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Abstract. This paper discusses inference in computational semantics. We argue
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1. Introduction

In this paper we discuss inference in computational semantics. In par-
ticular, we argue that state-of-the-art methods in first-order theorem
proving and model generation are of direct relevance to inference for
natural language processing. This claim is based on our experience of
implementing van der Sandt’s approach to presupposition, and much
of the paper discusses this application. Incidentally, the reader can
experiment with this implementation over the internet: most of what
is discussed below is available as part of Johan Bos’s DORIS system
(Discourse Oriented Representation and Inference System1).

This work has its roots in a textbook entitled Representation and
Inference in Natural Language: A First Course in Computational Se-
mantics (see Blackburn and Bos (2000a) for the latest draft). The goal
of this book is straightforward: to present formal semantics from a
computational perspective, and equip students with the basic tools
required to perform semantic construction computationally. Modular-
ity, reusability, and the use of standard tools is emphasized. Now, as
far as representation is concerned, it is more or less clear what an
introduction to computational semantics should offer: it is obviously
sensible to introduce standard semantic representation formalisms such
as Discourse Representation Theory (DRT Kamp and Reyle (1993)), to
discuss well-known techniques for handling scope ambiguities, and so
on. But inference is far harder to pin down. What exactly is inference
in computational semantics?
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Given the present state of knowledge, this is too difficult to answer:
“inference” can mean just about anything from issues of architecture
design (what information is available for immediate lookup, versus what
is to be computed on the fly) to the use of probabilistic techniques. But
in spite of this diversity, one topic should arguably play a key role: the
use of first-order logic.

Theoretical considerations certainly suggest the importance of first-
order inference. Many semantic representation formalisms can be re-
duced to first-order logic (this includes many formalisms which at
first glance seem to lie beyond its reach, such as those which make
use of partiality, or modal and temporal operators), and even when a
full reduction is not possible, first-order logic often provides a useful
approximation (a good example is the partial reduction of higher-order
logic to first-order logic via generalized models). In particular, as we
shall later see, there is a simple reduction from DRT to first-order logic.
But first-order inference is not merely of theoretical interest: one of the
main points we make in this paper is that it is becoming an increasingly
practical option.

There is a large and active research community2 devoted to exploring
first-order inference computationally, and a wide range of sophisticated
automated theorem provers, model builders, and other tools are now
freely available over the internet.

In our view, computational semanticists should take note of these
developments; off the shelf tools are now capable of playing a useful role
in developing natural language systems with a non-trivial inferential
component.3

We devote most of this paper to explaining why such tools are
relevant to one particular problem: the computational treatment of
presupposition. We are going to examine what is arguably one of the
most natural (and certainly one of the most empirically successful)
approaches to presupposition, namely van der Sandt’s DRT based ap-
proach (Van der Sandt, 1992). We show how first-order inference tech-
niques can be used to give a simple implementation of van der Sandt’s
ideas, and suggest that the resulting implementation gives a natural
framework for exploring and refining his account. We extract a general
lesson from our experiment, and conclude by discussing this.

Restrictions of space force us to assume a certain amount of back-
ground knowledge on the part of the reader. In particular, we assume
familiarity with the rudiments of DRT (everything the reader needs can
be found in the Kamp and Reyle textbook (Kamp and Reyle, 1993), or
the first chapters of Blackburn and Bos (2000b)). Furthermore, while we
sketch van der Sandt’s method, we’re going to focus on the inferential
aspect of his work, thus it will be useful to have a copy of his classic
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article to hand; quite apart from its other merits, it’s an excellent
introduction to many issues in presupposition that we cannot discuss
here.

