’s scope.
Moreover—crucially—we see that neither l1 (the universal subformula)
nor l4 (the existential subformula) has been forced to be out-scoped
by the other. Intuitively, this is what we want: we have a USR that
permits either quantifier scope.

Plugging

So far, so good. But we are not yet finished. We now have a constraint
on possible readings—but how do we get our hands on the actual se-
mantic representations? By plugging . Holes need to be filled. So each
hole should be plugged with a formula in such a way that all the con-
straints are satisfied. In other words, we should be sure that each hole
gets associated with some label. Now, no label can be plugged into two
different holes at the same time. Therefore, a plugging is a one-to-one
mapping from holes to labels (that is, an injective function, with the
set of holes as domain and the set of labels as codomain). A plugging
for a proper USR is admissible if the instantiations of the holes with
labels result in a representation in which there is no contradiction with
anything demanded by the constraints.

In the above example there are two admissible pluggings, namely
P1 such that P1(h0)=l1, P1(h1)=l4, P1(h2)=l7, and P2 such that
P2(h0)=l4, P2(h1)=l7, P2(h2)=l1. Let’s look at each in turn. If we
modify the previous diagram in accordance with P1 we obtain:
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h0

l1

l1:all(v1,l2)

l2:imp(l3,h1)

l3:boxer(v1) l4

l4:some(v2,l5)

l5:and(l6,h2)

l6:woman(v2) l7

l7:love(v1,v2)

Make sure you understand the relationship between this pictures
and the one given earlier of the USR. The main point to observe is that
the new picture shows what you get when you insert the righthand
side of the original USR picture (that is, the part below the l4 node)
underneath h1, in accordance with the plugging instruction P1(h1)=l4.
Observe, in addition, that in the new picture the top hole h0 has been
identified with l1, and h2 has been identified with l7.

The other thing to observe about the new picture is that (in contrast
to the original USR picture) it is a tree. In fact, it’s pretty much an SRL
formula tree. To see this, note that if we linearise this tree, substituting
formulas for labels in the way indicated by the arrows, we obtain:

all(v1, imp(boxer(v1, some(v2, and(woman(v2, love(v1,v2))))))).

This is, it should be pretty clear that we have constructed the SRL
formula

∀x(boxer(x) → ∃y(woman(y) ∧ love(x,y))).

Summing up: plugging P1 does indeed give us one of the required
readings, namely the reading where the universal quantifier takes wide
scope.

Unsurprisingly, our other plugging P2 gives us the other reading. If
we modify the diagram of the USR in accordance with P2, we obtain
the following tree:
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h0

l4

l4:some(v2,l5)

l5:and(l6,h2)

l6:woman(v2) l1

l1:all(v1,l2)

l2:imp(l3,h1)

l3:boxer(v1) l7

l7:love(v1,v2)

This time, the new picture shows what you get when you insert the
lefthand side of the original USR picture (that is, the part below the
l1 node) underneath h2, in accordance with the plugging instruction
P2(h2)=l1. In addition, the top hole h0 has been identified with l4, and
h1 has been identified with l7.

Once again, the result is an SRL formula tree. If we linearise this by
following the arrows we obtain:

some(v2, and(woman(v2, all(v1, imp(boxer(v1, love(v1,v2))))))).

Again, it is pretty clear that we have a first-order representation,
namely:

∃y(woman(y) ∧ ∀x(boxer(x) → love(x,y))).

Here the existential quantifier out-scopes the universal quantifier.
Our second plugging has given us the second reading we wanted.

Before we go on, recall that we said there were only two admissible
pluggings for the USR for Every boxer loves a woman. Why is that? Well,
let’s consider another plugging P3, such that P3(h0)=l7, P3(h1)=l4,
P3(h2)=l1. What’s wrong with this plugging? Let’s examine its diagram
and see:



“blackburnbos”
2004/12/13
page 137

i

i

i

i

i

i

i

i

Underspecified Representations / 137

h0

l1 l7

l1:all(v1,l2) l7:love(v1,v2)

l2:imp(l3,h1)

l3:boxer(v1) l4

l4:some(v2,l5)

l5:and(l6,h2)

l6:woman(v2)

It should be clear that this plugging doesn’t describe a formula tree
(it contains a cycle and it is not connected). Hence it is not an admis-
sible plugging.

There is another situation that we want to avoid. Consider the (par-
tial) plugging P ′(h1)=l3. This will give us the following structure:

l2:imp(l3,h1)

l3:boxer(v1)

Once more, this doesn’t describe a formula tree, so it’s not an admis-
sible plugging. More generally, we don’t want to generate any plugging
where two nodes with the same parent dominate a common node.

Computing with Hole Semantics

The basic ideas underlying hole semantics should now be clear—but is
hole semantics computationally useful? And can it be integrated into
our grammar architecture?

Indeed it can. In fact, it is extremely straightforward to incorporate
it into our architecture—doing so is almost like stepping back to the
pre-store lambda-driven work of the previous chapter. Think about
it. Hole semantics USRs are simply formulas of a (sorted) first-order
language. But in the previous chapter we studied in detail how to use
lambda calculus to glue together first-order representations. Very well
then—let’s simply use the lambda calculus to glue together USRs!

Needless to say, this approach fits beautifully with our grammar
architecture. To build USRs we’ll merely need to define new seman-
tic macros (based on USRs) and new semantic rules, and our existing
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programs will take care of the rest. Of course, we will also need to per-
form plugging at the end of the process, and this requires extra code.
Nonetheless, the required code will fit into our architecture in much the
same way as the extra retrieval code did when we discussed storage.

In what follows we shall take the reader through the two main steps
involved (that is, building the USRs, and plugging). But before doing
this, a quick word about the Prolog notation we shall use. Here is a
USR for a boxer collapses:

∃h0 ∃l1 ∃h1 ∃l2 ∃l3 ∃l4 ∃v1(l3:some(v1,l4) ∧ l4:and(l2,h1) ∧ l1≤h1

∧ l3≤h0 ∧ l2:boxer(v1) ∧ l2≤h0 ∧ l1:collapse(v1) ∧ l1≤h0).

And here is its Prolog representation:

some(A,and(hole(A),some(B,and(label(B),some(C,some(D,

some(E,some(F,some(G,and(hole(C),and(label(D),and(label(E),

and(label(F),and(some(E,G,F),and(and(F,D,C),and(leq(B,C),

and(leq(E,A),and(and(pred1(D,boxer,G),leq(D,A)),

and(pred1(B,collapse,G),leq(B,A)))))))))))))))))))).

This is just our usual Prolog notation for first-order logic. Note that
we have used leq for ≤. To distinguish holes and labels from each other
(and from meta-variables), we have used hole(H) to designate a hole h
and label(L) for a label l. Furthermore, note that we use expressions
of the form

pred1(L,boxer,X)

to represent l:boxer(x). Nothing deep lies behind this choice—it’s just
a simple way of representing labelled formulas in Prolog. Similarly, we
would use

pred2(L,love,X,Y)

to represent l:love(x,y).

Building USRs with Lambdas

As promised, we shall build USRs using the lambda-driven approach to
semantic construction that we are familiar with. That is, each lexical
item will be associated with a lambda expression (though this time it
will be an expression that glues together USRs) and as we work our way
up the natural language syntax tree we will use functional application
and β-conversion.

Let’s look at some sample lexical entries. Here’s the lambda expres-
sion associated with the noun boxer:

λv.λh.λl.(l:boxer(v) ∧ l≤h).

Here the lambda-abstracted v plays the role we are familiar with from
our work in the previous chapter: that is, it marks a slot that needs
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to be filled with missing information. What about the h and the l?
Basically, we view each lexical item as contributing a hole and a label to
the sentence. The hole h can be viewed as the abstract (underspecified)
scope contributed by that lexical item. Note that we constrain the label
contributed by the item (that is, the place in the SRL formula where
the item actually appears) to be dominated by h. Together h and l
define the scope domain contributed by the noun.

Put like this, it may seem rather abstract. But if you draw the pre-
vious item as a little chunk of a tree, you can see that it is actually
quite concrete:

λv.λh.λl. [

h

l

l:boxer(v)

]

As the picture makes clear, the l marks the place in the semantic rep-
resentation where the item (here boxer) will appear, and h marks the
scope of this item. As the dotted lines show, this scope is at present un-
derspecified. All we know for the present is that the hole must dominate
the label.

Let’s consider a more complex example. Here is the lambda expres-
sion associated with the determiner every (we have used the follow-
ing notational convention: indexes have been attached to existentially
quantified meta-variables, and lambda-bound variables have been left
index-free):

λx.λy.λh.λl.∃h1∃l1∃l2∃l3∃v1(l2:all(v1,l3) ∧ l3:imp(l1,h1) ∧ l≤h1

∧ l2≤h ∧ x@v1@h@l1 ∧ y@v1@h@l).

As in the previous example, the lambda-abstracted variables x and
y play their familiar role, and the lambdas binding h and l define the
scope domain contributed by every. The quantifier itself gets label l2
with restriction l1 and nuclear scope h1. The constraint l2≤h ensures
that the quantifier is out-scoped by the top of the scope domain, and
l≤h1 states that its verbal argument (y) is in its scope. The applica-
tions (x@v1@h@l1) and (y@v1@h@l) are crucial. The first application
associates the top hole (h) and restriction label of the quantifier (l1)
with the scope domain of the noun representation. The second appli-
cations associates the top hole (h) and label (l) of the quantifier with
the scope domain of the verb phrase argument. Let’s put this all in
pictorial form:
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λxyhl.∃h1l1l2l3v1([

h

l2

l2:all(v1,l3)

l3:imp(l1,h1)

l

] ∧ x@v1@h@l1 ∧ y@v1@h@l)

Now, this is rather more complicated than our previous example, so
let’s consider what happens when we apply the semantic representation
of every to that of boxer. That is (reverting again to linear notation),
let’s consider the following functional application:

λx.λy.λh.λl.∃h1∃l1∃l2∃l3∃v1(l2:all(v1,l3) ∧ l3:imp(l1,h1) ∧ l≤h1 ∧
l2≤h ∧ x@v1@h@l1 ∧ y@v1@h@l) @ λv.λh.λl.(l:boxer(v) ∧ l≤h).

We can β-convert this using the outermost lambda:

λy.λh.λl.∃h1∃l1∃l2∃l3∃v1(l2:all(v1,l3) ∧ l3:imp(l1,h1) ∧ l≤h1 ∧ l2≤h
∧ λv.λh.λl.(l:boxer(v) ∧ l≤h)@v1@h@l1 ∧ y@v1@h@l).

Again we β-convert, thus moving the variable v1 into the argument
position of boxer:

λy.λh.λl.∃h1∃l1∃l2∃l3∃v1(l2:all(v1,l3) ∧ l3:imp(l1,h1) ∧ l≤h1 ∧ l2≤h
∧ λh.λl.(l:boxer(v1) ∧ l≤h)@h@l1 ∧ y@v1@h@l).

Again we β-convert, thereby associating the determiner’s scope domain
hole h with that of the noun:

λy.λh.λl.∃h1∃l1∃l2∃l3∃v1(l2:all(v1,l3) ∧ l3:imp(l1,h1) ∧ l≤h1 ∧ l2≤h
∧ λl.(l:boxer(v1) ∧ l≤h)@l1 ∧ y@v1@h@l).

A further β-conversion yields the dominance constraint l1≤h:

λy.λh.λl.∃h1∃l1∃l2∃l3∃v1(l2:all(v1,l3) ∧ l3:imp(l1,h1) ∧ l≤h1 ∧ l2≤h
∧ l1:boxer(v1) ∧ l1≤h ∧ y@v1@h@l).

And that’s all we can do for now. Switching to pictorial mode we
see that we’ve built the following:
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λyhl.∃h1l1l2l3v1([

h

l2

l2:all(v1,(l3)

l3:imp(l1,h1)

l1:boxer(v1) l

] ∧ y@v1@h@l)

Having come this far, we might as well continue and build a USR
for a complete sentence. Let’s build one for every boxer does not growl.
The USR for does not growl is (in pictorial format):

λvhl.∃h2l4[

h

l4

l4:not(h2)

l

l:growl(v)

]

So, to build a representation for every boxer does not growl, we apply
the USR for every boxer to the USR for does not growl and β-convert.
This yields the following:

λhl.∃h1h2l1l2l3l4v1[

h

l2 l4

l2:all(v,l3) l4:not(h2)

l3:imp(l1,h1)

l1:boxer(v1) l

l:growl(v1)

]

As a little experimentation should make clear, this USR can be
plugged in two ways, and doing so yields two different readings for
the sentence, namely

∀x(boxer(x) → ¬growl(x)),
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and

¬∀x(boxer(x) → growl(x)).

We leave the details to the reader.

Semantic macros and rules for hole semantics

If we are to integrate hole semantics into our grammar architecture,
we don’t have any choice about what to do next: we need to define
a collection of (hole semantics based) semantic macros, and semantic
rules for working with them.

And this is exactly what we shall do. We shall create a new file
(called semLexHole.pl) for our hole-semantics-based semantic macros.
Let’s look at some of the entries this file will contain.

First, here’s the semantic macro for nouns:

semLex(noun,M):-

M = [symbol:Sym,

sem:lam(X,lam(H,lam(L,and(pred1(L,Sym,X),leq(L,H)))))].

This is just the USR for nouns we used in the previous example (recall
our discussion of boxer) written in our usual Prolog notation. Similarly,
here’s the semantic macro for the determiner every. Once again, this
merely puts the USR discussed earlier in prolog notation:

semLex(det,M):-
M = [type:uni,

sem:lam(N,lam(V,lam(H,lam(L,some(H1,some(L1,some(L2,some(L3,some(X,
and(hole(H1),and(label(L1),and(label(L2),and(label(L3),

and(all(L2,X,L3),and(imp(L3,L1,H1),and(leq(L,H1),
and(leq(L2,H),and(app(app(app(N,X),H),L1),

app(app(app(V,X),H),L)))))))))))))))))))].

So let’s look at some other examples. Here are the macros for proper
names, intransitive verbs, and transitive verbs:

semLex(pn,M):-

M = [symbol:Sym,

gender:_,

sem:lam(V,lam(H,lam(L,app(app(app(V,Sym),H),L))))].

semLex(iv,M):-

M = [symbol:Sym,

sem:lam(X,lam(H,lam(L,and(pred1(L,Sym,X),

leq(L,H)))))].

semLex(tv,M):-

M = [symbol:Sym,

sem:lam(Z,lam(X,app(Z,lam(Y,lam(H,lam(L,

and(pred2(L,Sym,Y,X),leq(L,H))))))))].

Note that these are simply the usual macros for proper names, in-
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transitive verbs, and transitive verbs—except that they are augmented
with extra H and L slots for the scope domain.

As we’ve said several times, underspecification allows us to be very
flexible. For example, we can use one and the same technique for both
quantifiers and negation. Actually, we’ve already seen a negation exam-
ple (recall that we constructed a USR for Every boxer does not growl)
but we did not discuss how the USR associated with the negated verb
phrase (does not growl) was built. Let’s put that right. Here’s the se-
mantic macro for negative polarity auxiliary verbs:

semLex(av,M):-

M = [pol:neg,

sem:lam(V,lam(X,lam(H,lam(L,some(S,some(N,and(hole(S),

and(label(N),and(not(N,S),and(leq(N,H),and(leq(L,S),

app(app(app(V,X),H),L))))))))))))];

These examples give a taste of the semantic macros the reader will
find in semLexHole.pl. In addition, the reader will find there macros for
copulas, relative pronouns, adjectives, prepositions, and coordination,
and all the items in our lexicon.

Now for the semantic rules. Once again, we create a new file (call it
semRulesHole.pl) which contains new definitions of combine/2 suit-
able for working with USRs. Actually, not much needs to be changed
(after all, we’re basically doing straightforward lambda manipulation)
but one point needs to be mentioned.

Consider the following rule:

combine(t:U,[s:S]):-

betaConvert(some(T,and(hole(T),some(L,and(label(L),

app(app(S,T),L))))),U).

This closes off the outermost scoping domain. Here S, the represen-
tation for the sentence, is of the form λh.λl.φ. So when we use this new
rule, which is of the form ∃h0∃l1S@h0@l1, we get ∃h0∃l1λh.λl.φ@h0@l1.
This can then be β-reduced to a USR without any occurrences of
lambda-bound variables. Whenever we reach sentence level, we have
to close off the scoping domain in this way. For example, you will see
the same technique is used for complex sentences.

The Plugging Algorithm

We now have all the information needed to build USRs, but we have to
ensure that this information is correctly integrated, and moreover we
need some code to carry out the plugging process. Accordingly, we shall
now create a top-level file called holeSemantics.pl which coordinates
the lexicon, the syntax rules, the semantic macros, and the semantic
rules. This file will also contain the predicates that carry out the actual
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plugging. The plugging process is interesting (and fairly intricate) so
we will discuss it in some detail.

At the end of the semantic construction process just discussed, a sen-
tence is associated with a hole semantics USR, that is, an existentially
closed conjunctive formula of (sorted) first-order logic. The algorithm
we shall use for building semantic representations using the information
in this USR has four steps:

1. Skolemise away the variables in the USR.

2. Break down the USR into its components and assert them to the
Prolog database.

3. Calculate a plugging.

4. Apply the plugging to construct the SRL formula.

Let’s look at each of these steps in turn.
Actually, not much needs to be said about Step 1. Here, skolemisa-

tion simply means getting rid of the block of existential quantifiers that
every USR is prefixed with: we throw them away and replace the vari-
ables they bind with unique constants (we’ll learn more about skolemi-
sation in Chapter 5, but for present purposes this is all the reader needs
to know). Needless to say, dropping the block of quantifiers is easy to
do, and to carry out the substitution of constants for variables we sim-
ply use the built-in Prolog numbervars/3 predicate (recall that this
instantiates Prolog variables with unique non-variables; we used it in
the previous chapter when we defined a predicate to test for alphabet
variants).

What about Step 2? Our plan is to use the Prolog database to store
information about admissible pluggings. But this means we should de-
clare the predicates we use as dynamic (that is, predicates whose def-
inition can change during runtime). Why is this? Because there may
well be several admissible pluggings, and we want to compute them
all. (Moreover, we want to be able to handle more than one example!)
Accordingly, we make the following declarations:

:- dynamic plug/2, leq/2, hole/1, label/1.

:- dynamic some/3, all/3, que/4.

:- dynamic not/2, or/3, imp/3, and/3.

:- dynamic pred1/3, pred2/4, eq/3.

We then assert the USR to the Prolog database. Now, USRs have a
very simple form (they are existentially quantified conjunctive formu-
las) so we need only to recurse on this structure. Here’s the required
code:

assertUSR(some(_,F)):-
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assertUSR(F).

assertUSR(and(F1,F2)):-

assertUSR(F1),

assertUSR(F2).

assertUSR(F):-

\+ F=and(_,_),

\+ F=some(_,_),

assert(F).

With Steps 1 and 2 out of the way the preliminaries are over. It’s time
for Step 3, actually calculating the plugging. First we use parent/2 to
define parenthood between labels and holes:

parent(A,B):- imp(A,B,_).

parent(A,B):- imp(A,_,B).

parent(A,B):- or(A,B,_).

parent(A,B):- or(A,_,B).

parent(A,B):- and(A,B,_).

parent(A,B):- and(A,_,B).

parent(A,B):- not(A,B).

parent(A,B):- all(A,_,B).

parent(A,B):- some(A,_,B).

Actually, we need another clause here. We will represent the fact
that hole A is to be plugged by label B as plug(A,B). This also gives
rise to a parenthood relation, so we need a clause to cover this case:

parent(A,B):- plug(A,B).

Parenthood is the one-step relation of dominance between nodes.
But of course, the true dominance relation we are interested is the
multiple-step (that is, transitively closed) relation of dominance. Using
the parent relation just defined, together with the ≤ information in the
USR, we define dominance as follows:

dom(X,Y):- dom([],X,Y).

dom(L,X,Y):-

parent(X,Y),

\+ memberList(parent(X,Y),L).

dom(L,X,Y):-

leq(Y,X),

\+ memberList(leq(Y,X),L).

dom(L,X,Z):-
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parent(X,Y),

\+ memberList(parent(X,Y),L),

dom([parent(X,Y)|L],Y,Z).

dom(L,X,Z):-

leq(Y,X),

\+ memberList(leq(Y,X),L),

dom([leq(Y,X)|L],Y,Z).

And, once we have defined dominance, we can also define the top
of a USR (recall that the top of a USR is the hole that out-scopes
everything else; that is, it points to the SRL formula that we are trying
to build):

top(X):-

dom(X,_),

\+ dom(_,X), !.

That is, a node X is a top node if it dominates some other node, and
is not itself dominated by anything. Assuming all goes well (that is, an
admissible plugging exists) the top node will be unique.

We can now calculate the admissible pluggings. First we retract pre-
vious attempts at plugging from the database and assert the new plug-
gings. Now, recall our discussion of what admissible means. We need
to ensure that the plugging does not create cycles, and that distinct
nodes with a common parent never dominate the same node:

admissiblePlugging(Plugs):-

retractall(plug(_,_)),

findall(X,(memberList(X,Plugs),assert(X)),_),

\+ dom(A,A),

\+ (parent(A,B), parent(A,C), \+ B=C, dom(B,D), dom(C,D)).

Once we have a plugging, we can recursively plug all holes with the
available labels.

plugHoles([],_,Plugs):-

admissiblePlugging(Plugs).

plugHoles([H|Holes],Labels1,Plugs):-

admissiblePlugging(Plugs),

selectFromList(L,Labels1,Labels2),

plugHoles(Holes,Labels2,[plug(H,L)|Plugs]).

We are ready for Step 4. We now have not merely the USR, we
also have a plugging (still asserted to the database!). We need to use
these two sources of information to actually reconstruct a semantic
representation. This is done by url2srl/2, which recursively converts
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a USR into an ordinary first-order formula with respect to a plugging.
If a USR-term is a hole, it inspects the plugging for that hole and

continues converting the label:

url2srl(H,F):-

hole(H),

plug(H,L),

url2srl(L,F).

If a label points to a quantifier, the scope of that quantifier is further
converted. Here is the definition for converting the universal quantifier:

url2srl(L,all(X,F)):-

all(L,X,H),

url2srl(H,F).

For the booleans, again this is straightforward. Consider for instance
the definition for plugging an implication:

url2srl(L,imp(F1,F2)):-

imp(L,H1,H2),

url2srl(H1,F1),

url2srl(H2,F2).

Finally, basic formulas:

url2srl(L,F):-

pred1(L,Symbol,Arg),

compose(F,Symbol,[Arg]).

url2srl(L,F):-

pred2(L,Symbol,Arg1,Arg2),

compose(F,Symbol,[Arg1,Arg2]).

Time to wrap all our plugging predicates together:

plugUSR(USR,Sem):-

numbervars(USR,0,_), % 1 Skolemise USR

initUSR,

assertUSR(USR), % 2 Break down and assert USR

top(Top),

findall(H,hole(H),Holes),

findall(L,

(label(L),\+ parent(_,L)),

Labels),

plugHoles(Holes,Labels,[]), % 3 Calculate a plugging

url2srl(Top,Sem). % 4. Construct SRL formula

(The call to initUSR, incidentally, cleans up the database before the
work starts.)

That completes our discussion of the plugging algorithm. So let’s
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now gather together all our work on hole semantics. The definition is
much like those used in our work on Cooper and Keller storage (though
see Exercise 3.4.1 for an interesting difference).

holeSemantics:-

readLine(Sentence),

parse(Sentence,USR),

printRepresentations([USR]),

setof(Sem,plugUSR(USR,Sem),Sems),

printRepresentations(Sems).

Here is an example session, showing the USR for every woman does

not snort and the two obtained readings.

?- holeSemantics.

> Every woman does not snort

1 some(A,and(hole(A),some(B,and(label(B),some(C,some(D,some(E,

some(F,some(G,and(hole(C),and(label(D),and(label(E),

and(label(F),and(all(E,G,F),and(imp(F,D,C),and(leq(B,C),

and(leq(E,A),and(and(pred1(D,woman,G),leq(D,A)),

some(H,some(I,and(hole(H),and(label(I),and(not(I,H),

and(leq(I,A),and(leq(B,H),and(pred1(B,snort,G),

leq(B,A)))))))))))))))))))))))))))

1 not(all(G,imp(woman(G),snort(G))))

2 all(G,imp(woman(G),not(snort(G))))

The diagram below summarises our hole semantics setup.

Exercise 3.4.1 Our implementations of Cooper and Keller storage con-
tained a filter to eliminate alphabetic variants of readings. But our hole
semantics code contains no such filter. Is this an oversight on our part?

Exercise 3.4.2 The Prolog definition of the transitive closure of the domi-
nance relation given in the text is perhaps (with its inclusion of memberList/2
and an accumulator list of previously unaccounted for immediate dominance
relations) slightly more complicated than expected. A simpler alternative
could be:

dom(X,Y):- parent(X,Y).

dom(X,Z):- parent(X,Y), dom(Y,Z).

Test this definition, by querying the goal ?- dom(A,A), on the following two
databases (that is, we want to test whether the databases contain cycles):

1. parent(a,b). parent(b,c). parent(c,a).

2. parent(d,a). parent(a,b). parent(b,c). parent(c,a).

Although both of these instances of the parent/2 relation contain cycles, the
simple definition for dom/2 only detects a cycle on the first database, and
gets entangled in a loop on the second database. Explain why this is so, and
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grammar

lexicon

syntax semantics

englishLexicon.pl semLexHole.pl

englishGrammar.pl semRulesHole.pl

holeSemantics.pl

also explain how the definition for dom/2 using an accumulator deals with
both cases.

Exercise 3.4.3 According to some linguistic theories of quantifier scope,
quantified noun phrases cannot be raised out of a relative clause, and hence
cannot out-scope anything outside the clause (see Exercise 3.3.5). Change the
semantic macro for relative clauses (by altering the dominance constraints)
so that quantified noun phrases stay in the scope of relative clauses. (You
need to do this in the file semLexHole.pl.)

Notes

Montague’s paper “The Proper Treatment of Quantification in Ordi-
nary English” (Montague, 1973) is the source of the quantifier raising
method described at the start of the chapter. For a more accessible
presentation of Montague’s work, see Dowty et al. (1981). The sen-
tence Every owner of a hash bar gives every criminal a big kahuna burger,
which has 18 readings, 11 of which are logically distinct, was taken
from Gabsdil and Striegnitz (2000); this paper describes a system for
determining the logical relationships between sentences with multiple
interpretations. For algorithms that generate non-redundant quantifier
scopings, consult Vestre (1991) and Chaves (2003).
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Programs for Underspecified Representations

cooperStorage.pl

Implementation of Cooper Storage. Defines storage of noun
phrases and retrieval from the store.

kellerStorage.pl

Implementation of Keller Storage. Defines storage and retrieval.

holeSemantics.pl

Main file for hole semantics.

pluggingAlgorithm.pl

The plugging algorithm for hole semantics.

sentenceTestSuite.pl

Tests suite of natural language examples.

Cooper storage was first used in Cooper (1975); a more refined ver-
sion is presented in Cooper (1983). Nested Cooper storage is due to
Keller (1988). This very readable paper introduces Cooper storage, ex-
plains where the problems lie, gives an example (involving an inter-
action between scope and anaphoric pronouns) which suggests that a
simple check for free variables during retrieval isn’t an adequate solu-
tion, and then introduces nested Cooper storage, which we have called
Keller storage. Hobbs and Shieber (1987) provide an alternative to
Cooper storage that overcomes some of the problems mentioned in this
chapter. An improved version of their algorithm has been developed by
Lewin (1990).

Stores (and nested stores) are essentially a more abstract form of
semantic representation—representations which encode multiple pos-
sibilities, without committing us to any particular choice. Viewed in
this light, stores are ancestors of the current crop of underspecifica-
tion formalisms, representation languages specifically designed to cope
with ambiguity by avoiding overcommitment. (Indeed, the representa-
tions used in Schubert and Pelletier (1982), one of the earliest papers
to take a computational perspective on Montague semantics, can also
be viewed as precursors of the current generation of underspecification
formalisms.) Nerbonne and Reyle seem to have been the first to use the
term underspecification in connection with semantic representations for
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natural language (see Nerbonne (1992b), Nerbonne (1992a) and Reyle
(1992)).

Player (2004), a recent PhD thesis, gives an interesting high level
overview and analysis of underspecification formalisms and their inter-
relationships. Player classifies underspecification formalisms into three
groups and in the following paragraphs we shall make use of Player’s
classification to structure our discussion.

The first group of underspecification formalisms that Player distin-
guishes is the “raising group”. In essence, these are underspecification
formalisms that directly trade on the quantifier raising idea that lies at
the heart of Montague’s original work. In this group Player places not
only the storage methods we discussed in this chapter, but also Am-
biguous Predicate Logic (Van Eijck and Jaspars, 1996), Quasi-Logical
Form (Alshawi, 1992), and a logical formalism of his own that Player
calls R. Ambiguous Predicate Logic and R are closely related, and both
are interesting attempts to abstract away from the algorithmic details
that drive the storage method and arrive at a simpler, more declarative,
formulation of the underlying ideas.

The second group that Player distinguishes is the “holes and con-
straints group” of formalisms. This group includes Underspecified Dis-
course Representation Theory (see Reyle (1993)), Hole Semantics (see
Bos (1996) and Bos (2001)), Minimal Recursion Semantics (see Copes-
take et al. (1995)) and the Constraint Language for Lambda Structures
(see Egg et al. (1998) and Egg et al. (2001a)).

The intuition underlying the formalisms in this family is the one we
met in the text: think about how the formulas of the underlying seman-
tic representation language are put together, devise a constraint formal-
ism for describing their structure, and specify a method for plugging
together real semantic representations given the constraints. Under-
specified Discourse Representations Structures, were the earliest such
formalism; as their name suggests, they were designed not for first-
order logic, but for Discourse Representation Structures (DRSs), the
semantic representation formalism that lies at the heart of Discourse
Representation Theory (Kamp and Reyle, 1993). Hole semantics was
designed to generalise the approach pioneered by Reyle. The idea was
to create a usable formalism that would be applicable to a variety of se-
mantic representation formalism, and indeed hole semantics has been
successfully adapted to both first-order logic (as in the text) and to
DRSs (Bos, 2004), and has been used as part of a machine transla-
tion system Bos et al. (1996), Bos et al. (1998). Minimal Recursion
Semantics (MRS) was designed to underspecify relatively flat seman-
tic structures (that is, structures in which the degree of recursion has
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been minimised). It is closely associated with the HPSG grammar for-
malism, and, like hole semantics, has been used in machine translation
systems. The Constraint Language for Lambda Structures (CLLS) has
been the subject of extensive formal investigation, and a lot is known
about its computational and expressivity properties: important refer-
ences include Duchier and Niehren (2000), Erk et al. (2003), Koller
et al. (2000), Koller et al. (2003), Althaus et al. (2003), and Bodirsky
et al. (2004).

The third group of underspecification formalisms that Player dis-
tinguishes has only a single member. This is an underspecified logic
(Player calls it Q) proposed in Van Eijck and Jaspars (1996), the same
paper in which Ambiguous Predicate Logic was introduced. The dis-
tinguishing feature of Q is that it offers an ambiguity connective: φ?ψ
is ambiguous between the reading φ and the reading ψ.

Player shows that although the formalisms in the three groups look
very different, there is a sense in which they are all inter-reducible. On
the basis of these reductions, Player argues that in spite of the ap-
parent diversity of underspecification formalism, there is an underlying
unity: all existing approaches have achieved roughly the same level of
expressive power. Player also investigates a number of other issues in
his thesis; for example he gives an account of inference in underspec-
ified representation languages by means of a polynomial reduction to
first-order logic.

Currently, the most active branch of research in underspecification
revolves round the second group, the “holes and constraint group”.
Player regards all the underspecification formalisms in this group as
more-or-less obvious notational variants of one another. For Player’s
purposes (establishing abstract general properties of a wide variety of
underspecification formalisms) this perspective is useful, but it does
have the drawback of masking the diversity of ideas that are currently
being explored in this setting. For example, in the text we said that
constraint solving was a key to understanding this kind of underspec-
ification formalism. In fact, recent work on CLLS has moved on from
viewing underspecification in terms of constraint solving towards iden-
tifying useful fragments of the underspecification language that can be
viewed as graphs. This perspective opens the door to a new range of
computational resources, namely graph algorithms. At the time of writ-
ing, the most efficient implementations of CLLS are graph-based: the
solvability of an underspecification problem is defined in terms of cer-
tain cycles in the associated graph. The key references here are Althaus
et al. (2003) and Koller (2004).

As the above remarks make clear, underspecification is currently
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an active research area, and many different ideas are currently being
explored. Probably the best advice we can give the reader interested in
learning more is to consult both Player (2004) and Koller (2004). The
first of these theses will give you a good birds-eye-view of the terrain,
the second will give you detailed insight into the fine structure of the
“holes and constraints” (and graphs!) family.

Another overview and analysis of underspecification you are likely
to find useful is König and Reyle (1997). This surveys a number of
underspecification formalisms, and compares their expressivity. It also
addresses the topic of how inference can be directly performed on un-
derspecified representations (a topic that we do not discuss in this
book). Two other sources worth mentioning are Van Deemter and Pe-
ters (1996), a collection of papers, and Egg et al. (2001b), a special
issue of the Journal of Logic, Language and Information devoted to
underspecification.

One final remark. In this chapter we presented the USRs of hole
semantics as certain kinds of (sorted) first-order formulas. This view of
hole semantics comes from Bos (2001). The perspective is theoretically
important (it justifies our use of lambda calculus as a glue language
for USRs) but Bos also shows that it gives rise to a novel implementa-
tion technique: the use of model builders. Model building is discussed
in Chapter 5; for present purposes it is enough to know that a first-
order model builder takes a first-order formula as input and attempts
to build a satisfying model. Bos’s experimental implementation gives
a first-order model builder a hole semantics USR (that is, a certain
kind of first-order formula) together with the first-order axioms for
trees. The satisfying models produced as output are possible semantic
representations. Current first-order model building technology is in its
infancy, and this approach is currently very inefficient, but it will be
interesting to see whether improvements are possible in the future.



“blackburnbos”
2004/12/13
page 154

i

i

i

i

i

i

i

i



“blackburnbos”
2004/12/13
page 155

i

i

i

i

i

i

i

i

4

Propositional Inference

In this chapter we turn to the second major theme of the book, namely:

How can we use logical representations of natural language expressions
to automate the process of drawing inferences?

In Chapter 1 we defined three inference tasks of interest to compu-
tational semantics: the querying task, the consistency checking task,
and the informativity checking task. Now, nothing more needs to be
said about the querying task: it was the simplest task of all, and
we dealt with it right away (recall that we implemented a first-order
model checker). The consistency and informativity checking tasks,
however, are a completely different kettle of fish. Both problems are
undecidable—general algorithmic solutions don’t exist. Nonetheless, as
we shall explain in this chapter and the next, there are some interesting
partial solutions just waiting to be explored. In particular, using so-
phisticated theorem provers to perform negative checks for consistency
and informativity, preferably backed up by model builders to provide
partial positive checks, is an interesting way of exploring the role of
inference in computational semantics.

This immediately raises a host of questions. What is a theorem
prover? What is a model builder? Why distinguish negative and posi-
tive tests? And why the insistence on sophisticated inference tools? In
this chapter we take our first steps towards providing some answers. We
do so by introducing two theorem proving methods for propositional
logic—that is, for the quantifier-free fragment of first-order logic.

4.1 From Models to Proofs

Our ultimate goal is to provide partial computational solutions to the
consistency and informativity checking tasks for first-order logic with
equality. Why ‘partial’? Because, as we discussed in Chapter 1, both
these problems are undecidable: full computational solutions don’t ex-

155
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ist. That’s bad news, but we have some good news too: there’s really
only one task, for both informativity and consistency checking are de-
finable in terms of validity.

Recall from Chapter 1 that when we say that a first-order formula
ψ is uninformative with respect to first-order formulas φ1, . . . , φn, we
mean that

φ1, . . . , φn |= ψ,

and that when we say that ψ is inconsistent with respect to φ1, . . . , φn

we mean (recall Exercise 1.2.7) that

φ1, . . . , φn |= ¬ψ.
Furthermore, recall that (by the Semantic Deduction Theorem) both
tasks can be reformulated in terms of the validity of single formulas:
saying that ψ is uninformative with respect to φ1, . . . , φn means that
φ1∧· · ·∧φn → ψ is valid, and saying that ψ is inconsistent with respect
to φ1, . . . , φn means that φ1 ∧ · · · ∧ φn → ¬ψ is valid. So our quest for
computational handles on the informativity and consistency checking
tasks boils down to a single issue: are there computational techniques
for determining whether a formula is valid?

So far so good—but if we are to make further progress with this
problem, we have to re-conceptualise it. The definition of validity is
semantic: it is defined in terms of models. Indeed, its definition is se-
mantic in a very strong sense: a valid formula is one that is satisfied
in all models. From a computational perspective, this definition is of
limited interest: there are infinitely many models (and most of them
are infinite), so we certainly cannot line them all up in a computer and
check for validity by seeing if a formula is satisfied in them all! No—if
we want a computational handle on validity checking, we need to find
a way of viewing it as a concrete symbol manipulation task.

And this can be done. A branch of logic called proof theory, and a
branch of computer science called automated reasoning, investigate log-
ical validity from a purely syntactic perspective. Researchers in these
fields have devised a number of proof methods for establishing valid-
ity, and implemented a wide range of theorem provers that turn these
techniques into computational reality. The crucial thing about these
techniques is that they only make use of the syntactic structure of for-
mulas. To put it another way, these proof methods involve only symbol
manipulation; models play no role. Of course, such methods should al-
ways be justifiable in model-theoretic terms. That is, if someone asks
why some proposed proof method is really a way of establishing gen-
uine logical validities—and not just some bizarre new way of playing
with logical symbols—it should be possible to show that the method
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is faithful to the semantic concept of validity, and later in the chapter
we’ll discuss what “being faithful to the semantic concept of validity”
actually means. Nonetheless, the proof methods themselves are defined
solely in terms of formula manipulation: they make no appeal to se-
mantic concepts. Since we want a computational handle on validity, it
is clearly sensible to try and make use of such techniques.

Many proof methods have been devised and studied: the best known
include axiomatic (or Hilbert-style) systems, natural deduction sys-
tems, sequent calculi, tableau systems, and resolution systems. These
proof methods were developed for different purposes and have different
strengths and weaknesses. For example, axiomatic systems are excel-
lent if one wants to study provability at an abstract level, but awful to
actually use. Natural deduction systems, on the other hand, are easy
for people to use (as their name suggests, they try to capture something
of what is involved when a human being goes about proving something)
but are not well suited for automated reasoning.

In this book we introduce the tableau and resolution methods. In our
view, there is no better way for computational semanticists to get to
grips with the basics of theorem proving than by learning about these
methods. For a start, each is interesting in its own right. Moreover,
the two methods are instructively different: working with them both
will give the reader a sense of just how subtle (and difficult) theorem
proving is. Finally, most of the sophisticated theorem provers the reader
is likely to encounter (whether they be for first-order logic or something
else) are likely to be either resolution or tableau based. Thus it is useful
to have a basic grasp of both approaches.

We begin by discussing the tableau method. This method is concep-
tually simple and easy to understand, and (with the possible excep-
tion of natural deduction) is perhaps the proof method best adapted
for pencil-and-paper calculation. This is because the method, although
syntactic, transparently mirrors semantic intuitions—indeed, tableaus
are often called semantic tableaus. Nonetheless, although tableaus offer
an excellent human-oriented approach to inference, the basic mecha-
nism is suitable for implementation, and efficient tableau-based theo-
rem provers exist for many kinds of logic.

We then discuss resolution, a resolutely machine-oriented method.
We shall present resolution as a two stage process. In the first stage
the input formula is preprocessed into a special form called conjunctive
normal form. In the second stage, a single rule, the resolution rule,
is repeatedly applied to the result. Resolution is the most important
method in contemporary automated theorem proving and (as readers
of this book are probably aware) Prolog is based on it.



“blackburnbos”
2004/12/13
page 158

i

i

i

i

i

i

i

i

158 / Representation and Inference for Natural Language

In this chapter we confine our discussion of the tableau and reso-
lution methods to propositional logic. Recall from Chapter 1 and Ap-
pendix B that propositional languages are essentially a simple notation
for the quantifier-free fragment of first-order languages. For example,
instead of writing

(dead(vincent)→happy(butch))∧(¬dead(vincent)→happy(mia)),

which is a quantifier-free first-order formula, we would write something
like

(p→ q) ∧ (¬p→ r).

That is, in propositional logic we hide the internal structure of the
atomic symbols, replacing them by sentence symbols such as p, q, and
r. In propositional logic it is the syntactic configuration of the boolean
connectives (¬, ∧, ∨, and →) that is important.

Why start with propositional logic? Because it is a lot simpler than
full first-order logic. For a start, propositional logic is decidable. That
is, there are algorithms for determining whether an arbitrary propo-
sitional formula is valid or not (the method of truth tables, described
in Appendix B is one such algorithm, and so are the tableau and res-
olution methods we shall develop in this chapter) whereas there is no
algorithm for deciding whether or not an arbitrary first-order formula is
valid. Moreover, the basic ideas of tableau and resolution shine through
more clearly in propositional logic, for we don’t have to deal with the
tricky issue of how to cope with the quantifiers, an issue that will de-
mand a great deal of our attention in the following chapter when we
extend our discussion to first-order logic.

4.2 Propositional Tableaus

The key intuition underlying the tableau proof technique revolves
around the following semantic question:

Suppose we are given a formula, and one of the truth values True or
False. Is it possible to find a model in which the given formula has the
given truth value?

The tableau method is essentially a syntactic way of answering this
question. More precisely, a tableau proof is a systematic check, making
use of only syntactic concepts, which lets us know whether or not it is
possible to build a model in which some given formula is true or false.

Suppose that we had such a systematic check at our disposal. This
would give us a way to test formulas for validity. After all, “valid”
means “true in all models”, so a formula is valid if and only if it is not
possible to falsify it in any model. Hence, a formula φ would be valid
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if and only if the systematic method told us that there was no way
to build a model that falsified φ. For this reason, the tableau method
is often called a refutation proof method: we show that φ is valid by
showing that all attempts to falsify it must fail.

So: what is a tableau system, and how do they systematically check
for the existence of suitable models? We shall introduce the key ideas
by presenting three examples of tableau proofs, taking care to point
out the underlying semantic intuitions. We’ll then make our discussion
more precise.

Consider the formula p ∨ ¬p. This is a validity—we certainly can’t
falsify it—but what would a systematic search for a falsification look
like? Now, most readers probably know one way of conducting such a
systematic search: use truth tables (if you don’t know what a truth
table is, read Appendix B). But truth tables aren’t very appealing. For
a start, while it’s easy to fill out the truth table for p ∨ ¬p, the truth
table for a formula containing 8 different sentence symbols contains 256
lines, while the table for a formula containing 20 symbols contains 220

lines, which is far too large for comfort. Moreover, the method of truth
tables can’t be extended to full first-order logic; we want a method that
can.

So instead of truth tables we’ll develop a number of tableau expansion
rules. These rules will tell us how to make complex formulas true (or
false) by breaking them down into their component formulas and giving
the components the appropriate truth value. Let’s see what sort of rules
are needed, and how to use them, by constructing a tableau proof of
p ∨ ¬p.

