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tThis paper dis
usses inferen
e in 
omputational semanti
s. We argue that state-of-the-artmethods in �rst-order theorem proving and model building are of dire
t relevan
e to inferen
efor natural language pro
essing. We support our 
laim by dis
ussing the inferential aspe
tsof several higher dis
ourse phenomena and reporting on an experiment where the indu
eddedu
tion problems are solved by the MathWeb so
iety of theorem proving agents.Keywords: Automated Reasoning, dis
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tionSemanti
 analysis { inferen
e on the basis of semanti
 information and world knowledge { is oneof the 
entral 
ognitive tasks in natural-language pro
essing (NLP) and Arti�
ial Intelligen
e. Itis needed for situation-dependent disambiguation and for the 
oherent embedding of utteran
esinto the dis
ourse 
ontext. Humans obviously have at their disposal very eÆ
ient te
hniques forsemanti
 analysis, in NLP, similarly powerful te
hniques have yet to be found.Early attempts from arti�
ial intelligen
e [Win71, Cul78, Rie75℄, have had some limited su
-
ess, but the inferen
e 
omponents have failed to s
ale up to real-world examples. The �eld ofautomated theorem proving (ATP1) has seen an enormous in
rease of preforman
e of inferen
eengines. However, the appli
ation of ATP systems as o�-the-shelf 
omponents for NLP systemshas been deemed impossible, sin
e� First-order predi
ate logi
 is not well-suited as a representation language for the semanti
stru
tures of natural language dis
ourse (see se
tion 2),� ATP systems are optimized towards �nding deep 
ombinatorially 
omplex proofs of (math-emati
al) theorems rather than towards the straightforward proofs needed for semanti
alanalysis,� Many of the inferen
e problems ne
essary for semanti
al analysis are satis�able and termi-nation has not been a priority goal of 
urrent automated theorem proving systems.In this paper, we demonstrate the feasibility of this proposal using a translation approa
h togetherwith ATP: The translation from dynami
 logi
 (see the next se
tion) to �rst-order logi
 allowsus to get around the �rst problem and refute the other obje
tions on several dis
ourse inferen
eproblems en
ountered in semanti
 analysis.Perhaps the most important fa
t about 
urrent ATP systems is the variety that are availableand the speed many of them o�er. Now, it is hard to say anything general about what is likely to
onstitute a good 
hoi
e of theorem prover for natural language (beyond the fa
t that in generalnatural language appli
ations will require theorem provers that handle equality, a stumbling blo
kfor many tableaux based systems). Indeed, we argue that the best idea is not to 
hoose at all butto farm out the inferen
e task to many di�erent ATP simultaneously.1For the purposes of this paper, we will subsume model generation under ATP.1



In an experiment we have 
ombined the Doris2 system, (Dis
ourse Oriented Representationand Inferen
e System.) with distributed MathWeb theorem proving environment [FK99℄ (seese
tion 4), whi
h provides the servi
es of many state-of-the art ATP. In this agent-oriented softwareenvironment, Doris a
ts as a 
lient of the MathWeb theorem proving agents.TheDoris system is an implementation of the 
omputational semanti
s tools provided by [BB98℄;it 
onstru
ts dis
ourse representations for a 
onsiderable fragment of English, dealing with phe-nomena like s
ope ambiguities, pronoun resolution and presupposition proje
tion. The emphasisof the system is on the semanti
 analysis phase, where (spurious) ambiguities that are artifa
ts ofthe spe
i�
 semanti
s 
onstru
tion pro
ess are analyzed and eliminated. For this, the system gen-erates �rst-order dedu
tion problems that are solved by passing them to the so
iety ofMathWebagents that 
ompete for solving them.In the rest of the paper, we will give a very brief reminder to Dis
ourse Representation the-ory [KR93℄ (se
tion 2) and then explain the inferential aspe
ts of various dis
ourse phenomena(se
tion 3), most notably van der Sandt's dynami
 theory of presuppositions.2 Dynami
 Representation FormalismsOne of the main problems with �rst-order predi
ate logi
 for representing natural language is thatthe a