2. Van der Sandt on Presupposition

Van der Sandt gives an anaphoric account of presupposition. That is,
in his view presuppositions behave much like anaphoric pronouns—in
fact the only difference is that presuppositions have more descriptive
content. This simple idea has two important consequences. First, there
is no need to give an account of presupposition ‘cancellation’, for there
is no such phenomenon; what other accounts regard as a ‘cancellation’
is simply a case of a presupposition being successfully resolved to an
antecedent. Second, because they have descriptive content, presuppo-
sitions are sometimes able to ‘repair’ the context by creating a suitable
antecedent; this process is known as accommodation.

Van der Sandt expresses his theory in DRT; strictly speaking this is
not necessary, but it is certainly advantageous to do so. DRSs are evolv-
ing discourse pictures; they display the previously established context,
and grow as more information is added. Van der Sandt lets presuppo-
sitions contribute a new picture (that is, a new DRS) to this evolving
representation, and demands that the new picture be sensibly incorpo-
rated into the overall representation. Two incorporation mechanisms
are permitted. First, presuppositions can be resolved, just like ordinary
pronouns. The beautiful point about this option is that it calls for no
new apparatus: it simply makes use of familiar DRT mechanisms (such
as accessibility) for pronoun resolution. Second, presuppositions can be
accommodated ; that is, they can repair the context by creating their
own antecedent. Again, this fits beautifully with central ideas of DRT:
because presuppositions are associated with DRSs, accommodation is
essentially a matter of enlarging part of the picture.

Let’s consider two examples, one illustrating resolution, the other
accommodation. First some notation. Van der Sandt represents DRSs
containing presupposed information by drawing them with dashed lines;
we shall use the computationally more convenient convention of prefix-
ing DRSs containing presupposed information with the symbol α (the
mnemonic here is that a DRS marked with an α contains anaphoric in-
formation). We assume that presupposition triggers in the lexicon (such
as the definite article, possessive constructions, and proper names) are
associated with an appropriate α-DRS.
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For our first example, suppose we have already processed the sen-
tence ‘A woman snorts’. That is, we have already built the following
DRS:

DRS 1.

y

woman(y)
snort(y)

Suppose the second sentence is ‘The woman collapses’. According
to van der Sandt, this is what happens. The second sentence, which
contains the presupposition trigger ‘the’, gives rise to the following
DRS:

DRS 2. α:
x

woman(x)
collapse(x)

(The best way to view this DRS is as an ordinary DRS—but an
ordinary DRS marked as being unresolved with respect to presupposed
information.) Next we merge this new DRS with the DRS that rep-
resents the previous discourse; note that this merging process takes
place while the presuppositions are still unresolved. So after merging
we obtain:

DRS 3.

y

woman(y)
snort(y)

α:
x

woman(x)
collapse(x)

Only after merging do we attempt to resolve the presuppositions.
We recursively travel through the merged DRS and, for each α-marked
DRS we encounter, we try to find a suitable ‘anchor’ to resolve to. That
is, we try to match the content of the α-DRS with that of superordinated
DRSs. Intuitively this is a natural thing to do; after all, presupposed
information is supposed to be contextually available.

Let’s see how this works. In our example, we only have one elemen-
tary presupposition:

DRS 4.
x

woman(x)
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Note that if we identify the discourse referents x and y there is a
partial match between the outermost DRS and the α-DRS. Carrying
out this identification yields:

DRS 5.

y

woman(y)
snort(y)
collapse(y)

In short, we have successfully dealt with the presupposition induced
by ‘the’, by identifying the discourse referent it introduced with the
woman-denoting discourse referent in the preceding context.

That’s the basic idea, but things don’t always go this smoothly.
Sometimes we can’t find the presupposed information in the preced-
ing context, and resolution is impossible. (Maybe, we missed a bit of
a conversation; and anyway, people often have different views about
what the assumed context actually is.) To deal with such cases van der
Sandt makes use of accommodation: if we can’t resolve our elementary
presuppositions to a suitable element in the context, we don’t give up.
Instead we simply add the required background information.