We want to try and falsify p∨¬p, so let’s introduce a piece of notation
to express this goal. Writing Fφ, where φ is any formula, will mean that
we want to make φ false. Similarly, writing Tφ will mean that we want
to make φ true. (T and F are called signs, and a formula preceded by
a sign is called a signed formula.) Thus, as we are going to try to falsify
p ∨ ¬p, our initial goal is:

F (p ∨ ¬p).
This rather trivial looking object is our first example of a tableau.
Actually, when writing out tableaus by hand, it is handy to include
a little extra book-keeping information, such as line numbers. So, in
practice we’d tend to write the above tableau as:

1 F (p ∨ ¬p)
How do we proceed? Essentially we use the tableau expansion rules

to smash the signed formula into smaller and smaller pieces until we
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reach the atomic level. So, what expansion rule should we apply here?
Obviously we need a rule that tells us how to falsify a disjunction. The
required rule is clear: to make a disjunction false, falsify both disjuncts.
So, applying this rule (let’s call it F∨) we expand our one line tableau
to a three line tableau as follows:

1 F (p ∨ ¬p) √

2 Fp 1, F∨

3 F¬p 1, F∨

Here, lines 2 and 3 are the extra information we have deduced by ap-
plying the F∨ rule. The third column contains more book-keeping in-
formation: the

√
symbol in line 1 records the fact that we’ve applied

the appropriate rule to line 1, while the annotations 1, F∨ in lines 2 and
3 record the fact that these lines were obtained from line 1 using rule
F∨.

What next? In fact, there’s only one more thing we can do. We’ve
already applied a rule to line 1, so we’ve finished with that. Further-
more, line 2 tells us something about atomic information (namely that
we need to make p false). This is simply a blunt fact, not something
that can be further analysed. Thus only line 3 offers us the possibility
of further progress; it tells us that we need to falsify the negation of p.
So, we need an expansion rule that tells us how to do this. Again, the
required rule is clear: to make the negation of a formula false, make
the formula itself true. By applying this rule (let’s call it F¬) we can
expand our three line tableau to a four line tableau as follows:

1 F (p ∨ ¬p) √

2 Fp 1, F∨

3 F¬p 1, F∨,
√

4 Tp 3, F¬.

Note that we have marked line 3 with a
√

(thus recording that the
applicable rule has been applied) and have indicated that line 4 was
obtained from line 3 using F¬.

There are two important observations that must be made about
this tableau. First, it is rule-saturated . That is, we cannot expand it
any more. Either we’ve already applied the applicable rule (lines 1
and 3), or the line contains instructions about what to do with atomic
information (lines 2 and 4). Second, the tableau is closed . That is, it
contains contradictory instructions. The tableau tells us that if we want
to falsify p ∨ ¬p, we have to make p false (line 2) and p true (line 4).
As this is impossible, and as it should be clear that the above tableau
really does indicate all possible ways of falsifying p ∨ ¬p, we conclude
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that this formula is valid. This closed tableau is called a tableau proof
of p ∨ ¬p.

The previous example is a perfectly good tableau proof, but it’s also
one of the simplest the reader is ever likely to see. So let’s consider a
slightly more demanding task: testing ¬(q∧r) → (¬q∨¬r) for validity.

Just as in the previous example, our initial goal is to try and falsify
the given formula. Thus our initial tableau is:

1 F¬(q ∧ r) → (¬q ∨ ¬r)

Now we need to falsify an implication, so we need an expansion rule
that tells us how to do this. Again the required rule is clear: to falsify
an implication, make the antecedent true and the consequent false.
Applying this rule (let’s call it F→) yields the following tableau:

1 F¬(q ∧ r) → (¬q ∨ ¬r) √

2 T¬(q ∧ r) 1, F→

3 F (¬q ∨ ¬r) 1, F→

Now, line 3 demands that we falsify a disjunction. We’ve already met
the required expansion rule, namely F∨. Applying it to line 3 yields:

1 F¬(q ∧ r) → (¬q ∨ ¬r) √

2 T¬(q ∧ r) 1, F→

3 F (¬q ∨ ¬r) 1, F→,
√

4 F¬q 3, F∨

5 F¬r 3, F∨

At this point the alert reader should be saying “Hold on a minute!
Why are we free to apply this rule to line 3? Sure, the rule fits—but
look at line 2. There’s a formula there that we need to make true. Don’t
we need to take care of that first?”

A sensible question, but the answer is: no, we don’t . One of the
pleasant things about propositional tableau is that we are free to apply
applicable rules in any order we like. Yes, we could have applied the
relevant rule to line 2 at this point, had we wanted to—but we’re equally
free to apply a rule to line 3, just as we did above. Propositional tableau
rules tell us what we’re permitted to do to expand a tableau; we’re not
forced to apply expansion rules in any particular order.

So let’s move on. Note that both lines 4 and 5 ask us to falsify a
negated formula. Again, we have already met the relevant rule, namely
F¬. Applying it first to line 4, and then to line 5 (a completely arbitrary
ordering choice) yields:
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1 F¬(q ∧ r) → (¬q ∨ ¬r) √

2 T¬(q ∧ r) 1, F→

3 F (¬q ∨ ¬r) 1, F→,
√

4 F¬q 3, F∨,
√

5 F¬r 3, F∨,
√

6 Tq 4, F¬

7 Tr 5, F¬

Let’s now deal with line 2. (In fact, there is nothing else we can
do.) We need to make a negation true. The required rule is clear: to
make the negation of a formula true, make the formula itself false. So,
applying this rule (let’s call it T¬) we can expand our tableau to obtain:

1 F¬(q ∧ r) → (¬q ∨ ¬r) √

2 T¬(q ∧ r) 1, F→,
√

3 F (¬q ∨ ¬r) 1, F→,
√

4 F¬q 3, F∨,
√

5 F¬r 3, F∨,
√

6 Tq 4, F¬

7 Tr 5, F¬

8 F (q ∧ r) 2, T¬

Now we have to deal with line 8, which asks us to falsify a con-
junction. Doing so leads us to the first real complication in the story
we have been telling. The point is this: there’s not just one way of
making a conjunction false, there are two. Making either conjunct false
will falsify the whole formula. As tableaus are meant to be systematic
searches for falsifications, we’re going to have to examine both possi-
bilities. Thus the relevant expansion rule (let’s call it F∧) is going to
yield two alternative ways of expanding the tableau, and we’re going
to have to keep track of both.

F∧ is our first example of a disjunctive (or branching) expansion rule;
we’ll encounter more such rules shortly. Because of such rules, tableaus
won’t generally consist of a single straight line down the page (that is,
they’re no longer going to consist of a single branch, to use the official
terminology). Rather, they will be tree-like structures, possibly con-
taining many branches. In the present case, what we get after applying
F∧ is:
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1 F¬(q ∧ r) → (¬q ∨ ¬r) √

2 T¬(q ∧ r) 1, F→,
√

3 F (¬q ∨ ¬r) 1, F→,
√

4 F¬q 3, F∨,
√

5 F¬r 3, F∨,
√

6 Tq 4, F¬

7 Tr 5, F¬

8 F (q ∧ r) 2, T¬,
√

9 Fq 8, F∧ 10 Fr 8, F∧

That is, we have recorded two distinct possibilities: we must either
falsify q, or falsify r.

But let’s return to our tableau proof. What do we do next? Actually,
we’ve finished: our two-branch tableau is rule-saturated, as the reader
can easily check. So, after all that, is ¬(q ∧ r) → (¬q ∨ ¬r) a validity?
Yes, it is. This is because the rule-saturated tableau we produced is
closed , which means that all the branches it contains are closed. To see
this, note that the left-hand branch is closed because it contains the
contradictory instructions Fq (at line 9) and Tq (at line 6); whereas the
right-hand branch is closed because it contains Fr (at line 10) and Tr
(at line 7). This closed tableau is a tableau proof of ¬(q∧r) → (¬q∨¬r).

Let’s consider a final example to illustrate what happens if the for-
mula we are working with is not a validity. Now, the formula (p∧ q) →
(r ∨ s) is certainly not valid; what happens when we try and falsify it
using the tableau method?

As usual, the first step simply states our goal, namely :

1 F (p ∧ q) → (r ∨ s)
As we need to falsify an implication, we apply expansion rule F→:

1 F (p ∧ q) → (r ∨ s) √

2 T (p ∧ q) 1, F→

3 F (r ∨ s) 1, F→

Now line 2 requires us to make a conjunction true. The expansion
rule T∧ required is clear: we must make both conjuncts true. Applying
T∧ yields:

1 F (p ∧ q) → (r ∨ s) √

2 T (p ∧ q) 1, F→,
√

3 F (r ∨ s) 1, F→

4 Tp 2, T∧
5 Tq 2, T∧
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Now let’s deal with line 3. The relevant rule is F∨. Applying it yields:

1 F (p ∧ q) → (r ∨ s) √

2 T (p ∧ q) 1, F→,
√

3 F (r ∨ s) 1, F→,
√

4 Tp 2, T∧
5 Tq 2, T∧
6 Fr 3, F∨

7 Fs 3, F∨

But now the expansion process halts. This tableau is rule-saturated:
we’ve applied the relevant rules to lines 1–3, while lines 4–7 simply
stipulate what has to be done with atomic information. But note that
there is a crucial difference between this tableau and the previous rule-
saturated tableau we have seen: the single branch in this tableau is not
closed, it’s open. That is, it does not contain contradictory instructions.
In fact, it gives us very sensible instructions indeed: lines 4–7 tell us to
make p true, q true, r false, and s false. As the reader can easily check,
doing this falsifies (p∧ q) → (r ∨ s), thus this formula is not a validity.

More generally, a rule-saturated tableau is called open iff it contains
at least one open branch. If we obtain an open tableau when we try
to falsify some formula, this means that the formula is not a validity.
Moreover, just as in the previous example, every open branch on the
open tableau actually contains an explicit falsification recipe for the
formula: we falsify it by assigning truth values to the sentence symbols
in the way the open branch stipulates. To put it another way, open
branches of rule-saturated tableaus tell us how to build a propositional
model that falsifies the formula we started with.

The reader should now have a fairly clear grasp of the main ideas and
intuitions underlying tableau proofs, so let’s now discuss the method
more systematically. We begin by listing the eight main expansion rules,
and classifying them into three types: unary rules, conjunctive rules,
and disjunctive rules. This classification isn’t vital, but it will help us
keep the implementation neat.

For each boolean connective B, we have two tableau rules, TB and
FB. TB tells us how to make a formula with B as its main connective
true, while FB tells us how to make it false. The rules for negation, T¬

and F¬, are the simplest:

T¬φ F¬φ
Fφ Tφ
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These rules should be read from top to bottom. Given the examples
discussed in the previous section, their meaning should be clear. In each
rule, the signed formula above the horizontal line is the input to the
rule, and the signed formula below it is the output. For example, T¬

takes as input signed formulas of the form T¬φ, and returns as output
signed formulas of the form Fφ. Similarly, F¬ takes as input signed
formulas of the form F¬φ and returns as output signed formulas of the
form Tφ. In what follows, we shall call these two rules our unary rules.
This is simply shorthand for the fact that both rules return a single
formula as output.

The rules for the binary connectives ∧, ∨ and → are rather more
interesting. Here are T∧ and F∧, F∨ and T∨, and F→ and T→, respec-
tively:

T (φ ∧ ψ) F (φ ∧ ψ)

Tφ Fφ Fψ
Tψ

F (φ ∨ ψ) T (φ ∨ ψ)

Fφ Tφ Tψ
Fψ

F (φ→ ψ) T (φ→ ψ)

Tφ Fφ Tψ
Fψ

Again, all six rules should be read from top to bottom, the top being
the input to the rule, the bottom the output. We shall call the three
rules in the left-hand column (that is, T∧, F∨, and F→) conjunctive
rules. The three rules on the right-hand side (that is, F∧, T∨, and
T→) are called disjunctive rules. Note that each of ∧, ∨ and → gives
rise to a pair of rules, one of which is conjunctive, the other disjunctive.
Both conjunctive and disjunctive rules return two formulas as output—
however, as we have already seen, they differ in the effect they have on
tableau. In particular, use of a disjunctive rule splits the branches of
the tableau containing the input formula into distinct branches, each
of which records one of the two alternative output formula.

In the discussion that follows, we’ll assume that we only have these
eight rules at our disposal. However, it is easy to give expansion rules
for other connectives, though such rules won’t always fit into our three
way classification. For example, it can be useful to have the expansion
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rules for the bi-implication connective ↔ at our disposal. Here are the
required rules:

T (φ↔ ψ) F (φ↔ ψ)

Tφ Fφ Tφ Fφ
Tψ Fψ Fψ Tψ

That is, for this connective we don’t obtain a neat pair of rules, one of
which is conjunctive, the other disjunctive, as we did for ∧, ∨ and →.
Both rules are disjunctive, for both force us to split tableau branches,
but unlike the previous disjunctive rules, these rules yield four output
formulas, two for each branch. Exercise 4.2.2 asks the reader to define
tableau expansion rules for two other connectives.

Now that we know what our expansion rules are, let’s make our
previous discussion of tableau and tableau proofs a little more rigorous.
A (propositional) tableau is simply a tree, each of whose nodes is a
signed (propositional) formula. A branch of a tableau is simply a branch
of such a tree—that is, a collection of nodes (that is, signed formula)
that contains exactly one leaf node together with all the nodes which
dominate it. An initial tableau—that is, the kind of tableau with which
we start the tableau expansion process—is a tableau consisting of a
single signed formula.

We carry out the tableau expansion process as follows. Given a
tableau, we try to find a node in it that isn’t a signed atomic formula,
and to which we haven’t already applied an expansion rule. Let’s call
such nodes unexpanded nodes. If there are no unexpanded nodes, we
can’t do anything: we have a rule-saturated tableau and are finished.
So suppose there is at least one unexpanded node. This node has the
form Sφ, where S is either T or F , and φ is a propositional formula.
Moreover, as φ is not atomic, it has a main connective B, where B is
one of the connectives ¬, ∧, ∨, or →. We can then read off the required
rule: we have to apply rule SB.

What happens when we apply a rule to a node? That depends on
whether the rule is unary, disjunctive, or conjunctive. If the rule is
unary, we extend every branch containing the input node by adding
on the output formula of the rule as the new leaf node. If the rule
is conjunctive, we extend every branch containing the input node by
adding on, again at the leaf node, both output formula of the rule.
Finally, if the rule is disjunctive, we extend every branch containing the
input node to two distinct branches, one containing each of two choices
of output formulas. Again, both the required additions are carried out
at the leaf node of the original branches.
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The basic idea of tableau expansion should be clear from the ex-
amples we discussed earlier, but there is one point worth emphasising.
A signed formula may belong to several branches. (For example, the
root node belongs to every branch of a tableau.) When we perform an
expansion, we have to extend every branch on which the input formula
lies in the appropriate way. For example, consider the following tree:

•

• T (φ ∨ ψ)

•

• •
If we expand the indicated node T (φ ∨ ψ), we obtain:

•

• T (φ ∨ ψ)

•

• •

Tφ Tψ Tφ Tψ

The tableau expansion process starts when we are given an initial
tableau (typically, a single formula prefixed by F ). We apply rules to
the initial tableau, and then to the tableau obtained by earlier rule
applications, and so on, until it is not possible to apply any more rules.
As we discussed earlier, we can apply the rules in any order we like.
The tableau expansion process stops when it is not possible to apply
any more rules, that is, when we obtain a rule-saturated tableau.

We are now almost ready to say what a tableau proof is. First, a
branch of a tableau is closed if it contains both Tφ and Fφ, where φ is
some formula. A branch that is not closed is called open. A tableau is
closed if every branch it contains is closed, and open if it contains at
least one open branch. Now for the key definition:

A propositional formula φ is tableau-provable if and only if it is pos-
sible to expand the initial tableau consisting of the single node Fφ

to a closed tableau. We use the notation `t φ to indicate that φ is
tableau-provable. If a formula is tableau-provable, then we say that it
is a tableau-theorem, or more simply, a theorem.
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And that’s the (propositional) tableau method. To conclude our dis-
cussion, one point is worth stressing: the tableau method really is a
purely syntactic method. If we want to test whether φ is provable, we
write down the symbols Fφ, and then try to build a closed tableau.
The rules governing the expansion process are completely syntactical:
when we expand a node, we know which rule to apply simply looking
at its sign and main connective. Moreover, closure is a purely syntactic
concept: it simply amounts to looking for items of the form Tφ and
Fφ on some branch. Of course, as our presentation has tried to empha-
sise, the tableau method is driven by clear semantic ideas. Nonetheless,
using the method doesn’t require any semantic insight at all. Even if
we didn’t know what the signs T and F were meant to stand for—or
indeed, what ¬, ∧, ∨, and → were meant to represent—we would still
have a well defined way of manipulating logical formulas. It would prob-
ably be an exaggeration to claim that we could train a monkey to carry
out tableau proofs—but as we shall soon see, it is easy to implement
the method in Prolog.

Exercise 4.2.1 Give tableau proofs of the following formulas:

1. ¬¬p→ p

2. ((p→ q)→ p)→ p

3. (¬p→ ¬q)→ (q → p)

4. p→ (p ∧ (q ∨ p))

5. (p ∨ (q ∧ r))→ ((p ∨ q) ∧ (p ∨ r)).

Exercise 4.2.2 The connectives nand and nor are defined by the following
truth tables:

p q p nand q p nor q

True True False False
True False True False
False True True False
False False True True

Give the tableau expansion rules for both connectives.

Exercise 4.2.3 In Exercise 1.1.13 we introduced the special boolean con-
stants ⊥ (always false) and > (always true). Extend the tableau system so
that it handles them. (Hint: add new rules for branch closure.)

4.3 Implementing Propositional Tableau

We shall represent a tableau in Prolog as a list containing lists of signed
formulas. Signed formulas will be represented as Prolog terms with
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functors f and t of arity 1. For example, the following is the Prolog
representation of a tableau:

[[f(imp(p,q))]].

This represents the tableau consisting of just one branch, namely a
branch containing the single signed formula F (p→ q).

Here’s a second example:

[[t(and(p,q)), f(and(p,r))]].

Again, this represents a tableau with just one branch. This time, how-
ever, the branch contains two signed formulas, namely T (p ∧ q) and
F (p ∧ r).

Our Prolog implementation of the propositional tableau method con-
sists of a small collection of predicates which manipulate such lists in
accordance with the tableau expansion rules. For example, the list just
given contains t(and(p,q)). Now, to make a conjunction true, we use
expansion rule T∧, which in this case tells us to add Tp and Tq to the
given branch. It is easy to mimic the required expansion in Prolog: all
we have to do is define a predicate which when given the previous list
as input, returns the following one as output:

[[t(p), t(q), f(and(p,r))]].

Note two things. First, as expected, the output list contains t(p) and
t(q). Second, it does not contain t(and(p,q)). Why is this? Because
once the relevant expansion rule has been applied to some formula, that
formula is no longer relevant and can be removed. That is, removal of
signed formulas from lists is the Prolog analog of the

√
marking we

used in our handwritten proofs.
Note that our new list contains f(and(p,r)), thus we can process

it even further. Now, the rule for falsifying a conjunction is F∧, a dis-
junctive rule. How are disjunctive expansions to be handled in Prolog?
Again, the basic idea is very simple. To handle F∧, for example, we
need simply define a predicate which when given the previous list as
input, returns the following one as output:

[[t(p), t(q), f(p)], [t(p), t(q), f(r)]].

Note that the list now contains two lists. It is thus the Prolog represen-
tation of a tableau containing two branches, namely the tableau with
the signed formulas Tp, Tq and Fp on one (closed) branch, and the
formulas Tp, Tq and Fr on the other.

Note that this approach to disjunctive rules differs from our hand-
written approach. Our Prolog program makes two copies of the branch,
one for each of the two disjunctive possibilities. This is somewhat heavy
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handed—but it makes the code easy to understand. On the other hand,
when writing out proofs by hand we want to cut down the writing
needed as much as possible—hence our use of tree-like structures in
which the information common to two branches is shared.

Summing up, our Prolog implementation is based round the repre-
sentation of tableaus as lists containing lists of signed formulas. Each
list of signed formula corresponds to a branch. We carry out expan-
sions by manipulating these lists of signed formulas in the appropriate
way. In particular, conjunctive (and unary) expansions will be carried
out by taking the list representation of a branch, removing the relevant
conjunctive (or unary) signed formula, and adding its component(s) to
the list. Disjunctive expansions are carried out in much the same way,
save that the process returns two lists, one containing each of the two
possible components.

Let’s go systematically through the program. The top-level predi-
cate, tprove/1 is defined as follows:

tprove(F):-

(

closedTableau([[f(F)]]), !,

write(’Theorem.’), nl

;

write(’Not a theorem.’), nl

).

That is, when given a propositional formula F as input, tprove/1
forms the initial tableau [[f(F)]] and then calls closedTableau/1 to
try and expand it to a closed tableau. If this succeeds, it declares that
F is a theorem; if it fails, it tells us that formula F is not a theorem.

Here’s the definition of closedTableau/1, the heart of the prover:

closedTableau([]).

closedTableau(OldTableau):-

expand(OldTableau,TempTableau),

removeClosedBranches(TempTableau,NewTableau),

closedTableau(NewTableau).

How does this work? The first clause defines the empty list to be
closed. Why? Because whenever we encounter a closed branch in our
tableau, we are going to discard it. This means that the empty list
is a tableau from which all branches have been discarded—so if we
are ever left with the empty list, we have successfully built a closed
tableau and should halt. The second clause applies when the tableau
built so far (that is, OldTableau) is not closed. In this case we first
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use expand/2 to build a temporary tableau, and then (via a call to
removeClosedBranches/2) we weed out any closed branches to form
NewTableau. We use this new tableau as the argument of the recursive
call to closedTableau/1.

The remaining predicates fill in the details. Let’s start with expand/2.
This is a high level organisational predicate that works its way recur-
sively through all the branches in the input tableau. Its first three
clauses look for signed formulas to which a unary expansion, a con-
junctive expansion, or a disjunctive expansion can be applied. The
fourth clause makes the recursive call that deals with the next branch
of the tableau if no more expansions can be carried out to the current
branch:

expand([Branch|Tableau],[NewBranch|Tableau]):-

unaryExpansion(Branch,NewBranch), !.

expand([Branch|Tableau],[NewBranch|Tableau]):-

conjunctiveExpansion(Branch,NewBranch), !.

expand([Branch|Tableau],[NewBranch1,NewBranch2|Tableau]):-

disjunctiveExpansion(Branch,NewBranch1,NewBranch2), !.

expand([Branch|Rest],[Branch|Newrest]):-

expand(Rest,Newrest).

Now for the predicates that do the real work. Both the predi-
cates unaryExpansion/2 and conjunctiveExpansion/2 have two ar-
guments, namely an input branch, and an output branch. On the other
hand, the predicate disjunctiveExpansion/3 takes three arguments—
an input branch and two output branches. All three predicates look
for the occurrence of the appropriate type of signed formula (namely
unary, conjunctive, and disjunctive respectively) as the first item in
the input branch, then use the library predicate removeFirst/3 to
remove that occurrence, and finally build the required new branch (or
branches, in the case of disjunctive formulas) out of the component (or
components) of the signed formula:

unaryExpansion(Branch,[Component|Temp]):-

unary(SignedFormula,Component),

removeFirst(SignedFormula,Branch,Temp).

conjunctiveExpansion(Branch,[Comp1,Comp2|Temp]):-

conjunctive(SignedFormula,Comp1,Comp2),

removeFirst(SignedFormula,Branch,Temp).



“blackburnbos”
2004/12/13
page 172

i

i

i

i

i

i

i

i

172 / Representation and Inference for Natural Language

disjunctiveExpansion(Branch,[Comp1|Temp],[Comp2|Temp]):-

disjunctive(SignedFormula,Comp1,Comp2),

removeFirst(SignedFormula,Branch,Temp).

Of course, we have to say what conjunctive, disjunctive, and unary
signed formulas actually are:

conjunctive(t(and(X,Y)),t(X),t(Y)).

conjunctive(f(or(X,Y)),f(X),f(Y)).

conjunctive(f(imp(X,Y)),t(X),f(Y)).

disjunctive(f(and(X,Y)),f(X),f(Y)).

disjunctive(t(or(X,Y)),t(X),t(Y)).

disjunctive(t(imp(X,Y)),f(X),t(Y)).

unary(t(not(X)),f(X)).

unary(f(not(X)),t(X)).

Only one task remains—we need to define the predicate that removes
closed branches from the tableau:

removeClosedBranches([],[]).

removeClosedBranches([Branch|Rest],Tableau):-

closedBranch(Branch), !,

removeClosedBranches(Rest,Tableau).

removeClosedBranches([Branch|Rest],[Branch|Tableau]):-

removeClosedBranches(Rest,Tableau).

Note the Prolog cut (!) in the second clause. If we find a closed branch
in a tableau, then we want to throw it away, and this is a decision that
never needs to be reconsidered; the cut ensures it never will be.

Finally, note that closed branches are defined in the obvious way:
a branch is closed if it contains t(X) and f(X) for some propositional
formula X:

closedBranch(Branch):-

memberList(t(X),Branch),

memberList(f(X),Branch).

Well, that’s the propositional tableau prover. Time to test it. In the
file propTestSuite.pl you will find entries of the form

formula(imp(p,not(not(p))), ’Theorem’).

and

formula(imp(or(p,not(q)),or(p,q)), ’Not a theorem’).
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That is, the first argument of formula/2 is a propositional formula,
and the second records its status (that is, whether it is a theorem
or a non-theorem). If you load the file propTableau.pl and give the
command

?- tproveTestSuite.

you will generate output like

Input formula: imp(and(r,or(p,q)),or(and(r,p),and(r,q)))

Status: Theorem

Prover says: Theorem.

Before moving on, play with the prover. A good way to start is by
running the test suite. Then try the following exercises.

Exercise 4.3.1 Try the prover out on some simple examples. Make sure you
understand what is happening at each step. One way to do this is to use the
standard Prolog trace/0, but a nicer way is to add the following code as a
new second clause for the predicate closedTableau/1:

closedTableau(OldTableau):- nl,write(OldTableau),nl,fail.

Because this new clause always fails, it has no effect on the correctness of the
predicate. However, before it fails it will write out the current state of the
tableau, enabling you to follow the prover’s progress easily.

Exercise 4.3.2 Try to find examples of theorems which the tableau prover
can’t handle, or can’t handle fast. That is, try to find propositional formulas
which you know to be valid but which the tableau prover either won’t halt
on, or takes a long time to halt. (The last two formulas in the test suite are
like this, but try to find your own examples before looking at these.)

Exercise 4.3.3 Modify the code so that the tableau prover handles the bi-
implication connective ↔ (use, say, bimp/2 as the Prolog notation for this
connective).

Exercise 4.3.4 Modify the code so that it handles the nand and nor con-
nectives defined in Exercise 4.2.2.

Exercise 4.3.5 Building on the work of Exercise 4.2.3, extend the tableau
prover so that it copes with ⊥ and >.

Exercise 4.3.6 Reimplement propositional tableau in a way that is more
faithful to our hand-written tree-based approach. That is, find a nice way of
representing trees so that we don’t need to duplicate branches when using
disjunctive rules.
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Exercise 4.3.7 Add a pretty print predicate to our implementation of
propositional tableau, that shows the branches and the proof steps in a
readable way.

Exercise 4.3.8 Implement the truth table method in Prolog (this method is
described in Appendix B). Test your code using propTestSuite.pl. Can you
find examples where the truth table method works better than the tableau
method?

Programs for propositional tableau

propTableau.pl

The file that contains all the predicates for the implementation
of our tableau-based theorem prover.

propTestSuite.pl

Test suite with problems to test our theorem provers.

comsemPredicates.pl

Contains some auxiliary predicates for list processing.

4.4 Propositional Resolution

We now examine a second technique for establishing the validity of
propositional formulas: the resolution method. Like the tableau method
it is purely symbolic (it is defined solely in terms of the syntactic struc-
ture of formulas) but it is different in two important respects. Firstly,
the tableau method is based on the idea of multiple rules, two for each
connective, which enable the input formula to be systematically dis-
mantled; the resolution method, on the other hand, makes use of only
a single rule (the resolution rule) which is repeatedly applied. Further-
more, tableau rules are directly applied to the input formula; in the
resolution method (at least in its most common variants) the input
formula is first converted to a special form (conjunctive normal form)
and only then is the resolution rule applied.

Our discussion of resolution falls into two parts. We first discuss the
preprocessing phase (the reduction to conjunctive normal form) and
then the resolution phase proper.
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Conjunctive Normal Form (CNF)

First some terminology:

A positive literal is a sentence symbol (for example, p, q, r, s, t,. . . ).
A negative literal is a negated sentence symbol (for example, ¬p, ¬q,
¬r, ¬s, ¬t, . . . ). A literal is a positive literal or a negative literal. A
clause is a disjunction of literals.

For example, p ∨ q ∨ ¬r ∨ s ∨ ¬t is a clause, for each disjunct is a
literal. Note that clauses are essentially ‘flat’ formulas. To be sure, the
formula p ∨ q ∨ ¬r ∨ s ∨ ¬t is shorthand for some bracketed formula,
perhaps p∨(q∨((¬r∨s)∨¬t)), or perhaps (p∨(q∨¬r))∨(s∨¬t). But,
as we discussed in Exercise 1.2.3, such bracketings don’t matter seman-
tically: disjunction is associative, hence all such variants are logically
equivalent. To emphasise the flat nature of clauses (and the fact that
we don’t need to worry about the bracketing) in the following discus-
sion we shall generally write clauses using a list notation: for example,
the clause p ∨ q ∨ ¬r ∨ s ∨ ¬t will be written as [p, q,¬r, s,¬t].

Now for the key semantic observation concerning clauses:

To make a clause true we have to make at least one of the literals it
contains true (after all, a clause is a disjunction).

For example, to make [p, q,¬r, s,¬t] true we have to make one of p, q,
¬r, s or ¬t true. This observation has an important special case. In
resolution theorem proving it is usual to exploit the list notation to
define a special clause, the empty clause, which we shall write as [ ].
As this notation makes clear, the empty clause contains no literals at
all, hence it is impossible to make at least one of them true, and hence
it is impossible to make the empty clause true. That is, the empty
clause is essentially a different notation for the constant ⊥ (introduced
in Exercise 1.1.13) which is always false. The empty clause plays an
important role in resolution; as we shall see, resolution is essentially a
determined effort to try and generate an empty clause.

But this is jumping ahead—we haven’t yet said what conjunctive
normal forms are. Here’s the answer:

A formula is in conjunctive normal form (CNF) if and only if it is a
conjunction of clauses.

For example
(p ∨ q) ∧ (r ∨ ¬p ∨ s) ∧ (q ∨ ¬s)

is in CNF, for it consists of three clauses (namely p∨ q, r∨¬p∨ s, and
q ∨ ¬s) conjoined together.

In what follows, we won’t usually write clauses using standard log-
ical notation—instead we’ll extend the list notation just introduced
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for clauses so that it covers formulas in CNF too. Consider the CNF
formulas just given. First of all, we can replace each clause by its list
representation to obtain

[p, q] ∧ [r,¬p, s] ∧ [q,¬s].
Having done this, it is natural to stop representing ∧ explicitly and to
use a list of lists representation instead, namely:

[[p, q], [r,¬p, s], [q,¬s]].
Here’s another example. The following is a list of lists representation

of a formula in CNF:

[[p,¬q], [r,¬s], [ ], [q,¬s, q]].
Note that one of its clauses is the empty clause. If we write this formula
in standard notation (using ⊥ for the empty clause) we obtain

(p ∨ ¬q) ∧ (r ∨ ¬s)∧ ⊥ ∧(q ∨ ¬s ∨ q).
The list of lists notation for CNF formulas is very natural when dis-
cussing resolution.

Now for the key semantic observation concerning formulas in CNF:

For a formula in CNF to be true, all the clauses it contains (that is, all
its conjuncts) must be true. Hence if a formula in CNF has the empty
clause as one of its conjuncts, it can never be true.

This observation plays a crucial role in the formulation of the resolution
method.

Well, now we know what CNF is—but there is an important question
we have not addressed: how are we to transform propositional formulas
into CNF? We need to be able to do this, for the approach to resolution
introduced below assumes that the input formula is in this form.

One way to carry out the transformation to CNF is via the following
algorithm. Given an input formula we first convert it into what is called
negation normal form (NNF). Then, once we’ve converted the input
into NNF, we reach CNF by repeatedly applying the distributive and
associative laws. Let’s go through this in detail.

A formula is in NNF if ∨ and ∧ are the only binary boolean connec-
tives it contains, and every occurrence of a negation symbol is applied
to a sentence symbol. (To put it another way, a formula in NNF is built
up out of literals using ∨ and ∧ as the only binary connectives.) Now,
it is easy to convert any propositional formula to NNF—all we need to
do is keep applying the following rules:

Rewrite ¬(φ ∧ ψ) as ¬φ ∨ ¬ψ

Rewrite ¬(φ ∨ ψ) as ¬φ ∧ ¬ψ
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Rewrite ¬(φ→ ψ) as φ ∧ ¬ψ

Rewrite φ→ ψ as ¬φ ∨ ψ

Rewrite ¬¬φ as φ.

The first and second rules (the De Morgan laws) drive negations deeper
into the formula (that is towards the sentence symbol level), the third
and fourth rules eliminate occurrences of →, and the fifth rule elimi-
nates nested negations. It is easy to see that when these rules have been
applied to the input formula as often as possible, the only connectives
left will be ∧, ∨ and ¬, and all remaining negations will be applied
to sentence symbols. In short, repeated application of these rules will
convert the input into NNF.

But having reached NNF, how do we get to CNF? As we said above,
by repeatedly applying the distributive and associative laws. Here are
the required rules:

Rewrite θ ∨ (φ ∧ ψ) as (θ ∨ φ) ∧ (θ ∨ ψ)

Rewrite (φ ∧ ψ) ∨ θ as (φ ∨ θ) ∧ (ψ ∨ θ)

Rewrite (φ ∧ ψ) ∧ θ as θ ∧ (φ ∧ ψ)

Rewrite (φ ∨ ψ) ∨ θ as θ ∨ (φ ∨ ψ).

The first two rules are the distribution rules: the first distributes ∨ over
∧ from the left, the second distributes ∨ over ∧ from the right. Note
their effect: they drive occurrences of ∨ deeper into the formula, and lift
occurrences of ∧—and that’s exactly what is needed to get CNF. The
last two rules are the associativity rules. Their role is to allow brackets
to be moved around so that the distribution rules can be applied.

And that’s that. By using this two-stage process (reduction to NNF,
followed by applications of the distributive and associative rule) we can
convert any propositional formula into CNF. Let’s look at an example.
We shall convert

(¬p→ q) → (¬r → s)

into CNF. The first stage of the process is to put the formula in NNF.
So we eliminate the main → to obtain:

¬(¬p→ q) ∨ (¬r → s).

We next eliminate the lefthand → to obtain:

(¬p ∧ ¬q) ∨ (¬r → s).

We then eliminate the righthand → to obtain:

(¬p ∧ ¬q) ∨ (¬¬r ∨ s).
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Eliminating the double negation yields:

(¬p ∧ ¬q) ∨ (r ∨ s).
This formula is in NNF, and we can now apply the second distribu-

tion law to obtain:

(¬p ∨ (r ∨ s)) ∧ (¬q ∨ (r ∨ s)).
We’re there—this formula is in CNF. To emphasise this, let’s write

it in our list of lists notation:

[[¬p, r, s], [¬q, r, s]].
A word of warning. This is the algorithm we shall implement to

convert formulas to CNF—but we didn’t choose this algorithm because
it’s the best (it’s not)—we chose it because it is the simplest to justify.
The algorithm just outlined has the following property: if ψ is the
formula in CNF produced by this algorithm from some input formula
φ, then φ and ψ are logically equivalent, that is, satisfied in exactly
the same models (the reader is asked to prove this in Exercise 4.4.2).
In short, the approach to preprocessing used here converts the input
formula into a logically equivalent formula in CNF, and this obviously
makes good semantic sense.

However, this algorithm can be extremely slow on some input. This
is because sometimes the CNF formula it gives rise to may be a lot
bigger than the input formula (to put it more technically, there can be
an exponential blowup in the size of the input formula). Where does
the problem lie? With the distribution laws. Repeated distributions
can swiftly create very large formulas indeed, as the reader is asked
to show in Exercise 4.4.3. A number of more sophisticated algorithms
which avoid the exponential blowup are known. We won’t discuss them
here, but the reader should know about them, and references to these
methods are given in the Notes at the end of the chapter.

Is that all? Not quite—we have to make one final refinement. We
said above that the approach to resolution presented below assumes
that the input formula is in CNF. Actually, this is not quite right—the
method really assumes that the input is in what we shall call set CNF.
What does this mean? Simply this: a formula is in set CNF if none of
its clauses contains a repeated literal, and no clause occurs more than
once. For example,

[[p, q, r,¬s], [p,¬q, p,¬r]]
is in CNF, but it is not in set CNF. Why not? Because the second
clause contains two occurrences of p. And

[[t,¬r], [p, q,¬r], [t,¬r]]
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is not in set CNF either, because the clause [t,¬r] occurs twice. On the
other hand,

[[p,¬r, s], [¬s,¬p], [q,¬r]]
is in set CNF—no clause contains multiple copies of any literal, and
no clause occurs more than once. To put it another way: each inner
level list can be viewed as a set of literals, and the outer level list can
be viewed as a set of clauses. In what follows we shall often refer to
formulas written in set CNF as clause sets.

Any formula in CNF can be converted to an equivalent clause set:
all we have to do is throw out repeated literals in clauses, and repeated
clauses. It should be clear that discarding these kinds of repetitions
results in a logically equivalent formula; we are merely jettisoning re-
dundant disjuncts and conjuncts.

In the approach to resolution discussed below, it will be important
that we work with formulas in set CNF (that is, clause sets) and not
merely CNF. We’ll see why later.

Exercise 4.4.1 Convert the negation of the following formulas to CNF:

1. ¬¬p→ p

2. ((p→ q)→ p)→ p

3. (¬p→ ¬q)→ (q → p)

4. p→ (p ∧ (q ∨ p))

5. (p ∨ (q ∧ r))→ ((p ∨ q) ∧ (p ∨ r)).

Exercise 4.4.2 Show that if ψ is the formula in CNF produced from some
input formula φ by the algorithm described in the text, then φ and ψ are
logically equivalent (that is, satisfied in exactly the same models).

Exercise 4.4.3 Try to find a family of formulas which shows that the algo-
rithm described in the text for converting formulas to CNF can lead to an
exponential blowup in the size of the input formula.

Exercise 4.4.4 The rules given above for reduction to NNF only cover the
¬, ∧, ∨, and → connectives. Add rules that enable formulas containing ↔
to be reduced to NNF too. If you allow occurrences of ↔ in the input, is the
length of the output NNF formula always of roughly the same size as the
length of the input?

The Resolution Rule

We are now ready to discuss the resolution rule. First some terminology.
Suppose we have two clauses, say C and C ′, and C contains a positive
literal (say r) and C ′ contains its negation (that is, ¬r). Then the
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literals r and ¬r are called a complementary pair and clauses C and C ′

are called complementary clauses.
The resolution proof method is based around repeated use of the

following rule, the binary resolution rule:

Given two clauses of the form

[p1, . . . , pn, r, pn+1, . . . , pm] and [q1, . . . , qj ,¬r, qj+1, . . . , qk]

as input, deduce

[p1, . . . , pn, pn+1, . . . , pm, q1, . . . , qj , qj+1, . . . , qk]

as output.

To spell this out, as input the resolution rule takes two complementary
clauses. Complementary clauses must contain at least one pair of com-
plementary literals, and we have written r and ¬r to indicate such a
pair. This pair—the resolvents as they are usually called—is the com-
plementary pair we use when we apply the resolution rule. And what
happens when we apply the rule? Quite simply, we discard the resol-
vents, and merge what remains of the two clauses. For example, if we
apply the rule to the clauses

[p,¬q, r] and [s, q, t]

we obtain
[p, r, s, t].

It should be reasonably clear that the resolution rule is semantically
sensible. After all, if we know that both [p,¬q, r] and [s, q, t] are true
then (as both of these expressions are disjunctions) we know that at
least one of p, ¬q and r must be true, and that at least one of s, q,
and t must be true too. But as ¬q and q can’t both be true, we can be
certain that at least one of p, r, s or t must be true, and this is exactly
what [p, r, s, t] (the output of the rule) asserts.

Note that there may well be several ways to apply the resolution rule
to the same pair of clauses. For example, consider the clauses [p, s,¬t, r]
and [q, t,¬s, r]. There are two complementary pairs here: s and ¬s, and
¬t and t. If we choose s and ¬s as our resolvents, then applying the
resolution rule yields

[p,¬t, r, q, t, r].
On the other hand, if we choose ¬t and t as our resolvents, then applying
the resolution rule yields

[p, s, r, q,¬s, r].
It is also worth noting that even if the two clauses input to the bi-

nary resolution rule are in set form, this does not guarantee that the
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output clause will be too. For consider the example just given. Neither
[p, s,¬t, r] nor [q, t,¬s, r] contains repeated literals, but [p, s, r, q,¬s, r]
contains a repeated r. As we shall see, for the resolution method de-
scribed below to function properly, it is essential that we always work
with clauses in set CNF. Thus in general we will have to post-process
the clauses output from the resolution rule to ensure that they are sets.
Let’s be a little more precise about this:

If C is a clause, then set(C) is simply C itself if C is already in set
form. Otherwise, set(C) is the clause C ′ obtained from C by discarding
literals so that each literal in C occurs in C ′ exactly once.

For example, set([p, q], ) = [p, q] and set([p, q,¬r, p], ) = [p, q,¬r]. Thus
when we say that we have to post-process the output from the resolution
rule, we mean that instead of working directly with the clause C that
the rule gives to us, we always work with set(C) instead.

Well, the preliminaries are now out of the way, so it’s time to turn
to the central question: how do we actually use the resolution rule in
theorem proving?

Like the tableau method, the resolution method is a refutation
method. That is, just as in the tableau method, if we want to show
that φ is valid, we give ¬φ as input, and try to generate a contradiction
(which in the setting of resolution means that we try to generate the
empty clause). However (unlike the tableau method), resolution is a
two stage process. First we have to convert the input formula ¬φ into
set CNF; we’ll call the result of this conversion our clause set. We then
check to see our clause set contains the empty clause, for if it does, we
are finished: we have obtained a contradiction and can declare that φ
has been proved. But if this is not the case, we have to move onto the
second phase: the resolution phase proper.

What does this involve? The following:

1. Pick two complementary clauses from our clause set, and two
complementary literals r and ¬r in the clauses picked, and apply
the resolution rule using r and ¬r as the resolvents (if there are
no complementary pairs, halt and declare that φ has not been
proved).

2. If the clause C output by the resolution rule is the empty clause,
halt and declare that φ has been proved.

3. Otherwise, form set(C). If set(C) is already in our clause set, we
discard it. Otherwise we add it to our clause set, and go back to
Step 1 of the process.

In short, we simply keep cycling through these three steps, applying the
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resolution rule and (when it yields some new non-empty clause) adding
the output to the clause set. We halt if at any stage the resolution
rule yields the empty clause (in which case we say that φ has been
proved) or if we have applied resolution to all possible resolvents in
all complementary pairs (in which case we say that φ has not been
proved).