essibility of dis
ourse referents (modeled as bound variables) is given by the logi
al s
opeindu
ed by �rst-order quanti�
ation, whi
h is insuÆ
ient to model phenomena like anaphori
referen
es.The so-
alled dynami
 approa
hes to natural language semanti
s (Dis
ourse RepresentationTheory (DRT, see e.g. [KR93℄) or dynami
 predi
ate logi
 (DPL [GS91℄)) have been developed to
ope with this (and related) problems and are now well-established as representation formalismsfor natural language semanti
s. They now 
onstitute one major pillars of logi
-based naturallanguage semanti
s resear
h.We will 
on
entrate on DRT in this paper. There, senten
es and dis
ourses are represented asdis
ourse representation stru
tures (DRS); obje
ts that are dynami
ally introdu
ed in a dis
ourseare not represented by bound variables but by so-
alled dis
ourse referents in the DRSes { whi
h
olle
t dis
ourse referents and information about them. Due to spa
e restri
tions, we presupposethat the reader is familiar with DRT and otherwise refer the reader to [KR93℄.There are two approa
hes to inferen
ing in dynami
 logi
s. The �rst | whi
h we pursuein this note | is to use the (dynami
) dedu
tion theorem to en
ode the (dynami
) entailmentproblem as a (dynami
) satis�ability problem (a DRS) and then translate that DRSs to �rst-orderlogi
 (see [KR93℄) and test for satis�ability there. The se
ond paradigm is to develop a 
al
ulusfor (dynami
) entailment or satis�ability that operates on the dynami
 stru
tures themselves(see [Sau93, RG94, MdR98, KK99℄ for theorem proving and model generation 
al
uli). Whilethe se
ond (more spe
ialized) approa
h might promise better results in the long run, the �rstapproa
h allows us to make use of the highly developed automated theorem proving systems thatare available today.The translation approa
h 
an also be varied in the translation that is employed. Jan van Eij
khas developed an alternative (linear 
omplexity) translation (see e.g. [vEK96℄) using the weakest-pre
ondition-
al
ulus. It remains to be seen how the FOL fragment generated by this translation
ompares to that of our naive translation.3 Inferen
e in Semanti
 AnalysisIn this se
tion, we will take a 
loser look a three 
lasses of inferen
e problems o

urring during thesemanti
 analysis phase of natural language pro
essing. At this stage, the dis
ourse has alreadyundergone synta
ti
 pro
essing, semanti
 
onstru
tion, and anaphora resolution in Doris whi
htogether have generated a set of dis
ourse representation stru
tures. This set 
an be quite large,due to ambiguities that arise from well known phenomena as quanti�er s
ope and anaphora, and2Cf. http://www.
oli.uni-sb.de/~bos/atp/doris.html for a web-based interfa
e.2



one way to deal with this is by imposing pragmati
ally motivated 
onditions on the DRSs thatde
rease the number of readings3.These 
onversational prin
iples [Sta79℄ require that a new utteran
e in a dis
ourse should beinformative and 
onsistent, i.e. it should 
ontribute information that is still unknown and it shouldnot lead to obvious 
ontradi
tions. Clearly, these prin
iples are only non-trivial if they are appliedwith respe
t to a given set of world knowledge and the 
ontext of the dis
ourse so far, so that
he
king them leads to general inferen
e problems.In the rest of this se
tion, we will give examples that violate these three 
onditions and showthe use of ATP systems. For ea
h example we give the translation into dis
ourse representationstru
tures, and, using the translation to �rst-order logi
, show how we Doris uses ATP to sele
treadings or to rule out the whole dis
ourse. We will only talk about informativity and 
onsisten
y,and refer the reader to [BBKdN98b℄ for the 
ases of presupposition proje
tion and quanti�er s
ope.In [VdS92℄, Van der Sandt models the informativity prin
iple as follows:A DRS B0 is informative with respe
t to a DRS B, i� B does not entail B0.With the ba
kground knowledge that someone who has a husband is married, the dis
ourse(1) Mia has a husband. She is married.violates this prin
iple. The DRSs after pro
essing the �rst and se
ond senten
e respe
tively,are:(2) a. U; VU = miahusband(V )of(U; V ) b. U; V; U 0U = miahusband(V )of(U; V )U 0 = Umarried(U 0)The ba
kground knowledge about marriage is 
oded into �rst-order logi
:(3) A woman is married, i� she has a husband.(4) 8X:(9Y:husband(Y ) ^ of(X;Y ))� married(X) ^ woman(X)Note that in the approa
h advo
ated in this paper it is easy to integrate stati
 ba
kground knowl-edge (given in FOL) with DRT, sin
e the latter is translated to FOL anyway.4In this situation, we 
an test informativity by 
he
king whether(5) (3) ^ (2:a)fo ) (2:b)is a theorem of �rst-order logi
. In our example we should �nd a proof, as there is no newinformation 
onveyed by the se
ond senten
e.Next we dis
uss a variation of informativity, the lo
al informativity 
onstraint. The lo
alinformativity 
onstraint is that if one utters a phrase of the form: If A then B, then A should benot trivially satis�ed. (So, here the if-then from natural language 
learly di�ers from its logi
al
ounterpart). In the following example this 
ondition is violated:(6) Mia has a husband. If she is married, then Vin
ent dan
es.The DRSs belonging to these senten
es are:3This is essential for pra
ti
al NLP, sin
e in dis
ourse or dialogue pro
essing appli
ations, the numbers readingsof the senten
es multiply to the number of readings of the whole dis
ourse or dialogue.4In a dynami
 dedu
tion approa
h, the ba
kground knowledge would have to be formulated in DRT, or theapproa
h would need to be extended to a