Here’s an example. Consider the sentence ‘If Mia dates Vincent, then
her husband is out of town’. Concentrating only on the trigger ‘her
husband’, we get:

DRS 6.

x y

x=mia
y=vincent

date(x,y)
⇒ α:

z

husband(z,x)
out-of-town(z)

Assuming this is the first DRS we have to process (that is, that
the DRS built up so far is still empty), there is no candidate DRS for
matching the presupposed information that Mia has a husband, which
is coded by the following DRS:

DRS 7.
z

husband(z,x)

In such cases we accommodate the information to the outermost
DRS, and get the following, final, DRS:
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DRS 8.

x y z

x=mia
y=vincent
husband(z,x)

date(x,y)
⇒

out-of-town(z)

In broad terms, that is the way van der Sandt’s approach works.
But obviously more needs to be said: clearly both resolution and ac-
commodation must be subject to constraints. And indeed they are. A
more precise specification of van der Sandt’s method is given by the
following non-deterministic algorithm:

1. Generate a DRS for the input sentence with all elementary
presuppositions given as α-DRSs.

2. Merge this DRS with the DRS of the discourse so far processed.

3. Traverse the DRS, and on encountering an α-DRS A try to

a) link the presupposed information to an accessible antecedent,
b) or accommodate the information to a superordinated DRS.

4. Remove those DRSs from the set of potential readings that vio-
late the acceptability constraints.

Now, implementing the first three steps of this algorithm simply
requires a slight modification of the basic DRT pronoun resolution algo-
rithm (for further details, see Chapter 4, Blackburn and Bos (2000b)).
But what of step 4? What are the acceptability constraints we must
avoid violating?

One of these constraints, the free variable check, is rather uninterest-
ing: we are not allowed to generate DRSs that contain free variables.
But this is just a well-formedness condition on the resulting DRSs;
it is easy to implement and we will not bother discussing it further.
However there are also a number of far more interesting, essentially
semantic, acceptability constraints—some of which are fully specified
by van der Sandt, some of which are partially specified, and some of
which are merely hinted at—which bring us, directly and unavoidably,
to non-trivial inference problems. Most of this paper is devoted to
discussing these semantic constraints and their implementation. Let’s
start by considering the two most clearcut constraints that van der
Sandt imposes.

First, van der Sandt demands that contributions to a discourse be
consistent. For example, the following discourses are unacceptable:
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EXAMPLE 1. Mia is a boxer. Vincent knows all boxers. Vincent doesn’t
know Mia.

EXAMPLE 2. Jody is married. Jody does not have a husband.

Note that the inconsistency of these discourses is not a matter of
pure logic; it depends on additional background information, namely
that men are not women, that women are not men, that Jody is a
woman, and that married women have husbands.

Second, van der Sandt demands that contributions to a discourse
should be informative. That is, every contribution to the discourse
should introduce new information. This rules out the following dis-
courses:

EXAMPLE 3. Jody is a boxer. Jody is a boxer.

EXAMPLE 4. Mia is married. She has a husband.

Note that while the first inference is purely logical, the second infer-
ence hinges on our knowledge that Mia is a woman, and that married
woman have husbands.4

Now, the consistency and informativity constraints are the simplest
semantic constraints van der Sandt places on his algorithm (we defer
discussion of the more complex local constraints till Section 4). But
simple as they are to formulate, ensuring that they are met requires
non-trivial inferential power: testing for consistency means we need a
way of determining whether a given DRS can be embedded in some
model, while testing for newness means we need a way of determining
whether one DRS follows from another. Moreover, we need to be able
to carry out these tasks in a way that takes background knowledge into
account.