Let’s look at some examples. We’ll first use this method to prove
p → p. As we said above, resolution is a refutation method, so we
negate this formula, obtaining ¬(p→ p), and convert this to set CNF.
Doing so yields

[[p], [¬p]].
Can we refute this? Well, it does not contain the empty clause, so we
must enter the resolution phase. We choose a complementary pair of
clauses and a pair of resolvents in these clauses (easy—there’s only one
possible choice!) and apply the binary resolution rule. Resolving [p]
with [¬p] yields [ ], so we have generated the empty clause and refuted
the negated input. We halt and declare that we have proved p→ p.

Here’s a second example. We’ll use the method to prove

(¬p→ ¬q) → (q → p).

First the preprocessing phase. We negate this formula, and convert it
to set CNF. Doing so yields:

[[¬p], [q], [¬q, p]].
Can we refute this? Again, it does not contain the empty clause, so we
move onto the resolution phase proper. Let’s first resolve [¬p] against
[¬q, p]. Doing so yields [¬q]. This clause is already in set form, and it
is not already present in our clause set, so we add it to obtain

[[¬p], [q], [¬q, p], [¬q]].
Resolving [¬q] against [q] then yields [ ], so we halt and declare that
(¬p→ ¬q) → (q → p)) has been proved.

Let’s now prove (p∨ p) → (p∧ p). This example will make clear why
we have to work in set CNF. We’ll do a little experiment: we’ll negate
the formula, but instead of converting into set CNF, we’ll only convert
into ordinary CNF. If we do this we obtain

[[p, p], [¬p,¬p]].
But now consider what happens when we apply the resolution rule: we
obtain

[[p,¬p][p, p], [¬p,¬p]].
And it is not hard to see that whatever we do we are never going to
generate the empty clause—all we can do is generate [p,¬p], [p, p], and
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[¬p,¬p] clauses. And this is due to the fact that we did not take care
to convert the original clauses into sets. For if we had done this, our
original clause set would have been

[[p], [¬p]],
and we could then have generated the empty clause in a single resolution
step.

Well, that’s the approach to propositional resolution that we will
implement. But before doing so, let’s discuss another question: does
the resolution process just described make semantic sense? We have
already given an informal justification of the resolution rule itself, but
the use of this rule is only a part (albeit a central part) of the resolution
method. Does everything really hang together the way it should? Yes, it
does, for everything we do to the negation of the input formula preserves
satisfiability in a model.

An operation which takes as input a propositional formula ψ and
returns as output a propositional formula ψ′ preserves satisfiability in
a model if whenever the input ψ is satisfied in some model M then so
is the output ψ′ too. (Of course, as we are working with propositional
logic, in this chapter models are simply assignments of truth values to
sentence symbols; see Appendix B.)

Now, it is quite easy to see that everything we do to the negation
of the input formula in the course of a resolution proof preserves sat-
isfiability in a model. Let’s think this through. Suppose we are trying
to show that φ is valid. We negate φ, forming ¬φ, and from then on
everything we do preserves satisfiability. We first convert ¬φ into set
CNF. This part of the process certainly preserves satisfiability. In fact,
the way we did it, it preserves even more semantic structure: the set
CNF formula we obtain is actually logically equivalent to ¬φ (that is,
it is satisfied in exactly the same models). So what about the second
phase, the applications of the resolution rule? Do these rule applications
preserve satisfiability in a model too?

The resolution rule takes as input two clauses

[p1, . . . , pn, r, pn+1, . . . , pm] and [q1, . . . , qj ,¬r, qj+1, . . . , qk]

and returns as output a clause

[p1, . . . , pn, pn+1, . . . , pm, q1, . . . , qj , qj+1, . . . , qk]

(the resolvents are r and ¬r). Now, suppose that both input clauses
are satisfied in some model M . This means that at least one literal in
each of the two input clauses must be true in M . But only one of r and
¬r can be true in M , so at least one other literal (either from the first
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literal or from the second) must be true in M as well. But all literals
from the input clauses (apart from the resolvents r and ¬r) are in the
output clause, hence at least one literal in the output is true in M , and
hence the output (being a disjunction of literals) is true in M too.

Thus everything we do to ¬φ preserves satisfiability in a model. It
follows that:

If ¬φ is satisfied in some model M , then all clause sets that we obtain
in the course of carrying out resolution must be true in M too.

Now consider what this must mean if we generate the empty clause
during the resolution process. A clause set containing the empty clause
cannot be satisfied in any modelM whatsoever. Hence, as the resolution
process preserves satisfiability in a model, it follows that ¬φ cannot be
satisfied in any model M either. From this it follows that the input
formula φ must be satisfied in all models; that is, φ is indeed valid.

In short, the resolution procedure just described is a purely syntactic
method that makes good semantic sense—it is a genuine proof method.
So, parallelling what we did in the tableau case, we shall make the
following definition:

A propositional formula φ is resolution-provable if and only if it is
possible to apply the resolution method described above to refute ¬φ
(that is, generate a clause set containing the empty clause). We use
the notation `r φ to indicate that φ is resolution-provable.

Exercise 4.4.5 Give resolution proofs of the following formulas (recall that
you were asked to convert the negations of these formulas into CNF in Ex-
ercise 4.4.1):

1. ¬¬p→ p

2. ((p→ q)→ p)→ p

3. (¬p→ ¬q)→ (q → p)

4. p→ (p ∧ (q ∨ p))

5. (p ∨ (q ∧ r))→ ((p ∨ q) ∧ (p ∨ r)).

Compare these proofs with the tableau proofs requested in Exercise 4.2.1.

Exercise 4.4.6 Suppose we are carrying out a resolution proof with a clause
set that contains the clause [r, p] and also the clause [p]. Can you explain why
the clause [r, p] is redundant? (Hint: think semantically.) Can you extend this
observation into a simple strategy for eliminating certain types of redundant
clauses?

Exercise 4.4.7 Suppose we are trying to prove some formula, and that the
set CNF representation of its negation contains a clause in which some literal
occurs both positively and negatively (that is, it contains a clause of the
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form [. . . , p, . . . ,¬p . . .]). Explain why such clauses are redundant and can be
eliminated (Hint: think semantically).

4.5 Implementing Propositional Resolution

We are now ready to implement propositional resolution. Unsurpris-
ingly, our work falls into two phases: first we must implement the re-
duction to set CNF, and then we must implement the resolution phase
proper.

Converting formulas to set CNF

Here’s the high level predicate cnf/2 which carries out the conversion:

cnf(Formula,SetCNF):-

nnf(Formula,NNF),

nnf2cnf([[NNF]],[],CNF),

setCnf(CNF,SetCNF).

The input to this predicate, Formula, is a propositional formula written
in our standard (Prolog) logical notation. For example:

imp(and(p,imp(q,r)),s).

The output, SetCNF, is the result written in (Prolog) list of lists nota-
tion, of converting the input into set CNF. For example, the input just
given would convert to:

[[s,not(p),q],[s,not(p),not(r)]].

As the code makes clear, cnf/2 performs the conversion in three steps.
First it converts the input formula into a formula in NNF. It then
converts the NNF formula into one in CNF. Finally, it converts the
CNF into the output set CNF formula by throwing away redundant
literals and clauses. Let’s deal with each part in turn.

Recall that a formula in NNF only has as connectives ∧, ∨ and ¬,
and that all occurrences of ¬ must be next to sentence symbols. So, as
we discussed above, we convert an arbitrary propositional formula into
NNF by using the De Morgan laws to push the negations deeper into
the formula, by re-expressing implications and negated implications in
terms of ∧, ∨ and ¬, and by eliminating double negations. It is easy
to capture this rewriting process as a recursive Prolog predicate. First
of all, here are the clauses that push the negations deeper into the
formula:

nnf(not(and(F1,F2)),or(N1,N2)):-

nnf(not(F1),N1),

nnf(not(F2),N2).
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nnf(and(F1,F2),and(N1,N2)):-

nnf(F1,N1),

nnf(F2,N2).

nnf(not(or(F1,F2)),and(N1,N2)):-

nnf(not(F1),N1),

nnf(not(F2),N2).

nnf(or(F1,F2),or(N1,N2)):-

nnf(F1,N1),

nnf(F2,N2).

The first and the third of these clauses capture the effect of the De
Morgan laws. The second and the fourth clauses permit the recursion
to work its way down to subformulas in the cases where no negations
are encountered.

The clauses for eliminating negated implications, implications, and
double negations are straightforward:

nnf(not(imp(F1,F2)),and(N1,N2)):-

nnf(F1,N1),

nnf(not(F2),N2).

nnf(imp(F1,F2),or(N1,N2)):-

nnf(not(F1),N1),

nnf(F2,N2).

nnf(not(not(F1)),N1):-

nnf(F1,N1).

Finally, here’s what happens when we reach the level of literals:

nnf(F1,F1):-

literal(F1).

literal(not(F)):- atomic(F).

literal(F):- atomic(F).

Now for the next step—we need to convert our NNF formula into
one in CNF by repeatedly applying the distributive and associative
laws. Actually, at this stage we do something else as well. As we said
above, the input to cnf/2 is a formula in our standard (Prolog) notation
whereas the output is in a list of lists notation. Where do we shift from
one representation to another? Here at the second stage. Let’s take a
look at the code:

nnf2cnf([],_,[]).
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nnf2cnf([[]|Tcon],Lit,[Lit|NewTcon]):-

!,

nnf2cnf(Tcon,[],NewTcon).

nnf2cnf([[and(F1,F2)|Tdis]|Tcon],Lits,Output):-

!,

appendLists(Tdis,Lits,Full),

nnf2cnf([[F1|Full],[F2|Full]|Tcon],[],Output).

nnf2cnf([[or(F1,F2)|Tdis]|Tcon],Lits,Output):-

!,

nnf2cnf([[F1,F2|Tdis]|Tcon],Lits,Output).

nnf2cnf([[Lit|Tdis]|Tcon],Lits,Output):-

nnf2cnf([Tdis|Tcon],[Lit|Lits],Output).

This is the trickiest part of the CNF conversion code—probably the
best way to get to grips with it is to try out Exercise 4.5.2 right away.

Once we have the actual CNF, the hard work is done. All that re-
mains is to strip out duplicate literals and clauses. We do this with the
help of an accumulator and the removeDuplicates/2 predicate defined
in the file comsemPredicates.pl. Here’s what we do:

setCnf(Cnf1,Cnf2):-

setCnf(Cnf1,[],Cnf2).

setCnf([X1|L1],L2,L3):-

removeDuplicates(X1,X2),

setCnf(L1,[X2|L2],L3).

setCnf([],Cnf1,Cnf2):-

removeDuplicates(Cnf1,Cnf2).

That is, the first clause initialises the accumulator to the empty list,
the second clause strips duplicate literals from each clause and places
the resulting set clauses on the accumulator, and the third then weeds
duplicate clauses from the accumulator list and returns the output.

We have included a little test suite for trying out the converter. The
code that runs the test suite is:

cnfTestSuite:-

formulaClause(Formula,Cnf),

format(’~nInput formula: ~p’,[Formula]),

format(’~nKnown cnf: ~p’,[Cnf]),

cnf(Formula,CNF),

format(’~nComputed cnf: ~p~n’,[CNF]),

fail.
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cnfTestSuite.

The test suite itself is in file cnfTestSuite.pl.

Exercise 4.5.1 Can Prolog cuts safely be added to the definition of nnf/2?
If they can be, add them.

Exercise 4.5.2 Add the following clause to the start of nnf2cnf/3

nnf2cnf(X,Y,Z):- nl,write(X),write(Y),write(Z),fail.

Because this clause always fails, it has no effect on the correctness of
nnf2cnf/3. But before failing it writes out the arguments given to nnf2cnf/3,
thus enabling you to visualise what is going on. For example, if you make
the query

cnf(or(p,and(q,r)),C).

you will receive a listing of exactly how nnf2cnf/3 was called by cnf/2 during
the conversion process. Try out the CNF converter with this extra clause in
place.

Exercise 4.5.3 The third clause of nnf2cnf/3 deals with conjunctions by
duplicating disjuncts (thus applying the distribution rule); the duplicates
are given as the Prolog variable Full. This is not efficient—all the opera-
tions that have to be performed for the information in Full will be doubled
(and doubled again if the distributive rule is fired again, and so on). Deal
with this by extending nnf2cnf/3 with a memory feature that records all
its operations, and before applying a new rule, first checks whether it has
already done these operations. Use a dynamic predicate and assert/1 and
retract/1 to implement this in Prolog.

Exercise 4.5.4 Extend the definition of nnf/2 to deal with the bi-implica-
tion connective ↔ (use, say, bimp/2 as the Prolog notation for this connec-
tive).

Performing Resolution

With the preliminaries out of the way, we are ready to implement the
predicates that do the real work of propositional resolution. In fact, the
required code is fairly straightforward: all we have to do is ensure that
we apply the resolution rule systematically, that we keep working with
sets of clauses and sets of literals, and that we detect the empty clause
if we generate it.

Here is our main predicate, rprove/1:

rprove(Formula):-

cnf(not(Formula),CNF),

refute(CNF).



‘‘blackburnbos’’

2004/12/13

page 189

i

i

i

i

i

i

i

i

Propositional Inference / 189

This predicate takes as its argument the formula we are trying to prove.
The formula is input in our standard (Prolog) logical notation, and is
immediately negated (as resolution is a refutation method) and given
to cnf/2. This converts it to set CNF in list of lists notation. We then
try to refute this clause set by giving it as an argument to refute/2.

As you can see, refute/2 encapsulates the entire resolution process
into a few lines of code:

refute(C):-

memberList([],C).

refute(C):-

\+ memberList([],C),

resolveList(C,[],Output),

unionSets(Output,C,NewC),

\+ NewC = C,

refute(NewC).

Let’s go through this carefully, as this is the most important predicate
in the program. The first Prolog clause checks whether the empty clause
is in the input clause set C: if it is, we have succeeded in proving the
input formula. If the empty clause is not present, we enter the resolu-
tion phase. That is, we systematically start trying all possible ways of
resolving the clauses in C with each other; the call to resolveList/3

does this for us. The second argument of resolveList/3 is an ac-
cumulator (initialised to the empty list) and the output of all these
resolutions is returned as the third argument Output, a list of clauses;
the lower level predicates called by resolveList/3 guarantee that all
the clauses in Output are returned in set form. We then form NewC

by adding the clauses returned in Output to the clauses in C. We do
this with the help of the predicate unionSets/3, which is defined in
comsemPredicates.pl, to ensure that NewC is in set CNF. Finally, we
check whether this last round of resolutions has produced any new
clauses: that is, we check whether NewC is different from C). If new
clauses have been produced, we recursively call refute/1 with NewC

as its argument. On the other hand, if there are no new clauses then
refute/1 fails, and the input formula cannot be proved.

Only three more predicates are required to make this all work, and
they are all quite simple. Let’s first look at resolveList/3, which is
called by refute/1 to systematically try out all possible resolutions on
the clauses in an input clause set:

resolveList([],Acc,Acc).

resolveList([Clause|List],Acc1,Acc3):-
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resolveClauseList(List,Clause,Acc1,Acc2),

resolveList(List,Acc2,Acc3).

The first argument of this predicate is a list of clauses. The second
clause in the definition recursively takes the clause at the head of the
list, and tries resolving it against all the remaining clauses on the list.
The results are stored in an accumulator. The first clause in the def-
inition halts the accumulation process when the empty set is reached
(that is, when all the clauses in the input have undergone the resolution
process).

So how do we resolve a clause against a list of clauses? As follows:

resolveClauseList([],_,Acc,Acc).

resolveClauseList([H|L],Clause,Acc1,Acc3):-

resolve(Clause,H,Result),

unionSets([Result],Acc1,Acc2),

resolveClauseList(L,Clause,Acc2,Acc3).

resolveClauseList([H|L],Clause,Acc1,Acc2):-

\+ resolve(Clause,H,_),

resolveClauseList(L,Clause,Acc1,Acc2).

Again, this predicate makes use of accumulators, and the task of the
first clause of the definition is to halt the accumulation process when the
empty list is reached. The second and third Prolog clause are jointly
responsible for resolving Clause against all the clauses in the list of
clause [H|L]. The second predicate handles the case that arises when
it is possible to successfully call resolve/3 to resolve Clause against
a clause on the list: it stores the result in an accumulator, and then
recursively carries on trying to resolve Clause against the next item
on the list. The third clause deals with the case that occurs when
resolve/3 does not return a result (that is, when it is not possible to
resolve Clause against a clause on the list). It simply recursively carries
on trying to resolve Clause against the next item on the list.

All that we now need is predicate which can resolve two clauses
together to produce a new clause. Here is what we use:

resolve(Clause1,Clause2,NewClause):-

selectFromList(Lit,Clause1,Temp1),

selectFromList(not(Lit),Clause2,Temp2),

unionSets(Temp1,Temp2,NewClause).

resolve(Clause1,Clause2,NewClause):-

selectFromList(not(Lit),Clause1,Temp1),
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selectFromList(Lit,Clause2,Temp2),

unionSets(Temp1,Temp2,NewClause).

This is straightforward: we try to find a pair of complementary liter-
als in the two input clauses, we then remove these literals (using the
selectFromList/3 predicate defined in comsemPredicates.pl) and
combine the remaining information. Because we carry out the combi-
nation using unionSets/3, we ensure that the output clause NewClause
is in set form.

Well, that’s the propositional resolution prover. It’s time to start
playing with it. Like the tableau prover, this can also be tried out on
the test suite that you will find in the file propTestSuite.pl. To run
the test suite, simply load the file propResolution.pl and enter the
command rproveTestSuite.

Exercise 4.5.5 Try the prover out on some simple examples. Make sure you
understand what is happening at each step. A nice way to do this is to add
the following code as a new first clause for the predicate refute/1:

refute(C) :- nl,write(C),nl,fail.

Because this new clause always fails, it does not effect the correctness of the
predicate. However, before it fails it will write out the current clause set,
enabling you to follow the prover’s progress easily.

Exercise 4.5.6 Try to find examples of theorems which the resolution
prover can’t handle, or can’t handle fast. That is, try to find propositional
formulas which you know to be valid but which the resolution prover either
won’t halt on, or takes a long time to halt. (The last two formulas in the
test suite are like this, but try to find your own examples before looking at
these.)

4.6 Theoretical Remarks

We conclude our discussion of propositional inference with some the-
oretical remarks. First, we shall introduce three concepts that every
computational semanticist should have at least a nodding acquaintance
with: soundness, completeness, and decidability. Second, we shall link
these concepts to the consistency and informativity checking tasks de-
fined in Chapter 1. Finally, we make some remarks on the computa-
tional complexity of propositional theorem proving.

Soundness

Both the tableau system and the resolution system discussed in this
chapter are sound proof systems for propositional logic. What does
this mean?
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Programs for propositional resolution

propResolution.pl

The file that contains all the predicates for the implementation
of our resolution-based theorem prover.

cnf.pl

File with the definitions for translating to nnf, cnf, and set cnf.

propTestsuite.pl

Testsuite with problems to test both propositional theorem
provers.

comsemPredicates.pl

Contains some auxiliary predicates for list processing.

As we remarked at the start of the chapter, although syntactic proof
methods only use syntactic information, they have to be justifiable in
semantic terms. That is, when someone proposes a new proof method,
we need guarantees that the proposal is semantically sensible.

First and foremost, a proof system must be sound. Soundness is
essentially a ‘no garbage’ condition: if the proof system says some for-
mula is provable, then that formula should be valid. In a nutshell, sound
proof methods are faithful to the semantic concept of validity.

Our tableau system is sound. That is, for any propositional formula
φ we have that

if `t φ then |= φ.

So tableau proofs will never lead us astray—and this shouldn’t really
come as a surprise. After all, we developed our tableau expansion rules
by thinking in overtly semantic terms. For example, we asked “How do
we go about making a conjunction true?” and gave the (obviously sen-
sible) answer “By making both conjuncts true”, and it is clear that all
our tableau expansion rules are semantically sensible. Now, the tableau
method is a refutation method: to prove φ we form Fφ and apply the
appropriate tableau rules. If all branches of this tableau turn out to be
closed (that is, if each branch ends up containing a pair of signed for-
mulas of the form Tψ and Fψ) then there can be no way to falsify the
initial formula: for otherwise (using the fact that the tableau rules are
semantically sensible) it would follow that there were models in which
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some formula ψ was both true and false, which is impossible. It follows
that the original formula φ must indeed be a validity.

Our resolution system is also sound. That is, for any propositional
formula φ we have that

if `r φ then |= φ.

We’ve pretty much proved this already. Resolution is a refutation
method, so to prove φ we convert ¬φ to set CNF and repeatedly apply
the binary resolution rule. Now, as we discussed at the end of Sec-
tion 4.4, both the conversion to set CNF and applications of the binary
resolution rule preserve satisfiability in a model. Hence, if we succeed
in deriving the empty clause from ¬φ, it follows that ¬φ cannot have
a model, from which it follows that φ must indeed be a validity.

Completeness

What about completeness? This is a more interesting demand: a com-
plete proof system is one which is capable of proving all valid formulas.
That is, if φ is any valid formula whatsoever, then it must be possible
to give a proof of φ.

Our tableau system is complete. That is, for any propositional for-
mula φ we have that

if |= φ then `t φ.

This means that no propositional validity lies beyond the reach of the
tableau proof method: if a formula φ is valid, then by forming the
initial tableau Fφ and applying tableau rules it is possible to construct
a closed tableau. Incidentally, it is easy to give examples of tableau
systems that are sound but not complete—simply throw away some of
the expansion rules! For example, if we discard the rule F¬, we still
have a sound tableau system, but we don’t have enough power left to
prove all propositional validities, as we can no longer have the rule we
need for coping with any negated formulas that we need to falsify. Note
that because the tableau method is both sound and complete we have
that:

`t φ iff |= φ.

That is, because our tableau system is both sound and complete there
is a perfect match between the syntactic concept of tableau-provability
and the semantic concept of propositional validity.

Our resolution system is also complete. That is, for any propositional
formula φ we have that

if |= φ then `r φ.

This means that no propositional validity lies beyond the reach of the
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resolution proof method: if a formula φ is valid, then by converting it
to set CNF and applying binary resolution it is possible to generate
the empty clause. It is easy to give an example of a resolution system
that is sound but not complete—simply change the method described
in the text so that we only convert into ordinary CNF, not set CNF.
As we saw in Section 4.4, if we do this we can’t prove all validities
(for example, we can’t prove (p ∨ p) → (p ∧ p)). Note that because the
resolution method is both sound and complete we have that:

`r φ iff |= φ.

That is, as with the tableau method, there is a perfect match between
a syntactic concept (this time, resolution-provability) and the semantic
concept of propositional validity.

It is not particularly difficult to prove the completeness of either the
tableau or resolution systems we have discussed. There are many clear
and instructive completeness proofs in the literature, and we encourage
mathematically inclined readers to consult the references cited in the
Notes for further information.

Decidability

Soundness and completeness are properties of proof systems—we talked
of the soundness and completeness of our tableau and resolution sys-
tem. In a sense, decidability is a more abstract property, for it is not
a property of any particular proof system, rather it is a property of
the set of valid formulas. Here’s the key question: is it possible, at
least in principle (that is, ignoring practical constraints on the amount
of memory and processing time available) to devise an algorithm that
will take a propositional formula as input, and halt after a finite num-
ber of steps, and correctly tell us whether the input formula is valid or
not? If it is possible to devise such an algorithm, then propositional va-
lidity is decidable. If it is not possible to devise such an algorithm, then
propositional validity is undecidable. (Actually, we are usually more
easy going with our terminology, and talk about propositional logic
being decidable—but when we say things like this we mean that the
question of determining whether an arbitrary formula of propositional
logic is valid is algorithmically solvable.)

Well then—is propositional validity decidable? Yes, for it is not hard
to see that both the tableau and the resolution methods discussed in
the text are algorithms for determining the validity of propositional
formulas. Now, as is clear from our discussions of soundness and com-
pleteness, both the tableau and the resolution methods are capable of
delivering correct verdicts about validity (after all, soundness plus com-
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pleteness basically amounts to an ironclad guarantee of correctness). So,
to establish that they are algorithms in the full sense of the word, it
only remains to show that both methods halt with their verdict after a
finite number of steps, no matter what formula we give them as input.
Do they?

Well, it is not hard to see that the propositional tableau method
is (at least in principle) guaranteed to halt on all possible inputs. To
see why, note that every tableau expansion rule takes a signed formula
and returns a finite number of signed formulas (in fact, no rule re-
turns more than four signed formula). Moreover, crucially, each of the
formulas returned contains fewer connectives than the input formula.
Thus, as we never have to apply a rule to the same formula twice, after
every expansion the collection of unexpanded formulas remains finite,
and moreover, any new unexpanded formulas we obtain as a result of
rule applications are simpler: they contain fewer connectives. Thus—
no matter which sequence of expansions we choose to make—we will
achieve rule-saturation after a finite number of steps, for eventually we
will produce output containing no connectives at all. Making this ar-
gument fully precise is not difficult and Exercise 4.6.2 asks the reader
to spell out the details. The upshot is this: the propositional tableau
method is (in principle) guaranteed to halt on any input and (by sound-
ness and completeness) guaranteed to deliver a correct verdict on the
validity or non-validity of the input formula. Hence the tableau method
is an algorithm for deciding propositional validity.

The propositional resolution method is also (at least, in principle)
guaranteed to halt on all possible inputs. To see why, first note that
conversion to CNF is a well-defined process that is guaranteed to ter-
minate after a finite number of steps. Furthermore, we cannot go on
applying the binary resolution rule forever. Why not? Essentially be-
cause the rule manipulates sets. We start with some fixed set of literals,
and the binary resolution rule does not produce new symbols, it simply
rearranges the symbols we started with into new clauses. The worst
that can happen is that the process leads to some huge clauses—but
it can’t build any clause containing more than the number of literals
with which we started. Nor can the resolution rule build an infinite
number of clauses: as we work with sets of clauses, no repetition is
allowed. So eventually the propositional resolution method must halt
(we ask the reader to flesh out this argument sketch in Exercise 4.6.3).
The upshot is this: the propositional resolution method is (in principle)
guaranteed to halt on any input and (by soundness and completeness)
guaranteed to deliver a correct verdict on the validity or non-validity of
the input formula. Hence resolution is another algorithm for deciding
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propositional validity.
Two comments. First, as we remarked at the beginning of the chap-

ter, there is another well known algorithm for deciding propositional
logic: the truth table method is a direct (though often cumbersome)
way of determining whether a propositional formula is valid or not.
Second, note that we hedged our claim that the tableau and resolu-
tion methods halted with the words “in principle”. As we shall shortly
see, while both methods do indeed terminate “in principle”, what hap-
pens in practice is often another matter. But before discussing this, let
us link the concepts we have been discussing to the consistency and
informativity checking tasks.

Consistency and Informativity Checking

We now know that propositional logic is decidable, and that both the
tableau and resolution methods are sound and complete for proposi-
tional validity. What are the ramifications of this for the consistency
and informativity checking tasks? In essence this: it tells us that theo-
rem proving constitutes (in principle) a complete computational solu-
tion to these tasks for propositional logic.

This should be fairly clear. When we say that a propositional formula
ψ is uninformative with respect to propositional formulas φ1, . . . , φn,
we mean that

φ1, . . . , φn |= ψ,

and when we say that ψ is inconsistent with respect to φ1, . . . , φn we
mean that

φ1, . . . , φn |= ¬ψ.
Both tasks can be reformulated (by appealing to the Semantic Deduc-
tion Theorem) in terms of the validity of single formulas: ψ is uninfor-
mative with respect to φ1, . . . , φn means that φ1∧· · ·∧φn → ψ is valid,
and saying that ψ is inconsistent with respect to φ1, . . . , φn means that
φ1 ∧ · · · ∧ φn → ¬ψ is valid.

But then to solve either task computationally, all we need is a the-
orem prover for propositional logic. For assume we choose a semanti-
cally correct theorem prover (that is, one that embodies a sound and
complete proof method) and assume the theorem prover has been cor-
rectly implemented (and in particular, that in principle it terminates
on all input). Then, as testing for informativity or consistency simply
amounts to testing the validity of certain formulas, the theorem prover
is a computational solution to both problems.

Now, this observation is not all that interesting in its own right, for
it’s clear that propositional logic is not enough for natural language
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semantics. Rather, we mention it because of the sharp contrast with
what we shall learn in the following chapter: in the setting of full first-
order logic, theorem proving does not give us a full solution to the
consistency and informativity checking tasks. As we shall see, it is pos-
sible to extend both the tableau and resolution provers to (sound and
complete) systems for first-order logic, but while both provers will be
correct, they won’t offer a full computational solution to the consis-
tency and informativity checking tasks. Why not? Because first-order
logic is undecidable, so neither prover (and indeed, no prover at all, no
matter how good) will terminate on all input. This is a fundamental
fact of logical life, and we’ll have to learn to live with it.

Computational Complexity

Is the tableau method an efficient way of determining propositional
validity? Is the resolution method? The honest answer is this: nobody
knows for sure whether there is any efficient way of performing propo-
sitional inference, and the general consensus is that methods that per-
form well on all input are unlikely to exist. To put it another way, it
is widely believed that the task of determining propositional validity,
though decidable, is intrinsically (extremely) difficult.

If you are new to proof theory and theorem proving it may be hard
to believe that determining propositional validity is really so hard. For
a start, it is easy to find formulas which show that tableau or resolution
rules can be a lot better than blindly filling out a complete truth table;
for example, the truth table for

(q → (r ∨ (p ∧ ¬t→ ¬¬s))) ∨ ¬(q → (r ∨ (p ∧ ¬t→ ¬¬s))).
has 32 rows, whereas the tableau method gets this example right in
a single step. And it is not hard to devise simple heuristics for con-
structing more compact tableau and resolution proofs. For example,
in tableau proofs it is a good idea to apply as many conjunctive ex-
pansion rules as possible before applying disjunctive expansion rules,
and in resolution proofs it can be useful to jettison redundant clauses
(recall Exercises 4.4.6 and 4.4.7). Such considerations may mislead you
into thinking that determining propositional validity really isn’t all that
demanding.

It is important that you lose this impression as swiftly as possible:
it is illusory. There are some formulas for which it is extremely hard
to prove validity. A case in point are the formulas that describe the
pigeon hole principle. Stated informally, this principle tells us that if
you have fewer pigeon holes than pigeons, and you put every pigeon in
a pigeon hole, then there must be at least one pigeon hole with more
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than one pigeon. (In more mathematical language, it tells us that if we
have a function f from a set X containing n + 1 elements to a set Y
containing n elements, then there must exists distinct elements x and
x′ of X such that f(x) = f(x′).) Obvious though this principle is, our
theorem provers find it extremely hard to prove.

Our propositional test suite contains three pigeon hole principle for-
mulas: the formula for three pigeons and two holes, the formula for four
pigeons and three holes, and the formula for five pigeons and four holes.
Both the tableau and resolution provers successfully prove the formula
for three pigeons and two holes—but if you add the extra lines suggested
above for printing out the tableau and clause sets that the provers gen-
erate in the course of proofs (recall Exercises 4.3.1 and 4.5.5), then you
are in for a shock: the tableau generated is very large, as is the clause
set that the resolution prover needs to generate before it finds an empty
clause. If we try out the four pigeons and three holes problem, neither
prover succeeds: the tableau prover simply does not terminate (at least,
we’ve never had the patience to wait for it to terminate) and the res-
olution prover goes to sleep for a long time and then reports a stack
overflow. And as for five pigeons and four holes. . .

Now, this is partly due to the inefficiency of our implementations.
Both provers were written to illustrate basic principles of theorem prov-
ing and neither can lay the slightest claim to sophistication. But still,
even if we were working with the most sophisticated theorem prover
available, eventually it would fail. Perhaps all we’d need to do is work
with a formula for more pigeons and pigeon holes, or perhaps we’d need
to try formulas from another hard class (and plenty of hard classes of
formulas are known) but every propositional theorem prover will even-
tually be killed by some input.

Why is that? Because determining propositional validity is the clas-
sic co-NP complete problem. (The problem of determining the satisfi-
ability of a propositional formula—indeed, even of a propositional for-
mula in CNF—is the classic example of an NP-complete problem. Deter-
mining propositional validity is what complexity theorists call the com-
plementary problem to determining propositional satisfiability, hence
the terminology co-NP complete.) Now, co-NP complete problems are
decidable, but it is widely believed that no matter what method we use,
on some input they will require at least 2n steps to solve, where n is the
number of symbols in the input. This means we are facing a combina-
torial explosion, for 2n can be astronomical in size even for small values
of n. Both the resolution and the tableau method have been shown to
require this many steps on some input. And most complexity theorists
believe that this is not an accident: it is standardly conjectured that
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there is no algorithm for determining propositional validity that runs
efficiently (that is, in polynomial time) on all input, though nobody
has succeeded in proving this.

Exercise 4.6.1 Is it true that for all propositional formulas φ we have that
`r φ if and only if `t φ? Explain.

Exercise 4.6.2 Spell out in detail the argument sketched in the text that
the propositional tableau method must terminate on all input.

Exercise 4.6.3 Spell out in detail the argument sketched in the text that
the propositional resolution method must terminate on all input.

Notes

Proof theory is a rich and fascinating subject. The reader can gain a
good overview of various types of proof systems (such as natural de-
duction systems, sequent calculi, axiomatic systems, tableau systems,
and resolution) and how they relate to each other, by consulting Sund-
holm (1983). Another useful, more computationally oriented, overview
of proof theory is Gallier (1986).

For tableau systems, the classic source is Smullyan (1995); our dis-
cussion of signed tableau is based on Smullyan’s treatment. A good
treatment of unsigned tableau can be found in Bell and Machover
(1977); the reader interested in finding out more about the underly-
ing technicalities (including how to prove that the propositional tableau
method is complete) will find all that is needed in these two books. Our
implementation of propositional tableau was heavily influenced by the
implementation of unsigned tableau given in Fitting (1996). The reader
will find it instructive to compare the two implementations (apart from
anything else, it’s a nice way of finding out about unsigned tableau).

Our discussion of propositional resolution was loosely based on the
presentation in Leitsch (1997). We attempted to keep our discussion
informal and example driven—Leitsch’s account, on the other hand,
is extremely precise, and the reader who wants a solid introduction to
resolution should look at this book. This is also a good source for finding
out more about reductions to CNF. The algorithm we presented in the
text is not the best, merely the easiest to understand. Leitsch discusses
both this basic algorithm and a cleverer approach that avoids the risk of
exponential blowup. Another interesting introduction to propositional
resolution can be found in Fitting (1996). Fitting presents resolution in
a rather different way: instead of viewing it as a two-step process (the
standard approach) he interleaves the reduction to normal form with
applications of the resolution rule.
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The analysis of the complexity of proof methods is an active field
of research. Perhaps the best starting point is Urquhart (1995). This
contains a good discussion of why the tableau method sometimes leads
to combinatorial explosion. Another interesting (and very readable) pa-
per is D’Agostino (1992), which shows that in certain cases the tableau
method performs worse than the truth table method. In the text we
mentioned that pigeon hole principle problems can be extremely hard;
such formulas were introduced in Haken (1985). For a discussion of NP
complete and co-NP complete problems, see Garey and Johnson (1979)
or Papadimitriou (1994).

There is currently a great deal of interest in propositional theorem
proving, albeit in a disguised form: SAT solving. The SAT problem is
this: given a propositional formula in CNF, does it have a model or
not? An amazing variety of tasks can be encoded as SAT problems (in
essence, because it is an NP-complete problem). That is, it is often
possible to encode an important practical task (about task scheduling,
say) as a formula of propositional logic, and then to solve the problem
by giving the formula to a SAT solver.

Nowadays there are two main types of SAT solvers: complete ones
and incomplete ones. Actually, we’ve already seen a complete SAT
solver: our resolution prover. Recall that to prove a formula φ, we
formed ¬φ, converted it to CNF, and then handed it to our prover.
The task of the resolution component was to check whether the CNF
formula could be satisfied or not—we declared that φ was proved if it
could not . In this way, any complete SAT solver can be regarded as a
theorem prover for propositional logic.

So complete SAT solvers have much in common with ideas we have
already met. But one difference should be mentioned. Current state-
of-the-art complete SAT solvers usually make use of an algorithm, the
DPLL procedure (the Davis, Putnam, Logemann and Loveland proce-
dure), that is rather different from the resolution method given in the
text. The DPLL procedure revolves around using “unit resolution”,
that is, resolution between an atom and a disjunctive clause; it was
first defined in Davis et al. (1962). Be warned that the DPLL proce-
dure is sometimes referred to as the Davis Putnam algorithm, but in
fact the original Davis Putnam algorithm, defined in Davis and Putnam
(1960), is quite different.

Incomplete SAT solvers, by way of contrast, make an initial guess
of the truth values of the atomic formulas, and then use simple sta-
tistical techniques to refine that guess until a satisfying assignment is
found (see, for example, Gu (1992) and Selman et al. (1992)). They
are not complete because they are not systematic, and cannot report
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unsatisfiability (if the formula is unsatisfiable they may not halt, even
though propositional logic is decidable). The advantage of incomplete
SAT solvers is that they can handle formulas containing an extremely
large number of propositional symbols—and if the formula is satisfiable,
they will probably be able to demonstrate this.

We mention SAT solvers here for two reasons. First, it is our belief
that they are likely to play a useful role in computational semantics,
just as they have in other domains. Secondly, in the following chapter
we shall make use of a relatively new technology called model build-
ing. Some first-order model builders work by converting a first-order
formula to a propositional one (this can be done when working with
finite models) and then making use of a SAT solver. For a wide-ranging
discussion of the SAT problem, see Cook and Mitchell (1997).

Finally, although it takes us far from the concerns of the present
book, it is worth noting that proof theory arguably has deeper con-
nections with natural language semantics than our discussion in this
chapter might suggest. There is an interesting philosophical tradition
which claims that meaning shouldn’t be explained in terms of truth
conditions, but in terms of assertability conditions. (Roughly speaking,
on this view the meaning of an utterance is the reason we have for
holding it, not the situations in which it is true.) Semanticists in this
tradition tend to regard proofs as the primary semantic objects. At first
sight this may appear to be a rather strange view, but it has a lot to
recommend it. A good introduction to this line of thought is Sundholm
(1986). Moreover, as Ranta (1994) demonstrates, the approach is of
relevance to computational semantics.
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First-Order Inference

In this chapter we continue our discussion of inference, but we move
from the (relatively) simple setting of propositional logic to full first-
order logic. This step is far from trivial. For a start, the consistency and
informativity checking tasks for first-order logic are undecidable, thus
we are tackling problems for which full computational solutions do not
exist. Moreover, we will swiftly come face-to-face with a tough practi-
cal issue. As we shall see, it is rather easy to extend our propositional
tableau system to a (sound and complete) proof system for first-order
logic. Unfortunately, while this system is conceptually simple and ele-
gant, it is a computational nightmare. This difficulty (unsurprisingly)
is directly related to the treatment of quantifiers, and resolving this
problem will lead us to the concept of unification, the cornerstone of
automated reasoning for first-order logic. Unification is the key to a
computationally realistic treatment of the quantifiers, and with its help
we will convert our propositional tableau and resolution provers into
full-fledged provers for first-order logic.

Those are the topics we discuss in the first part of the chapter, and
the reader who works through this material will gain a firm grasp of the
basic issues involved in implementing first-order tableau and resolution
systems and will also (we hope) develop a healthy respect for the art of
first-order theorem proving. In the second part of the chapter we go on
to show that this respect is not misplaced. First, we show that neither of
our theorem provers are serious inference tools—bluntly, both are toys.
Second, we show that the issue of undecidability leads to difficulties
relevant to the practice of computational semantics. Theorem proving
alone is not enough to give us the kind of grip we would like to have on
the consistency and informativity checking tasks. What are we to do?

We make two moves, one conceptual, the other practical. On the
conceptual level, we explain why it is necessary to make a distinction

203
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between negative and positive checks for consistency and informativ-
ity checking. On the practical level, we show how sophisticated off-
the-shelf theorem provers can be used to provide negative checks for
consistency and informativity, and how the relatively new technology
of model builders can be used to provide (partial) positive checks for
consistency and informativity. That is, we abandon the do-it-yourself
approach to automated reasoning. Instead, we show the reader how the
powerful tools developed by the automated reasoning community over
the past 40 years can be integrated into our architecture for computa-
tional semantics.

We have a lot of ground to cover. Let’s get started.

5.1 A First-Order Tableau System

We can extend our propositional tableau system to a system for first-
order logic by adding four new tableau rules. Conceptually, the exten-
sion is very simple. Our new tableau rules will allow us to get rid of
quantifiers by substituting suitable terms for bound variables. In effect,
they let us reduce first-order formulas to propositional ones.

What kinds of rules enable us to do this? Let’s consider two exam-
ples. Suppose a tableau contains the signed formula T∀xkiller(x), and
suppose we are working with a first-order language containing the con-
stants jules and butch and a 1-place function symbol father. Then
it is legitimate to extend the tableau by adding on any of the following
signed formulas: Tkiller(jules), Tkiller(butch), and

Tkiller(father(father(father(jules)))).

(After all, if everyone is a killer, every term picks out a killer.) More
generally, given any universal formula prefixed by the sign T , we are
free to take a copy of it, throw away the universal quantifier on the
copy, substitute any term for the newly freed variable in the matrix,
prefix the new formula by T , and extend the tableau with the result.

Analogous tableau extensions are legitimate when we are told that
an existential sentence is false. For example, suppose a tableau contains
F∃xshoot(jules,x). Then we can deduce that F shoot(jules,butch),
that F shoot(jules,father(jules)), and so on. (After all, if it’s false
that Jules shoots someone, then it’s false that Jules shoots any person
we care to name.)

Such examples lead us to formulate the following two tableau rules,
T∀ and F∃:

T∀xφ F∃xφ
Tφ(τ) Fφ(τ)
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Here φ(τ) denotes the result of replacing the variable bound by the
quantifier by some closed term τ . (Recall that a closed term is a term
that does not contain any variables.) We call these two rules universal
rules.

These rules clearly trade on the semantic intuitions underlying the
tableau method. Note, however, that they differ from the propositional
tableau rules in two important respects. First, each rule licenses as
many tableau extensions as there are closed terms in the language.
Second, in general we will have to apply a universal rule more than once
to a particular occurrence of a signed formula. Here’s a simple example.
We shall give a tableau proof of ∀xdie(x) → die(mia) ∧ die(zed).

1 F (∀xdie(x) → die(mia) ∧ die(zed))
2 T∀xdie(x) 1, F→

3 F (die(mia) ∧ die(zed)) 1, F→

4 Tdie(mia) 2, T∀
5 Tdie(zed) 2, T∀

6 Fdie(mia) 3, F∧ 7 Fdie(zed) 3, F∧

Note the way we had to apply T∀ twice to line 2: once to get
Tdie(mia), and once to get Tdie(zed). Thus we have lost one of the
pleasant properties of propositional tableaus: it is no longer true that
we are through with an occurrence of a signed formula once we’ve ap-
plied a rule to it.

What sort of tableau rules are needed to deal with signed formulas
of the form T∃xφ or F∀xφ? This is a more subtle matter. Suppose a
tableau contains the signed formula T∃xkiller(x). It is not legitimate
on the basis of this information to deduce that Tkiller(jules), or
that Tkiller(butch), or indeed to deduce that Tkiller(closed-term)
for any closed term of the language we are working with. Someone
is a killer—but we don’t know who. So how are we to eliminate the
quantifier?