ommodate for �rst-order reasoning.3



(7) U; VU = miahusband(V )of(U; V )(8) U 0U 0 = Umarried(U 0) )) V 0V 0 = vin
entdan
e(V 0)When these DRSs are 
ombined the result equals:(9) U; VU = miahusband(V )of(U; V )U 0U 0 = Umarried(U 0) )) V 0V 0 = vin
entdan
e(V 0)This last DRS violates the lo
al informativity 
onstraint, sin
e(10) (3) j= 8X;Y:(X =mia ^ of(X;Y ) ^ husband(Y ))) married(Y )The last 
ondition that we 
he
k is 
onsisten
y. Say we had 
ontinued (2.a) with the utteran
eShe is not married, paraphrased by the following DRS:(11) U 0U 0 = U:: married(U 0)Clearly, the new information is in
onsistent with the information that is already present (impli
itly)In this situation, we 
an 
he
k for informativity by 
he
king whether(12) (3) ^ [(2:a)
 (11)℄fois unsatis�able.4 The MathWeb SystemThe MathWeb system is an obje
t-oriented toolbox that provides the fun
tionality for build-ing a so
iety of software agents that render mathemati
al servi
es by either en
apsulating lega
ydedu
tion software or their own fun
tionality. In the 
urrent implementation the software busfun
tionality is realized by a model quite similar to the Common Obje
t Request Broker Ar
hi-te
ture (CORBA [Sie96℄) in whi
h a 
entral broker agent provides routing and authenti
ationinformation to the mathemati
al servi
es (see [SHS98℄ for details). The agents are realized in adistributed programming system mOZart5, whi
h provides the full infrastru
ture to write dis-tributed appli
ations.The MathWeb servi
es relevant for Doris in
lude the �rst-order ATP bliksem, EQP, Ot-ter, ProTeIn, Spass, WaldMeister, the model generator Sat
hmo (see [SS97℄ for referen
es)and a servi
e 
ompetitive-atp that 
alls sets of ATP 
on
urrently as 
ompeting servi
es (thisstrategy is known to yield even super-linear speedups in pra
ti
e).The Doris 
lient generates between 1 and 
a. 500 dedu
tion problems for ea
h senten
e itpro
esses, distributes them to 
ompeting mathemati
al servi
es (over a network of workstations)5See http://mozart.ps.uni-sb.de 4



and 
olle
ts the results to obtain the desired result. Using theMathWeb approa
h, the integrationof the theorem provers was very simple: the only new parts was a so
ket 
onne
tion from Prologon the Doris side and a new servi
e module for the Doris servi
e6 on the MathWeb side.Experien
e with this appli
ation shows that distribution usingMathWeb does not 
ome for free:for a typi
al Doris dedu
tion query we have780{250 ms pure theorem proving time150-350 ms spent in the servi
e module (opening an inferior shell, 
reating �les,. . . ). This de-pends strongly on the eÆ
ien
y of the server �le system.5{500 ms Internet laten
y (we have measured inter-department (in Saarbr�u
ken) and interna-tional (Saarbr�u
ken/Amsterdam) 
onne
tions)However, the large number of dedu
tion problems and the possibility of 
oarse-grained paralleliza-tion by distribution lead to a signi�
ant in
rease in overall system performan
e, 
ompared to anearlier 
entralized, sequential ar
hite
ture [BBKdN98a, BBKdN98b℄.The 
urrent CORBA-like distribution model in MathWeb is suÆ
ient in an agent so
iety,where servi
es and their abilities are relatively �xed and well-known, whi
h is reasonable for therelatively 
losed proje
ts likeDoris. As the number of available servi
es will grow (MathWeb hasfor instan
e been adopted by other proje
ts building onDoris), this design will be
ome too in
ex-ible. Therefore the logi
al next step will be to adopt a more general truly agent-based approa
h.We have started to extendMathWeb so that it uses the Kqml interlingua (Knowledge Query andManipulation Language [FF94℄) as the agent intera
tion language and the OpenMath [Cap98℄standard as a 
ontent language.This move will result in a \plug-and-play" ar
hite
ture for theorem proving and (in the future)for doing mathemati
s and 
omputational semanti
s on the web.5 Con
lusionIn this paper we have reported on an appli
ation of 
urrent ATP te
hnology in natural languagepro
essing. We have shown that �rst-order ATP systems 
an su

essfully be employed as ora
lesfor NLP systems to disambiguate multiple readings.While the experiment has shown that the naive translation approa
h to dynami
 reasoning isindeed feasible in this appli
ation, it is 
lear that in the presen
e of larger dis
ourses (the onestried out so far only 
onsist of tens of senten
es), the te
hniques have to be re�ned both from thelinguisti
 side as well as from the theorem proving side. For instan
e the set of formulae suppliedto the automated theorem prover 
an be restri
ted by taking into a

ount the dis
ourse stru
ture(see for instan
e [Gar97℄).The general 
onsequen
es for resear
h in 
omputational semanti
s are profound: With the useof the highly optimized and eÆ
ient theorem proving systems as logi
al engines and theMathWebte
hnology to make the integration of them into NLP appli
ations an easy task it will be simpleto test inferential theories of meaning in natural language semanti
s, as we have done in Doriswith van der Sandt's anaphori
 theory of presuppositions. In fa
t possibility to work more andlarger examples than would be possible by hand have un
overed short
omings in this theory andhave led to a revised a

ount in [BBKdN98b℄.Referen
es[BB98℄ Patri
k Bla
kburn and Johan Bos. Representation and Inferen
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