What are we to do? One answer, of course, is to develop inference
methods for the language of DRSs. Now, this is a theoretically sensible
answer, and one that should certainly be further explored.5 Nonethe-
less, there are no good reasons for thinking that native DRT approaches
will automatically lead to the most efficient implementations. There
is a gap—and it is not a trivial one—between the existence of even
sophisticated inference methods (for example, sequent, resolution or
tableau-based calculi) and efficient implementations. Efficient theorem
proving and model generation is not simply a matter of starting with
(say) a sequent calculus and applying a few routine programming tricks:
it requires a sophisticated analysis of such issues as representation
and proof search, and the existence of a complete proof calculus is
merely the first step on a long and complex road. First-order inference
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techniques have had the benefit of extensive exploration by skilled
researchers over a long period of time; it is hard for DRT and newer
formalisms to compete with that, at least in the short term.

So let’s hijack this first-order expertise! That is, let’s attempt to
make use of the many sophisticated first-order theorem proving and
model generation tools that are currently available by compiling infer-
ence problems involving DRSs into first-order inference problems. We
explore this idea in the following section.

3. Exploiting First-Order Inference Tools

If we are to make use of first-order theorem provers and model builders,
we have to do two things. First, we have to show how inference prob-
lems in DRT can be translated into inference problems in first-order
logic. Luckily, as we shall shortly see, this first task is essentially triv-
ial. Second we have to be precise about what the inference problems
in DRT that van der Sandt appeals to actually are. For the consis-
tency and informativity constraints introduced so far this is completely
straightforward; but as we shall learn in the following section, the ideas
underlying what we call van der Sandt’s local constraints are not nearly
so clear cut.

Let’s first see how to translate DRSs to first-order formulas. The
present implementation of DORIS makes use of the following trans-
lation, which is probably the standard one.6 Here is the clause for
boxes:

(

x1 . . . xn

γ1

.

.
γm

)fo = ∃x1 · · · ∃xn( (γ1)fo ∧ · · · ∧ (γm)fo)

This maps the discourse referents to existentially quantified vari-
ables, and recursively translates the conditions. So now we must deal
with the conditions. Basic conditions simply map to themselves-viewed-
as-first-order-atomic-formulas:

(R(x1, . . . , xn))fo = R(x1, . . . , xn)
(τ1 = τ2)fo = τ1 = τ2

Moreover, complex conditions formed using ¬ and ∨ are also straight-
forwardly handled; we simply push the translation function in over the
connective, leaving the connective unchanged:
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(¬B)fo = ¬(B)fo

(B1 ∨B2)fo = (B1)fo ∨ (B2)fo

Finally, complex conditions formed using ⇒ are translated as fol-
lows.

(

x1 . . . xn

γ1

.

.
γm

⇒ B)fo = ∀x1 · · · ∀xn(((γ1)fo∧· · ·∧(γm)fo) → (B)fo)

There are two key points that need to be made about this trans-
lation. The first is semantic: a DRS can be satisfied in a given model
using a given assignment if and only if its translation can be satisfied
in that same model using the same assignment. It follows that a DRS is
valid, consistent or inconsistent if and only if its first-order translation
has the same property. In short, we don’t lose anything of logical impor-
tance when we apply this translation. The second point is syntactic:
the size of the translation is linear in the size of the input. That is,
the computational overhead involved in translation is negligible. For
a simple Prolog implementation of this translation, see Chapter 1 of
Blackburn and Bos (2000b).

So we can get from DRT to first-order logic with ease. What are
the ramifications for van der Sandt’s consistency and informativity
constraints?

In fact what we’ve already said pretty much gives the answer: to
check that a DRS is consistent, simply translate the DRS to first-order
logic—call this formula Φ—and then use first-order inference tools to
check whether Φ is consistent. Actually, this is an oversimplification:
recall that we also want to take background knowledge into account. So
let’s assume that we have at our disposal a first-order knowledge base
which contains the relevant background information; let KB be the
conjunction of all the formulas it contains. Our consistency check needs
to be performed relative to this background knowledge, which means
we should use first-order tools to check whether KB ∧ Φ is consistent.