Actually, the solution is straightforward: we invent a brand new
name for the entity whose existence is asserted, and eliminate the
quantifier by substituting this new name. Such brand new names are
called parameters, and by using parameters we can deal with true ex-
istential statements, and false universal ones too. For example, if a
tableau contains T∃xkiller(x), we give this killer (whoever he or she
is) a new name (that is, we choose a new parameter, say c) and ex-
tend the tableau by asserting Tkiller(c). Similarly, given the signed
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formula F∀xreligious(x), we christen the unbeliever (whoever he or
she is) with a new name (say c8) and extend the tableau by asserting
Freligious(c8).

Let’s make these ideas precise. Suppose we are working in a first-
order language over some vocabulary V. Let PAR be a (countably infi-
nite) set of new constant symbols, that is, constant symbols that don’t
belong to V. We’ll call these new constant symbols parameters, and
reserve the symbols c, c1, c2, . . . , and so on, for them. From now on,
when we want to do tableau proofs, we won’t work in our original lan-
guage (that is, the language built over the vocabulary V). Rather we’ll
work in the first-order language whose vocabulary consists of all the
original vocabulary V, and in addition, all the new constant symbols
in PAR.

Given these ideas, it’s easy to define the rules F∀ and T∃:

F∀xφ T∃xφ
Fφ(c) Tφ(c)

Here φ(c) denotes the result of substituting a parameter c that we
haven’t used so far on that branch of the tableau, for the newly freed
variable in the matrix. We call these two rules existential rules.

Two points about these rules must be grasped. First, when we use
the existential rules, it is absolutely vital that we substitute param-
eters that haven’t been used so far (at least, on that branch of the
tableau). To see why, suppose a tableau contains both T∃xkiller(x)
and T∃xreligious(x) on one of its branches. Suppose we first apply
T∃ to T∃xkiller(x) using the parameter c5 (which, let us suppose,
hasn’t been previously used) to name the killer. That is, we extend the
tableau with Tkiller(c5). Now, suppose that at some later stage we
apply T∃ to the occurrence T∃xreligious(x) on that same branch. It
would be outrageous to re-use the parameter c5. If we did this (that is,
if we ‘deduced’ that Treligious(c5)) we would in effect be claiming
that there is a single individual (namely the one named by c5) who is
both a killer and religious. This simply doesn’t follow from the given
information. All we know is that there is at least one killer, and at least
one religious person. They may well be different people, hence we need
to assign each of them a fresh new name. In short, once we’ve used an
existential rule to replace a quantifier by a parameter, that parameter
becomes ‘old’, and cannot later be re-used on the same branch. (As
tableau branches are independent of each other—each records a sepa-
rate attempt to falsify the original formula—it does not matter if the
same parameter is re-used on different branches.)

There is a second important point that the reader should note: the
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definition of the existential rules has consequences for the universal
rules. When carrying out first-order tableau proofs we no longer work
in the original first-order language, but in the original language en-
riched with an infinite collection PAR of new constants. Now, constant
symbols—including parameters—are closed terms, so we should be free
to substitute parameters when we use a universal rule. In fact, it’s cru-
cial that we be able to do this, as the following example will make
clear. We will show that

∃x∀yshoot(x,y) → ∀y∃xshoot(x,y)

is a theorem. (This is a rather pretty example. It’s simple, but puts all
four quantifier rules to work.)

1 F (∃x∀yshoot(x,y) → ∀y∃xshoot(x,y))
2 T∃x∀yshoot(x,y) 1, F→

3 F∀y∃xshoot(x,y) 1, F→

4 T∀yshoot(c1, y) 2, T∃
5 F∃xshoot(x, c2) 3, F∀

6 T shoot(c1, c2) 4, T∀
7 F shoot(c1, c2) 5, F∃

The key point to notice about this proof is the way the existential
and universal rules interact. In particular, note the way we used the
existential rules to introduce the new parameters (c1 in line 4 and c2 in
line 5) and then used the universal rules to make further use of these
symbols. It should be clear from this example that it is vital that the
universal rules have access to the parameters.

Well, that’s our first-order tableau system. Now, our goal is to get
a computational grip on the consistency and informativity checking
tasks for first-order logic. Given that this is our goal, how useful will
this tableau system be to us?

We need to be careful how we answer this. The first (and most
fundamental) point that should be made is that this first-order tableau
system does not give rise to an algorithm for determining which first-
order formulas are valid. An algorithm is a recipe which, when given an
instance of a problem to solve, halts after a finite number of steps with
the correct answer. There is no algorithm at all for determining the
validity of arbitrary first-order formulas. That is, first-order validity
is undecidable. It is certainly possible to implement various kinds of
proof system for first-order logic (for example, tableau and resolution
systems) and we shall do so in this chapter, but no implementation
of any system is guaranteed to terminate on all possible input. It is
worth emphasising that the tableau system just described is (sound
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and) complete. That is, if a formula φ is valid, then it is possible to
construct a (finite) closed tableau that has Fφ as its root node. Thus
the proof system just described is a genuine syntactic analysis of the
semantic concept of first-order validity, and indeed a rather natural
one. However, this analysis does not yield an algorithm for determining
which first-order formulas are valid: if a first-formula that is not valid
is given as input, then in some cases the tableau construction process
never halts.

Fair enough. The tableau system can’t possibly serve as a full solu-
tion to the consistency and informativity checking tasks, for nothing can
do this, so let’s ask a more modest question. Many first-order theorem
provers are useful practical tools. Proof search won’t always terminate,
but these provers work well on a wide range of input formulas, and
can be used as components of larger systems quite satisfactorily. So
the question we should next pose is: how good is the tableau system
just described as a practical basis for automated first-order theorem
proving? This question has a clear answer: it’s terrible. Although our
tableau system is conceptually simple, it’s a computational nightmare.

The problem lies with the universal rules. They offer us a vast menu
of substitutable terms. If T∀xφ belongs to a tableau, then we are free
to extend it by first adding φ(c1) then φ(c2) then φ(c3), . . . , and so on.
(We could have done this in the previous tableau, for example, starting
at line 4.) Most such extensions will be completely pointless. In the
examples given above, it was intuitively clear which substitutions were
sensible; we used our sense of what was relevant to guide our choice
of substitutions. Unfortunately, computers lack our intuitions. If we
want a reasonably practical implementation, we need to find a method
choosing substitutions that doesn’t depend on human insight.

Here’s what we shall do. First, we’ll change the universal rules
slightly: we’ll never substitute closed terms, we’ll always substitute
free variables instead. In a sense, we are not going to make a real
choice of substitutions at all—we are going to use free variables as
‘dummies’ that will enable us to delay making this decision. In this
way, we will gradually build up a whole system of ‘substitution equa-
tions’, a set of constraints on variable values that contain a great deal
of information about the terms in the tableau we are building. Cru-
cially, there is an algorithm for solving such constraint sets, the famous
unification algorithm. We will use unification to look for solutions to
the constraints that lead to branch closure.

That’s an outline of our strategy. An awful lot of detail remains to
be filled in. For a start, blending unification with tableaus is going to
force us to rethink the existential rules, and there are many other details
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that will require careful attention. Nonetheless, unification is the key
to further progress with tableau theorem proving (and as we shall see,
it is utterly fundamental to first-order resolution theorem proving) so
let’s examine this concept in some detail.

5.2 Unification

Unification is the process of carrying out substitutions on two terms
so that they become identical. The reader who has made it this far
will certainly have an informal idea of what substitutions are, and in-
deed, since we are working with Prolog, a good working knowledge of
what unification involves in practice. However Prolog’s default version
of unification is not suitable for theorem proving purposes. Given two
terms, Prolog usually does not make what is known as the occurs check,
rather it just rushes ahead and tries to unify them. (Don’t worry if you
don’t know what the occurs check is; we will explain it later in this
section.) This is fine (and certainly efficient) if the terms are unifiable,
but it can lead to non-terminating computations if they are not. In this
section we shall explain what unification is, and what it means to apply
unification to terms, to formulas, and indeed to entire tableaus. We’ll
then point out that there is an in-built Prolog mechanism that does
exactly what we want.

Suppose we have chosen the first-order language we are going to work
with. Then a substitution is a function that maps the set of variables to
the terms of this language. We use the notation xσ, (rather than σ(x))
to denote the value of x under the substitution σ.

We are most interested in finite substitutions. These are substitutions
which only assign new terms to a finite number of variables; the rest
they leave alone. That is, if σ is a finite substitution, then for all but a
finite number of variables, xσ = x.

The simplest finite substitution is the one which does not assign new
terms to any of the variables. This substitution is called the identity
substitution, and we denote it by {}. We also have a special notation
for other finite substitutions, namely:

{x1/τ1, . . . , xn/τn}.

Here x1, . . . , xn are distinct variables, τ1, . . . , τn are terms, and τi 6= xi

for any i from 1 to n. The notation xi/τi means that the variable xi is
mapped to τi.

As we have defined them, substitutions only act on variables. But
we will need to carry out substitutions on terms, formulas, and indeed,
on entire tableaus. Let’s see how to recursively define these concepts.
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Substitutions on terms. Let σ be a substitution and τ a term.
Then:

1. If τ is a variable x, then τσ = xσ, if this is defined. Otherwise τσ
is undefined.

2. If τ is a constant, then τσ = τ .

3. If τ is f(τ1, . . . , τn), then [f(τ1, . . . , τn)]σ = f(τ1σ, . . . , τnσ).

Note that in the clause for f we used the notation [f(τ1, . . . , τn)]σ for
the application of σ to the complex term; when we apply a substitution
to a complex term, it’s useful to have brackets to indicate precisely
the symbols to which the substitution applies. We shall now extend
substitution to formulas, and will use the square bracket notation here
too. We’ll also need another piece of notation. If σ is a substitution,
then by σx we mean the substitution that is exactly like σ except that
xσx = x (in other words, this substitution does not affect x).

We can now recursively define φσ, the result of applying the substi-
tution σ to the formula φ.

Substitutions on formulas.

1. If R(τ1, . . . , τn) is an atomic formula, then [R(τ1, . . . , τn)]σ =
R(τ1σ, . . . , τnσ). (Here R is an n-place relation symbol.);

2. [¬φ]σ = ¬[φσ];

3. [φ ∧ ψ]σ = [φσ] ∧ [ψσ], [φ ∨ ψ]σ = [φσ] ∨ [ψσ], and
[φ→ ψ]σ = [φσ] → [ψσ];

4. [∀xφ]σ = ∀x[φσx], and [∃xφ]σ = ∃x[φσx].

Finally, we define substitution for entire tableaus:

Substitutions on signed tableaus. If σ is a substitution and T is
a signed tableau, then T σ is the signed tableau obtained by replacing
every signed formula of the form Tφ in T by T [φσ], and every signed
formula of the form Fφ in T by F [φσ].

With these definitions out of the way, let us return to our main task:
understanding unification.

Because substitutions are functions, we can functionally compose
them in the usual way. That is, if σ1 and σ2 are substitutions, then we
can define a new substitution σ1σ2, the composition of σ1 and σ2. For
every variable x, we define x(σ1σ2) to be (xσ1)σ2. That is, σ1σ2 first
carries out the substitution σ1 and then carries out the substitution σ2.

There is one more concept we need to discuss before we can define
unification. Let’s approach it via an example. Suppose we want to make
the terms f(c, y,w) and f(x, y, g(z)) identical (where c is a constant,
w, x, y, and z are variables, f is a 3-place function symbol, and g is
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a 1-place function symbol). Let σ1 be the substitution {x/c,w/g(z)}.
Applying σ1 to these terms has the desired result, for [f(c, y,w)]σ1 =
f(x, y, g(z))σ1 = f(c, y, g(z)).

But there are other ways of making these terms identical. For exam-
ple, let σ2 be the finite substitution {x/c,w/g(z), y/h(u, x)}. Applying
σ2 to either term yields f(c, h(u, x), g(z)). Nonetheless, clearly σ1 is a
more general solution to the problem: σ2 does too much work. For sup-
pose we apply σ1 to some term. Then, if we want to (or need to) we are
always free to later give y the value h(u, x). To do so we need simply
apply the substitution {y/h(u, x)}), and this two-step process gives us
the same effect we would have achieved by directly applying σ2. But of
course, we might not want to take this further step. (Perhaps mapping
y to h(u, x) is incompatible with other substitutions we need to make.)
If we use σ2 to solve the problem, we are over-committing ourselves.

Such considerations motivate the following definition. A substitution
σ1 is said to be more general than a substitution σ2 if and only if there
is some substitution θ such that σ2 = σ1θ. That is, σ1 is more general
than σ2 if we can get the effect of σ2 by first carrying out σ1 and then
making a further substitution θ. Thus, reverting to our motivating
example, {x/c,w/g(z)} is more general than {x/c,w/g(z), y/h(u, x)}
because there is a substitution θ (namely {y/h(u, x)}) such that
{x/c,w/g(z), y/h(u, x)} = {x/c,w/g(z)}θ.

Incidentally, note that under this (standard) definition of ‘more gen-
eral than’, each substitution σ is more general than itself. This is be-
cause we can get the effect of σ by first carrying out σ and then carrying
out the identity substitution {}. Thus the ‘more general than’ relation
is reflexive. It is also transitive. That is, if σ1 is more general than σ2,
and σ2 is more general than σ3, then σ1 is more general that σ3. The
reader may like to try proving this.

We are ready for the key definition.

Unification. Let τ1 and τ2 be terms. A substitution σ is a unifier
for τ1 and τ2 if and only if τ1σ = τ2σ. Terms τ1 and τ2 are said to be
unifiable if and only if they have a unifier. A substitution σ is a most
general unifier (or MGU ) for two terms if and only if it is a unifier for
these terms, and is more general than any other unifier for those terms.

Now we know what unification is—but what is involved in computing
unifiers? Ideally, what we want is an algorithm which will take as input
two terms and determine whether or not they are unifiable. If the terms
are unifiable, it should return their unifier as output. If they are not
unifiable, it should halt and tell us so.

Such algorithms exist. Let’s consider one of the more straightforward
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ones in some detail.
To appreciate what this algorithm does, we really need to think of

terms as trees (in much the same way as we thought of formulas as
trees when we discussed hole semantics in Chapter 3). For example,
consider the term f(h(x), g(y, x,w)). Its analysis tree—that is, the tree
showing how it is built up out of sub-terms—looks like this:

f

h g

x y x w

When are two terms different? For our purposes, the following answer
is the most useful: two terms are different if and only if their analysis
trees contain at least one disagreement pair. What’s a disagreement
pair? Here’s an example.

f f

h g h g

x y x w x y x k

u v

Disagreement Pair

Intuitively, the pair of terms (w, k(u, v)) is a disagreement pair for
these terms because they are distinct terms that occupy ‘correspond-
ing places’ in the two analysis trees. What is meant by ‘corresponding
places’? Simply the nodes that one reaches by following the same se-
quence of transitions from the root in the two trees. For example, if we
follow the transition sequence 〈second daughter, third daughter〉 from
the root of the first tree we arrive at the node labelled w, and if we
follow the same transition sequence in the second tree we arrive at the
node labelled k.

Disagreement pairs make terms different, thus unification algorithms
should try to eliminate disagreement pairs. When are disagreement
pairs eliminable, and how can they be eliminated?

First, suppose that two terms τ1 and τ2 are different because there
is a disagreement pair (d1, d2) such that neither d1 nor d2 is a variable.
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Then there is nothing we can do. No substitution can help us out. The
terms τ1 and τ2 are not unifiable.

Now for the tricky question. Suppose that one of these terms (d1 say)
is a variable. Are the two terms unifiable? The answer is ‘yes’, provided
that the variable d1 does not occur in d2. Think about it. Suppose d1 is
a variable, say x, and that x doesn’t occur in d2. Then we can eliminate
this disagreement pair very easily: we simply need to replace x by d2

(That is, we need simply perform the substitution {x/d2}.) To give a
concrete example, the disagreement pair (w, k(u, v)) shown above is of
this form. We eliminate it by replacing w by k(u,v).

On the other hand, if d1 is a variable (say x) and x does occur in
d2, then unification is impossible. For example, suppose that d2 is f(x).
Then, no matter what value we choose for x, we will never render these
two terms identical—we’ll always have that extra function symbol f to
reckon with.

Let’s make these observations a little more systematic. Suppose we
have found a disagreement pair (d1, d2). We will call this pair a simple
disagreement pair if and only if at least one of the terms d1 or d2

is a variable that does not occur in the other. (It could happen, of
course, that both d1 and d2 are variables that don’t occur in the other—
for example if d1 = x and d2 = y. That’s fine. As long as there’s
at least one we’re happy.) Simple disagreement pairs are the ones we
can repair. We do so by carrying out what we shall call the relevant
repair. If d1 is a variable that does not occur in d2, then the relevant
repair is the substitution {d1/d2}. If d2 is a variable that does not
occur in d1, then the relevant repair is the substitution {d2/d1}. If
both d1 and d2 are variables that don’t occur in the other, then there
are two substitutions that will repair the problem, namely {d1/d2} and
{d2/d1}. We’ll arbitrarily stipulate that in such cases the relevant repair
is {d1/d2}.

On the other hand, if the disagreement pair we have found is not
simple, there’s nothing we can do. Either we have that neither d1 nor
d2 is a variable, or one of them is a variable that occurs in the other
term.

We now know which disagreement pairs are eliminable, and how to
carry out the elimination. And this means we are only one small step
away from an algorithm for solving the unification problem. To unify
two terms, simply try and eliminate all the disagreement pairs! This
idea immediately suggests the following non-deterministic algorithm:

input terms τ1 and τ2

let σ := {}
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while τ1σ 6= τ2σ

choose a disagreement pair (d1, d2) for τ1σ, τ2σ

if (d1, d2) is not simple then

write τ1 and τ2 are not unifiable and HALT

else

let σ := σ ∪ ρ, where ρ is the relevant repair

endif

endwhile

This is a genuine computational solution of the unification problem.
No matter which two terms it is given as input, it will halt after finitely
many steps. When it halts, it will either have told us that the terms
are not unifiable (and if it says this, it’s right!) or it will have found out
how to build the MGU of the two terms. These claims are not obvious;
they require proof. The reader interested in finding out more should
consult the references cited in the Notes.

In fact, the algorithm has one additional property: the MGUs it
produces are idempotent . That is, if σ is an MGU produced by this
algorithm, then σσ = σ. Why on earth is such an abstract looking
property interesting? The answer is: idempotent MGUs provide us with
an easy way of solving the simultaneous unification problem, and this
is the problem that will be important when working with tableaus.

We will be using unification to try and close tableau branches.
That is, we will look for branches containing pairs of atomic formulas
T (R(τ1, . . . , τn)) and F (R(τ ′1, . . . , τ

′
n)). If we can find a substitution σ

that makes τ1 identical to τ ′1, τ2 identical to τ ′2, . . . , τn identical to
τ ′n, then by applying σ we obtain a branch containing contradictory
formulas, that is, a closed branch. Thus we need to solve the problem
of finding a single substitution that makes n pairs of terms identical;
this is called the simultaneous unification problem.

Now, this problem may look harder than the ordinary unification
problem, but actually it’s not. It can be solved as follows. To find a
substitution that identifies n pairs of terms, first find an idempotent
MGU σ1 for τ1 and τ ′1. We can do this using the above algorithm.
Next, find an idempotent MGU σ2 for τ2σ1 and τ ′2σ1. Again we can
do this using the above algorithm. Next, find an idempotent MGU σ3

for τ3σ1σ2 and τ ′3σ1σ2 . . . . In fact, all we need to do is keep ‘chaining
together’ the solutions to each individual pair. The substitution σ =
σ1σ2 . . . σn−1σn that is obtained in this way is a simultaneous MGU
for the n pairs of terms. For this ‘chaining together’ method to work,
the substitutions constructed at each step must be idempotent, and
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as the above algorithm yields idempotent MGUs, it really does deliver
everything we shall need for tableau theorem proving.

The basic concepts should now be clear, so let’s turn to a more prac-
tical issue: how can we use Prolog to unify terms? Now, it is important
to realise that we cannot simply use the Prolog’s default unification
mechanism (that is, the =/2 predicate). Usually Prolog does not bother
making the occurs check . That is, given a disagreement pair (d1, d2),
one of which is a variable, Prolog does not standardly check whether
this variable occurs in the other term, but will go straight ahead and
attempt to carry out what it thinks the required repair is. This can
lead it to attempt to unify terms that aren’t unifiable, which can lead
to stack overflows and other undesirable behaviour.

Now, we are interested in using unification as part of a first-order
theorem prover. We really need to know whether or not two terms are
unifiable, and we certainly don’t want Prolog to mess things up with
its “Hey, just go for it!” behaviour. Fortunately, any standard Prolog
offers the following alternative:

unify_with_occurs_check/2.

As its name suggests, this predicate carries out the full version of term
unification we discussed above, including the occurs check. When we
implement out first-order tableau and resolution systems, we shall per-
form all the unifications we require with the help of this predicate.

Exercise 5.2.1 Try unifying f(X) and X with the version of Prolog you’re
using. First use =/2 and then use unify_with_occurs_check/2. (If your Pro-
log does not support the unify_with_occurs_check/2 predicate, do the next
exercise.)

Exercise 5.2.2 Although unify_with_occurs_check/2 gives us a standard
solution to handling the occurs check, it is an interesting exercise to try writ-
ing your own version. Moreover, some Prolog implementations don’t support
it. Try defining your own version of this important predicate (if you get stuck,
the Notes at the end of the chapter tell you where you can find answers).

5.3 Free-Variable Tableaus

Let’s see how we can use unification to define a more computationally
realistic signed tableau proof system.

As we discussed earlier, the problem with our first attempt at a
first-order tableau system lay with the universal rules. By substituting
free variables, and gradually building up a system of constraints which
we will solve using unification, we hope to bypass the need for human
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insight. Let’s work through this idea in detail, and see where it leads.
As a first step, here are our new universal rules:

T∀xφ F∃xφ
Tφ(v) Fφ(v)

Here φ(v) denotes the result of replacing all instances of the variable
that the quantifier bound by a new variable v that does not occur
bound anywhere in the tableau. (This restriction is simply to prevent
any ‘accidental bindings’ taking place. In fact, every time we apply
these rules, we’re going to substitute a previously unused variable.)

So far so good—but a moment’s thought will convince the reader
that our new strategy could lead to serious problems with the existential
rules. Recall that the basic idea behind the existential rules was to
invent a brand new name for the entity asserted to exist (we called these
new names ‘parameters’) and to eliminate the quantifier by substituting
these parameters. Unification threatens to undercut this strategy: the
substitutions it makes may undo all our careful choices of new names.

Here’s a concrete example. Consider the formula

∃y(¬R(x, y) ∧R(x, x)).

This formula is satisfiable (it can be satisfied in a two-element model
in which one point is not R-related to the other element but is R-related
to itself). Now, if we eliminate the existential quantifier using our new
free-variable tableau rule we get

¬R(x,w) ∧R(x, x).

And now we have a problem. The tableau rule for ∧ allows us to break
this formula down into ¬R(x,w) and R(x, x), so both these formulas
will be sitting on the same tableau branch. If we then apply unification
we will get ¬R(x, x) and R(x, x), and of course the branch will close.
That is, we started with a satisfiable formula, and our new method has
turned it into something unsatisfiable!

In short, we seem to be in a dilemma. The use of free variables in
the universal rules is essentially a delaying device; we don’t want to
make a real choice of what to substitute, we want unification to sort it
all out for us. But if we delay in this way, how can we guarantee that
unification will respect the ‘new names’ condition that is crucial to the
existential rules?

A very clever—and very simple—idea allows us a way round this
problem. We are going to substitute structured terms when we use the
existential rules; the term structure itself will ensure that unification
cannot spoil anything. To be more precise, we are to use what are known
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as Skolem terms. Without further ado, here are the new existential
rules:

F∀xφ T∃xφ

Fφ(s(x1, . . . , xn)) Tφ(s(x1, . . . , xn))

Here φ(s(x1, . . . , xn)) denotes the result of replacing the variable bound
by the quantifier by s(x1, . . . , xn). In the substituted expression, s is a
new Skolem function symbol , and x1, . . . , xn are all the free variables
in φ distinct from x. If there are no free variables in φ (apart from x)
then s is a new Skolem constant . What does this mean, and why does
it work?

The basic idea is a straightforward generalization of what we did
earlier with parameters. Once again, instead of working with the first-
order language built over the original vocabulary V, we are going to
choose a set of new symbols SKO consisting of a countably infinite
set of Skolem constants (these are essentially the same as our earlier
parameters) and for every natural number n a countably infinite set of
Skolem function symbols of arity n. When carrying out tableau proofs,
we won’t work in the original first-order language, but in the first-order
language whose vocabulary consists of all the original vocabulary V plus
all the new symbols in SKO.

The symbols in SKO enable us to manufacture new names. Crucially,
however, because we now have Skolem function symbols at our disposal,
we can do something that we couldn’t do with parameters: we can ‘build
in newness’ in a way that will survive the unification operation. Look
at the term the existential rules demands we substitute: s(x1, . . . , xn),
where x1, . . . , xn are all the free variables in φ distinct from x. Now
recall our discussion of the occurs check. Quite simply, s(x1, . . . , xn)
cannot unify with any of x1, . . . , xn. Our new ‘Skolem structured’
term really will be new.

Let’s go back to our example. Consider again the formula

∃y(¬R(x, y) ∧R(x, x)).

This time when we eliminate the existential quantifier we get

¬R(x, s(x)) ∧R(x, x).

And now everything is fine. Sure, the tableau rule for ∧ will allow us to
break this formula down into ¬R(x, s(x)) and R(x, x). But as s(x) can-
not unify with x this is unproblematic. We’ll never pull a contradiction
out of this pair of formulas.

So we now have the new quantifier rules we need. Only one task
remains: bringing unification into play.
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We want unification to be the ‘intelligence’ guiding the proof search.
We’re going to use our quantifier rules essentially ‘blindly’: we’re simply
going to build up a set of constraints and hope that unification can do
something useful with them. In particular, we hope that unification
will be able to close branches for us. How could it do this for us? Let’s
consider an example. We shall redo our proof of

∃x∀yshoot(x,y) → ∀y∃xshoot(x,y)

using our new quantifier rules and unification. Here are the first seven
steps of the construction.

1 F (∃x∀yshoot(x,y) → ∀y∃xshoot(x,y))
2 T∃x∀yshoot(x,y) 1, F→

3 F∀y∃xshoot(x,y) 1, F→

4 T∀yshoot(s1, y) 2, T∃
5 F∃xshoot(x, s2) 3, F∀

6 T shoot(s1, v1) 4, T∀
7 F shoot(v2, s2) 5, F∃

The first 5 lines are essentially identical with the previous version, save
that we have used the Skolem constants s1 and s2 (rather than the
parameters c1 and c2) in lines 4 and 5. (Note that we don’t need to
use Skolem functions as neither formula contains free variables.) The
real difference occurs in lines 6 and 7. In both lines we have ‘blindly’
instantiated in new variables, namely v1 and v2. So we don’t (yet) have
closure.

But closure is easy to get. Consider the substitution {v1/s2, v2/s1}.
If we apply this to the tableau (recall that we defined the concept of
applying a substitution to a tableau in the previous section) we get the
following tableau:

1 F (∃x∀yshoot(x,y) → ∀y∃xshoot(x,y))
2 T∃x∀yshoot(x,y) 1, F→

3 F∀y∃xshoot(x,y) 1, F→

4 T∀yshoot(s1, y) 2, T∃
5 F∃xshoot(x, s2) 3, F∀

6 T shoot(s1, s2) 4, T∀
7 F shoot(s1, s2) 5, F∃

This tableau is closed.
This example motivates the addition of the following Atomic MGU

Closure Rule:

Suppose that T is a tableau formed from some initial tableau I, and
that some branch of T contains a pair of atomic formulas of the form



“blackburnbos”
2004/12/13
page 219

i

i

i

i

i

i

i

i

First-Order Inference / 219

Tφ and Fψ. Then T σ, where σ is an MGU of φ and ψ, is also a tableau
formed from the initial tableau I

This rule is rather different from the other rules we’ve seen: it’s not
an extension rule, rather it’s a transformation rule. It tells us that if
we have a tableau formed from an initial set I, and we transform it by
applying a substitution having certain properties, we obtain another
tableau for the same initial set.

The basic idea guiding the choice of transformation should be clear:
we want to apply substitutions that could lead to branch closure. One
point, however, may be puzzling. Obviously we are interested in pairs
of formulas of the form Tφ and Fψ, but why have we restricted our
attention to atomic formulas? The answer is: simplicity . It is possible
to formulate a more general rule, but this would have to be stated
carefully (we would need to avoid ‘accidental capture’ of variables and
checking for accidental capture would be computationally expensive).
By restricting our attention to atomic formulas we avoid these difficul-
ties.

And that’s our free-variable tableau proof system. Frankly, it’s not
nearly as nice as our previous system if one wants to prove things
by hand—playing with Skolem functions swiftly gets unwieldy, and
thinking in terms of unification is cumbersome. But it wasn’t designed
with the needs of humans in mind, it was designed for automation.
And, as we shall now see, for this purpose it is really rather good.

5.4 Implementing Free-Variable Tableaus

We shall now present an implementation of the free-variable signed
tableau proof system. The implementation is an extension of the
propositional tableau implementation—but it can’t be described as
a straightforward extension. While the basic ideas underlying signed
free-variable tableau make it possible to devise practical implementa-
tions, there is more detail to take care of than in the propositional
case. Moreover, the fact remains that first-order logic is undecidable,
so it seems sensible to defuse the (very real) threat of non-terminating
tableau constructions, and this requires a little care.

The following implementation is based on the Fitting (1996) im-
plementation of unsigned free-variable tableaus. Roughly speaking, we
have taken our signed propositional tableau implementation as the
starting point, and extended it to a first-order system by adopting
many of Fitting’s techniques and design choices; see the Notes at the
end of the chapter for further remarks.

Before examining the main body of the code, let’s take a quick look
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at the main supporting routines we shall use. Obviously we need predi-
cates to handle substitution. The workhorse is the substitute/4 predi-
cate (supplied in comsemPredicates.pl). The substitute/4 predicate
takes a term, a variable, and a formula as its first three arguments, and
returns in its fourth argument the result of substituting the term for
each free occurrence of the variable in the formula. With this predi-
cate at our disposal, it is straightforward to define what we mean by
instances of quantified formulas:

instance(t(all(X,F)),Term,t(NewF)):-

substitute(Term,X,F,NewF).

instance(f(some(X,F)),Term,f(NewF)):-

substitute(Term,X,F,NewF).

instance(t(some(X,F)),Term,t(NewF)):-

substitute(Term,X,F,NewF).

instance(f(all(X,F)),Term,f(NewF)):-

substitute(Term,X,F,NewF).

To handle the existential rule correctly, we need to be able to gen-
erate new Skolem function symbols on demand. The following predicate
does this. (The predicates it calls are defined in comsemPredicates.pl.)

skolemFunction(VarList,SkolemTerm):-

newFunctionCounter(N),

compose(SkolemTerm,fun,[N|VarList]).

We shall also need to know what free variables a formula contains.
We associate this information explicitly with each formula. The follow-
ing predicate does this.

notatedFormula(n(Free,Formula),Free,Formula).

We are now ready to discuss the main code. As in the proposi-
tional case, the outermost predicate is called closedTableau/2. This
recursively attempts to rule-saturate the input tableau with the aid
of the expand/4 predicate. Moreover, as in the propositional case, the
base clause of closedTableau/2 tests for closure via a predicate called
removeClosedBranches/2.

But there is an important difference. The first-order version of
closedTableau/2 has a second argument, a number called Qdepth

(which can be read as ‘quantification depth’). This number is the max-
imum number of times that we are allowed to apply universal rules
in the course of constructing a tableau. This is the mechanism which
wards off the threat of non-terminating tableau constructions.
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closedTableau([],_Qdepth):- !.

closedTableau(OldTableau,Qdepth):-

expand(OldTableau,Qdepth,TempTableau,NewQdepth), !,

removeClosedBranches(TempTableau,NewTableau),

closedTableau(NewTableau,NewQdepth).

The removeClosedBranches/2 predicate tests for branch closure us-
ing unification and is identical to the one used in the propositional
case. It uses the closedBranch/1 predicate tests for branch closure us-
ing unification. This attempts to find a pair of signed formulas of the
form t(X) and f(X), checks whether they are atomic formulas (using
basicFormula/1, as defined in comsemPredicates.pl), and then uses
the unify with occurs check/2 predicate discussed in the previous
section to test for branch closure.

closedBranch(Branch):-

memberList(n(_,t(X)),Branch),

memberList(n(_,f(Y)),Branch),

basicFormula(X),

basicFormula(Y),

unify_with_occurs_check(X,Y).

Like its propositional cousin, the expand/4 predicate is a high level
organisational predicate which works its way recursively through the
branches of the input tableau, and tries to apply the various kinds of
expansion. Its two extra arguments keep track of the input and output
quantification depths. Quantification depth is unaffected by all expan-
sions save universal expansions. Each universal expansion uses up one
of our predetermined quota of expansions and thus decreases the quan-
tification depth by 1.

In addition, expand/4 performs a more interesting task. Note the
use of appendLists/3 (in the clause handling universal expansions) to
glue the new branch back onto the end of the tableau. Why do this?
Essentially, it’s an attempt to ensure that our predetermined quota
of universal expansions are ‘spread around fairly’. It would be rather
silly to use up our entire quota on a single branch. By using append
to ‘rotate’ the branches on the tableau, we ensure that every branch
receives its fair share of universal expansions.

expand([Branch|Tableau],QD,[NewBranch|Tableau],QD):-

unaryExpansion(Branch,NewBranch).

expand([Branch|Tableau],QD,[NewBranch|Tableau],QD):-

conjunctiveExpansion(Branch,NewBranch).
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expand([Branch|Tableau],QD,[NewBranch|Tableau],QD):-

existentialExpansion(Branch,NewBranch).

expand([Branch|Tableau],OldQD,NewTableau,NewQD):-

universalExpansion(Branch,OldQD,NewBranch,NewQD),

appendLists(Tableau,[NewBranch],NewTableau).

expand([Branch|Tableau],QD,[NewBranch1,NewBranch2|Tableau],QD):-

disjunctiveExpansion(Branch,NewBranch1,NewBranch2).

expand([Branch|Rest],OldQD,[Branch|Newrest],NewQD):-

expand(Rest,OldQD,Newrest,NewQD).

Now for the predicates that actually carry out the expansions. The
expansion predicates for unary, conjunctive, and disjunctive formulas
are essentially the same as in the propositional case. The only difference
is that we have to translate a notated formula into a signed formula
to calculate its components, and then translate the components back
again into notated components.

unaryExpansion(Branch,[NotatedComponent|Temp]) :-

unary(SignedFormula,Component),

notatedFormula(NotatedFormula,Free,SignedFormula),

removeFirst(NotatedFormula,Branch,Temp),

notatedFormula(NotatedComponent,Free,Component).

conjunctiveExpansion(Branch,[NotatedComp1,NotatedComp2|Temp]):-

conjunctive(SignedFormula,Comp1,Comp2),

notatedFormula(NotatedFormula,Free,SignedFormula),

removeFirst(NotatedFormula,Branch,Temp),

notatedFormula(NotatedComp1,Free,Comp1),

notatedFormula(NotatedComp2,Free,Comp2).

disjunctiveExpansion(Branch,[NotComp1|Temp],[NotComp2|Temp]):-

disjunctive(SignedFormula,Comp1,Comp2),

notatedFormula(NotatedFormula,Free,SignedFormula),

removeFirst(NotatedFormula,Branch,Temp),

notatedFormula(NotComp1,Free,Comp1),

notatedFormula(NotComp2,Free,Comp2).

Needless to say, the most interesting predicates are those for the
quantifiers: existentialExpansion/2 and universalExpansion/4.
Note the use of skolemFunction/2 to instantiate a new Skolem term
in existentialExpansion/2. In universalExpansion/4, note that
quantification depth is decremented, a new variable V is ‘blindly’ instan-
tiated, and then—on the very last line—note the way appendLists/3
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is used to replace the universal formula we have been working with back
onto the end of the branch. Why do this? Well, we need to replace the
formula because (as we have already discussed) we will often have to
re-use universal formulas. But then it makes very good sense to replace
the formula at the end of the branch. If we leave it where it is, we run
the risk of using up our entire quota of universal rule applications on
this one formula. It is far more sensible to ensure fairness by ‘rotating’
the universal formulas on the branch, much as we rotated the branches
of the tableau earlier.

existentialExpansion(Branch,[NotatedInstance|Temp]):-

notatedFormula(NotatedFormula,Free,SignedFormula),

existential(SignedFormula),

removeFirst(NotatedFormula,Branch,Temp),

skolemFunction(Free,Term),

instance(SignedFormula,Term,Instance),

notatedFormula(NotatedInstance,Free,Instance).

universalExpansion(Branch,OldQD,New,NewQD):-

OldQD > 0, NewQD is OldQD - 1,

memberList(NotatedFormula,Branch),

notatedFormula(NotatedFormula,Free,SignedFormula),

universal(SignedFormula),

removeFirst(NotatedFormula,Branch,Temp),

instance(SignedFormula,V,Instance),

notatedFormula(NotatedInstance,[V|Free],Instance),

appendLists([NotatedInstance|Temp],[NotatedFormula],New).

There is one tricky point in the definition of the universal expansion
predicate: the use of memberList/2 in the second line. At first sight this
seems superfluous (note that we don’t have it in the other expansion
predicates). But it is needed. Recall that there are two types of signed
formulas to which the universal rule needs to be applied: true universal
statements, and false existential statements. If we leave out the call to
memberList/2, then universal/1 will pick a formula having the first
of these forms, strip off its quantifier, add its matrix to the beginning of
the branch, and put the universal formula back at the end of the branch
(via removeFirst/3 and appendLists/3). That’s fine. Unfortunately,
if there is a formula of the other form on the branch as well, it will
never be touched. Adding the call to memberList/2 at the beginning
of the clause overcomes this problem: it lets us find the first formula
to which we need to apply the rule, whether it is a true universal or a
false existential statement.

Now it only remains to spell out what kinds of signed formula we
are working with.
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conjunctive(t(and(X,Y)),t(X),t(Y)).

conjunctive(f(or(X,Y)),f(X),f(Y)).

conjunctive(f(imp(X,Y)),t(X),f(Y)).

disjunctive(f(and(X,Y)),f(X),f(Y)).

disjunctive(t(or(X,Y)),t(X),t(Y)).

disjunctive(t(imp(X,Y)),f(X),t(Y)).

unary(t(not(X)),f(X)).

unary(f(not(X)),t(X)).

universal(t(all(_,_))).

universal(f(some(_,_))).

existential(t(some(_,_))).

existential(f(all(_,_))).

As with the propositional implementation, it’s nice to have a pred-
icate that translates the formula into a notated, signed formula, and
calls the closedTableau/2 predicate. We call this predicate tprove/2,
as in our implementation for propositional tableaus. Its second addi-
tional argument is the value of Q-depth.

tprove(X,Qdepth):-

notatedFormula(NotatedFormula,[],f(X)),

closedTableau([[NotatedFormula]],Qdepth).

We conclude with a warning. Remember that this program can only
construct those tableaus which require fewer applications of the uni-
versal rules than the user-imposed Qdepth limit. Thus if checking a
formula with tprove/2 fails, this most emphatically does not mean
“Not a first-order tableau theorem”! The formula in question may well
be a tableau theorem—but the value of Qdepth may be too small to
yield a proof. (Incidentally, while trying this program out on the kinds
of formulas found in introductory logic books, we usually had Qdepth

set to 25.) On the other hand, if the program tells us that φ is a first-
order tableau theorem, this is not open to question. If a closed tableau
has been formed from the initial tableau Fφ, then φ is provable, and
that’s that.

Exercise 5.4.1 The file freeVarTabl.pl is the main file for the implemen-
tation of the free-variable tableau prover. There is also a test suite with
first-order problems called folTestSuite.pl. Examine both files and run
the test suite, using the tproveTestSuite/0 predicate.

Exercise 5.4.2 Add a pretty print predicate to our implementation of first-
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order tableaus, that shows the branches and the proof steps in a readable
way.

Exercise 5.4.3 Change the definition of tprove/1 in freeVarTabl.pl in
such a way that it iterates on Q-depth values until it finds a proof. Do
you think this is effectively the same as removing the check on Q-depth in
universalExpansion/4?

Programs for Free-Variable Tableaus

freeVarTabl.pl

The file that contains the code for free-variable tableaus, using
ideas from Melvin Fitting’s implementation.

folTestSuite.pl

A test suite with first-order formulas (non-theorems as well as
theorems).

5.5 First-Order Resolution

Our next goal is to turn our propositional resolution prover into a sound
and complete first-order theorem prover. We are in for a pleasant sur-
prise. Given what we now know about unification, it will be a relatively
simple task to make this extension. Roughly speaking, first-order res-
olution boils down to repeatedly applying the propositional resolution
rule that we studied in the previous chapter while simultaneously car-
rying out unification.

Recall that we presented propositional resolution as a two-step pro-
cess: first there was the reduction to (set) conjunctive normal form,
and then there was the resolution phase proper. First-order resolution
inherits this two-step structure. We shall examine each stage in turn,
indicating how each differs from its propositional counterpart.

Clause normal form

In the propositional setting, we first preprocessed the input formula
into (set) conjunctive normal form. In the first-order setting we carry
out a more sophisticated form of this preprocessing: we convert the
input formula into what is known as (set) clause normal form. This
preprocessing accomplishes two things. First, just as in the proposi-
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tional case, the input formula is converted to conjunctive normal form.
Second, along the way all the quantifiers are eliminated.

Given an input formula, we convert it to clause normal form by
carrying out the following four steps:

1. Put the formula into negation normal form (NNF).

2. Skolemise away any existential quantifiers.

3. Discard any universal quantifiers.

4. Put the resulting (quantifier-free) formula into (set) conjunctive
normal form.

Let’s take a closer look at each step. First of all, we learned in the
previous chapter how to convert a propositional formula to NNF: simply
apply the following rules:

Rewrite ¬(φ ∧ ψ) as ¬φ ∨ ¬ψ

Rewrite ¬(φ ∨ ψ) as ¬φ ∧ ¬ψ

Rewrite ¬(φ→ ψ) as φ ∧ ¬ψ

Rewrite φ→ ψ as ¬φ ∨ ψ

Rewrite ¬¬φ as φ.

Clearly these rules are needed for first-order formulas too. In addition,
however, we will need the following two rules which let us push nega-
tions inwards past quantifiers:

Rewrite ¬∀xφ as ∃x¬φ

Rewrite ¬∃xφ as ∀x¬φ.

That’s all that needs to be said about the reduction of first-order
formulas to NNF; it’s a routine extension of the propositional case. The
next step, however, is far more interesting: this is where we skolemise
away the existential quantifiers.

In fact, we have already used Skolem functions and Skolem terms
to eliminate existential quantifiers (recall we used them in free-variable
tableaus to build structured terms that would block erroneous unifica-
tions), but the way we are going to use them now is even more simple
and direct. Model theoretically, skolemisation hinges on the following
insight: for every first-order formula φ containing existential quanti-
fiers, there is a formula φs that contains no existential quantifiers such
that φ is satisfiable if and only if φs is too. To put it informally, we can
always convert a formula φ to a formula φs that contains no existential
quantifiers without doing semantic damage.

Consider the formula ∃xP (x). It’s easy to skolemise here: choose a
new constant s and form P (s). Clearly, if one of these formulas is satisfi-
able, then so is the other. Or consider the formula M(a) → ∃x∃yR(x,y).
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Again it’s easy to skolemise: simply choose new constants s and c and
form M(a) → R(s, c). Once more, it should be clear that if one of these
formulas is satisfiable then so is the other.

Fine, but these examples are rather too easy. The interesting ques-
tion is: how do we skolemise away existential quantifiers when they are
under the scope of universal quantifiers?

As follows. When we skolemise away an existential quantifier that
is under the scope of universal quantifiers ∀x1, . . . , ∀xn, then instead
of using simple Skolem constants (like s or c) we should use a Skolem
term of the form s(x1, . . . ,xn). Intuitively, such a term says that the
value we need assign to the existentially quantified variable y to satisfy
the formula will in general depend on the values we have assigned to
the universally quantified variables x1,. . . ,xn.

For example, consider the formula ∀x∃yR(x,y). According to what
we just said, ∀xR(x, s(x)) should be a suitable skolemisation. And a mo-
ment’s thought shows that this makes sense. For a start, if ∀xR(x, s(x))
is true in some model, then ∀x∃yR(x,y) is true in that same model too.
On the other hand, suppose that ∀x∃yR(x,y) is true in some model.
Now, this formula says that for each x there is some y such R(x,y),
but this means that it is possible to define a function that maps each
element in the model to an R-related element. But the fact that such
a function exists is precisely what the formula ∀xR(x, s(x)) claims.

Here’s a slightly more complex example. Consider the formula

∀x∀y(R(x,y)→ ∃z(R(x,z) ∧R(z,y))).

Now, in this example the existential quantifier is under the scope of
the quantifiers ∀x and ∀y. Hence, given what we said above, we can
skolemise as follows:

∀x∀y(R(x,y)→ R(x, s(x,y)) ∧R(s(x,y),y)).

We leave the reader to verify that this formula is indeed satisfiable if
and only if the original existentially quantified version is too.

So much for skolemisation—what about the next step, dropping the
universal quantifiers? This may sound a little drastic; what could justify
such a move? Actually, it is rather simple. By this stage, the formulas
we are preprocessing are in a rather restricted form: all negations occur
next to atomic symbols, and the only boolean connectives are ∧ and
∨. Here’s a typical example:

∀xM(x, s(x)) ∧ ∀z∀w(¬M(z,w) ∨N(z))) ∧ ¬N(c).

Now, suppose we move all the universal quantifiers to the front of the
formula. That is, consider the formula:

∀x∀z∀w(M(x, s(x)) ∧ (¬M(z,w) ∨N(z))) ∧ ¬N(c)).
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It is clear that this is logically equivalent to the preceding one. More
generally, given any formula in this restricted form, we can move all
the universal quantifiers it contains to the front of the formula without
changing anything semantically. But given this, there is then little point
in actually explicitly writing the universal quantifiers. We might as well
just make the convention that all variables are to be taken as universally
quantified—that is, we drop the quantifiers, thus making the universal
quantification an implicit part of the notation.

What about the last step, the conversion to conjunctive normal
form? Here again, we are back on familiar territory: we simply do what
we did in the propositional case (that is, apply the distributive laws
and so on). Nothing more needs to be said here.

Well, that’s the algorithm. Let’s work through an example. Let’s
put

¬((∀x∃yR(x,y) ∧ ∀z∀w(R(z,w)→ P (z)))→ ∀uP (u))

in clause normal form.
The first step is to convert this formula to NNF. We can do this by

using the rewriting rules given earlier:

Step 1 ¬((∀x∃yR(x,y) ∧ ∀z∀w(R(z,w)→ P (z)))→ ∀uP (u)).

Step 2 ∀x∃yR(x,y) ∧ ∀z∀w(R(z,w)→ P (z))) ∧ ¬∀uP (u).

Step 3 ∀x∃yR(x,y) ∧ ∀z∀w(R(z,w)→ P (z))) ∧ ∃u¬P (u).

Step 4 ∀x∃yR(x,y) ∧ ∀z∀w(¬R(z,w) ∨ P (z))) ∧ ∃u¬P (u).

Next, we skolemise away the existential quantifiers:

Step 5 ∀xR(x, s(x)) ∧ ∀z∀w(¬R(z,w) ∨ P (z))) ∧ ¬P (c).

Now it’s time to drop the universal quantifiers:

Step 7 R(x, s(x)) ∧ (¬R(z,w) ∨ P (z))) ∧ ¬P (c).

This formula is already in conjunctive normal form, so we have no
further work to do. But to finish up neatly, let’s put it in our list of
lists notation:

Step 8 [[R(x, s(x))], [¬R(z,w), P (z)], [¬P (c)]].

And that’s all there is to the preprocessing. Time to turn to the reso-
lution phase proper.

The resolution phase

After the conversion of the input formula to clause normal from, we
are ready to begin first-order resolution. As we promised earlier, this
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pretty much boils down to repeated application of the resolution rule we
learned about in the previous chapter, coupled with unification. Let’s
consider an example.

Consider the following two clauses:

[P (x), Q(x)] and [¬P (a), R(z)].

It should be intuitively clear that parts of these two clauses disagree
with each. Recall the convention that in clause normal form all variables
are implicitly universally quantified. Thus the P (x) in the left-hand
clause is really making the claim that ∀xP (x). On the other hand, in
the right-hand clause we have the claim that ¬P (a). However, we can’t
apply the resolution rule to exploit this disagreement: the resolution
rule demands a complementary pair of literals (that is, a pair of literals
where one is the negation of the other) and P (x) and ¬P (a) do not
have precisely this form.

But of course, they almost have this form, and if we unified x with a
we would have the complementary pair of literals we required. So let’s
do this. Unifying x with a yields

[P (a), Q(a)] and [¬P (a), R(z)].

Applying the resolution rule then gives us

[Q(a), R(z)].

In short, by first unifying and then resolving we can get our hands on
the complementary literal that drive the resolution process.

Sometimes we need to relabel variables before we unify. For example,
consider the following pair of clauses.

[P (x), Q(x)] and [¬P (a), R(x)].

As in the previous example, if we unified a with x we could then apply
the propositional resolution rule. Note, however, that in this case uni-
fication would also affect the x in R(x), which we don’t want (the two
clauses are independent pieces of information, and unification needs to
respect this). So we first relabel this variable, thus obtaining

[P (x), Q(x)] and [¬P (a), R(y)].

We can now unify a with x, obtaining:

[P (a), Q(a)] and [¬P (a), R(y)].

Resolution then yields:
[Q(a), R(y)].

In fact, when implementing resolution in Prolog we won’t have to worry
about this. As we use Prolog variables to represent first-order variables,
Prolog will take care of the variable book-keeping automatically.
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And that’s the basic idea of first-order resolution. However, there is
one complication we need to examine in more detail: we need to know
about non-redundant factors.

A non-redundant factor F of a clause C is a clause obtained by
applying unification to the literals within C as often as possible. That
is, a non-redundant factor of C identifies as many literals as possible
within C by unification. It is crucial to note (see the following example)
that a clause may have more than one non-redundant factor, and we
need them all. Incidentally, if none of the literals within a clause C can
be unified, then C itself is its own unique non-redundant factor.

Why are non-redundant factors important? Actually, it’s related to
something we saw in the propositional case. Recall that when perform-
ing propositional resolution we need to work with clauses that are sets.
For example, if we have the non-set clauses [p, p] and [¬p,¬p], resolu-
tion yields [p,¬p] and then we are stuck. Our input clauses were too
fat: we should first thin them down to sets (here [p] and [¬p]) and only
then apply resolution (which immediately yields the empty clause).

Now, in the first-order case, we must continue to work with set
clauses just as before—but that alone is not enough. So to speak, a
first-order clause can be too fat not merely because it contains repeated
items, but because it contains items that can be identified by unifica-
tion. In a nutshell, non-redundant factors of a clause are the clauses
produced by thinning out via unification.

Let’s look at an example. In what follows, A is a one-place predicate,
B is a two-place predicate, w, x, y, and z are variables, m and n are
constants, and f is a one-place function symbol.

Consider the following clause

[A(m), A(y), B(n, x), B(y, z),¬C(w),¬C(f(z)].

Note that we can apply unifications to the literals within this clause,
thereby simplifying it. Here’s one way of doing it: unify A(y) with A(m),
and unify ¬C(w) with ¬C(f(z). We then throw away the repeated items
(recall that clauses must be thought of as sets, that is with no repeated
information), to get the following clause:

[A(m), B(n, x), B(m, z),¬C(f(z)].

Note that we cannot reduce this clause anymore by unifying the
literals it contains. This clause is a non-redundant factor of the original
clause. The unifications have got rid of all the unnecessary information.
However, note there was another way we could have reduced the original
clause. We could have unified B(n, x) with B(y, z), and ¬C(w) with
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¬C(f(z) to get the following clause:

[A(m), A(n), B(n, x),¬C(f(x)].

Once again, we cannot reduce this clause anymore by unifying the
literals it contains. This clause is also a non-redundant factor of the
original clause. The unifications have got rid of all unnecessary infor-
mation, but this time in a different way.

Note that there are no more non-redundant factors of the original
clause: the two we have just calculated are (up to α-equivalence, which
is all we care about) the only two factors. And we need to hold onto
both these factors, or sometimes we will not find proofs.

A first-order theorem prover should have access to the non-redundant
factors of the clauses it is working with. So at the start of the proof,
we won’t simply convert the input formula into a set of clauses—once
we’ve done the conversion to clause form we must immediately calcu-
late the non-redundant factor clauses and add these as well. Moreover,
whenever we apply the resolution rule, we don’t simply return the
resulting clause—we also calculate its non-redundant factors and add
these too.

5.6 Implementing First-Order Resolution

It is extremely straightforward to turn the approach to first-order reso-
lution sketched above into Prolog code. Unsurprisingly, the work divides
naturally into two steps. First, we extend the code (from the previous
chapter) for converting propositional formulas to conjunctive normal
form so that it handles the conversion of first-order formulas to clause
normal form. We then combine our propositional resolution code with
our unification predicates, thus obtaining a resolution theorem prover
for first-order logic.

Reduction to clause form

Here’s the main clause of our program for converting first-order formu-
las to clause form:

cnf(Formula,SetCNF):-

nnf(Formula,NNF),

skolemise(NNF,Skolemised,[]),

cnf([[Skolemised]],[],CNF),

setCnf(CNF,SetCNF).

Save for the call to the skolemise/3 predicate, this is exactly
the same as the propositional case. So the next question is: how is
skolemise/3 defined? Here are the clauses for universally quantified
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formulas:

skolemise(all(X,F),N,Vars):-

skolemise(F,N,[X|Vars]).

Recall that when skolemising we need to know which universal quan-
tifiers outscope the existential quantifier we are eliminating. Hence, as
we recursively strip off the universal quantifiers, we take care to push
the variables they bind onto the list Vars. This keeps track of the
way the universal quantifiers are embedded one within another, and
the clause for existentially quantified formulas puts this information to
good use:

skolemise(some(X,F1),N,Vars):-

skolemFunction(Vars,SkolemTerm),

substitute(SkolemTerm,X,F1,F2),

skolemise(F2,N,Vars).

We’ve met skolemFunction/2 before; we used it in the code for the
free-variable tableau prover. This predicate simply makes a Skolem
function that has all the listed variables as arguments (that is, the vari-
ables in Vars). We then hand the result to substitute/4 to build the
skolemised formula (recall that substitute/4 is one of the predicates
in comsemPredicates.pl) and carry on recursively skolemising.

Well, those were the two key clauses. The remaining ones merely
complete the recursion in the expected way:

skolemise(and(F1,F2),and(N1,N2),Vars):-

skolemise(F1,N1,Vars),

skolemise(F2,N2,Vars).

skolemise(or(F1,F2),or(N1,N2),Vars):-

skolemise(F1,N1,Vars),

skolemise(F2,N2,Vars).

skolemise(F,F,_):-

literal(F).

Now that we’ve dealt with skolemise/3 we’ve covered the main
change required to adapt our propositional conjunctive normal form
converter to a first-order clause normal form converter. The only other
change worth mentioning is that we have also to add the following
clauses to the definition of nnf/2 to enable negations to be driven
inwards past quantifiers:

nnf(not(all(X,F)),some(X,N)):-

nnf(not(F),N).



“blackburnbos”
2004/12/13
page 233

i

i

i

i

i

i

i

i

First-Order Inference / 233

nnf(all(X,F),all(X,N)):-

nnf(F,N).

nnf(not(some(X,F)),all(X,N)):-

nnf(not(F),N).

nnf(some(X,F),some(X,N)):-

nnf(F,N).

Apart from these differences, the code is pretty much identical to that
used in the propositional case.

Implementing the resolution phase

When it comes to implementing the resolution phase, matters are even
more pleasant. Remarkably little needs to be done to our propositional
code to make it work for full first-order logic.

Here’s the main clause of the program:

rprove(Formula):-

cnf(not(Formula),CNF),

nonRedundantFactors(CNF,NRF),

refute(NRF).

The only difference between this and the analogous clause in the propo-
sitional prover is the presence of the call to nonRedundantFactors/2.

Another clause that must be changed is resolve/3. Here’s the new
version:

resolve(Clause1,Clause2,NewClause):-

selectFromList(Lit1,Clause1,Temp1),

selectFromList(not(Lit2),Clause2,Temp2),

unify_with_occurs_check(Lit1,Lit2),

unionSets(Temp1,Temp2,NewClause).

resolve(Clause1,Clause2,NewClause):-

selectFromList(not(Lit1),Clause1,Temp1),

selectFromList(Lit2,Clause2,Temp2),

unify_with_occurs_check(Lit1,Lit2),

unionSets(Temp1,Temp2,NewClause).

Once again, the change involved is minimal: this is just the proposi-
tional code, with the calls to unify with occurs check/2 added. But
though this change is simple, it is crucial: this is where we combine
applications of the resolution rule with unification.

In fact, there aren’t really any complex changes to the code. Yes, we
need to define nonRedundantFactors/2, but this is straightforward.
We go through the list of clauses, compute the non-redundant factors
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for that clause (using a subsidiary predicate nonRedFact/2), and then
append the results into one big list of clauses:

nonRedundantFactors([],[]).

nonRedundantFactors([C1|L1],L4):-

findall(C2,nonRedFact(C1,C2),L3),

nonRedundantFactors(L1,L2),

appendLists(L3,L2,L4).

For the definition of the predicate nonRedFact/2 we need to take
some care. Once again, we can’t use Prolog’s standard unification, and
therefore we’ll use unification with the occurs check to check whether
two literals in the clause can be unified. This is coded as follows:

nonRedFact([],[]).

nonRedFact([X|C1],C2):-

memberList(Y,C1),

unify_with_occurs_check(X,Y),

nonRedFact(C1,C2).

nonRedFact([X|C1],[X|C2]):-

nonRedFact(C1,C2).

And that’s all there is to it. We have gone from a propositional to a
first-order resolution prover and hardly noticed the transition!

Exercise 5.6.1 The file foResolution.pl is the main file for the imple-
mentation of the first-order resolution prover. Use the rproveTestSuite/0

predicate to test the prover on the test suite.

Exercise 5.6.2 Test the nonRedundantFactors/2 predicate. For example,
test it on a list containing the single clause:

[[a(m),a(Y),b(n,X),b(Y,Z),not(c(W)),not(c(f(Z)))]].

Explain the result you get. Then try the next exercise.

Exercise 5.6.3 If you have tried the previous exercise, you will have noticed
that nonRedundantFactors/2 over-generates new clauses. This is no surprise
given its definition! Here is a suggestion to improve it by including a call
to a predicate that discards clauses that are subsumed by others. (A clause
C1 subsumes a clause C2 if and only if there is a substitution σ such that
C1σ = C2. We say that C2 is subsumed by C1.)

nonRedundantFactors([],[]).

nonRedundantFactors([C1|L1],L5):-

findall(C2,nonRedFact(C1,C2),L3),
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nonRedundantFactors(L1,L2),

appendLists(L3,L2,L4),

subsume(L4,L5).

Implement a subsumption check by giving a definition for subsume/2. Ensure
you use unification with the occurs check.

Exercise 5.6.4 Our resolution prover contains no mechanism for preventing
non-terminating proof search (recall that our tableau prover made use of Q-
depth to prevent this). Add a mechanism that guarantees termination.

Programs for First-order Resolution

foResolution.pl

The file that contains the code for the first-order resolution
prover.

cnfFOL.pl

Definition of translation to clause normal form.

folTestSuite.pl

A test suite with first-order formulas (non-theorems as well as
theorems).

5.7 Off-the-Shelf Theorem Provers

By rights, we ought to be at the end of the chapter. We’ve seen why
naive approaches to first-order theorem proving (notably, the simple
and intuitive tableau system we started with) are inadequate from a
computational perspective, and understand why the use of unification
to guide the process of instantiating variables is important. Building
on this insight, we’ve adapted our propositional provers to deal with
first-order logic.

But pleasant though this is, it’s nowhere near enough. Our goal is to
develop useful computational tools that will help us get to grips with
the consistency and informativity checking tasks. Now, our first-order
tableau and resolution provers are certainly computational tools, but
are they truly useful? The only honest answer is: only for very simple
problems. Although both provers use the basic technique needed to
make first-order theorem proving at all feasible (namely, unification)
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they don’t incorporate any of the sophisticated optimisations needed
to make first-order theorem provers genuinely practical.

The following example should dispel any illusions the reader may
have. Here is a well-known problem from the 1980s called Schubert’s
Steamroller:

Wolves, foxes, birds, caterpillars, and snails are animals, and there
are some of each of them. There are also some grains, and grains are
plants. Every animal either likes to eat all plants or all animals much
smaller than itself that like to eat some plants. Caterpillars and snails
are much smaller than birds, which are much smaller than foxes, which
in turn are much smaller than wolves. Wolves do not like to eat foxes
or grains, while birds like to eat caterpillars but not snails. Caterpillars
and snails like to eat some plants. Therefore, there is an animal that
likes to eat a grain-eating animal.

This discourse expresses a logically valid argument. That is, if the
first six sentences are true, then the seventh sentence (“Therefore, there
is an animal that likes to eat a grain-eating animal”) must be true too.
In short, the seventh sentence is a logical consequence of the first six
and hence (once we have represented these sentences in first-order logic)
a first-order theorem prover ought to be able to prove this.

Now, in the first-order test suite you will find this problem tran-
scribed into our first-order notation. Try both the tableau and the
resolution provers on this problem. As you will see, neither can handle
it. Both provers embark on a lengthy proof search—and neither comes
back. You will find yourself looking at a computer terminal that seems
to have gone to sleep, and eventually you will have to give up and abort
execution. Both provers have been steamrollered.

In short, one problem with our provers is efficiency : they are far too
easy to crush. Moreover, that’s not all that’s wrong with them. There
is also a second problem: neither handles equality. For natural language
applications, this is a severe limitation. Even the limited grammar we
use in this book gives rise to semantic representations containing the =
symbol. For example, the semantic representation we build for Vincent

is not Butch is

not(eq(vincent,butch)).

And if we developed the grammar to cover phenomena such as pronom-
inal anaphora (where we might need to say that the entity denoted by
some pronoun is the same as some other previously mentioned entity)
we would swiftly find ourselves making even heavier use of the equality
symbol.

Now, it is worth reminding the reader that equality really is a special



“blackburnbos”
2004/12/13
page 237

i

i

i

i

i

i

i

i

First-Order Inference / 237

symbol. That is, as we said in Chapter 1, although syntactically = is
just a binary relation symbol, semantically it is special: it is always used
to talk about the relation of equality between individuals in a model.

What are the consequences of this for theorem proving? The key
point is that the equality symbol legitimises certain additional infer-
ences. To give a simple example, given that x = y and y = z it is
legitimate to infer that x = z. Note that we cannot make the analogous
inference for arbitrary binary relation symbols R. Given that Rxy and
Ryz it does not follow that Rxz. To see this, note if R is interpreted in
some model as the relation “stands immediately to the right of”, and
three distinct individuals are assigned to the variables x, y and z, then
this inference would be incorrect.

In short, because the equality symbol is interpreted in the same
special way in each model, it licenses additional patterns of inference.
Hence if a first-order theorem prover does not contain additional mech-
anisms for coping with equality, it will not fully cope with its logic.

Now, it is not that difficult to devise additional rules (or other mech-
anisms) which enable equality to be dealt with by first-order theorem
provers; see the Notes for references. However, if we use these rules
naively (or worse, if we simply add axioms, as we ask the reader to do
in Exercise 6.6.10 in the following chapter) the already sluggish perfor-
mance of our provers will slow to a crawl. Integrating equality reasoning
into first-order theorem proving efficiently is a non-trivial task, one well
beyond the scope of this book.

All in all, it seems we have a serious problem on our hands: our
theorem provers are not the useful inference tools we hoped they would
be. So what are we to do? Actually, the answer is clear. The problem
with both our provers is that they are naive: they don’t handle ordinary
first-order logic efficiently, and they can’t be made to handle first-order
logic with equality without a further degradation in performance. Very
well then: if the problem is naivety, the solution is sophistication! Why
don’t we put some truly sophisticated provers to work instead?

Nowadays, many extremely sophisticated theorem provers are freely
available on the internet. In the forty years since the pioneering work
of Robinson (who introduced the resolution rule and the idea of uni-
fication) there has been intensive work on automated first-order the-
orem proving, and performance has improved dramatically. This im-
provement has not been driven simply by making use of more sophis-
ticated implementation techniques (though such techniques have cer-
tainly played an important role), it has also been driven by the deeper
insight that has been obtained into the mathematical structure of res-
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olution and tableau proofs, coupled with the development of optimi-
sation techniques to exploit these insights. (A discussion of such tech-
niques lies well beyond the scope of this book, but the Notes contain
pointers to references where the reader can find out more.) Moreover,
over the last decade there has been a development of special relevance
to natural language semantics: there have been substantial improve-
ments in the ability of first-order theorem provers to handle equality
reasoning efficiently. All in all, home-brewed theorem provers (like our
two little toys) can’t begin to achieve the high levels of performance
that are nowadays regarded as commonplace by the automated reason-
ing community. Luckily, they don’t have to. All this sophistication is
out there on the internet, just waiting to be used.

So, let’s put them to use. Now, many theorem provers are available;
which should we choose? In this book we shall make use of the provers
Otter and Bliksem. In the Notes we’ll say a little more about why
we picked these two provers, for now we’ll just say that both provers
are resolution based, both handle equality, and that the performance of
both is in a completely different league to that of our two baby provers.

Of course, a practical issue immediately raises its head. In this book
we have been constructing a (Prolog based) architecture for reference
and inference in natural language. Suddenly we’re proposing to add
software produced elsewhere to this architecture. Is this so easy to
do? As we shall now show, yes it really is. We are going to treat both
Otter and Bliksem as black boxes. That is, we’re simply going to devise
interfaces that let us glue the capabilities they provide into our (Prolog
based) architecture.

Both Otter and Bliksem use a different notation for first-order logic
from the one used in this book (and indeed, they use different notations
from each other). Moreover, they both work by reading a file, which
contains certain initialisation options followed by a list of the formulas
to be proved.

But the reader won’t need to know about any of this: we shall sim-
ply provide a couple of small Prolog programs which take a first-order
formula written in our notation, convert it to Otter or Bliksem-style
notation, and simultaneously supply the initialisation information that
Otter and Bliksem need. Here’s a simple example. Consider the for-
mula

∀xdance(x) → ¬∃y¬dance(y).

Now, our Prolog notation for this formula is

imp(all(X,dance(X)),not(some(Y,not(dance(Y))))).

This little formula is valid, and both our tableau and resolution-based
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provers are quite capable of proving this. But suppose we wanted to
use Otter or Bliksem to prove it. What would we have to do?

The first step is to get the formula in the appropriate notation and
supply prover initialisation information. The Prolog predicates which
do this for us are fol2otter/2 and fol2bliksem/2. If we make the
query

?- fol2otter(imp(all(X,dance(X)),not(some(Y,not(dance(Y))))),

user).

we get the result (note that we used user as second argument to specify
that Prolog pipes the result to standard output):

set(auto).

assign(max_seconds,30).

clear(print_proofs).

set(prolog_style_variables).

formula_list(usable).

((all A dance(A)) -> -((exists B -(dance(B))))).

end_of_list.

That is, we get back a set of instructions which sets Otter in automatic
mode, assigns it a maximum time of 30 seconds for the problem, and
insists that it uses a Prolog-style representation of first-order variables.
Following this comes the list of all the formulas that Otter has to prove
and (needless to say) in this case there is only one, namely our input
formula transcribed in Otter notation. As you can see from this ex-
ample, Otter notation is very natural, and not too different from our
own.

What about Bliksem? Well, if we make the query

?- fol2bliksem(imp(all(X,dance(X)),not(some(Y,not(dance(Y))))),

user).

we get the result

Auto.

(([ A ]dance(A)) -> !(< B >!dance(B))).

This is even simpler. We simply get an instruction that sets Bliksem
in auto mode, followed by the input formula transcribed into Bliksem
notation.

Actually, strictly speaking the reader does not even need to know
about fol2otter/2 and fol2bliksem/2, for the theorem provers Otter
and Bliksem can be called directly by consulting callInference.pl.
This loads the file inferenceEngines.pl, which is where we specify
which theorem provers we would like to use. As we would like to work
with Otter and Bliksem, we specify the following:



“blackburnbos”
2004/12/13
page 240

i

i

i

i

i

i

i

i

240 / Representation and Inference for Natural Language

inferenceEngines([otter,bliksem]).

Now, callInference.pl offers several interface predicates to off-
the-shelf provers, but the predicate that we are interested in for now
is callTP(Problem,Result,Prover), which succeeds if there is a the-
orem prover Prover (on the list of inference engines that we selected)
that finds Result for the first-order formula Problem (where problem
is written in the notation of this book). Here Result will be instanti-
ated with the Prolog atom proof if indeed a proof is found, and with
unknown otherwise.

For example, if we want to use it to prove the formula

∀xdance(x) → ¬∃y¬dance(y)

we would make the following query:

?- callTP(imp(all(X,dance(X)),not(some(Y,not(dance(Y))))),P,E).

This will give the problem both to Otter and Bliksem, and will return
the result of the first prover that managed to find a solution for the
problem. For instance, we could get the result

P = proof

E = otter

which tells us that Otter has succeeded in proving the input formula.
What happens if we give an invalid formula as input? For example,

what happens if we give them ∀xdance(x), which is clearly not true in
all models? Let’s try. Suppose we make the following query:

?- callTP(all(X,dance(X)),P,E).

As before, callTP will feed the input formula to all the theorem
provers it knows about (namely Otter and Bliksem) and wait for a
result. In this case we will get the result

P = unknown

E = unknown

Both Otter and Bliksem will have tried (and failed) to prove this for-
mula.

It is crucial that the reader understands that the answer unknown

returned here really is the correct response. As it happens, we know
that the input formula is not valid. But theorem provers don’t prove
invalidity, all they can try and do is prove validity. If a theorem prover
fails to prove something, this can be for two quite distinct reasons.
Sometimes, the formula may be valid, but extremely complex to prove,
and in such cases the prover can easily use up all its pre-allocated
resources (for example, the Q-depth resources in the case of our free-
variable tableau prover, or some preset time limit) without finding a
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proof (even though a proof does exist). Sometimes, however, as in the
previous example, the formula really is not valid, hence no proof exists,
and so the prover (quite reasonably) cannot find a proof. That’s the
trouble with undecidable formalisms like first-order logic: in general, if
we don’t get a result, we’re left in the dark as to why we didn’t get
a result. In the following section we shall discuss a partial solution to
this problem.

But before doing this, let’s take a quick look at the architecture used
in callInference.pl to control the theorem provers. You don’t need
an in-depth understanding of the code, but if you want to extend the
system by adding new provers (as Exercise 5.7.1 asks you to do) you
will need to know something of how it all fits together. The following
diagram shows the key points:

callInference.pl

bliksem.in otter.in ∗.in

interfaceTP.perl tp.out

bliksem otter ∗

As you can see, callInference.pl creates input files for the selected
theorem provers (here Bliksem and Otter, and an unnamed prover ∗,
a placeholder for the theorem provers we hope the reader will add).
These files have the extension in. Note that callInference.pl calls a
Perl program

interfaceTP.perl

that starts the selected theorem provers with the created input files,
reads the output, and then writes the result in Prolog format in the file
tp.out. This file is then read by callInference.pl and the circle is
closed.

Why do we use Perl here? For at least three reasons. First, our goal
is to coordinate the input and output of various programs (namely the
Prolog program callInference.pl, and Otter and Bliksem). Perl is
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superb at this task (it’s what is known as a glue language, or scripting
language), so rather than make life miserable for ourselves by hacking
it in Prolog, we used a language in which these kinds of task are easy.
Second, as we have already mentioned, each inference engine uses its
own internal format. Prolog is not much good at fiddling around with
text which is not in Prolog format—Perl, on the other hand, is in its
element with such tasks. Thirdly (and most interestingly) Perl allows
us to simulate parallelism. When using Otter and Bliksem together, we
don’t want to first use one and then the other: we want to unleash both
of them on the problem simultaneously (apart from anything else, it’s
interesting to see which one solves the problem first). Perl offers some
basic tools for this kind of programming, and we’ve used them to build
a rudimentary form of parallelism into our architecture. As we shall
see, these parallelism capabilities will become very important in the
following section when we introduce model builders into our inference
architecture.

Time to play. If you load up the file callInference.pl you can
experiment with Otter and Bliksem on various formulas. In fact, one
of the options that is available is to run these theorem provers on the
first-order test suite; this can be done by giving the command

?- tpTestSuite.

This runs all selected provers on all the problems in the test suite,
including Schubert’s Steamroller. Neither prover so much as blinks. In
the 1980s the Steamroller was considered a difficult problem (and as
we have seen it’s still a tough nut for a naive prover to crack) but
for sophisticated provers such as Otter or Bliksem it’s a triviality. The
Steamroller has been steamrollered.

Exercise 5.7.1 Extend the arsenal of inference engines with the theorem
prover Spass. Download Spass from the web. Extend the Prolog code of
callInference.pl and the Perl script interfaceTP.perl to include Spass.
You will need a new module fol2spass.pl that converts first-order formulas
in Prolog to the syntax used by Spass. Use tpTestSuite/0 to test your work.

5.8 Model Building

Once again the reader might be forgiven for thinking that at last we
have reached our goal. After all, we have learned a little about two the-
orem proving techniques, have seen that naive theorem provers are not
efficient enough to cope with even relatively simple problems (such as
the Steamroller), and have learned that sophisticated theorem provers
such as Otter and Bliksem can be bolted onto our inference architec-
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ture as black boxes. So haven’t we accomplished what we set out to do?
Don’t we now have everything we need for coping with the consistency
and informativity checking tasks for first-order logic with equality? No,
we don’t. And indeed, we never will. For now we must face up to a
fundamental fact about first-order logic: it is undecidable.

Let’s be a little more precise about what this actually means, and
explore its ramifications for what we have set out to do in this chap-
ter. When we say that first-order logic is undecidable, we mean the
following: it is impossible to write a computer program that takes as
input an arbitrary first-order formula, and that is guaranteed to halt
after a finite amount of time and (correctly) tell us whether or not that
formula is valid. This impossibility does not arise because of practical
constraints (for example, the fact that physical computers have only a
finite amount of memory) it is a consequence of Church’s Thesis, the
standard mathematical model of computation. That is, if the standard
model of computation is correct (and most computer scientists believe
it is) then even if we ignore all the practical constraints that a physical
computer would be subject to, it will never be possible to build a com-
puter that could correctly decide (in finite time) whether an arbitrary
first-order formula is valid or not. Now, recall from Chapter 1 that both
the consistency and informativity checking tasks are basically just re-
formulations of the validity checking task. It follows that both these
tasks are undecidable too.

Put like that, this all sounds very abstract. However, as we shall now
see, the limitations imposed by the undecidability of first-order logic
are real, and have ramifications for what we are trying to do. Let’s first
think about what it means for the consistency checking task.

Suppose we are trying to check whether the last sentence of a dis-
course is consistent with the preceding sentences. For example, suppose
we have the discourse

All boxers are slow. Butch is a boxer. Butch is not slow.

Obviously the last sentence is not consistent with what has gone before.
But is there a computation we can perform that will automatically show
this inconsistency? Yes, there is. We use our semantic construction
machinery to build first-order representations for these sentences, and
then check whether the conjunction of the first two sentences implies
the negation of the last sentence. This means that we need to check
whether the following formula is valid or not:

∀x(boxer(x)→slow(x)) ∧ boxer(butch) → ¬¬slow(butch).

The final sentence of the discourse is inconsistent with the preceding
discourse if and only if this formula is valid. Now, it is pretty clear
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that this formula is valid. Moreover we have computational tools for
showing first-order validity (namely theorem provers) so we simply put
a prover to work and—hey presto!— we’ve automatically demonstrated
the inconsistency of this discourse.

So what’s the problem? If we change the example, this will quickly
become clear. Suppose our discourse was

All boxers are slow. Butch is a boxer. Mia likes Butch.

In this example, the last sentence clearly is consistent with what went
before. But is there a computation we can perform that will automati-
cally show this consistency? Let’s think this through. As before, we can
use our semantic construction machinery to build first-order represen-
tations for these sentences, and then check whether the conjunction of
the first two sentences implies the negation of the last sentence. This
means we need to check the following formula for validity:

∀x(boxer(x)→slow(x)) ∧ boxer(butch) → ¬like(mia,butch).

As before, the final sentence of the discourse is inconsistent with the
preceding discourse if and only if this formula is valid. Now, here it
is clear that this formula is not valid. And now we have a real prob-
lem. First-order theorem provers are tools for demonstrating validity;
they don’t show non-validity. Worse, no general computational tool for
determining non-validity exists.

To put it another way:

Theorem provers provide us with a negative check for consistency.

That is, as our first example shows, if a discourse is inconsistent, then
(assuming the problem is not too hard for the prover) a decent first-
order theorem prover can demonstrate the inconsistency simply by
proving a theorem. However, as our second example shows, theorem
proving does not provide us with a positive test for consistency, and
indeed, because of the undecidability of first-order logic no full posi-
tive check exists. As we remarked at the end of the previous chapter,
this is very different from what happens in propositional logic. Proposi-
tional logic is decidable and thus (at least, in principle) theorem proving
provides a complete solution to the propositional consistency checking
task. That is, in the propositional case, theorem proving provides both
negative and positive checks for consistency.

Undecidability also haunts the informativity checking task. Suppose
we are trying to check whether the last sentence of a discourse is infor-
mative with respect to the preceding discourse. For example, suppose
we have the discourse
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All boxers are crazy. Butch is a boxer. Butch is crazy.

Obviously the last sentence is not informative with what has gone be-
fore. Equally obviously, there is a computation we can perform that will
show this lack of informativity: use our semantic construction machin-
ery to build first-order representations for these sentences, and then
check whether the conjunction of the first two sentences implies the
last. That is, we simply need to check the validity of

∀x(boxer(x)→crazy(x)) ∧ boxer(butch) → crazy(butch).

Clearly this formula is valid, and even a baby-prover could show this,
so there is no problem in computing the failure of informativity here.

But what happens if the discourse is informative? For example, con-
sider the discourse

All boxers are crazy. Butch is a boxer. Butch loves Fabian.

Here the last sentence clearly is informative with respect to what came
before. So the inference task that faces us is to determine whether or
not the following formula is valid:

∀x(boxer(x)→crazy(x)) ∧ boxer(butch)→ loves(butch,fabian).

Now, clearly this formula is not valid, and once again the same problem
rears its ugly head: first-order theorem provers are tools for demon-
strating validity; they don’t show non-validity. Worse, they can’t, as no
general computational tool for determining non-validity exists.

To put it another way:

Theorem provers provide us with a negative check for informativity.

That is, as the third example shows, if a discourse is uninformative
then a decent first-order theorem prover can demonstrate the uninfor-
mativity simply by proving a theorem. However, as the fourth example
shows, theorem proving does not provide us with a positive test for
informativity, and indeed, because of the undecidability of first-order
logic no full positive check exists.

Once again, we have a problem. Moreover, this is a problem we
cannot fully solve. First-order undecidability is a fact of life: full positive
checks for consistency and informativity don’t exist.

But this does not mean we are helpless. Granted, a full solution
is not possible—but perhaps there are useful partial positive checks
for consistency and informativity? And indeed, there are. The relevant
tools are called model builders, a relatively new kind of automated
reasoning tool.

What is a model builder? First off, don’t confuse model building
with model checking! Recall from Chapter 1 that model checkers are
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tools for solving the querying task. That is, a model checker takes a
formula and a model, and sees whether the formula is satisfied in that
model or not.

A model builder does something far more difficult: it takes a formula,
and tries to build a model that satisfies it. To put it another way, it
takes a description, and tries to build a little picture of the world in
which that description is true. It should be clear that this is likely to be
a very difficult task indeed. For example, some satisfiable formulas are
only satisfied in infinite models (recall Exercise 1.2.1). Now, no piece
of software can be expected to build arbitrary infinite models, so it is
clear that model builders won’t always be able to build models even
when models exist. Roughly speaking, model building is only capable
of building (relatively small) finite models. Indeed, when using a model
builder, you usually have to tell it to try and build a model with a
certain domain size (say, 3 elements) or to try and build a model up to
a certain domains size (for example, a model with at most 20 elements).

This may not sound too exciting—is the ability to do this really going
to help us with the consistency and informativity checking tasks?

It is. What we would very much like to have are (partial) positive
checks for consistency and informativity. And this can often be done
with the help of small models. For example, consider again the following
discourse

All boxers are slow. Butch is a boxer. Mia likes Butch.

As we pointed out above, the last sentence clearly is consistent with
the first two. That is, the logical representation of the discourse

∀x(boxer(x)→slow(x)) ∧ boxer(butch) ∧ like(mia,butch),

really is consistent. And a model builder can show the consistency of
this discourse in a very simple way. Suppose we ask a model builder to
build a 2 element model for this discourse. Any half-way decent model
builder will swiftly see that if it names one of the elements Mia, and
the other Butch, and insists that Butch is a boxer, that Butch is slow,
and that Butch is liked by Mia, then it has a model in which the above
formula is true. Some model builders might decide to make Mia a boxer
too (in which case they will also have to say that she is slow) and other
model builders might decide that she is not a boxer (in which case
it doesn’t matter whether they decide to make her slow or not). But
it really doesn’t matter which model they build as far as establishing
the consistency of the above discourse is concerned: all that matters is
that they build at least one model. After all (recall the discussion of
Chapter 1) a consistent formula is simply a formula that has at least
one model.
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We can sum up our discussion as follows:

Model builders provide us with a (partial) positive check for consis-
tency.

Let’s now return to our informativity example. We considered the
following discourse

All boxers are crazy. Butch is a boxer. Butch loves Fabian.

Here the last sentence clearly is informative with respect to the first
two. To put it another way, the following formula is not valid:

∀x(boxer(x)→crazy(x)) ∧ boxer(butch) → love(butch,fabian).

Now, if a formula is not valid, this means that its negation has at
least one model. So we should ask a model builder to build a model
for

¬(∀x(boxer(x)→crazy(x)) ∧ boxer(butch)→ love(butch,fabian)),

or equivalently

∀x(boxer(x)→crazy(x)) ∧ boxer(butch) ∧ ¬love(butch,fabian).

But this is easy: simply build a model of domain size two in which
the element named Butch is a boxer and is crazy, and does not love
the other element (named Fabian). Whether or not Fabian is also a
boxer is unimportant, but if she is, she should be crazy too. Again,
we don’t really care which model is made: the crucial point is that the
existence of a model for the (negated) formula shows that the original
(un-negated) formula is not valid, and hence that the original discourse
is informative.

Summing up:

Model builders provide us with a (partial) positive check for informa-
tivity.

So far our discussion has been completely theoretical. Let’s turn it
into computational reality. As we mentioned above, model building is a
newer branch of automated reasoning than theorem proving, and there
is not nearly such a wide range of model builders as theorem provers.
But there are some interesting systems out there, and to demonstrate
how model building can be used for inference in computational se-
mantics, we have decided to work with the model builders Mace and
Paradox.

As with our use of off-the-shelf theorem provers, we’ll integrate Mace
and Paradox into our inference architecture as black boxes. In fact, all
we need to do is adapt the predicate callInference.pl to call model
builders instead of theorem provers.
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Let’s begin with a few remarks about each of the model builders.
Mace uses Otter syntax for first-order logic. However, we cannot sim-
ply re-use fol2otter/2 to carry out the translation process as the
initialisation options for the model builder are different. Accordingly,
we have defined a separate predicate fol2mace/2. If we pose the query

?- fol2mace(some(X,and(man(X),all(Y,imp(woman(Y),love(X,Y))))),

user).

we get

set(auto).

clear(print_proofs).

set(prolog_style_variables).

formula_list(usable).

(exists A (man(A) & (all B (woman(B) -> love(A, B))))).

end_of_list.

This is similar to the file built for Otter, but note that there is no
time-out limit.

Paradox uses TPTP notation (this is the notation used in the Con-
ference on Automated Deduction (CADE) automated reasoning com-
petitions). If we pose the query:

?- fol2tptp(some(X,and(man(X),all(Y,imp(woman(Y),love(X,Y))))),

user).

we get

input_formula(comsem,conjecture,

(? [A]: (man(A) & (! [B]: (woman(B) => love(A, B)))))).

But, as with our theorem proving architecture, the reader doesn’t
really need to know about these translation predicates to make use of
the system; grasping the overall architecture is more important. Let’s
take a closer look.

The architecture is essentially the same as the one we used for
theorem provers. Once again, everything is controlled from the file
callInference.pl. There are two differences worth noting. First,
model builders construct finite models, and they typically do this by
iteration (they try to build a model of domain size 1, and if that fails
they try to build one of domain size 2, and so on). Most model builders
allow us to specify a domain-size upper limit to avoid unnecessary
labour, so when we call the model builders we need to provide domain
size information. Second, we don’t just want a binary value as answer;
we really would like to get our hands on the constructed model (we’ll
put such models to good use in the following chapter when we meet
Helpful Curt). Now, different model builders represent models in dif-
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ferent ways, and none of them uses the notation of this book. Here’s a
model in the notation we introduced in Chapter 1:

model([d2,d1],[f(0,vincent,d1),

f(1,snort,[d2,d1]),

f(0,mia,d2),

f(1,dance,[d1])])

Here’s the same model in the Mace format (Mace has the option of
returning models in Prolog format, and we use this):

interpretation(2,[predicate(snort(_),[1,1]),

function(mia,[0]),

predicate(dance(_),[0,1]),

function(vincent,[1])]).

This representation tells us that the domain consists of two entities: 0
(Mia) and 1 (Vincent). The snort relation holds for both members of
the domain, whereas the dance relations holds for the second member
(1) only. And here’s the same model in Paradox format (which is fairly
self-explanatory):

== Model =========

dance(’1) : TRUE

dance(’2) : FALSE

mia = ’2

snort(’1) : TRUE

snort(’2) : TRUE

vincent = ’1

So we’ll need to be able to transform between the various model rep-
resentations.

Here’s the architecture we shall use:

callInference.pl

mace.in paradox.in ∗.in

interfaceMB.perl mb.out

mace paradox ∗
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The top-level file callInference.pl supplies us with a Prolog pred-
icate callMB(Problem,DomainSize,Model,ModelBuilder) which suc-
ceeds if there is a model builder ModelBuilder that is able to construct
a model Model with a maximum domain-size of DomainSize for the
first-order formula Problem. If the model builder is not able to find a
model for the input, callMB/4 will unify Model with unknown.

As you can see, callInference.pl creates input files for the selected
model builders. As with the theorem provers, the selection is made in
the file inferenceEngines.pl (here we have selected Mace and Para-
dox, and an unnamed model builder ∗). Then a Perl program is called
that activates the model builders with the created input files and the
specified maximum domain-size, reads the output model, converts the
model into our own Prolog notation, and then writes the result in the
file mb.out. This file is then read by callInference.pl, and the circle
is closed.

We are now ready to take the most interesting step of all. We want
to provide the best computational handle possible on the consistency
and informativity checking task. And now we have everything needed
to do something useful. First, we know that theorem provers are capa-
ble of carrying out the negative checks we need. Secondly, we know that
model builders are capable of carrying out at least some of the positive
checks we need. Third, we have seen that our callInference.pl based
architecture is capable of using different inference engines in parallel.
Very well then—why not adapt our architecture so that it can simul-
taneously carry out both theorem proving and model checking on the
input formula? To put it another way, why not adapt our architecture
so that it is capable of carrying out both negative and (partial) positive
checks in parallel?

And this is exactly what we shall do. In callInference.pl you will
find the following predicate:

callTPandMB(TPProblem,MBProblem,Size,Proof,Model,Engine).

This succeeds if either there is a model builder that is able to construct
a model with a maximum domain-size of DomainSize for the first-order
formula MBProblem, or there is a theorem prover that proves the for-
mula TPProblem. (Incidentally, when we use this predicate in the fol-
lowing chapter, TPProblem will always be the negation of MBProblem.)

Depending on the result, callTPandMB/6 will unify Model with a
model if the model builder succeeds, or Proof with the atom proof if
a theorem prover succeeded in finding a proof. Finally, Engine will be
unified with the name of the successful model builder in case a model
was found, or with the name of the successful theorem prover in case a
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proof was found. Here is the diagram explaining the architecture behind
this:

callInference.pl

bliksem.in otter.in mace.in paradox.in

interfaceTPandMB.perl tpmb.out

bliksem otter mace paradox

As you can see, we are simply making more interesting use of ideas
we have discussed before. Now we really do have a useful computational
handle on the consistency and informativity checking tasks—and, this
time, any reader who feels that now we really must be at the end of
the chapter, is right!

Exercise 5.8.1 This exercise shows you what the interfaceTP.perl Perl
script does behind the scenes. Use callInference.pl and the callTP/3

predicate to call a theorem prover (choose Bliksem). Then inspect the file
bliksem.in. Run the shell command

bliksem < bliksem.in

and inspect the standard output. Finally, view the contents of the file tp.out.
Do this for both a theorem and a non-theorem. Repeat the exercise choosing
another theorem prover (for instance Otter).

Exercise 5.8.2 This exercise shows you what the interfaceMB.perl Perl
script does behind the scenes. Use callInference.pl and the callMB/4 pred-
icate to call a model builder (choose Mace). Then inspect the file mace.in.
Run the shell command

mace -t 30 -n1 -N10 -P < mace.in

and inspect the standard output. Finally, view the contents of the file mb.out.
Do this for both a satisfiable and a non-satisfiable problem. Repeat the ex-
ercise choosing another model builder (for instance Paradox).

Exercise 5.8.3 Use callInference.pl to test the off-the-shelf theorem
provers and model builders on the test suite folTestSuite.pl. Select in-
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ference engines in the file inferenceEngines.pl. Use the tpTestSuite/0,
mbTestSuite/0, tpmbTestSuite/0, predicates for your testing.

Programs for hooking up off-the-shelf inference tools

callInference.pl

The Prolog-interface to off-the-shelf theorem provers or model
builders.

fol2otter.pl

Translates a formula in Otter syntax to standard output.

fol2bliksem.pl

Translates a formula in Bliksem syntax to standard output.

fol2tptp.pl

Translates a formula in TPTP syntax to standard output.

callTP.perl

A Perl script interfacing off-the-shelf theorem provers.

callMB.perl

A Perl script interfacing off-the-shelf model builders.

callTPandMB.perl

A Perl script interfacing off-the-shelf theorem provers and model
builders.

inferenceEngines.pl

File that specifies the selected inference engines.

Notes

The human-oriented tableau system presented at the start of the chap-
ter is a typical first-order signed tableau system; similar systems can
be found in Smullyan (1995) (the ‘bible’ of the tableau method) and
Sundholm (1983). For unsigned first-order tableau systems, see Bell
and Machover (1977), Fitting (1996), Smullyan (1995), and Sundholm
(1983). If you want to understand the tableau method in even more
depth, consult the Handbook of Tableau Methods (D’Agostino et al.,



“blackburnbos”
2004/12/13
page 253

i

i

i

i

i

i

i

i

First-Order Inference / 253

1999). This contains a number of superb articles on many different as-
pects of tableau methods, both for first-order logic, and for a number
of other logics too.

There are two articles in the Handbook we would particularly like to
draw your attention to. The first is Letz (1999), which discusses in detail
the various options available in first-order tableau systems; if you want
to understand better the technicalities underlying free-variable tableau
systems, this is the place to start. Secondly, for a fascinating practical
perspective on first-order tableau theorem proving, see Posegga and
Schmitt (1999). This describes a Prolog-based theorem prover for first-
order logic called LeanTAP; the prover is coded in only 15 lines of
Prolog and is more efficient than the free-variable tableau system in
the text. If you are interested in experimenting further with tableau
methods, we suggest you look at LeanTAP and try integrating it into
the inference architecture of this book.

Unification and the unification algorithm were introduced in Robin-
son (1965), who introduced it as part of his pioneering work on first-
order resolution. The algorithm discussed in the text is essentially
Robinson’s original. The literature on unification is huge, and a wide va-
riety of unification algorithms have been investigated. We suggest that
the reader who wants to know more try Fitting (1996) or Apt (1995).
Fitting’s discussion is very clear, and should be accessible to most read-
ers of this book. Apt’s discussion is more advanced, but still very ap-
proachable. He gives a nice account of idempotent substitutions, and
analyses three unification algorithms, including the non-deterministic
Robinson algorithm presented here. This is also a good source for fur-
ther pointers to the literature.

Incidentally, recall that in the text we did not explain how the occurs
check could be added to Prolog. Rather, we simply made use of the
standard predicate

unify_with_occurs_check/2

and invited the reader in Exercise 5.2.2 to try and figure out how to
implement it. If you had problems with this, you can find a complete
discussion in Sterling and Shapiro (1986) and Fitting (1996).

In essence, the free-variable proof system presented in the text is a
signed version of the unsigned free-variable tableau system presented in
Fitting (1996). By and large, to extend our propositional implementa-
tion to first-order logic, we have simply followed the strategies used by
Fitting. In particular, our use of Qdepth, and the subsequent decision
to use appendLists/3 to ‘rotate’ branches of tableaus, and universal
signed formulas on branches, follows Fitting. (Incidentally, this tech-
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nique has a name. We are essentially treating both tableau and branches
as priority queues. The idea of doing this in tableau proofs dates
back to Smullyan 1995.) The implementation of skolemFunction/2 is
taken from Fitting, and the notatedFormula/3 predicate is Fitting’s
notation/2 and fmla/2 predicates rolled into one. Fitting’s book is
also a good source for learning the basics of equality reasoning with
free variable tableau, and he gives a Prolog implementation. For an
advanced discussion of equality reasoning in tableau (and other closely
related proof systems) see Degtyarev and Voronkov (2001).

Our discussion of first-order resolution (as with our discussion of
propositional resolution) is a simplified version of the approach pre-
sented in Leitsch (1997). Our discussion was informal and example-
driven: the full details are painstakingly spelled out in Leitsch’s book,
which we strongly recommend. That said, some readers are likely to
find Leitsch’s discussion too technical. For a more accessible introduc-
tion, try Chang and Lee (1973); although dated, it still provides a clear
exposition of the basic ideas of first-order resolution proving and related
material. Another useful source is, once again, Fitting (1996). Fitting
does not present resolution as a two-step process, but interleaves the
reduction to normal form with applications of the resolution rule (this
technique can be important when dealing with other logics, for exam-
ple, various forms of modal logic). Fitting’s approach also makes it clear
that there is a closer relationship between the tableau and resolution
methods than is at first sight apparent. Both Fitting and Chang and
Lee discuss the basics of equality reasoning in resolution systems. For
advanced material on this topic, see Nieuwenhuis and Rubio (2001).

As most readers of this book are probably aware, Prolog interpreters
are in essence resolution theorem provers. But some readers may be
puzzled by this: after all, in this chapter we have emphasized just how
hard first-order theorem proving can be, and yet Prolog (which can give
rise to highly efficient programs) is based on this idea. How can this be?
The key point to observe is that Prolog only allows us to write a rather
restricted form of first-order formulas, namely Horn clauses. When a
set of Horn clauses (in effect, a Prolog program) is put into CNF, every
clause will contain at most one negated literal. This vastly cuts down
the number of possible resolvents and makes efficient implementations
possible. For a simple discussion of the relation between Prolog and
first-order logic, see Chapter 10 of Clocksin and Mellish (1984).

Jeff Pelletier (personal communication) tells the story behind Schu-
bert’s Steamroller this way. The Steamroller is named after Len Schu-
bert, who designed it as a classroom exercise in transcribing English
arguments into first-order logic. In 1982, Jeff Pelletier, then one of Schu-
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bert’s students, noticed that not only could his own theorem prover not
handle it, but that neither could a number of (at that time) state-of-
the-art first-order theorem provers. Pelletier refined the problem, and
discussed it in his Masters thesis (see Pelletier (1982)) and in a later
journal article (see Pelletier (1986)). A number of variant forms of the
Steamroller can be found in the literature.

However, as we said in the text, nowadays the steamroller is no
longer regarded as a particularly hard problem; this is largely because
of the extraordinary improvements in efficiency that have been made
over the last decade or so. The key source for further information on
these developments is the two volume Handbook of Automated Reason-
ing (Robinson and Voronkov, 2001a), (Robinson and Voronkov, 2001b).
This covers in depth all aspects of automated reasoning the reader is
likely to need, and a great deal more besides.

To demonstrate how to integrate sophisticated off-the-shelf provers
into an architecture for computational semantics, we chose the provers
Otter and Bliksem. Why these two? Actually, for fairly down to earth
reasons. Otter, which was written by William McCune, is rather old as
theorem provers go (it was first written in the late 1980s) and probably
can’t compete with the newer generation of provers. Nonetheless, it is
an excellent prover to work with, and is probably the system with the
best claim to being that mythical beast, the ‘standard’ theorem prover.
Otter is portable, compact, and well-documented, and there are books
devoted to using Otter to tackle interesting problems (see Wos and
Pieper (2000) and Kalman (2001)). Moreover, the Mace model builder
used in the text comes along with the standard Otter distribution. And,
last but not least, it should be emphasized that Otter is a very serious
prover indeed—it has been used to solve open mathematical problems
in a number of fields. What about Bliksem? This prover, written by
Hans de Nivelle, is newer and (at least for the problems we encountered
while writing this book) appears to be faster than Otter. We chose it
because it is a relatively small, fast, easy to install prover.

We said nothing in the text about how model builders work. This
was not merely because of lack of space, it was also because (in compar-
ison with theorem proving) model building is a relatively new branch
of automated reasoning and it is probably premature to talk about
‘standard’ approaches here. Nonetheless, a few words on the topic may
be helpful. Alert readers will have noticed that a tableau system can
be regarded as a kind of model builder: after all, at least in princi-
ple, to build a model for φ we should simply be able to give T (φ) to
the tableau system and then ‘read-off’ possible models from any open
branches the tableau system produces. Theoretically at least, this ob-
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servation is correct. However the use of free-variable tableaus obscures
the model building intuition that drives the tableau method, and at the
time of writing we were not aware of any sophisticated model building
systems for first-order logic that worked this way. It is also possible
to use a form of resolution (called hyperresolution) to perform model
building; for a discussion of this approach, see Fermüller et al. (2001).

The two model builders we used in the text, Mace (written by
William McCune) and Paradox (written by Koen Claessen and Niklas
Sörensson) use what is sometimes called a Mace-style strategy. In this
approach the model builder takes a set of first-order clauses, and a
number indicating the desired domain size, and transforms it into a
set of propositional clauses. (Don’t be surprised that this can be done.
After all, if we are trying to build a model with only two elements
of the domain, then a universal formula such as ∀xP (x) is simply the
conjunction P (a) ∧ P (b), where a and b name the two elements of the
domain, and this is a propositional formula.) Once the clause set has
been converted to propositional form, a SAT solver (these were men-
tioned in the Notes to Chapter 4) is used to build the required model.
Needless to say, the sketch just given vastly oversimplifies a highly de-
manding computational problem; for example, clever techniques are
needed to avoid building isomorphic models many times over. For a
discussion of the ideas underlying Mace, see McCune (1998). For the
way Paradox builds on this basic approach and extends it, see Claessen
and Sörensson (2003).

Another approach, often called the Sem-style approach, should be
mentioned. This approach, named after the Sem model builder (see
Zhang and Zhang (1996)), avoids the conversion to propositional logic
and uses constraint-propagation techniques to build the model. It’s
also worth mentioning that the version of Mace we used in the text is
now officially called Mace-2. William McCune’s new model builder is
called Mace-4, and this makes use of a Sem-style strategy rather than a
Mace-style one. At the time of writing, we had not experimented with
Sem-style model builders for consistency and informativity checking; it
would be interesting to do so.

As we mentioned in the text, the lower levels of our inference archi-
tecture are implemented in Perl. Nowadays Perl is such a ubiquitous
programming language that a quick search will swiftly lead the reader
to sufficient online information and introductions to understand our
Perl scripts. As for books on Perl, the classic overview is Wall et al.
(2000), and Schwartz and Phoenix (2001) is an excellent introduction.

Finally, we mentioned in the text that the undecidability of first-
order logic rests on the assumption that Church’s Thesis, the standard
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model of computation, is correct. Church’s Thesis is interesting be-
cause it is not a mathematical theorem (that is, something that can
be proved), rather it is a generalization that has (so far) successfully
withstood the test of time. For a superb discussion of Church’s Thesis
and what it has to do with the undecidability of first-order logic, see
Boolos and Jeffrey (1989). In particular, they discuss the important
concept of semi-decidability , a concept we hinted at (but did not ex-
plicitly introduce) in the text. Establishing whether an arbitrary first-
order formula is valid or not is the classic example of a semi-decidable
problem. That is, although the problem is undecidable, one half of the
problem (namely establishing the validity of an input formula, given
that the input is in fact valid) turns out to be relatively easy (techni-
cally speaking, first-order validity is recursively enumerable). The real
difficulties all stem from the other half of the problem: input that are
non-valid can give rise to non-terminating computations, or to put it
more technically, first-order non-validity is not recursively enumerable
(that is, determining non-validity is really hard).



“blackburnbos”
2004/12/13
page 258

i

i

i

i

i

i

i

i



‘‘blackburnbos’’

2004/12/13

page 259

i

i

i

i

i

i

i

i

6

Putting It All Together

We now have some answers to the questions with which this book be-
gan:

1. We can build first-order representations in a compositional way
for simple natural language expressions. Moreover, we can do so
in a way that takes scope ambiguities into account.

2. We know how to automate the process of performing inference
with first-order representations.

Along the way, we have developed a number of useful tools, and
learned something about the tools developed by the automated rea-
soning community. Now it is time to put the pieces together. As we
shall see, by plugging together lambda calculus, quantifier storage, the-
orem proving, model building, and model checking programs, we can
build a system that can handle some simple but interesting interactions
with a user. We call this system Curt—short for “Clever Use of Rea-
soning Tools”. The idea is that the user can extend Curt’s knowledge
by entering English sentences, and can query Curt about its acquired
knowledge.

We will present seven different versions of Curt, starting with a basic
system, and gradually extending it. So let’s get down to business and
examine the system from which all the others grow: Baby Curt.

6.1 Baby Curt

Baby Curt (which you will find in the file babyCurt.pl) is the backbone
of the Curt system, and uses the absolute minimum of inference tools
(namely none at all). It is built around the kellerStorage.pl program
from Chapter 3. Here is an example of a dialogue with Baby Curt. The
text preceded by the > symbol is the user’s input:

> Vincent loves Mia.

259
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Curt: OK.

> Every woman knows a boxer.

Curt: OK.

Baby Curt’s only response is to acknowledge the input by prompting
“OK.” But we are also able to inspect Curt’s internal memory. We do
this by typing one of the reserved commands. (Curt does not attempt to
build semantic representations for reserved commands; it simply uses
them as instructions.) One of these is the command readings which
has the following effect:

> readings

1 (love(vincent,mia) &

all A (woman(A) > some B (boxer(B) & know(A,B))))

2 (love(vincent,mia) &

some A (boxer(A) & all B (woman(B) > know(B,A))))

There are two interpretations in Curt’s memory, due to the scope
ambiguity of the second sentence we entered. Note that both formulas
represent the entire set of sentences entered so far, and that conjunction
is used to combine the formulas. Furthermore, note that Curt displays
representations in infix notation; this notation is summarised in Ap-
pendix D.

Normally Curt takes the first of the readings in its memory and
combines it with all the readings of the next sentence entered; it sim-
ply forgets about any other interpretations of the previous discourse.
So if we typed in a third sentence at this stage, Curt would combine its
semantic representation with the first reading listed above, and the sec-
ond reading would be lost. But there is another reserved command that
forces Curt to work with the interpretation of the previous discourse
chosen by the user. This is the select command:

> select 2

> readings

1 (love(vincent,mia) &

some A (boxer(A) & all B (woman(B) > know(B,A))))

Here we see that Curt has discarded the first reading above and replaced
it with the second reading. So if we now typed in a third sentence, it
would be combined with this representation.

Another reserved command is history. Curt reacts to this by sup-
plying all the sentences entered so far:

> history

1 [vincent,loves,mia]

2 [every,woman,knows,a,boxer]
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There are a couple more reserved commands that Baby Curt un-
derstands. The command bye quits the dialogue with Curt, and the
command new starts a new discourse (it clears the interpretations in
Curt’s memory, and throws away the history of the discourse). As we
develop Curt, we will add new reserved commands, and these will be
explained as they are introduced.

So, that is what Baby Curt does—but how is it implemented?
First a fundamental implementation decision. Curt needs to keep

track of the readings it generates and the sentences the user enters.
The number of readings and sentences grows as the dialogue proceeds,
but the user is free to throw away this information at any time by using
the new command. How should this be handled?

We use two dynamic Prolog predicates. The first, readings/1, will
be used to store the interpretations of the sentences that we enter.
The second, history/1, will be used to store the history of the dis-
course. Because we declare these predicates as dynamic, we can change
their definition while running the program, using the built-in Prolog
assert/1 and retract/1 predicates. The auxiliary predicates that
handle this can be found in the file curtPredicates.pl.

With this noted, we can turn to the large-scale architecture of Curt.
The core of Curt is a dialogue control structure implemented with the
help of the recursive predicate curtTalk/1, whose argument designates
the program’s executing state. This is one of the values quit or run:
the quit value stops the recursion (and thereby ends the dialogue with
Curt), whereas the run value takes Curt through the recursion again:

curtTalk(quit).

curtTalk(run):-

readLine(Input),

curtUpdate(Input,ReplyMoves,State),

curtOutput(ReplyMoves),

curtTalk(State).

The control strategy of Curt is straightforwardly coded in this re-
cursive predicate. With readLine/1 it asks us to type in a sentence
(or a reserved command), which will be unified with the Prolog vari-
able Input. Next curtUpdate/3 takes the new input and (if it was a
sentence) attempts to build a semantic representation and combine the
result with the representations of any previously entered sentences. It
returns a list of reply-moves, and a new value for the program’s execut-
ing state. The reply-moves tell Curt how to react to our input, and we
will have a closer look at them shortly when we discuss curtOutput/1.
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Let’s first see how curtUpdate/3 is implemented. First of all we deal
with the reserved commands. These are all coded as follows:

curtUpdate([new],[],run):- !,

updateReadings([]),

clearHistory.

curtUpdate([readings],[],run):- !,

readings(R),

printRepresentations(R).

curtUpdate([history],[],run):- !,

history(H),

printRepresentations(H).

curtUpdate([select,X],[],run):-

number(X),

readings(R1),

selectReadings(X,R1,R2), !,

updateReadings(R2).

curtUpdate([bye],[bye],quit):- !.

The first four of these reserved commands return (in the third ar-
gument position) the value run for the execution state of Curt, and
return (in the second argument position) an empty set of reply-moves,
because there is no special way Curt should reply after obeying one
of these commands. The reserved command bye behaves differently:
this sets the program’s execution state to quit (which will stop the
recursion in curtTalk/1 and terminate the program) and unifies the
reply-moves to [bye].

If what we entered doesn’t match any of the reserved commands,
Curt attempts to parse the input using kellerStorage/2. If it succeeds
in doing that, it updates the history, and combines the readings with
those of the previous discourse:

curtUpdate(Input,[accept],run):-

kellerStorage(Input,Readings), !,

updateHistory(Input),

combine(Readings,NewReadings),

updateReadings(NewReadings).

There are two more possibilities. Maybe we absent-mindedly jiggled
the return key. This is not a particularly intellectually demanding task,
but Baby Curt needs to know how to deal with it:

curtUpdate([],[clarify],run):- !.
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That is, in this case Curt will demand clarification from the user.
Finally, the input might not be any of the cases described above.

That is, whatever the user had entered is neither a reserved command,
nor parseable by our grammar, nor a nervous tic. We deal with any
such cases as follows:

curtUpdate(_,[noparse],run).

So, what the predicate curtUpdate/3 returns (and note that because
of this last fallback clause it always succeeds) is a list of reply-moves.
This list can be empty (in which case Curt doesn’t reply) or it can con-
tain one of the following values: bye, clarify, accept, and noparse.
(As Curt develops, the number of reply-moves will grow.) Turning the
abstract reply-moves into concrete output is done by recursively going
through the list of moves:

curtOutput([]).

curtOutput([Move|Moves]):-

realiseMove(Move,Output),

format(’~n~nCurt: ~p~n’,[Output]),

curtOutput(Moves).

The reply-moves themselves are realised by using a simple look-up
table:

realiseMove(clarify,’Want to tell me something?’).

realiseMove(bye,’Goodbye!’).

realiseMove(accept,’OK.’).

realiseMove(noparse,’What?’).

And that is the core of the Curt architecture. However, there are
several predicates that we haven’t explained yet. Some of them are not
so important and we ask the reader to do Exercise 6.1.2 to find out how
they work. But combine/2, which is used by curtUpdate/3 to combine
the readings of the new sentence with the representation of the previous
discourse, is worth looking at right away:

combine(New,New):-

readings([]).

combine(Readings,Updated):-

readings([Old|_]),

findall(and(Old,New),memberList(New,Readings),Updated).

The first clause succeeds when Curt’s memory is empty (at the be-
ginning of the dialogue, or when the user has just used the reserved
command new). The second clause uses the built-in Prolog findall/3

to yield a list of all new readings combined with the first reading of the
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history.

Exercise 6.1.1 Load Baby Curt (which you will find in the file babyCurt.pl)
and enter some sentences. Try all the reserved commands.

Exercise 6.1.2 Inspect the file curtPredicates.pl and check how the Pro-
log predicates updateReadings/1, updateHistory/1, clearHistory/0, and
selectReadings/3 are defined.

Exercise 6.1.3 Extend Baby Curt’s vocabulary by extending the grammar
loaded by kellerStorage.pl. Add ditransitive verbs (if you haven’t done
so already in earlier exercises), the determiners no and the, and quanti-
fied noun phrases such as everything and nobody. You will need to modify
the files englishLexicon.pl, englishGrammar.pl, semLexStorage.pl, and
semRulesKeller.pl.

Exercise 6.1.4 Implement a slightly-less-babyish Curt which uses hole se-
mantics rather than Keller storage to cope with scope ambiguities.

Programs for Baby Curt

babyCurt.pl

This file loads everything needed to run Baby Curt.

curtPredicates.pl

Auxiliary predicates used by the Curt family.

6.2 Rugrat Curt

Baby Curt may be cute, but it’s not that bright. In fact, it’s downright
dumb:

> Mia smokes.

Curt: OK.

> Mia does not smoke.

Curt: OK.

The discourse is blatantly contradictory, but Baby Curt simply parses
it, stores the representation, and carries on as usual. It’s clearly time
baby started to grow up. What shall we do?
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Time for Rugrat Curt. By hooking up Baby Curt to the free variable
tableau prover of Chapter 5, we get a system (rugratCurt.pl) that
handles some inconsistent discourses:

> Mia smokes.

Curt: OK.

> Mia does not smoke.

Message (consistency checking): proof found.

Curt: No! I do not believe that!

As we can see, Rugrat Curt reacts with furious disbelief to this dis-
course; it does so via a new reply-move called contradiction that
triggers this response when the input is inconsistent. But how did Ru-
grat Curt know that the input was inconsistent?

Recall from Chapter 5 that theorem provers provide us with a nega-
tive check for consistency. That is, if Discourse-So-Far is the first-order
representation built by Curt from the preceding dialogue, and φ is the
first-order representation of the latest sentence, then we can use a the-
orem prover to test whether

Discourse-So-Far |= ¬φ.

By the semantic deduction theorem, this boils down to asking the the-
orem prover to test the validity of the formula

Discourse-So-Far → ¬φ,

or (equivalently) the formula

¬(Discourse-So-Far ∧ φ).

If the prover can do this, then the latest sentence is inconsistent with
the previous discourse. Now, note the message in the second line of
our example: our free-variable tableau theorem prover found a proof of
inconsistency. This is what lead to Curt’s complaint.

That’s the basic idea, but how do we make it work in Prolog? Actu-
ally, because Rugrat Curt is an extension of Baby Curt, there is very
little that changes in the backbone of the system. One change is the
clause of curtUpdate/3 that deals with parsing a sentence. We impose
an additional condition (implemented by consistentReadings/2) that
filters out inconsistent readings:

curtUpdate(Input,Moves,run):-

kellerStorage(Input,Readings), !,

updateHistory(Input),

consistentReadings(Readings,[]-ConsReadings),

(
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ConsReadings=[],

Moves=[contradiction]

;

\+ ConsReadings=[],

Moves=[accept],

combine(ConsReadings,CombinedReadings),

updateReadings(CombinedReadings)

).

The consistent readings are selected as follows. For each reading com-
puted by Keller storage, Curt tries to prove whether it is inconsistent
using the predicate consistent/2. All readings that are consistent are
stored in the variable ConsReadings. If there are no consistent read-
ings, then the reply-move is unified with [contradiction], otherwise
the reply-move is set to [accept].

consistentReadings([],C-C).

consistentReadings([New|Readings],C1-C2):-

readings(Old),

(

consistent(Old,New), !,

consistentReadings(Readings,[New|C1]-C2)

;

consistentReadings(Readings,C1-C2)

).

Consistency checking is implemented by calling the free-variable
tableau prover from Chapter 5 with the negation of the formula and
a Q-depth of 75. If no proof is found then Rugrat Curt assumes this
reading is consistent.

consistent([Old|_],New):-

tprove(not(and(Old,New))), !,

nl, write(’Message (consistency checking): proof found.’),

fail.

consistent([],New):-

tprove(not(New)), !,

nl, write(’Message (consistency checking): proof found.’),

fail.

consistent(_).

Because we have now added a new reply-move, we also need to add
a clause for the realisation of that move:

realiseMove(contradiction,’No! I do not believe that!’).
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And that’s that. Before reading the text further, take time to do the
following exercises.

Exercise 6.2.1 Play around with Rugrat Curt and give it more complex
discourses to handle. Try to determine the limits of our little rugrat. Does it
handle all inconsistent input? For example, does it handle input in which a
later input sentence contradicts an earlier one? And does it handle all input
efficiently? And are there natural language constructions that it does not
handle?

Exercise 6.2.2 Note that in our implementation of Rugrat Curt we gave
the prover ¬(Discourse-So-Far ∧ φ) rather than Discourse-So-Far → ¬φ as
input. Nothing particularly deep lies behind this choice—it’s merely that the
negated form is the negation of the formula we will give to the model builder
(when we implement Clever Curt) to carry out the corresponding positive
test. We want the reader to do two things. First, check that the two formulas
really are equivalent. Second, change the implementation so that it uses the
implicational form instead.

Exercise 6.2.3 Rugrat Curt is implemented using the free variable tableau
prover from Chapter 5, with the Q-depth preset to 75. This means that if
a proof of inconsistency requires a greater Q-depth, then Rugrat Curt will
give up and wrongly conclude that the input is consistent. Try and find a
natural language example which you know to be inconsistent, and which
Rugrat Curt can build a representation for, but which Rugrat Curt cannot
prove inconsistent.

Exercise 6.2.4 Change Rugrat Curt so that it uses the first-order resolution
prover from the previous chapter instead of the tableau prover.

Programs for Rugrat Curt

rugratCurt.pl

This file loads everything needed to run Rugrat Curt.

6.3 Clever Curt

If you did the previous exercises carefully, you will have discovered that
Rugrat Curt has a number of problems. For a start, there is a basic
natural language construction (namely sentences whose verb phrase
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consists of is followed by a noun phrase; that is, what a linguist would
call a copula construction) that it does not handle correctly. Consider
the following dialogue:

> Vincent is a man

Curt: OK.

> Mia likes every man.

Curt: OK.

> Mia does not like Vincent.

Curt: OK.

This is blatantly contradictory, but Rugrat Curt just doesn’t see it.
Why not? Because Rugrat Curt can’t handle equality reasoning. The
semantic representation we build for Vincent is a man is

some A (man(A) & vincent = A).

Note the way the equality symbol is used to predicate Vincent’s prop-
erty of being a man. But the free-variable tableau system of Chapter 5
doesn’t handle equality (and neither does the resolution prover) so Ru-
grat Curt fails in a very obvious (and very fundamental) way.

Another problem you will have noticed is that Rugrat Curt can be
extremely slow. As we emphasized in the previous chapter, first-order
theorem proving is a computationally difficult task. So it is easy to
come up with problems that will overwhelm a naive theorem prover
(remember the Steamroller). Rugrat Curt can only crawl—we want
something better.

This is where Clever Curt comes in. Clever Curt does consistency
checking, but does so by using a sophisticated theorem prover and
a model builder in parallel. It does this with the help of the pro-
gram callInference.pl which we developed in Chapter 5. Recall that
callInference.pl offers several combinations of theorem prover and
model builder; you choose the combination you want by commenting
out the other options. In what follows we assume that Clever Curt uses
this predicate with the theorem prover Bliksem and the model builder
Mace selected.

Both Bliksem and Mace are highly sophisticated reasoning tools, so
it is hardly surprising that Clever Curt handles consistency checking
far better than Rugrat Curt does. For a start, Bliksem handles equality
reasoning, so we have no further trouble with sentences like Vincent is

a man or Butch is not a boxer. Moreover, as we saw in the last chapter,
Bliksem’s performance is in a completely different league from that of
our little free-variable tableau prover. So if a discourse contains incon-
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sistencies Clever Curt will generally be far faster at finding them.
But (as we discussed in the previous chapter) the use of a model

builder also gives us something useful. If a discourse is consistent, then
a theorem prover will never be able to detect an inconsistency. But
this means it will keep attacking the problem until its pre-allocated
computational resources are used up. By running a model builder in
parallel with a theorem prover, we may be able to show that a dis-
course is consistent before the theorem prover does all this wasteful
work, for a model builder provides us with a (partial) positive check for
consistency . If the model builder can show that

Discourse-So-Far ∧ φ

has a model, where Discourse-So-Far is the first-order representation
built by Curt from the preceding dialogue, and φ is the first-order rep-
resentation of the latest sentence, then the latest sentence is consistent
with the previous discourse.

To sum up, by running a positive check for consistency (using the
model builder) in parallel with a negative test for consistency (using
the theorem prover) we can hope for a better all-round performance.
Bearing this in mind, let’s take a look at Clever Curt (which you will
find in the file cleverCurt.pl) in action:

> Mia dances.

Message (consistency checking): mace found a result.

Curt: OK.

We have something new here: a message from the model builder Mace
stating that it has found a model for the input. This means that the
discourse is consistent. What does the model that Mace built look like?
Clever Curt has a new reserved command models that allows us to
inspect the models created in the course of the dialogue:

> models

1 model([d1],[f(1,dance,[d1]),f(0,mia,d1)])

This displays the models using the notation introduced in Chapter 1.
Here Mace has found the simplest possible model for the discourse: a
model with a domain consisting of one entity, named Mia, that has the
property of dancing.

Very nice—but be careful! The models we are given are not always
those we might expect. To give an example, let’s extend the previous
discourse as follows:

> Jody dances

Message (consistency checking): mace found a result.

Curt: OK.
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So far so good. Mace has (correctly) told us that the discourse consisting
of the sentence Mia dances followed by the sentence Jody dances is
consistent (that is, Mace succeeded in building a model of it). But now
let’s look at the model it constructed:

> models

1 model([d1],[f(1,dance,[d1]),f(0,jody,d1),f(0,mia,d1)])

The model in its memory still contains only one entity d1—this
entity has two names (namely Jody and Mia) and it dances. This is a
logically sensible model of the discourse, but it is probably not what
you had in mind. Why does Mace give us this model? Because model
builders normally try to find a minimal model. And as there is no
information at Curt’s disposal telling it that Mia and Jody are two
different people, it maps both names to the same entity. When we
explicitly tell Curt that Mia and Jody are different, Curt gives us the
expected model:

> Mia is not Jody.

Message (consistency checking): mace found a result.

Curt: OK.

> models

1 model([d1,d2],[f(0,mia,d1),f(0,jody,d2),f(1,dance,[d1,d2])])

As a final example, let’s give Clever Curt the dialogue that Rugrat
Curt failed on:

> Vincent is a man

Message (consistency checking): mace found a result.

Curt: OK.

> Mia likes every man.

Message (consistency checking): mace found a result.

Curt: OK.

> Mia does not like Vincent.

Message (consistency checking): bliksem found a result.

Curt: No! I do not believe that!

Here we see a natural interplay between the theorem prover and the
model builder. The model builder shows consistency (for the first two
lines of dialogue) and then the theorem prover steps in and detects the
inconsistency introduced by the third line.

Now for the implementation. Because Clever Curt is an extension of
Rugrat Curt, once again there is relatively little that changes. One
change is the definition of consistentReadings/3 which is now a
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three-place predicate (because we want to keep track of the models
returned by the model builder):

curtUpdate(Input,Moves,run):-

kellerStorage(Input,Readings), !,

updateHistory(Input),

consistentReadings(Readings,[]-ConsReadings,[]-Models),

(

ConsReadings=[],

Moves=[contradiction]

;

\+ ConsReadings=[],

Moves=[accept],

combine(ConsReadings,CombinedReadings),

updateReadings(CombinedReadings),

updateModels(Models)

).

The predicate consistent/3 is defined as follows. It sets the max-
imum domain size, and then makes a call to callTPandMB/6 (recall
Chapter 5), prints the result and succeeds only if there is no proof and
a model could be constructed. Note that the formula given to the the-
orem prover is the negation of the formula given to the model builder.

consistent([Old|_],New,Model):-

Size=15,

callTPandMB(not(and(Old,New)),and(Old,New),Size,

Proof,Model,Engine),

format(’~nMessage (consistency checking): \c

~p found a result.’,[Engine]),

\+ Proof=proof, Model=model([_|_],_).

consistent([],New,Model):-

Size=15,

callTPandMB(not(New),New,Size,Proof,Model,Engine),

format(’~nMessage (consistency checking): \c

~p found a result.’,[Engine]),

\+ Proof=proof, Model=model([_|_],_).

And that’s pretty much it. Once again, we suggest the reader thinks
hard about the following exercises before moving on.

Exercise 6.3.1 Load Clever Curt and experiment with different discourses.
Ask Curt to display the models it finds for consistent discourses. Are there
any ‘strange’ models? Find some new examples of inconsistent discourses. Do
the theorem prover and model builder always interact in the expected way?

Exercise 6.3.2 In Exercise 6.2.3 we asked you to find a natural language
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example which you knew to be inconsistent, and which Rugrat Curt could
build a representation for, but which Rugrat Curt could not prove inconsis-
tent. How does Clever Curt handle your example?

Programs for Clever Curt

cleverCurt.pl

This file loads everything needed to run Clever Curt.

6.4 Sensitive Curt

Detecting inconsistency is one of the most fundamental inference tasks
of all, and Clever Curt handles it rather well. But there is another
task of interest in natural language semantics, namely informativity
checking. It is often important to be able to distinguish old and new
information.

Clever Curt can’t do this. For example, consider the following dia-
logue:

> Vincent knows every boxer

Message (consistency checking): mace found a result.

Curt: OK.

> Butch is a boxer

Message (consistency checking): mace found a result.

Curt: OK.

> Vincent knows Butch

Message (consistency checking): mace found a result.

Curt: OK.

The third sentence, Vincent knows Butch, follows from the previous
two sentences, Vincent knows every boxer and Butch is a boxer. That
is, it doesn’t introduce any new information—it is uninformative with
respect to what has gone before. Clever Curt, however, doesn’t realise
this. Now, in some contexts this example wouldn’t be a problematic
example of language use, but Clever Curt can’t detect even extremely
blatant examples of repeated information:

> Mia smokes

Message (consistency checking): mace found a result.

Curt: OK.
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> Mia smokes

Message (consistency checking): mace found a result.

Curt: OK.

> Mia smokes

Message (consistency checking): mace found a result.

Curt: OK.

In short, Clever Curt is blissfully unaware of the difference between
old and new information. How can we sensitise Curt to this distinction?

We learned two important answers in Chapter 5 (a different answer
is explored in Exercise 6.4.2). First, we learned that theorem provers
provide us with a negative check for informativity. That is, if Discourse-

So-Far is the first-order representation built by Curt from the preceding
dialogue, and φ is the first-order representation of the latest sentence,
then we can use a theorem prover to test whether

Discourse-So-Far |= φ.

By the semantic deduction theorem, we can do so by asking the theorem
prover to test the validity of the formula

Discourse-So-Far → φ,

or (equivalently) of

¬(Discourse-So-Far ∧ ¬φ).

If the prover can do this, then the latest sentence is not informative
with respect to the previous discourse. We also learned that model
builders provide us with a (partial) positive check for informativity. So
if a model builder can show that

Discourse-So-Far ∧ ¬φ
has a model, then the latest sentence is informative with respect to the
previous discourse. (Note that once again we have arranged matters
so that the formula given to the theorem prover is the negation of the
formula given to the model builder.)

Both checks are built into Sensitive Curt (see file sensitiveCurt.pl).
Sensitive Curt is an extension of Clever Curt (that is, Sensitive Curt
performs positive and negative consistency checks in parallel). But
Sensitive Curt is also alert for uninformative contributions by the user.
It does so by using a theorem prover and model builder in parallel to
check whether new contributions are informative with respect to the
readings Curt has in its memory.

Here’s an example of Sensitive Curt in action:

> Mia smokes
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Message (consistency checking): mace found a result.

Curt: OK.

> Mia smokes

Message (consistency checking): mace found a result

Message (informativity checking): bliksem found a result.

Curt: Well, that is obvious!

This is how Sensitive Curt behaves, but how is it implemented? The
key step is to add yet another filter to the clause curtUpdate/3. As well
as watching out for consistent readings (as we did in Clever Curt) we
check whether or not readings are informative by using the predicate
informativeReadings/2:

curtUpdate(Input,Moves,run):-

kellerStorage(Input,Readings), !,

updateHistory(Input),

consistentReadings(Readings,[]-ConsReadings,[]-Models),

(

ConsReadings=[],

Moves=[contradiction]

;

\+ ConsReadings=[],

informativeReadings(ConsReadings,[]-InfReadings),

(

InfReadings=[],

Moves=[obvious]

;

\+ InfReadings=[],

Moves=[accept]

),

combine(ConsReadings,CombinedReadings),

updateReadings(CombinedReadings),

updateModels(Models)

).

There are two disjunctive clauses in this predicate. The first clause
checks whether the number of readings is empty. If this is the case,
all readings are inconsistent, so there is no need to check for informa-
tivity. The second disjunctive clause checks if there are no informative
readings among the set of consistent readings. It does so with the help
of the predicate informativeReadings/2. This sets the reply-move
[obvious] if it succeeds. Otherwise, the reply-moves gets the value
[accept].

This predicate is defined as follows:

informativeReadings([],I-I).
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informativeReadings([New|L],I1-I2):-

readings(Old),

(

informative(Old,New), !,

informativeReadings(L,[New|I1]-I2)

;

informativeReadings(L,I1-I2)

).

So, how is informative/2 implemented? As follows:

informative([O|_],N):-

Size=15,

callTPandMB(not(and(O,not(N))),and(O,not(N)),Size,

Proof,Model,Engine),

format(’~nMessage (informativity checking): \c

~p found a result.’,[Engine]),

\+ Proof=proof, Model=model([_|_],_).

informative([],New):-

Size=15,

callTPandMB(New,not(New),Size,Proof,Model,Engine),

format(’~nMessage (informativity checking): \c

~p found a result.’,[Engine]),

\+ Proof=proof, Model=model([_|_],_).

Finally, because we have added a new reply-move, we need to add a
clause for the realisation of that move:

realiseMove(obvious,’Well, that is obvious!’).

And that’s that. But before moving on, a few more remarks are in
order.

Clever Curt was completely insensitive to the distinction between
new and old information. Sensitive Curt goes to the other extreme—it
is completely tuned to this distinction (or at least, tuned to them up to
the limits imposed by the theorem prover and the model builder that it
uses). That is, within these limits, Curt can judge whether arguments
are valid or invalid.

Recall from Chapter 1 that a natural language argument is a se-
quence of sentences, the last of which is called the conclusion, the rest
premises. Here, for example, is a simple two premise natural language
argument:

(6)
Vincent knows every boxer.

Butch is a boxer.

Vincent knows Butch.
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This argument is valid . If the premises are true, then the conclusion
is true too. And if we give the premises and conclusions of this argu-
ment to Sensitive Curt, it will smugly announce ‘Well, that is obvious!’,
thereby establishing that the argument is valid.

Similarly, we can use Sensitive Curt to show that arguments are not
valid. The following, for instance, is not a valid argument:

(7)
If Mia snorts, then Vincent smokes.

Vincent smokes.

Mia snorts.

If we enter these three lines one by one, Sensitive Curt will not make its
triumphant ‘Well, that is obvious!’ cry. For it’s not a valid argument at
all. If you doubt whether Sensitive Curt is right about this try, give it
the same two premises, but change the third line to Mia does not snort.
Sensitive Curt will happily generate a model, thereby showing that Mia

snorts is informative with respect to the premises, and hence that the
original argument is not valid.

One final remark about argumentation is worth making. Consider
the following argument:

(8)
A woman loves every man.

Every boxer is a man.

A woman loves every boxer.

Is this a valid or not? The answer is: sometime yes, sometimes no.
The premises have scope ambiguities, and so does the conclusion, so it
really depends on which readings are intended. We leave the reader to
sort out the details in the following exercise.

Exercise 6.4.1 Try Sensitive Curt on a number of examples. A good start-
ing point is the argument just given. When is it valid, and when is it invalid?
(Recall that there is a reserved command select to allow us to choose which
reading is carried through.)

Exercise 6.4.2 In the text we used the approach discussed in Chapter 5
(namely running a theorem prover and model builder in parallel) to deter-
mine informativity. But it is interesting to think about other methods of
establishing informativity.

Clever Curt carries out consistency checks before it checks for informativ-
ity, so if φ is a first-order representation of (one of the readings of) the new
sentence that survives this check, then we know that φ is consistent with what
has gone before. Now, suppose that M is the model Clever Curt has made
for the discourse so far, and suppose that φ is false in this model. What does
this tell us? Use this observation (and the first-order model checker imple-
mented in Chapter 1) to implement a positive test for informativity. What are
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the advantages and disadvantages of this approach to informativity checking
compared to the approach in the text?

Programs for Sensitive Curt

sensitiveCurt.pl

This file loads everything needed to run Sensitive Curt.

6.5 Scrupulous Curt

Although Sensitive Curt can perform both consistency and informa-
tivity checking, in one respect it is rather naive: it accepts as distinct
readings all the output provided by the Keller Storage program. Now,
the Keller Storage program does weed out α-equivalent readings, but it
can’t detect more logically sophisticated examples of equivalent read-
ings. Consider, for example, the following:

> A boxer loves a woman.

Message (consistency checking): mace found a result.

Message (consistency checking): mace found a result.

Curt: OK.

> readings

1 some A (boxer(A) & some B (woman(B) & love(A,B)))

2 some A (woman(A) & some B (boxer(B) & love(B,A)))

Now, a superficial glance at this output suggests that this sentence
has two readings. But it should be intuitively obvious that there is
really only one reading, hence the two formulas above must boil down
to the same thing. This is easy to show. First note that we can move the
innermost quantifiers to the outside without changing the meaning:

1 some A some B (boxer(A) & (woman(B) & love(A,B)))

2 some A some B (woman(A) & (boxer(B) & love(B,A)))

Then, by appealing to the commutativity and associativity of conjunc-
tion, we can rewrite the first formula as follows:

1 some A some B (woman(B) & (boxer(A) & love(A,B)))

Finally, if we permute the existential quantifiers at the start of the first
formula (another operation which does not change the meaning) we
obtain:

1 some B some A (woman(B) & (boxer(A) & love(A,B)))
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But this is α-equivalent to

2 some A some B (woman(A) & (boxer(B) & love(B,A))).

Hence both representations say the same thing, hence one of the rep-
resentations can be eliminated.

Now, it would be nice if our system could eliminate superfluous read-
ings, and this is what Scrupulous Curt (see scrupulousCurt.pl) does
for us. In essence, given two readings φ and ψ from a set of readings,
Scrupulous Curt calls the theorem prover to try and prove both φ→ ψ
and ψ → φ (that is, it tries to prove φ↔ ψ). Scrupulous Curt has a new
reserved command called summary which eliminates logically equivalent
readings from its memory. Here is how Scrupulous Curt deals with the
previous example:

> A boxer loves a woman

Message (consistency checking): mace found a result.

Message (consistency checking): mace found a result.

Message (informativity checking): mace found a result.

Message (informativity checking): paradox found a result.

Curt: OK.

> summary

Message (eliminating equivalent readings): there are 2 readings:

1 some(A,and(woman(A),some(B,and(boxer(B),love(B,A)))))

2 some(A,and(boxer(A),some(B,and(woman(B),love(A,B)))))

Readings 1 and 2 are equivalent (otter).

> readings

1 some(A,and(boxer(A),some(B,and(woman(B),love(A,B)))))

Well, that is what Scrupulous Curt does, but how does it work? We
need to make the following changes to Sensitive Curt. First we extend
the curtUpdate/3 predicate:

curtUpdate([summary],[],run):-

readings(Readings),

elimEquivReadings(Readings,Unique),

updateReadings(Unique),

updateModels([]).

The predicate that pulls this all together is elimEquivReadings/2.
This consists of three clauses. The first and second clauses are for the
cases where there are no readings or only one reading. The third clause
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numbers the readings and gives them to elimEquivReadings/3, which
is where the logical crunching is carried out.

elimEquivReadings([],[]).

elimEquivReadings([Reading],[Reading]).

elimEquivReadings(Readings,Unique):-

numberReadings(Readings,0,N,Numbered),

format(’~nMessage (eliminating equivalent readings): \c

there are ~p readings:’,[N]),

printRepresentations(Readings),

elimEquivReadings(Numbered,[],Unique).

Numbering the readings is easy—it’s done by converting the list of
readings into a list of terms n/2 where the first argument is the number,
and the second argument holds the reading:

numberReadings([],N,N,[]):-

N > 1.

numberReadings([X|L1],N1,N3,[n(N2,X)|L2]):-

N2 is N1 + 1,

numberReadings(L1,N2,N3,L2).

And now for elimEquivReadings/3, which is where we actually try
to prove the equivalences. This predicate has two clauses. The first
clause selects two numbered readings, checks whether we haven’t tested
equivalence for these readings already (it does so using the book-keeping
term diff/2), and calls the theorem prover. This is repeated (using
recursion) until all pairs of readings are checked, and this is where the
second clause comes into action, which converts the list of numbered
readings back into an ordinary list of readings:

elimEquivReadings(Numbered,Diff,Unique):-

selectFromList(n(N1,R1),Numbered,Readings),

memberList(n(N2,R2),Readings),

\+ memberList(diff(N1,N2),Diff), !,

Formula=and(imp(R1,R2),imp(R2,R1)),

callTP(Formula,Result,Engine),

(

Result=proof, !,

format(’Readings ~p and ~p are equivalent \c

(~p).~n’,[N1,N2,Engine]),

elimEquivReadings(Readings,Diff,Unique)

;

format(’Readings ~p and ~p are probably \c

not equivalent.~n’,[N1,N2]),
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elimEquivReadings([n(N1,R1)|Readings],

[diff(N1,N2),diff(N2,N1)|Diff],Unique)

).

elimEquivReadings(Numbered,_,Unique):-

findall(Reading,memberList(n(_,Reading),Numbered),Unique).

And that’s that. But is this all there is to it? Well, yes and no. Note
that we’ve only made use of a theorem prover. Can’t a model builder
help us out here too? Yes, of course it can, as the following dialogue
makes clear:

> Every boxer loves a woman.

Message (consistency checking): mace found a result.

Message (consistency checking): mace found a result.

Curt: OK.

> summary

Message (eliminating equivalent readings):

Readings 1 and 2 are probably not equivalent.

Now (as every reader of this book should know by now!) the two
readings of Every boxer loves a woman are certainly not equivalent.
But that’s not what Scrupulous Curt says. Scrupulous Curt is indeed
scrupulous: it merely says that the two readings are probably not equiv-
alent. Why? Because what has happened in this case is that the theorem
prover has tried, and failed, to prove equivalence. But failure to prove
something is no guarantee that a proof does not exist. It would be nice
to use the model builder to build a concrete model in which one of
the formulas is true and the other false, thereby explicitly showing the
non-equivalence of these formulas. The reader is asked to implement
this extension in Exercise 6.5.4

Exercise 6.5.1 Try Scrupulous Curt on other examples involving spurious
scoping ambiguities. Test it to destruction. That is, try to come up with
examples that grind Scrupulous Curt to a halt.

Exercise 6.5.2 As the previous exercise shows, it is easy to overload Scrupu-
lous Curt. This is not surprising: even quite simple sentences may give rise
to lots of readings, and theorem proving is a computationally intensive task,
so systematically testing for equivalences on all readings is not exactly a
holiday!

Nonetheless, we certainly didn’t do ourselves any favours in the above
implementation. It is possible to rewrite the Prolog code so that fewer calls
to the theorem prover are made. (Hint: if you have already proved that
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φ → θ and θ → ψ it follows that φ → ψ; calling a theorem prover on this
last problem is a waste of resources.)

Exercise 6.5.3 Sometimes (recall Chapter 3) there is a strongest reading,
namely one that implies all the others. And sometimes (recall the Every owner

of a hashbar. . . example in Chapter 3) there are two (or more) strongest
readings (that is, sometimes there is a collection of readings φ1, . . . , φn, such
that any other reading follows from one of these formulas).

Rewrite Scrupulous Curt so that it calculates all the strongest readings,
retains them, and throws all other readings away.

Exercise 6.5.4 Extend eliminateEquivalentReadings/3 by calling a model
builder in parallel to explicitly demonstrate the non-equivalence of readings.

Programs for Scrupulous Curt

scrupulousCurt.pl

This file loads everything needed to run Scrupulous Curt.

elimEquivReadings.pl

Contains the predicates for eliminating equivalent readings.

6.6 Knowledgeable Curt

Curt can now do so many clever things (perform consistency and in-
formativity checks, and weed out redundant readings) that it is rather
sad that we now have to make an insulting observation about it: Curt
is ignorant. Pig ignorant. It knows absolutely nothing about anything,
and this can make its responses look absurd. Consider the following
example:

> Jody is a woman.

Message (informativity checking): mace found a result.

Message (consistency checking): mace found a result.

Curt: OK.

> Jody is a plant.

Message (consistency checking): mace found a result.

Message (informativity checking): mace found a result.

Curt: OK.
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A human being, of course, immediately sees the conflict between the
claims that Jody is a woman and that she is a plant. But for Scrupulous
Curt, ignorance is bliss. It blindly accepts the input and carries on.

What should we do? Well, there is only one cure for ignorance: knowl-
edge, knowledge, and yet more knowledge! Adding background knowl-
edge leads us to Knowledgeable Curt, an educated version of Scrupulous
Curt. Now, recall the discussion of Section 1.4. As we pointed out there,
one of the pleasant aspects of using first-order logic as a representation
formalism is the simple way it enables background knowledge to be in-
corporated into inference. If we can formulate the required background
knowledge in first-order logic, then using this knowledge is merely a
matter of using these formulas as additional premises. Let’s be precise
about what “using these formulas as additional premises” means.

In the versions of Curt we have seen so far, if Discourse-So-Far is the
representation built by Curt from the preceding dialogue, and φ is the
representation of the latest sentence, then consistency checking boils
down to using a theorem prover to test whether

Discourse-So-Far |= ¬φ
(the negative test) and simultaneously using the model builder to check
whether

Discourse-So-Far ∧ φ

has a model (the partial positive test). As for informativity checking,
this boils down to using a theorem prover to test whether

Discourse-So-Far |= φ

(the negative test) and simultaneously using the model builder to check
whether

Discourse-So-Far ∧ ¬φ
has a model (the partial positive test).

So what happens when we add (first-order) background knowledge?
Well, let’s suppose that we have written down first-order formulas ex-
pressing the required background knowledge, and let’s suppose that we
have classified this knowledge into three kinds: lexical knowledge (LK),
world knowledge (WK), and situational knowledge (SK). Then consis-
tency checking boils down to using a theorem prover to test whether

LK ∧ WK ∧ SK ∧ Discourse-So-Far |= ¬φ
(the negative test) and simultaneously using the model builder to check
whether

LK ∧ WK ∧ SK ∧ Discourse-So-Far ∧ φ
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has a model (the partial positive test). As for informativity checking,
this boils down to using a theorem prover to test whether

LK ∧ WK ∧ SK ∧ Discourse-So-Far |= φ

(the negative test) and simultaneously using the model builder to check
whether

LK ∧ WK ∧ SK ∧ Discourse-So-Far ∧ ¬φ
has a model (the partial positive test).

Let’s look at an example. Knowledgeable Curt has a small fund of
lexical knowledge, world knowledge, and situational knowledge at its
disposal, and among the things it knows is that women are people and
that people cannot be plants. Knowledgeable Curt brings this informa-
tion to bear in the way just described, and thus handles the previous
dialogue differently:

> Jody is a woman.

Message (consistency checking): mace found a result.

Message (informativity checking): mace found a result.

Curt: OK.

> Jody is a plant.

Message (consistency checking): bliksem found a result.

Curt: No! I do not believe that!

This is a conceptually clean and simple way of thinking about infer-
ences that involve knowledge. Nonetheless, one point should be made
right away: a lot of knowledge is needed to ensure that Curt behaves in
even a semi-sensible way. It is revealing to see just how much informa-
tion Knowledgeable Curt brings to bear on even the simplest problem.
Consider the following dialogue:

> Mia smokes.

Message (consistency checking): mace found a result.

Message (informativity checking): mace found a result.

Curt: OK.

> readings

1 smoke(mia)

This dialogue is about as simple as it gets: one sentence and one
reading (and a very simple reading at that). But when we look at what
took place behind the scenes, we are in for a bit of a shock. Knowledge-
able Curt has a new reserved command knowledge which computes
and shows the background knowledge used for the current reading.
What background information did the model builder (and indeed, the
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theorem prover) take into account in its consistency check? All this:

> knowledge

1 (all A (event(A) > thing(A)) &

(all B (entity(B) > thing(B)) &

(all C (object(C) > entity(C)) &

(all D (organism(D) > entity(D)) &

(all E (animal(E) > organism(E)) &

(all F (person(F) > organism(F)) &

(all G (man(G) > person(G)) &

(all H (woman(H) > person(H)) &

(all I (entity(I) > ~ event(I)) &

(all J (organism(J) > ~ object(J)) &

(all K (person(K) > ~ animal(K)) &

(all L (woman(L) > ~ man(L)) &

all M (M = mia > woman(M))))))))))))))

Now, that’s a lot of formulas. And this raises a host of questions.
Where exactly did Knowledgeable Curt get hold of this knowledge?
Where are these formulas stored? Is this all the knowledge at its dis-
posal, or is it merely a selection? And if it’s a selection, why were
these formulas selected for this inference and not others? And how
exactly was this background knowledge chosen? Did we haphazardly
write down a host of useful looking formulas, or was there an attempt
to structure the knowledge representation process? We discuss these
issues in the coming pages.

Lexical Knowledge

Well, did we just haphazardly write down a host of plausible looking
formulas, or did we try to take a more structured approach? Unsurpris-
ingly, we tried to be as systematic as possible. Formulating background
knowledge is an extremely difficult business. Even for a simple system
like Curt, it is not easy to see what is required, and it is easy to make
mistakes or overlook things. Guiding principles are vital.

We’ve already mentioned one useful principle: splitting background
knowledge into lexical knowledge (meaning of words), world knowledge
(general facts about the world) and situational knowledge (facts that
hold in the current situation). Why is this helpful? For a start, simply
realising that these distinctions can be drawn (even if they are a bit
fuzzy) is a useful first step. More importantly, isolating lexical knowl-
edge as an interesting subcategory of knowledge forces us to think hard
about the meaning of words—and this will lead us to systematic ways
of formulating and storing knowledge.
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But haven’t we already thought hard about the meaning of words?
In one sense, yes. For example we have said that the meaning of man

is λy.man(y), and that the meaning of every is λu.λv.∀x(u@x→v@x).
These are important things to say about the meanings of these words.
In particular, these representations pin down, precisely and elegantly,
what we might call the combinatorial, or compositional, meanings of
these words.

But there is an important difference between the compositional
meanings of man (an open class word, namely a noun) and every (a
closed class word, namely a determiner). Intuitively, we feel that as-
sociating every with the representation λu.λv.∀x(u@x→v@x) gives us
the essence of its meaning; clearly there are other things that could
(and should) be said, but simply giving this representation accom-
plishes a lot. But we certainly don’t feel this way when we give man the
representation λy.man(y). Far from thinking we’ve said it all, we feel
we’ve hardly started. Instead of getting to grips with all aspects of the
meaning of man, this definition essentially gives us the symbol man,
and that’s that. In particular, how this symbol relates to other symbols
such as person, male, father, husband, chromosome, and so on,
is completely unspecified.

In short, we need to say something about lexical semantics. Lexical
semantics studies the relationships that hold between the concepts ex-
pressed by words. It is a fascinating (and difficult) subject which we
won’t be able to explore in this book. But it is important to say some-
thing about it, for thinking systematically about the relationships that
hold between (the concepts expressed by) words is an important way
of structuring background knowledge. We shall illustrate this with a
simple (but systematic) treatment of nouns. In essence we will describe
the fine structure of entities (that is, the things these words denote)
by designing an ontology of concepts. The work involved is essentially
classificatory: we arrange the concepts expressed by words into a hier-
archy. Once we’ve done this, we’ll go on and discuss how to make such
knowledge available to Curt.

Here is a simple tree structure representing an ontology made up of
six concepts (organism, animal, plant, person, man, and woman):

organism

animal plant person

man woman
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These are the kind of tree-structures that we will use to classify
nouns. Thinking about noun meanings in terms of trees is a natural
way of formulating knowledge, for such diagrams enable us to use the
idea of inheritance: daughter nodes inherit information from mother
nodes. For example, according to the above tree, every plant is an
organism, every animal is an organism, every person is an organism,
every man is a person, and every woman is a person.

Some of these classes will be disjoint. For example, the concept ani-
mal is disjoint from plant, because animals are classified as animate,
whereas plants are inanimate. That is, according to this partial picture
of the world, nothing can be a plant and an animal, nothing can be an
animal and a person, and nothing can be a plant and a person. And
other classes may inherit such disjointness properties. For example,
man inherits the property of being disjoint from plants and animals,
because man is a daughter node of person. To sum up, the tree implic-
itly encodes the idea of disjointness between concepts: daughter nodes
are disjoint.

Read this way, the classification presented by the above tree makes
fairly good sense. It is possible to quibble with the terminology—a biol-
ogist would insist that persons are animals—but for many purposes it
is a sensible starting point. But whether or not you like this particular
classification, it is important that you appreciate the tree-based think-
ing that gave rise to it: such thinking is a useful way of structuring our
attempts at knowledge representation.

Once we have designed an ontology, we want to use this informa-
tion to perform inference. Now, in this book the inference tools used
are those of first-order logic—so if we want to make use of the lexical
knowledge we have so carefully defined, we need to make it available
in a form that first-order theorem provers, model builders and model
checkers can use.

This is easy to do—we simply implement the ontology as a collection
of first-order axioms:

∀x(animal(x)→organism(x))
∀x(plant(x)→organism(x))
∀x(person(x)→organism(x))
∀x(man(x)→person(x))
∀x(woman(x)→person(x))

∀x(animal(x)→ ¬plant(x))
∀x(animal(x)→ ¬person(x))
∀x(person(x)→ ¬plant(x))
∀x(man(x)→ ¬woman(x)).
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That’s the basic idea. Let’s now apply it on a bigger scale, and
attempt to classify all the nouns in our lexicon. That is, we shall give
a tree that covers all of the nouns that our Prolog programs work
with. Obviously there are many ways of carrying out this task, and it
is highly likely that if two different people classified the same set of
nouns, they’d each come up with a different ontology, for everyone has
a slightly different conception of the world. Is this a serious obstacle?
For our purposes, no. We simply want to illustrate how important it is
to provide some (consistent) picture of the world, and how to put this
picture to work. But of course, if you want to adapt the tools provided in
this book to some particular domain, then it is virtually inevitable that
you will have to extend or otherwise modify the ontology provided for
Knowledgeable Curt. This will require a serious (and probably lengthy)
analysis of your problem domain. There’s no getting away from it:
knowledge representation is hard work.

Here is the top of our ontology for nouns:

thing

event entity

object

food artifact

building instrument

organism

animal person plant

Just below the root of this structure we have event (an abstract
thing), and entity (a concrete thing). Then entity is divided into
object (any non-living entity) and organism (a living entity). The
remaining classifications should be fairly self-explanatory.

And that is our ontology (or at least, the uppermost part of it). And
now, taking this tree as our point of departure, the next step is to use it
as a guide to the world of nouns (or at least, the nouns in our lexicon).
That is, we must go painstakingly through our lexicon and relate each
of the nouns it contains to one of these nodes. For example, foot massage

is an event, piercing is an artifact, five dollar shake is a beverage, and so
on. Incidentally, this approach also let’s us deal with homonyms (words
that have multiple unconnected meanings), as Exercise 6.6.1 asks the
reader to show.
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All the examples discussed so far involve noun meaning—and indeed,
nearly all of Knowledgeable Curt’s lexical knowledge is about nouns.
Nonetheless, it also knows a little about proper names (for example,
that Mia is a woman’s name), about adjectives (for example, that no
object can be both blue and red) and about verbs (for example, that
die holds of organisms).

The file lexicalKnowledge.pl contains the lexical knowledge coded
as axioms. The axioms are stored using the lexicalKnowledge/3 pred-
icate. Here are some examples:

lexicalKnowledge(organism,1,Axiom):-

Axiom = all(A,imp(organism(A),entity(A))).

lexicalKnowledge(animal,1,Axiom):-

Axiom = all(A,imp(animal(A),organism(A))).

lexicalKnowledge(plant,1,Axiom):-

Axiom = all(A,imp(plant(A),not(person(A)))).

lexicalKnowledge(instrument,1,Axiom):-

Axiom = all(A,imp(instrument(A),not(building(A)))).

Note that we do not give an unstructured list of axioms. Instead,
lexicalKnowledge/3 also captures information about what we call
the trigger symbol and its arity. For instance, in the first axiom above,
organism (a one-place predicate symbol) is the trigger symbol for the
axiom. We won’t discuss the role of trigger symbols now, but will return
to the topic at the end of this section.

World Knowledge

The lexical knowledge we have added is useful, but Curt needs more
than the knowledge generated by words alone—it needs knowledge of
a more general kind: world knowledge.

It is hard to be precise about what should fall under the heading
‘world knowledge’. For example, it is arguable that some of the knowl-
edge we have called ‘lexical knowledge’ could have (and perhaps should
have) been thought of as ‘world knowledge’, and that some of our ‘world
knowledge’ is really lexical. Moreover, it is difficult to formulate world
knowledge in a systematic manner; a truly systematic approach is prob-
ably only possible in clearly defined application domains. So we haven’t
made a serious attempt to add world knowledge; in essence we’ve sim-
ply created a place in our inference architecture where world knowledge
can be added as needed.

This place is the file worldKnowledge.pl. It contains three example
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axioms:

worldKnowledge(have,2,Axiom):-

Axiom = and(not(some(X,have(X,X))),all(X,all(Y,

imp(some(Z,and(object(X),and(object(Y),

and(object(Z),and(have(X,Z),

have(Y,Z)))))),eq(X,Y))))).

worldKnowledge(husband,1,Axiom):-

Axiom = all(A,imp(husband(A),married(A))).

worldKnowledge(wife,1,Axiom):-

Axiom = all(A,imp(wife(A),married(A))).

That is, the first axiom tries to pin down some very general facts
about relations between objects: it says that no object has itself as a
subpart, and that no object is a subpart of two distinct objects. The
next two axioms specify an obvious consequence of being a wife (or
being a husband), namely that if you are either you are married.

It should be clear that such knowledge has an important role to
play in inference and thus is relevant to computational semantics. For
a start, with this knowledge at its disposal, Curt can be more choosy
about which sentences and discourses it accepts as informative and
consistent. For example, suppose we start a discourse with the claim
that

Mia is Vincent’s wife.

This is perfectly reasonable—but if we then continued with

Mia is married.

we would like Curt to spot that this second sentence is not informative
with respect to the first. Exercise 6.6.4 asks the reader to extend the
grammar to cover such examples. We’ll soon see a more interesting
example of world knowledge in action, but first we’ll introduce the
concept of situational knowledge.

Situational Knowledge

World knowledge is intended to embody very general claims about
the world. Situational knowledge, on the other hand, is highly specific:
roughly speaking, it is the place in our inference architecture where
facts about the here-and-now live.

If you look at situationalKnowledge.pl you will find it contains
the following example axiom

situationalKnowledge(Axiom):-

Axiom = some(X,some(Y,and(car(X),and(car(Y),not(eq(X,Y)))))).
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That is, it states that the current situation contains at least two cars.

Here’s a nice example of this knowledge in action. If we use this
situational axiom together with our world knowledge axioms we can
filter out some impossible quantifier scopings. Consider the sentence
every car has a radio. This has the same structure as every boxer loves

a woman, but clearly world knowledge typically rules out the reading
where a radio has wide scope. After all—unless we are working in a do-
main containing no cars at all, or only one car—it is highly implausible
that all cars will share the same radio.

Here’s how Knowledgeable Curt handles this example:

> Every car has a radio.

Message (consistency checking): mace found a result.

Message (consistency checking): bliksem found a result.

Curt: OK.

That is, the Keller Storage program generates two candidate readings,
and consistency checking is performed. Now, the first message says that
the model builder Mace (which carries out the positive test) found a
result, which means that the first reading is consistent. However, the
second message says that the theorem prover Bliksem (which carries out
the negative test) found a result, which means that an inconsistency
was detected. And indeed, when we give the command readings we
see that only one of the candidate readings (namely, where every car

takes wide scope) has survived:

> ?- readings

1 all A (car(A) > some B (radio(B) & have(A,B)))

What lead Curt to reject the other reading? The interplay between
world and situational knowledge. From the world knowledge component
Curt drew on the principle that no object can be a subpart of two
distinct objects. Now, this alone is not enough to rule out the unwanted
scoping (after all, our application domain might not have contained any
cars). But the situational knowledge component supplied the additional
information that there were at least two cars, which enabled Curt to
spot the inconsistency.

Selecting Background Knowledge

We use the predicates lexicalKnowledge/3 and worldKnowledge/3 to
store background knowledge. For instance, for the concept car we have
the following axiom:

lexicalKnowledge(car,1,Axiom):-

Axiom = all(X,imp(car(X),vehicle(X)))).
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Recall that we called the first argument of lexicalKnowledge/3 the
trigger symbol for the axiom (in this case, we have car as trigger symbol
for the axiom ∀x(car(x)→vehicle(x))). Why do we need triggers?

The answer can be summed up in one word: efficiency. It should be
clear that storing all our axioms in one big unstructured database is not
a good idea. We don’t want to call on all the background knowledge we
have at disposal for every inference. The more background knowledge
we use, the greater the risk that we overwhelm our theorem provers and
model builders. Given a particular instance of a problem, we should
weed out axioms that are irrelevant. For example, if we are talking
about cars, we may well need to know about vehicles too—but there
is no need for knowledge about vehicles if we are only talking about
different kinds of beverages.

The predicate backgroundKnowledge/2 takes this into account by
selecting the background knowledge axioms related to a formula. Its
first argument should be instantiated to the formula you want your
background knowledge for (we call this the trigger formula), and the
second argument will be unified with a formula representing the back-
ground knowledge.

In essence, backgroundKnowledge/2 works as follows: it finds all the
non-logical symbols that appear in the trigger formula, and then checks
whether there are any axioms in the database containing these sym-
bols. It does so via the lexicalKnowledge/3 and worldKnowledge/3

predicates discussed earlier in this section. It forms the conjunctions
of all such formulas plus the situational knowledge, and only this se-
lected information is actually used in the inference task. (This rele-
vant conjunction is what you see when you use the reserved command
knowledge in Curt.)

The inclusion of backgroundKnowledge/2 certainly does not solve
the efficiency problems raised by working with background knowledge.
For a brutally direct demonstration of this, look at Exercise 6.6.10.
There we add the three classical axioms for equality as background
knowledge, and the reader will not find it hard to come up with exam-
ples where the use of these three simple axioms (and no others) over-
whelms the prover. In view of this fundamental example, it would be
naive to expect that any simple “select the relevant axioms predicate”
(such as backgroundKnowledge/2) is going to guarantee efficiency.

Rather, the point of including backgroundKnowledge/2 into our
inference architecture is this. First-order theorem proving—especially
with background knowledge—is computationally demanding. Nonethe-
less, it seems plausible that in many situations of relevance to com-
putational semantics, it may be possible to find useful heuristics that
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make life simpler. The predicate backgroundKnowledge/2 is essentially
a simple demonstration of how mechanisms for using heuristics might
be incorporated into our inference architecture.

Exercise 6.6.1 Think of a way to put homonyms (words that have multiple
unconnected meanings) in the ontology of nouns. For instance, according to
WordNet, a boxer could be someone who fights with his fists for sport, a
worker who packs things into containers, or a breed of stocky medium-sized
short-haired dog with a brindled coat and square-jawed muzzle developed in
Germany.

Exercise 6.6.2 Examine the predicates in the file backgroundKnowledge.pl,
in particular the predicates backgroundKnowledge/2, formula2symbols/2,
and computeBackgroundKnowledge/2.

Exercise 6.6.3 Some of the axioms at Knowledgeable Curt’s disposal are
too restrictive. For example, defining cleaning as a relation between persons
and artifacts means that Curt rejects the sentence Mia cleans Vincent. Change
the lexical knowledge so that this sentence (and sentences like Mia cleans a

plant) are accepted, but sentences like Mia cleans a footmassage are rejected.

Exercise 6.6.4 We would like Knowledgeable Curt to classify the discourse
Mia is Vincent’s wife. Mia is married. as uninformative. But although we have
the relevant axioms, the first sentence makes use of the genitive construction
(Vincent’s wife) and this is not covered by the grammar. Modify the grammar
so that such examples are covered, integrate your work into the inference
architecture, and check that the above example is correctly handled.

Exercise 6.6.5 The sentence Every boxer has a broken nose has two logically
distinct readings, but world knowledge rules one of these out as biologically
implausible. Make the changes necessary to ensure that Curt rejects the
unwanted reading in a situation with two boxers or more.

Exercise 6.6.6 Compare the performance of Knowledgeable Curt on the
Every boxer has a broken nose example when Bliksem and Otter, respectively,
are used as Curt’s theorem prover.

Exercise 6.6.7 Design a practical Prolog representation format for the on-
tology for nouns. Then write a Prolog predicate that automatically compiles
the ontology into first-order axioms.

Exercise 6.6.8 Use WordNet (see the Notes at the end of the chapter) as
a source to automatically generate an ontology for the nouns in the lexicon,
using the hypernym relation defined in WordNet.
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Exercise 6.6.9 Use WordNet as a source to automatically generate disjoint-
ness relations for the adjectives in the lexicon, using the antonym relation
defined in WordNet.

Exercise 6.6.10 Recall that Rugrat Curt didn’t know how to cope with
equality. A simple way to add equality reasoning to our home-brewed provers
is to add background knowledge that explains to Curt what equality means.
This can be done by adding the first-order equality axioms:

∀x(x = x) (reflexivity)
∀x∀y(x = y → y = x) (symmetry)
∀x∀y∀z(x = y ∧ y = z → x = z) (transitivity)

These three axioms are strong enough to infer everything that holds of the
equality relation in a first-order language, so by adding them to Rugrat Curt’s
background knowledge, in effect we convert our first-order theorem provers
into theorem provers for first-order logic plus equality.

Try this out. How well does it work in practice?

Programs for Knowledgeable Curt

knowledgeableCurt.pl

This file loads everything needed to run Knowledgeable Curt.

backgroundKnowledge.pl

Contains all the predicates for computing background knowledge.

6.7 Helpful Curt

The Curts we have met so far only allow us to assert information. There
is no way to query information, or at least no natural way. Helpful Curt
is a little more gracious:

> Vincent knows every woman.

Curt: OK.

> Mia is a woman.

Curt: OK.

> Who knows Mia?

Curt: This question makes sense!

Curt: vincent

Roughly speaking, Helpful Curt works as follows. It takes the user’s
wh-question, translates it into a quasi-logical form, uses the model
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checker developed in Chapter 1 to query the discourse model it has
built, and then generates a noun phrase that expresses the model
checker’s response. But this description is only a first approximation:
for reasons we shall discuss below, we’re also going to call the theo-
rem prover to see whether our answers are “fully warranted”. But this
is jumping ahead—for the time being, let’s focus on the central idea.
We want to hook Curt up to our model checker so that it can answer
questions. How do we go about doing this?

First the representational issue. Questions, unlike assertions, don’t
have truth-values, so it would be misleading to represent them as or-
dinary formulas. We will instead use a simple quasi-logical format to
represent their content. Here’s an example. We will represent the wh-
question Who shot Marvin? by:

que(X,person(X),shot(X,marvin)).

We represent all wh-questions using this format: a principal vari-
able (here X), the restriction (here person(X)), and the nuclear scope
(here shot(X,marvin)). This is similar to the way we represented the
quantifiers and the lambda operator in Prolog, and the resemblance
is intentional. Like the quantifiers and lambda, our question marker
que is a variable binder: que binds the free occurrences of the principal
variable X in both the restriction and the nuclear scope.

The semantic role of the restriction and nuclear scope should be
intuitively clear: the restriction represents what is being asked for, and
the nuclear scope supplies additional information that must hold of this
entity. Here are some more examples to think about:

Who did not shoot Marvin?

que(X,person(X),not(shot(X,marvin)))

Which customer ordered a five dollar shake?

que(Y,customer(Y),some(X,and(fdshake(X),order(Y,X))))

Which man or woman knows Butch?

que(X,or(man(X),woman(X)),know(X,butch)).

We have called these representations quasi-logical forms: they are not
first-order formulas, hence we can’t interpret them directly or (more to
the point) use them directly with inference tools. But we almost can.
The meaning of questions can be thought of in first-order logical terms if
we adopt the following two-step perspective: first, translate que(X,R,S)
into the first-order sentence some(X,and(R,S)), and use this to check
whether the question makes sense. Second, query the model with the
matrix of this first-order formula (that is, and(R,S)) to find suitable
instantiations for the free variable X. Let’s discuss this two-step process
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more carefully, for it lies at the heart of Helpful Curt.
The first step is to check that the sentence makes sense. We do so

by giving (the revised version of) the model checker from Chapter 1
the model so far built of the discourse, and then making the query
some(X,and(R,S)) about this model. If our model checker returns the
result undefined (undef), then we know that we can’t say anything use-
ful about this question. Here’s an example of a dialogue where Helpful
Curt runs into this situation:

> Vincent loves every woman.

Message (consistency checking): mace found a result.

Curt: OK.

> Who is a plant?

Curt: I have no idea.

What’s going on? With the first sentence we tell Curt something
about Vincent and his relation to women, and the model builder (here
Mace) successfully builds a model of the (consistent) situation described
by the input. Now, because Helpful Curt is an extension of Knowledge-
able Curt, this model will build in a lot of background information
supplied by the lexical and world knowledge components. Nonetheless,
there is simply no reason for Curt to build in any information about
plants on the basis of the input sentence, so it doesn’t do so. But this
means that the discourse model Mace constructs won’t be of the correct
signature to handle queries about plants, and when the model checker
is asked to do so it returns undef. This explains Curt’s (quite reason-
able) reaction: the question, with its abrupt change of topic, comes as
a shock, and is (quite rightly) dismissed.

So, that’s what happens if the model builder returns undef. But
what if the result is positive (pos) or negative (neg)? This tells that
we can answer the question, either positively or negatively. Now, if the
result is negative, then Curt will simply say “none”, and this is fine.
But if the response is positive then (because we are dealing with wh-
questions) the answer “yes” would be insufficient: in the positive case
we need to provide answers like “Mia” or “Mia and Vincent”. How
do we do this? We use our model checker once more—but this time,
rather than querying with the sentence some(X,and(R,S)), we throw
away the existential quantifier (thereby freeing X) and query as follows:

?- satisfy(and(R,S),Model,[g(X,A)],pos).

This query will unify A with an entity in the model that satisfies
both R and S—precisely what is required to generate an appropriate
positive answer to a wh-question.
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How is this implemented? The key predicate is answerQuestion/3,
which takes the question representation and the discourse model as
arguments and returns a set of reply-moves:

answerQuestion(que(X,R,S),Models,Moves):-

(

Models=[Model|_],

satisfy(some(X,and(R,S)),Model,[],Result),

\+ Result=undef,

!,

findall(A,satisfy(and(R,S),Model,[g(X,A)],pos),Answers),

realiseAnswer(Answers,que(X,R,S),Model,String),

Moves=[sensible_question,answer(String)]

;

Moves=[unknown_answer]

).

This predicate is constructed as a disjunction: the first part of the
disjunct deals with sensible questions (reply-moves: sensible-question
plus the answer), the second part deals with questions that cannot be
answered by Curt (reply-move: unknown-answer). It clearly shows that
the model checker is used twice: first to check whether the question
makes sense, and then (as an argument to findall/3) to collect the
entities that satisfy the query.

So far so good—but now we need to go a little deeper. We have
explained the core ideas involved in using a model checker to answer
questions, but question answering is a subtle business. Is querying a
discourse model really all that is involved in question answering? The
following observation should give us a pause for thought: discourse mod-
els show a possible picture of the world. The pictures they give show
us the way the agent imagines them to be: this need not correspond to
the way things actually are. Moreover, in the case of Curt, the ‘agent’
generating the discourse model is not a person blessed with a human
being’s sophisticated array of cognitive abilities: it’s just a Prolog pro-
gram calling a model builder.

Here’s a simple example of how things can go wrong. Suppose we tell
Helpful Curt that Mia or Jody dances. Depending on the model builder
used, it could be that the discourse model shows that either Mia dances
(and Jody does not) or that Jody dances (and Mia does not) or that
both dance. In such cases, if Curt simply uses the model checker to
inspect the discourse, then replying either “Mia” or “Jody” goes beyond
what is fully warranted on the basis of the information supplied by the
input sentence (together with the background knowledge).
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Now, we can’t resolve all the issues that such examples raise, but we
can do something. We used the phrase “fully warranted on the basis
of the information supplied by the input sentence (together with the
background knowledge)”. And this is something we can test for: we can
use a theorem prover to see whether the entity the model checker se-
lects is guaranteed to be an answer (given the discourse so far and the
background knowledge) or whether it is merely a possible answer (be-
cause of the particular choices the discourse model embodies). Building
in such a check gives rise to dialogues like this:

> Mia or Jody dances.

Message (consistency checking): mace found a result.

Curt: OK.

> Who dances?

Message (answer checking): unknown found result "unknown".

Curt: This question makes sense!

Curt: maybe jody

Let’s spell out what happened here. On the basis of the input sen-
tence Mia or Jody dances (a disjunction) the model builder built a dis-
course model in which Jody dances is true. Hence when asked Who

dances? by the user, Curt uses the model checker and finds that Jody

is a candidate answer. But now Helpful Curt lives up to his name: per-
haps Jody is only a candidate answer because of the peculiarities of the
particular discourse model built? Helpful Curt checks this possibility
by using the theorem prover to see whether Jody dances follows logi-
cally from the discourse so far and the background knowledge. In fact
it doesn’t—that is, the answer is not fully warranted—hence Helpful
Curt hedges its bets and responds maybe Jody. Here’s how the required
check is implemented:

checkAnswer(Answer,Proof):-

readings([F|_]),

backgroundKnowledge(F,BK),

callTP(imp(and(F,BK),Answer),Proof,Engine),

format(’~nMessage (answer checking): \c

~p found result "~p".’,[Engine,Proof]).

Now we are ready to examine the final step: how do we generate
answers on the basis of the model checker’s response. Rather than out-
putting the sort of response the model checker gives us (like d3) we
want Curt to generate a noun phrase that names, or at least describes,
this entity. How do we do this?
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The wh-questions we deal with only have noun phrases as possible
answers. Helpful Curt only generates two kinds of noun phrases, proper
names and indefinite noun phrases (in Exercise 6.7.5 we ask the reader
to extend Helpful Curt so that it can generate definite descriptions as
well). How do we choose between proper names and indefinite noun
phrases? We shall use the following rule of thumb: generating a proper
name is more informative than generating an indefinite noun phrase
(that is, we assume that Mia will generally be better as an answer
than a woman, given that we know that the entity chosen by the model
checker is indeed called Mia and is indeed a woman).

So our strategy will be to first attempt to generate a proper name
for entities of the model’s domain. The following code does this:

realiseString(que(X,R,S),Value,Model,String):-

lexEntry(pn,[symbol:Symbol,syntax:Answer|_]),

satisfy(eq(Y,Symbol),Model,[g(Y,Value)],pos), !,

checkAnswer(some(X,and(eq(X,Symbol),and(R,S))),Proof),

(

Proof=proof, !,

list2string(Answer,String)

;

list2string([maybe|Answer],String)

).

This clause is pretty straightforward. First it does a lexical look-
up for a proper name Answer with the constant Symbol. Then it uses
the model checker (note: this is the third round of calls to the model
checker!) to see if this symbol is one that matches the entity we want
to generate. It does so by posing a simple equality query to the model
checker. Using backtracking, it keeps on attempting to find a suitable
proper name until it either succeeds (in which case we propose the
proper name it found as answer) or fails (in which case we start trying
to generate an indefinite noun phrase). Suppose it succeeds. Then it
uses the theorem prover to check whether the answer is fully warranted
on the basis of the discourse so far and the background knowledge; this
is done using a call to checkAnswer/2 as we discussed above. If the
answer is not fully warranted, Curt adds a “maybe” before the proper
name, otherwise it responds with the proper name alone. As Answer is
declared in the lexicon to be a list of atoms, Helpful Curt builds the
final response via a call to list2string/2.

Then, if we fail to find a proper name for the entity given to us by
the model checker, we try to generate an indefinite noun phrase that
describes it instead. Here’s how:

realiseString(que(X,R,S),Value,Model,String):-
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lexEntry(noun,[symbol:Symbol,syntax:Answer|_]),

compose(Formula,Symbol,[X]),

satisfy(Formula,Model,[g(X,Value)],pos), !,

checkAnswer(some(X,and(Formula,and(R,S))),Proof),

(

Proof=proof, !,

list2string([a|Answer],String)

;

list2string([maybe,a|Answer],String)

).

This clause is very similar to the previous one. We start with a
lexical look-up for nouns (again we use backtracking to find a match),
then using the model checker we check whether the entity we’re trying
to describe has the property the noun expresses. If it does, we use the
theorem prover to see whether it is fully warranted (and add a “maybe”
if it is not) and use list2string/2 to output the final response as a
string.

We’re nearly there. All that remains is to define a high level predicate
that wraps the calls to realiseString/4 up:

realiseAnswer([],_,_,’none’).

realiseAnswer([Value],Q,Model,String):-

realiseString(Q,Value,Model,String).

realiseAnswer([Value1,Value2|Values],Q,Model,String):-

realiseString(Q,Value1,Model,String1),

realiseAnswer([Value2|Values],Q,Model,String2),

list2string([String1,and,String2],String).

The first clause deals with the case where no satisfying entity is
found, the second where one is found, and the third where several
are found. And that’s Helpful Curt (which you will find in the file
helpfulCurt.pl).

Exercise 6.7.1 Some of Curt’s answers (formed by nouns) to questions are
not as specific as they could be. Change the implementation of the realisation
of answers so that it gives the most specific possible answer.

Exercise 6.7.2 The generation of nouns as coded by realiseString/4

doesn’t necessarily generate the most informative answer. Play around with
Helpful Curt and identify cases where funny answers are generated and
explain the problem. Propose a solution to overcome this. Implement the
solution proposed in the previous exercise.
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Exercise 6.7.3 Use the restriction of questions to generate more appropri-
ate answers. For instance, Curt’s default negative answer to wh-questions is
none, but a more appropriate negative answer to a Who-question would be
nobody.

Exercise 6.7.4 Use the model checker to generate answers expressed by
universally quantified noun phrases such as everybody and everything.

Exercise 6.7.5 The clause of realiseString/4 implementing nouns always
generates nouns following an indefinite article. But answers can sometimes
be made more precise by generating a definite article instead. Discuss the
situations in which this is the case and provide an additional clause for
realiseString/4 that implements this.

Exercise 6.7.6 Extend the grammar fragment and main predicate in such
a way that yes-no questions are covered as well. Would you use the theorem
prover, the model builder, or the model checker (or all of them) to generate
an appropriate answer?

Exercise 6.7.7 Our grammar for English implements wh-questions by us-
ing the gap-threading technique to pass on the variable of the wh-phrase
down the syntax tree, as required in Who did Vincent kill?. Inspect the file
englishGrammar.pl to find out how exactly this is done.

Programs for Helpful Curt

helpfulCurt.pl

This file loads everything needed to run Helpful Curt.

Notes

Much of the content of this chapter requires little comment. In particu-
lar, as we remarked in the Introduction, the idea of using logic as a tool
for representation and inference in natural language is not novel—it’s
a mainstay of classical AI. But it is worth reflecting on the way we
developed this idea: by combining the best. The Curt systems combine
techniques for semantic construction developed by the formal seman-
tics community with the sophisticated theorem provers developed by
the automated reasoning community. Although the Curt systems are
merely simple programs designed for teaching purposes, we hope that
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the methodology of “combining the best available” underlying their de-
sign comes through clearly. We believe that this approach will be crucial
for the development of more sophisticated architectures for computa-
tional semantics.

While the use of theorem proving in natural language processing is
old hat, the use of model builders is a recent development. In spite of
this, model building has been used for a surprisingly wide range of lin-
guistic applications. For the use of model builders to construct models
of ongoing discourses, see Ramsay and Seville (2000) and Blackburn
and Bos (2003). First-order model building has also been used to ex-
tract information from spoken dialogues: Bos and Oka (2002) describe
a spoken dialogue system for activating domestic appliances in an in-
telligent house, and essentially the same architecture is used to control
a mobile robot with voice commands in Bos et al. (2003). At present
these systems only perform in reasonable time on relatively small do-
mains, but current research is starting to address ways of overcoming
these limitations, such as tuning model builders (and theorem provers)
to linguistic problems, making the model building process incremen-
tal, and using machine learning techniques to estimate domain sizes
(Bos, 2003). Model builders have also been proposed for the resolu-
tion of natural language ambiguity (see Gardent and Konrad (2000a),
Gardent and Webber (2001), and Cimiano (2003)), by exploiting the
concept of minimal models (that is, by looking for the smallest model of
some described situation). In addition to these practically-oriented pa-
pers, there is also recent theoretical work on model building for natural
language understanding; see Baumgartner and Kühn (1999), Kohlhase
(2000) and Kohlhase and Koller (2003). Finally, it’s worth remarking
that there are similarities between model building and an inference
technique called abduction. Abduction can be thought of as using de-
ductive rules backwards to provide explanations; for example, an ab-
ductive inference might use the information p→ q and q to hypothesise
p as a plausible explanation for q (after all, if p holds, then q follows de-
ductively from the given information). Search for explanations is clearly
an important form of inference, and in fact Hobbs et al. (1990) suggests
that abduction should be the inferential backbone of computational se-
mantics. The use of model builders to “guess” pictures of the world can
yield results similar to abduction; see (Blackburn and Bos, 2003) for
further discussion.

One of the biggest omissions in this book is that we have said almost
nothing about lexical semantics (the meaning of words). The nearest we
came to it was the brief discussion of lexical knowledge that accompa-
nied our description of Knowledgeable Curt. There we noted that words
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are often semantically related in systematic ways. Some approaches to
lexical semantics use this observation to try to decompose the lexical
semantics of words into more elementary units of meaning. The tradi-
tion of lexical decomposition traces back to at least Jakobson (1936);
it was introduced into transformational grammar in Katz and Fodor
(1963), and into formal semantics in Dowty (1979). Another aspect
of lexical semantics is the analysis of thematic roles of individuals in
events or states described in utterances. Good starting points to ex-
plore this terrain are Fillmore (1968), Jackendoff (1990) and recent
work on Berkely’s FrameNet project (Baker et al., 2003). This hardly
exhausts the field however: other important directions in lexical se-
mantics are explored in Pustejovsky (1995) and Levin (1995). For a
computationally-oriented introduction to the subject, see Chapters 16
and 17 of Jurafsky and Martin (2000).

Recall that we used a simple ontology to provide background knowl-
edge for Curt. A linguistic ontology widely used in natural language
processing is WordNet (see Miller (1995) and Fellbaum (1998)). Word-
Net is a lexical database whose design was inspired by psycholinguistic
theories of human lexical memory. WordNet contains English nouns,
verbs, adjectives and adverbs, organised into synonym sets (‘synsets’,
as they are called in WordNet). Each synset represents an underlying
lexical concept, and different relations (such as hypernym, hyponym,
holonym, meronym, and antonym) link the synsets. Several related ini-
tiatives for languages other than English have been undertaken, a fine
example being EuroWordNet (Vossen, 1998), designed for several Eu-
ropean languages.

Another example of an ontology is Cyc (www.cyc.org), a manually-
coded database of common-sense knowledge initiated in the early 1980s
by Doug Lenat. Cyc covers areas ranging from biology and physics to
history and politics, with the ultimate goal of enabling AI applications
to perform human-like reasoning. The full version of the database (a
registered trademark owned by Cycorp) contains over 120,000 concepts
but is proprietary. OpenCyc (www.opencyc.org) is a limited version
(containing some 6,000 concepts and 60,000 facts) released under an
open-source licence. It is interesting to note that there have been recent
attempts to link up WordNet with Cyc, and that the Cyc framework
supplies tools for natural language processing as well.

Recently there has been upsurge of interest in ontology engineering,
partly because of efforts to develop the Semantic Web. However, the
logical formalism most closely associated with this new ontological wave
is not first-order logic but (various kinds of) description logic (Baader
et al., 2003). Description logics are, in essence, decidable fragments of
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first-order logic, written in a simpler notation. Moreover, description
logic notation encourages users to think about knowledge in a struc-
tured way: users have to provide both what is called a TBox (which,
roughly speaking, contains what we called lexical and world knowledge)
and an ABox (which contains what we called situational knowledge).
A number of excellent theorem provers dedicated to description logics
are available. Two of the best (and best supported) are Fact (Horrocks,
1988) and Racer (Haarslev and Möller, 2003). Finally, ideas from de-
scription logic (and first-order logic) have been used to provide logical
underpinnings for Semantic Web formalisms such as Web Ontology
Language (OWL); see http://www.w3.org/2004/OWL/.

But there is more to logics for knowledge representation than de-
scription logic (or first-order logic for that matter). There are a num-
ber of interrelated issues that we have not discussed in this book, such
as how to adjust one’s belief when incoming knowledge is inconsistent
with what one already knows (the Curt system merely rejects the latest
utterance, but is this always the best strategy?) or how to make infer-
ential ‘leaps’ on the basis of partial knowledge. There are many theories
and formalisms which attempt to capture such ideas. For example, the
theory of belief revision analyses in detail how to update knowledge in
the face of incoming information that may be inconsistent with what
is already known; see Gärdenfors (1988). Various kinds of default and
non-monotonic logics, on the other hand, deal with inferential leaps.
An example is the leap to “Tweety flies” from the information that
“Tweety is a bird”. Usually this leap is fine—but what if Tweety is
a kiwi? These brief comments only scratch the surface of a vast area,
with many intersecting research themes. For a detailed application of
non-monotonic logic to discourse semantics, see Asher and Lascarides
(2003). For the relevance of default logic to the semantics of generics, see
Pelletier and Asher (1997). For a general overview of non-monotonicity
in linguistics, see Thomason (1997).

Knowledgeable Curt used model checking and theorem proving to
answer simple questions—and as probably became clear while work-
ing through this material, there are a lot of subtleties in question an-
swering. There is an interesting literature on both the theoretical and
practical issues involved. Good starting points for studying the seman-
tics of questions are Groenendijk and Stokhof (1997), from the Hand-
book of Logic and Language (Van Benthem and Ter Meulen, 1997), and
Higginbotham (1997), from the Handbook of Contemporary Semantic
Theory (Lappin, 1997). Other key references are Hamblin (1973), Kart-
tunen (1977), and Ginzburg and Sag (2001). Approaches that interpret
questions using automated inference or other logical tools can be found
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in Bos and Gabsdil (2000), Gaylard and Ramsay (2004), and Ten Cate
and Shan (2002). For the use of ideas of computational semantics in
wide-coverage question answering systems, see Moldovan et al. (2003).
And we recommend the overview article on automated question an-
swering by Hirschman and Gaizauskas (2001), who present the history,
the current trends, and possible future developments in question an-
swering. For more information on the gap-threading technique used to
handle the syntax of wh-questions, see Pereira and Shieber (1987).

That concludes our discussion of material that is related to this
chapter, but to conclude these Notes—and the book—let’s move on
from what is known, to what is not. We shall present a short wish list,
noting a number of research directions and themes that we believe are
important to pursue.

New applications. More applications of the ideas of computational
semantics need to be developed—there is nothing like applied work
for sorting out the wheat from the chaff. Some applications (the in-
telligent house, the mobile robots) were noted above, but there is one
area which seems particularly ripe for more systematic application of
ideas from computational semantics, namely natural language genera-
tion. For a broad introduction to natural language generation, consult
Reiter and Dale (2000). Interesting work on the generation of nominal
expressions (that is, the task of mapping domain entities to natural lan-
guage descriptions) already exists; see Stone (2000), Gardent (2002),
Van Deemter (2004), and Striegnitz (2004). It will be interesting to see
whether computational semantics techniques can be applied to other
generation tasks.

Statistics and computational semantics. As we said in the In-
troduction, we don’t feel that there is any tension between logically-
inspired approaches to computational semantics, and the statistical
orientation of much contemporary computational linguistics. The ap-
proach to semantic construction taught in this book has been used in
tandem with a statistical parser to produce wide coverage semantics
(Bos et al., 2004). Actually, the semantic representations generated in
this work are rather more sophisticated than those of this book, and are
based on the Discourse Representation Structures used in DRT (Kamp
and Reyle, 1993) rather than first-order logic. But can architectures
for representation and inference be devised to help develop “gold stan-
dard” annotated semantic corpora? (An example of a semantic corpus
is being created by the PropBank project (Kingsbury et al., 2002): it is
a corpus of text annotated with basic propositional information.) This
is an important question to investigate.
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Higher-order inference engines. Inference in this book has re-
volved around first-order logic, but there may well be interesting
mileage in looking at alternatives. We have already mentioned some
weaker logics (such as description logic) but there is also a stronger
logic worth exploring, namely higher-order logic. As we mentioned in
the Notes at the end of Chapter 2, an expression such as λx.man(x) is
not only a useful piece of glue, it can also be regarded as a well-formed
expression of higher-order logic with a model-theoretic interpretation.
So it makes complete sense to say (for example) that λx.person(x) is a
logical consequence of λx.man(x). As this example shows, higher-order
inference is potentially useful in computational semantics as it opens
up the possibility of inference at the subsentential level: here we have
an entailment relation between the nouns man and person, and more
generally the way is opened up for entailments between NPs, VPs, PPs
and so on.

What are the prospects for higher-order inference in computational
semantics? A difficult question. For a start, higher-order logic is not
merely undecidable, it is not even possible to give complete proof sys-
tems for it. But (as we noted in Chapter 1) there is a loop-hole: by giving
a non-standard semantics to higher-order logical notation (namely the
famous Henkin semantics (Henkin, 1950)) one can obtain a first-order
perspective on higher-order logic, and under this perspective complete
proof systems do exist.

Does this open the door to automating (a form of) higher-order
reasoning? Yes, but formidable difficulties remain. To give an idea of
what is involved, recall from Chapter 5 that extending first-order the-
orem provers to cope efficiently with the equality symbol is a non-
trivial task. Matters are far worse when we have to add not merely
the humble equality symbol, but all the notational apparatus of higher-
order logic. In particular, the process of unification becomes much more
complex—indeed undecidable (see Lucchesi (1972) and Huet (1973)).
As we learned in Chapter 5, unification is the key to efficient implemen-
tations of first-order theorem proving. If unification itself has become
undecidable, we know we’re in trouble.

In spite of this, a number of logicians and computer scientists have
risen to the challenge. Important theoretical contributions include Huet
(1972), which encodes the required unifications as constraints and de-
lays application of higher-order unification, and Huet (1975). For de-
tailed theoretical overviews, see Andrews (2001) and Dowek (2001).
Moreover, implementations exist, for example the widely available TPS
system (Andrews et al., 1996), and the LEO prover (Benzmüller, 1999).
Another interesting system is Kimba, a higher-order model generator
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that has been applied to linguistic applications; see Konrad (2000) and
Gardent and Konrad (2000b). It remains to be seen how much impact
higher-order inference methods will have on computational semantics,
but it is definitely an area to keep an eye on.

Test suites for inference in computational semantics. In this
book we provided baby test suites for testing our more important pro-
grams. We did this for two reasons. For a start, we found them helpful
when updating programs (retyping examples is a pain; better to keep
them together in a file). More importantly however, we wanted to en-
courage the reader to “think test suite!”, for test suites have proved
important in a number of fields. A classic example is automated rea-
soning. One of the key resources of this community are large collections
of problems, categorised and subdivided along a number of dimensions.
This makes it easy to compare new provers with old, and to experiment
with the practical impact of theoretical innovations.

Could test suites play an important role in computational seman-
tics? In fact, the concept of test suites for computational semantics
was introduced in the FraCaS project (Cooper et al., 1996) and some
test suites for inference were developed; see

http://www.ling.gu.se/projekt/nordsem/description/node8.html.

More recently, Claire Gardent and Bonnie Webber have argued that the
large scale development of test suites is a key task for computational se-
mantics (see, for example, the remarks in Gardent and Webber (2001)).
Their point is this: it is all very well talking about the need for inference
in computational semantics, but in reality we have only imprecise ideas
about which types of inference are truly important. A fair comment.
In this book we gave simple (and sometimes rather artificial) exam-
ples involving consistency and informativity checking—but if we are
ever to understand the role of inference in computational semantics we
need to do far better. A detailed, theory neutral, collection of inference
problems could be used to evaluate both theories and computational
implementations for their coverage and accuracy, and might open up
further interesting possibilities (for example, tuning theorem provers
and model builders to cope with that style of problem). The difficulty
of constructing such a test suite should not be underestimated, but the
potential rewards are great.

Theoretical computational semantics. This book has presented
computational semantics from a resolutely practical perspective—but
just because we presented it this way doesn’t mean that we view theory
as unimportant. On the contrary, we believe that theory and practice
should go hand-in-hand in computational semantics, as in other fields.
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What sort of topics might be viewed as “theoretical computational
semantics”? A classic example is Richard Montague’s result (from “Uni-
versal Grammar”) that under certain general conditions, intermediate
logical representations can be eliminated: fragments of natural language
can be given a direct model theoretic interpretation. A more recent ex-
ample can be found in Pratt-Hartmann (2004). In this book we trans-
lated into first-order logic, and in Chapter 5 we were careful to empha-
sise the difficulties that arise because of the undecidability of first-order
logic. But this is a rather crude way of looking at things—exactly where
in natural language does inferential complexity arise? And how much
arises? Pratt-Hartmann’s paper provides some fine-grained answers to
such questions. He takes simple Montague-style fragments, successively
adds further syntactic constructions, and at each stage determines the
computational complexity of the associated inference task (he does so
by determining the computational complexity of the subset of first-
order logic that each fragment translates into). He starts with a simple
decidable (in fact, polynomial time) fragment capable of generating
classical syllogisms (for example, All boxers are fighters. All fighters are

stupid. So all boxers are stupid.) and works his way up to undecidable
fragments. As far as we are aware, this is the first paper to determine
the intrinsic computational complexity of inference for various frag-
ments of natural language, and it is a good example of the sort of
investigation that could help establish a deeper theoretical perspective
on computational semantics.
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Running the Software – FAQ

Where can I download the software?

All the Prolog programs discussed in this book are available for down-
load at our website www.blackburnbos.org. To run them you will need
a Prolog interpreter. We have tested our programs using two Prolog di-
alects: Sicstus Prolog (see www.sics.se/sicstus) and SWI Prolog (see
www.swi-prolog.org/). Running Sicstus Prolog requires a licence, but
SWI-Prolog is a free software Prolog compiler. Both can be downloaded
by following the links just given.

Which platforms does it run on?

Our software was primarily designed and tested in Linux and Unix
environments (including MacOS X). Running our programs directly
under Microsoft Windows (or older Mac platforms) might require a lit-
tle tweaking, but there is an indirect approach which works well: install
the free software Linux emulator Cygwin (see www.cygwin.com/). All
our software (and all the software the CURT programs make use of)
runs under Cygwin.

Is it possible to run the CURT programs?

Yes, you can. All you need to do is install a little extra software.
First of all, you need a theorem prover and a model builder. The

theorem provers Otter and Bliksem mentioned in the text are good ones
to start with, as are the model builders Mace and Paradox. Our software
has interfaces to all four of these inference engines. See Appendix C for
instructions on downloading them.

Second, you need to be able to run Perl. This is because we use Perl
scripts to hook up the theorem provers and model builders with our
Prolog programs.
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I’ve downloaded the software. How do I get started?

Simple. Create a new folder containing all the Prolog programs. Then
start the Prolog interpreter (if you don’t have a Prolog interpreter,
install one first—see above). The Prolog prompt (?-) will appear, and
you type

?- [menu].

and hit the return key. This will evoke a little menu (which follows the
chapter-by-chapter structure of the book). Using this menu you can
start any of the programs discussed in the text.

Alternatively, if you know the name of the program you want to
work with, you don’t need to go via the menu but can start it directly.
For example, suppose you want to run kellerStorage.pl. What you
do is start the Prolog interpreter, and then type

?- [kellerStorage].

to consult the program. All the options the program offers (for example,
to run the test suite) are automatically displayed on start-up.

Formulas in Prolog notation are sometimes hard to read. Is
there a simple way of displaying them in a prettier format?

Yes, there is. The software comes with a toggle between the internal
Prolog representations (prefix format) and a more readable infix format.
To switch to infix format, type

?- infix.

after you’ve loaded the program you want to work with. To switch back
to prefix display mode, type:

?- prefix.

What if I want to know more about Prolog?

There are several introductions to Prolog available; take your pick.
However, we’d like to draw your attention to Learn Prolog Now! , by
Patrick Blackburn, Johan Bos, and Kristina Striegnitz. This was writ-
ten in parallel with the present book, and it contains everything needed
to understand the code presented here. Moreover Learn Prolog Now!
was designed for self-study, so if you can’t take a course in Prolog,
it may be a good choice. Learn Prolog Now! is available free on the
internet at www.learnprolognow.org.
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Propositional Logic

The quantifier-free fragment of any first-order language (as the termi-
nology suggests) simply consists of all formulas of the language that
contain no occurrences of the symbols ∃ or ∀. For example, rob-
ber(pumpkin), customer(mia), customer(y), and

customer(y) → love(vincent,y)

are all quantifier-free formulas. On the other hand,

∀y(customer(y) → love(vincent,y))

clearly isn’t, since it contains an occurrence of the quantifier ∀.
The key thing to note about quantifier-free formulas is the following.

Suppose we are given a model M (of appropriate vocabulary) and an
assignment g in M . Now, in full first-order logic we need to work with
two semantic notions: satisfaction for arbitrary formulas and truth for
sentences. However, when working with quantifier-free formulas, there
are no bound variables to complicate matters, so this distinction is
unnecessary. In fact, when working with a quantifier-free fragment, we
may as well view each variable x as a constant interpreted by g(x). If
we do this, then every atomic quantifier-free formula is either true or
false in M with respect to g. Moreover, it is obvious how to calculate
the semantic value of complex sentences: conjunctions will be true if
and only if both conjuncts are true, disjunctions will be true if and
only if at least one disjunct is true, a negated formula will be true if
and only if the formula itself is not true, and so on. (In short, we need
to make truth table calculations, which many readers are doubtless
familiar with, and which we shall review below.)

Another pleasant aspect of the quantifier-free fragment is that there
is an obvious way to simplify our notation when working with it. Be-
cause we don’t have quantifiers, the internal structure of atomic formu-
las is irrelevant, for we’re never going to bind any free variables they
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may contain. All that is important is whether the atomic symbols are
true or false, and how they are joined together using the boolean con-
nectives. For example, while it may be mnemonically helpful to choose
propositional symbols such as customer(x) or love(vincent,mia),
we lose nothing if we replace them by simpler symbols such as p and
q. This line of thought leads us to define propositional logic. To specify
a language of propositional logic, we first say which symbols we are
going to start with. (A fairly standard choice is p, q, r, s, t, and so on,
often decorated with superscripts and subscripts: for example, p′′, r′′′,
or q2.) The chosen symbols are called proposition symbols, or sentence
symbols. Complex sentences are built up using the boolean connectives
¬, ∧, ∨ and → in the obvious way.

As we have already mentioned, we can calculate whether a complex
sentence of propositional logic is true or not if we know the truth values
of its component formulas; truth tables tell us how this is to be done.
Here are the truth tables for ∧, ∨ and →:

p q p ∧ q p ∨ q p→ q
True True True True True
True False False True False
False True False True True
False False False False True

For example, the second row of this table tells us that if p is true and
q is false then p ∧ q is false, p ∨ q is true, and p → q is false. Compare
this table with the satisfaction definition for full first-order logic given
in Chapter 1. As you can see, this table contains all the information
in the first-order satisfaction definition that is relevant to the simpler
propositional notation.

The truth table for ¬ is even simpler:

p ¬p
True False
False True

Again, it is clear that this table contains all the information from the
first-order satisfaction definition that is relevant to the simpler nota-
tion.

Truth tables can be used to test propositional formulas for validity.
In Chapter 1 we said that a formula of first-order logic was valid if it
was true in all models. Now, in propositional logic a model is essentially
something that specifies the truth value of each proposition symbol.
Hence a valid propositional formula is simply one that is true no matter
what truth values the proposition symbols have. Truth tables are a
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convenient way of systematically calculating all possible truth values.
Let’s consider an example. The propositional formula

(¬p→ ¬q) → (q → p)

is valid. This may not be obvious, so let’s fill out a truth table for it
and check (we’ll shorten True to T and False to F). The first step
is simply to systematically assign all possible combinations of truth
values to the proposition symbols. The following table does this:

( ¬ p → ¬ q ) → ( q → p )
T T T T
T F F T
F T T F
F F F F

That is, each row of the truth table specifies a possible combination of
truth values. Using this information, we can now calculate the possible
truth values of ¬p, ¬q and q → p:

( ¬ p → ¬ q ) → ( q → p )
F T F T T T T
F T T F F T T
T F F T T F F
T F T F F T F

And now we can calculate the truth value of ¬p→ ¬q:
( ¬ p → ¬ q ) → ( q → p )

F T T F T T T T
F T T T F F T T
T F F F T T F F
T F T T F F T F

Finally, we can calculate the truth value of the entire formula:

( ¬ p → ¬ q ) → ( q → p )
F T T F T T T T T
F T T T F T F T T
T F F F T T T F F
T F T T F T F T F

As you can see, no matter what truth values are assigned to its
propositional symbols, the formula itself is always true. That is (as we
claimed above) it is indeed valid.

Summing up, propositional logic is essentially a simple notation for
the quantifier-free formulas of first-order logic. When we explore in-
ference mechanisms for first-order logic in the text, it turns out to be
sensible to first investigate inference methods for the quantifier free
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fragment (we do this in Chapter 4), and only then turn to the problem
for the full first-order language (the task of Chapter 5). In Chapter 4,
we make use of the simpler propositional notation just discussed.
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C

Automated Reasoning for

First-Order Logic

Automated reasoning tools have improved enormously over the last
decade. This appendix is a guide to a number of first-order inference
engines you may wish to experiment with for applications in computa-
tional semantics.

Theorem Provers for First-Order Logic

• Bliksem

http://www.mpi-sb.mpg.de/~nivelle/software/bliksem

Bliksem (the Dutch word for “lightning”) is an efficient resolution based
theorem prover for first-order logic with equality, written by Hans de
Nivelle. This prover, implemented in C, accepts formula syntax as input
(our program fol2bliksem.pl translates between Bliksem syntax and
the syntax used in this book).

• FDPLL

http://www.uni-koblenz.de/~peter/FDPLL/

A theorem prover for first-order clausal logic designed by Peter Baum-
gartner. The underlying calculus is a generalization of the Davis-
Putnam-Loveland-Logemann Procedure (best known as a tool for com-
plete SAT solving). FDPLL is written in Eclipse Prolog and runs on
Unix systems.

• Gandalf

http://www.ttu.ee/it/gandalf/

Gandalf is really a family of automated theorem provers developed
by Tanel Tammet. It contains classical, type theory, intuitionist and
linear logic provers, plus a finite model builder (see below). Version c-
2.5 contains the classical logic prover for clause form input and a finite
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model builder.

• Otter

http://www-unix.mcs.anl.gov/AR/otter/

The classic theorem prover for first-order logic, developed by William
McCune. Otter’s inference rules are based on resolution and paramod-
ulation, and it has a wide range of advanced facilities. Recent books on
Otter are Wos and Pieper (2000) and Kalman (2001).

• Scott

http://discus.anu.edu.au/software/scott/

Scott is a combination of the theorem prover Otter and the model
builder Finder. The models are used to guide selection of given clauses,
clauses which are false in the guiding models being given preference.
Scott is developed by John Slaney and Kahlil Hodgson.

• Spass

http://spass.mpi-sb.mpg.de/

A powerful theorem prover for first-order logic with equality developed
at the Max-Planck-Institut für Informatik in Saarbrücken, Germany.
Spass accepts input formulas in first-order syntax in DFG notation.

• Vampire

http://www.cs.man.ac.uk/%7Eriazanoa/Vampire/

Probably the world’s fastest theorem prover at the time of writing.
Developed by Andrei Voronkov and Alexandre Riazanov, Vampire is
a resolution based system for first-order logic with equality. It solves
problems in the TPTP syntax in both CNF and full first-order logic
syntax.

Model Builders for First-Order Logic

• Gandalf

http://www.ttu.ee/it/gandalf/

http://www.ee.princeton.edu/~chaff/zchaff.php

The finite model building component of Gandalf uses the zChaff propo-
sitional logic solver (developed by Lintao Zhang and Zhaohui Fu) as an
external program. zChaff is a propositional logic solver implemented in
C++.

• Mace

http://www-unix.mcs.anl.gov/AR/mace/

http://www-unix.mcs.anl.gov/AR/mace4/

Mace is short for “Model and Counter-Examples” and is a model
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builder for first-order logic with equality, developed by William Mc-
Cune. We use Mace 2.0 in this book. The related model builder MACE4
(also known as ICGNS) performs better on some classes of problems,
but (at the time of writing) did not accept formula syntax as input.

• Paradox

http://www.math.chalmers.se/~koen/paradox/

Paradox, the other model builder used in this book, is a tool that pro-
cesses first-order logic problems and tries to find finite-domain models
for them. Paradox is written by Koen Claessen and Niklas Sörensson.

• Satchmo

http://www.pms.informatik.uni-muenchen.de/software/

Satchmo is a model generator for first-order theories implemented in
Prolog. Satchmo compiles a clausal theory into a Prolog program which
then generates models of the theory efficiently.
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Notation

This appendix summarises the notation used for the logical symbols in
the text (second column of the tables), in the Prolog programs (third
column) and, when applicable, in the Prolog infix format (fourth col-
umn).

First-Order Logic

conjunction (φ ∧ ψ) and(Phi,Psi) (Phi & Psi)

disjunction (φ ∨ ψ) or(Phi,Psi) (Phi v Psi)

implication (φ→ ψ) imp(Phi,Psi) (Phi > Psi)

negation ¬φ not(Phi) ~ Phi

universal quantif. ∀xφ all(X,Phi) all X Phi

existential quantif. ∃xφ some(X,Phi) some X Phi

equality τ1=τ2 eq(Tau1,Tau2) Tau1 = Tau2

Lambda Calculus
application (ε1@ε2) app(E1,E2) (E1 @ E2)

abstraction λx.ε lam(X,E) lam X E

Storage

store 〈φ, (ε1, i1), . . . , (εn, in)〉 [Phi,bo(E1,I1),. . .,bo(En,In)]

Questions

wh-question ?x(Φ,Ψ) que(X,Phi,Psi)

yes/no-question ?Φ que(Phi)
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221–223

arg/3 predicate, 60, 61
assert/1 predicate, 261
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tp.out file, 241
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tpmbTestSuite/0 predicate, 252
tprove/1 predicate, 170
tprove/2 predicate, 224
tproveTestSuite/0 predicate,
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tpTestSuite/0 predicate, 242,
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unaryExpansion/2 predicate,

171, 222
unify with occurs check/2
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universal/1 predicate, 223
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predicate, 223
url2srl/2 predicate, 147



“blackburnbos”
2004/12/13
page 343

i

i

i

i

i

i

i

i

Subject Index

Symbols
∃, 6, 7
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¬, 6, 7
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→, 6, 7
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∨, 6, 7
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A
a, 61, 63, 94
abduction, 301
ABox, 303
abstraction, 66, 67, 98
accidental binding, 68–70, 79
adjective, 90
admissible plugging, 134, 136,

137
AI, xxii, 300
all, 8, 11, 94
α-conversion, 68, 80, 82

Prolog implementation of,
78–81

α-equivalence, 68, 83
alphabetic variants, 68

filtering out, 120
antecedent, 10
application, 67, 70
argument, 67, 73

arity, 2
Artificial Intelligence, see AI
assignment, 12
assignment function, 12
associative laws, 176, 177, 186
associative operator, 27
atomic MGU closure rule, 218
automated reasoning, 45, 156,

315
auxiliary verb, 91

B
background knowledge, 45, 282,

285
belief revision, 303
β-conversion, 66–68, 70, 71, 80,

82
Prolog implementation of,

75–78
β-reduction, 67
bi-implication, 15, 173

expansion rules for, 166
binary resolution rule, 180
binding operator, 113
Bliksem, 238–242, 251, 252, 255,

268, 309, 315
formula syntax, 239

boolean connectives, 6
precedence conventions, 10

both, 94
bound variable, 8, 9, 11

inductive definition of, 8
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renaming, 80
branching expansion rule, 162

C
CADE, 248
characteristic function, 100
Church’s Thesis, 243, 256
classical logic, 44, 47
clause, 175
clause normal form, 225
clause set, 179, 181
closed class word, 285
closed tableau, 160
closed term, 16
CNF, see conjunctive normal

form
co-NP complete, 198
commutative operator, 27
completeness, 193–195

of first-order resolution, 225
of first-order tableau, 208
of propositional resolution, 193
of propositional tableau, 193

complexity
of proof methods, 200
of propositional validity, 197
of querying task, 51

compositional semantics, 57
compositionality, 55–59, 94
compound name, 91
computational linguistics, xv,

xxii, 304
computational semantics, xi
conjunct, 10
conjunction, 6, 7

Prolog represention of, 32
conjunctive expansion rule, 164,

165
conjunctive normal form,

175–179, 228
Prolog implementation of, 185

consequent, 10
consistency, 21

relation to informativity, 28
with respect to other formulas,

29

consistency checking task, 21, 23,
155, 156, 196, 208, 243, 244,
247, 250, 265, 269

proof-theoretic perspective on,
23

undecidability of, 23, 52

constant, 4, 6

Cooper storage, 113–122
overgeneration, 124

Prolog implementation of,
116–121

coordination

noun phrase, 88

semantic rule for, 90
copula, 93

Curt

Baby Curt, 259
background knowledge, 284

Clever Curt, 267

consistency checking, 268
Helpful Curt, 52, 248, 293

informativity checking, 272

Knowledgeable Curt, 281
questions, 293

reserved commands, 260

Rugrat Curt, 264
Scrupulous Curt, 277

Sensitive Curt, 272

Cyc, 302

D

DCG, xvi, xvii, 57–62, 72, 74, 75,
84–88

left-recursive rules, 88
De Morgan laws, 28, 177, 185

decidability, 194

default logic, 303
Definite Clause Grammar, see

DCG

description logic, xxiii, 46, 52,
302

determiner, 58, 65, 91

lambda expression for, 74
semantic macro for, 92

disagreement pair, 212
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Discourse Representation
Structures, 86, 103, 304

Discourse Representation Theory,
see DRT

disjunct, 10
disjunction, 6, 7

Prolog represention of, 32
disjunctive expansion rule, 162,

164, 165
distributive laws, 28, 176, 177,

186, 228
ditransitive verb, 84, 264
dominance constraint, 132
DPLL procedure, 200
DRT, xiv, xxii, 53, 86, 103, 304
Dynamic Predicate Logic, 54
dynamic Prolog predicate, 261

E
either. . . or, 11
entity, 5

anonymous, 5
epistemic states, 47
equality, 17–19, 236, 237

Prolog representation of, 32
equality axioms, 293
EuroWordNet, 302
events, 47, 48
every, 8, 50, 61, 69
everybody, 8, 11
everyone, 11
everything, 8, 264
existential quantifier, 6

Prolog representation of, 32
existential rules, 206, 216, 217
expansion rules, see tableau

expansion rules

F
Fact, 303
FDPLL, 315
few, 50
File Change Semantics, 54
Finder, 316
finite model, 246
first-order language, 3, 6–11, 48

syntax of, 6, 9
with equality, 17

first-order logic, 1–19, 44, 48
and natural language, 44–50
inference tools, 45
inferential capabilities, 44–47
introduction to, 50
representational capabilities,

47–50
two-variable fragment of, 53

first-order model, see model
first-order resolution, 225–231,

254
implementation of, 231–234

first-order syntax
readability of, 9

first-order term, 6
first-order validity, 207
first-order variable, see variable
formal semantics, xi
formula, 2

atomic, 6
basic, 6
informative, 25
invalid, 24, 25
matrix of, 7
Prolog representation of, 32
quantified, 7
uninformative, 25
valid, 25
well formed, 7

formula tree, 129
free variable, 8, 9, 11, 12, 14, 79

analogy with pronouns, 12
inductive definition of, 8

free-variable tableau, 215–219,
253

implementation of, 219–224
free-variable tableau prover, 265,

266
function symbols, 16–17
functional application, 67, 72, 99
functor, 67, 73

G
Gandalf, 315, 316
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generalized quantifier theory, 53
generalized quantifiers, 50
generation, 304
grammar, 86

shortcomings of, 89
grammar architecture, 86
grammar engineering, 86–93

basic principles of, 86

H
higher-order logic, 49, 101, 305
hole semantics, 127–149

implementation, 137–148
semantic macros for, 142
semantic rules for, 142

hybrid logic, 46, 52
hyperresolution, 256

I
idempotency, 214
idempotent MGUs, 214
iff, 13, 15
implication, 6, 7

Prolog represention of, 32
inconsistency, 21

with respect to other formulas,
29, 156, 196

inconsistent description, 21
inconsistent formula, 29
indexed binding operator, 113
inference, xii, 19, 155

in natural language semantics,
47

inference tasks, 19
infix notation, 33, 74, 260
informative formula, 26
informativity, 25, 26

in communication, 52
relation to consistency, 28
with respect to other formulas,

26
informativity checking task,

24–26, 155, 156, 196, 208,
243, 245, 247, 250, 272

proof-theoretic perspective on,
27

undecidability of, 27, 52
inheritance, 286
interpretation function, 4, 5
intervals, 47
intransitive verb, 58, 69
invalid argument, 24, 25, 276
invalid formula, 24, 25

K
Keller storage, 122–127

Prolog implementation of,
125–126

knowledge representation, 286,
287

L
labelled formula, 132
lambda abstraction, 66
lambda calculus, 66–72

as glue language, 69
implementation of, 73–84
typed, 97
untyped, 97

lambda expression, 67, 69, 70
model-theoretic interpretation,

97
Prolog representation of, 73

λ-conversion, 67
LeanTAP, 253
Learn Prolog Now, xix, 310
lexical entry, 61, 86
lexical item, 57, 72
lexical knowledge, 282, 284, 301,

303
lexical rule, 88
lexical semantics, 86, 285, 301
lexicon, 57, 86, 90–92
literal, 175

M
Mace, 247–251, 255, 256, 268,

309, 316
many, 50
matrix, 204
MGU, 211, 214, 219
minimal model, 270
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modal logic, 46, 51–53
modal phenomena, 47
model, 2–5, 9, 13, 47, 48

domain of, 4
entity in, 5
finite, 21
infinite, 21
Prolog representation of, 30

model builder, 242–251, 268, 270,
301

model building, 153, 246, 247,
255

approaches to, 256
by iteration, 248
SAT solving, 201
vs. model checking, 245

model checker, 21, 29–43, 295
handling bound variables, 40
Prolog implementation of, 29
weak points of, 42

model checking, 51
vs. model building, 245

model representation, 249
model theory, 23, 25, 44
Montague semantics, xii, 96
Montague’s rule of quantification,

109
most, 50, 53
most general unifier, see MGU

N
natural language argument, 275
natural language generation, 304
natural language syntax, 57, 59
negation, 6, 7

Prolog represention of, 32
negation normal form, 176–179,

226
Prolog implementation of, 185

nested stores, 124
NNF, see negation normal form
no, 264
nobody, 264
non-logical symbol

Prolog representation of, 32
non-monotonic logic, 303

non-redundant factor, 230, 231
notation, 319
noun, 58, 69, 90

semantic macro for, 92
noun phrase, 56, 58
NP-complete, 51, 198, 200
nuclear scope, 63, 65

O
occurs check, 209
ontology, 285, 286
open class word, 285
OpenCyc, 302
Otter, 238–242, 248, 251, 252,

255, 309, 316
formula syntax, 239

P
Paradox, 247–251, 256, 309, 317
parallel inference, 242, 250
parameter, 205, 216
parser, 59
parsing, 58
partiality, 49
Perl, 241, 242, 250, 251, 256, 309
pigeon hole principle, 198
plugging, 134–137
plugging algorithm, 143–147
plural noun phrases, 53
plural nouns, 94
polynomial time, 199, 307
possible world semantics, 48
pragmatics, xiv, xxi, xxii, xxiv,

52, 96, 103, 107–109
prefix notation, 33, 74
preposition, 94
Prolog

introduction to, 310
Prolog cut, 172, 188
Prolog interpreter, 309
Prolog unification, 209
pronoun, 9
proof method, 156, 157
proof theory, 45, 156, 199

and natural language
semantics, 201
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proper name, 58, 90
lambda expression for, 71
semantic macro for, 92

property, 2
proposition symbol, 312
propositional inference, 155
propositional language, 158
propositional logic, 10, 158, 312
propositional model, 164
propositional resolution, 174–199

completeness, 193
Prolog implementation of,

185–191
soundness, 193

propositional tableau, 158–168
completeness, 193
Prolog implementation of,

168–174
Prolog representation of, 169
rule for negation, 164
rules for binary connectives,

165
soundness, 192

propositional validity
complexity of, 197
decidability of, 194

PSPACE-complete, 51

Q
Q-depth, 220, 224, 225, 240
quantified noun phrase, 61, 65
quantified sentence, 12

matrix of, 12
quantifier, 6, 50

counting, 50
generalized, 50
Prolog representation of, 32

quantifier raising, 109
quantifier scope ambiguity, 105

complex noun phrases, 122
quantifier storage, 112
quantifier-free formula, 311
quantifier-free fragment, 10, 311
quasi-logical form, 293, 294
querying task, 20

complexity of, 51

questions, 294, 303

R
Racer, 303
recursively enumerable, 257
refutation proof method, 159, 181
relation, 2

binary, 2
unary, 2

relation symbol, 4
resolution, see propositional

resolution, see first-order
resolution

complementary clauses, 180
complementary pair, 180
resolvents, 180

resolution rule, 179–184, 229
restriction, 63, 65
retrieval rule

Cooper, 116
Keller, 124

robot, 301
rule-saturated tableau, see

tableau

S
SAT solver, 200, 201
SAT solving, 200
Satchmo, 317
satisfaction, 12
satisfaction definition, xxi, 11–16

Prolog implementation of, 33
satisfiability, 22
satisfiable formula, 22
Schubert’s Steamroller, 236, 242,

254
scope ambiguities

in arguments, 276
scope ambiguity, 105, 107, 260
Scott, 316
second-order entity, 48
second-order logic, 49, 53

first-order interpretation of, 49
second-order quantification, 48,

49
Sem, 256
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Semantic Deduction Theorem,
25–27, 156, 196

semantic lexicon, 86, 92–93
semantic macro, 89, 92, 94
semantic rules, 86, 89–90
semantic tableau, 157
semantic underspecification, 128
Semantic Web, 302
sentence

definition of truth, 14
logical equivalence, 27
of first-order logic, 9
truth for, 12

sentence symbol, 158, 312
set CNF, 178, 179, 181
Sicstus Prolog, 309
signature, see vocabulary
signed formula, 159, 166, 204
signs, 159
simultaneous unification

problem, 214
situational knowledge, 282, 284,

289, 303
Skolem constant, 217
Skolem function, 226
Skolem function symbol, 217
Skolem term, 217, 226
skolemisation, 144, 226, 227
some, 8, 11, 50
somebody, 8
someone, 8, 10
something, 8
sorted first-order logic, 18–19,

131
sorted variables, 18
soundness, 191, 194, 195

of first-order resolution, 225
of first-order tableau, 207
of propositional resolution, 193
of propositional tableau, 192

Spass, 316
spoken dialogue, 301
SRL, 129
SRL formula tree, 129
stack, 75

use in β-conversion, 75
storage, 112

limitations, 127
nested stores, 124

storage rule
Cooper, 114
Keller, 124

store, 113
Prolog representation for, 117,

126
subformula, 8, 10
subformulahood

inductive definition of, 8, 11
substitution, 209
subsume, 234
SWI Prolog, 309
symbol

logical, 17
non-logical, 6

synset, 302
syntactic analysis, 57
syntactic category, 69
syntactic structure, 56, 57
syntax rules, 86–89
syntax-semantics interface, 87

T
tableau, see propositional

tableau, free-variable tableau
closed, 160
first-order tableau, 204–209
initial tableau, 166, 167
rotation of branches, 221
rule-saturated, 160, 166
signed, 252
unexpanded nodes, 166
unsigned, 252

tableau branch, 162, 166
tableau expansion rules, 159, 164,

204
tableau proof, 158, 161, 167
tableau systems, 199
TBox, 303
temporal logic, 51, 53
temporal semantics, 48
term
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closed, 16
interpretation of, 17

test suite, 39, 82, 310
for β-conversion, 84
for CNF, 187
for grammar, 93
for model checker, 39, 40
for propositional resolution, 191
for propositional tableau, 172
pigeon hole principle, 198
with first-order problems, 224,

242
the, 19, 94, 264
theorem prover, 28, 156, 268, 270

off-the-shelf, 235–242
three, 50
time, 47
TPTP syntax, 248, 316
transitive verb, 56, 58, 91

lambda expression for, 72
truth, 11, 12
truth definition, 12
truth table, 158, 159, 168, 174,

196, 197, 200, 311, 312
two, 50
two-variable fragment, 53
typed lambda calculus, 98

U
unary expansion rule, 164
undecidability, 207

of consistency checking task, 23
of first-order logic, 197, 241,

243, 256
of informativity checking, 27

underspecification, 128
underspecified representation

language, 129
underspecified semantic

representation, 129
unifiable, 211
unification, 209–215

algorithm, 211, 213
definition, 211
occurs check, 209
substitution, 209

unifier, 211
uninformative formula, 29
uninformativity, 25, 26

with respect to other formulas,
25, 156, 196

universal quantifier, 6
Prolog representation of, 32

universal rules, 205, 208, 216
unsatisfiability, 22
untyped lambda calculus, 97
URL, 129
USR, 129

V
valid argument, 24, 25, 276
valid formula, 24, 25, 29
valid inference, 24
validity, 24, 25, 156, 157

and truth tables, 312
validity checking, 156
Vampire, 316
variable, 6

Prolog representation of, 32
sorted, 18

variable assignment, 12
variant assignment, 13
verb phrase, 56, 58
vocabulary, 2–4, 6, 13, 48

choice of, 6

W
weak vs. strong readings, 107–109
well formed formula, 7
wff, 7
wh-question, 293

representation of, 294
wide vs. narrow scope, 106
WordNet, 302
world knowledge, 282, 284, 288,

303

Z
zChaff, 316