So how do we test for informativity? Well, if the new DRS follows
from the DRS representing the previous discourse, together with the
information stored in the knowledge base, then the new DRS does
not encode new information. Let Ψ be the first-order formula ((KB ∧
OLD) → NEW), where OLD is the translation of the old DRS and
NEW is the translation of the new DRS. Then the new utterance is in-
formative if and only if Ψ is not valid. So, van der Sandt’s informativity
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test on DRSs simply boils down to the following task: use first-order
inference tools to check whether Ψ is valid.

Summing up, we can compute van der Sandt’s consistency and in-
formativity constraints via our translation if there are practical tools
for establishing the consistency and validity of first-order formulas. Of
course, the first-order consistency and validity problems are undecid-
able, so there is no method guaranteed to work on all input—but are
there methods which can be expected to work well in practice on the
type of formulas typical linguistic examples yield? Our experience sug-
gests that the answer is yes. Sophisticated theorem provers handle such
input well (moreover, unsophisticated theorem provers handle it very
badly) and it seems that the use of recent model generation techniques
can further enhance performance. Let’s go into this a little deeper.

A (complete) first-order theorem prover is a tool that, given a valid
first-order formula as input, will eventually (given enough memory and
time) be able to determine that the formula really is valid; it does
this by attempting to prove the formula using some proof calculus,
typically resolution or tableaux. See (Bibel and Schmitt, 1998) for a
recent overview over the state of the art in automated deduction.

If a theorem prover proves a formula this is unequivocal evidence
that the formula is valid. (On the other hand, if the theorem prover
does not succeed in proving a formula after some finite time, this is does
not mean that the formula is invalid; it may mean that not enough effort
has been devoted to finding a proof.) Thus a theorem prover offers an
important positive handle on validity; if it says a formula is valid it is
correct. Moreover, it also offers a useful negative handle on consistency,
for a formula is consistent if and only if its negation is valid. Thus if
a theorem prover successfully proves ¬Φ, this is unequivocal evidence
that Φ is not consistent.7

However — for our application — perhaps the most important fact
about current theorem provers is the variety that are available and the
speed many of them offer. Now, it is hard to say anything general about
what is likely to constitute a good choice of theorem prover for natural
language (beyond the fact that in general natural language applications
will require theorem provers that handle equality, a stumbling block for
many tableaux-based systems). Indeed, we shall argue below that the
best idea is not to choose at all; a better idea is to farm out the inference
task to many different theorem provers simultaneously.

But theorem proving is not enough; model generation is essential
too. A model generator is a tool that, given a first-order formula, at-
tempts to build a model for that formula; if it succeeds, it thereby show
that the input formula is consistent. Thus, whereas a theorem prover
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gives us a direct positive handle on validity, a model builder offers us
a partial positive handle on satisfiability.8

Now this is an important and useful capability. For example, suppose
we are using a theorem prover to test Φ for consistency (that is, we
instruct it to try and prove ¬Φ). Now, if the theorem prover succeeds,
we know that Φ is not consistent, and nothing more needs to be said.
But what if the theorem prover returns with the message “I can’t prove
this”? This doesn’t mean that Φ is consistent, it merely means that the
theorem prover has used up some predetermined quota of resources.
Model generation offers a partial solution to this problem: as well
as calling the theorem prover with input ¬Φ, simultaneously call the
model builder with input Φ. In practice, this should successfully deal
with many of the formulas the theorem prover can’t handle, as is shown
in Table I. Here the top row lists possible responses from the theorem
prover to ¬Φ, while the left hand column lists possible responses of the
model builder to Φ.

Table I. Consistency checking for theorem provers and model builders.

¬Φ valid ? ¬Φ invalid

Φ satisfiable – consistent consistent

? inconsistent ? consistent

Φ not satisfiable inconsistent inconsistent –

The current implementation of DORIS generalizes the idea of si-
multaneous use as far as possible. It does not bother trying to decide
which is the best theorem prover for a problem, or whether a problem
is best handled using theorem proving or model generation—it simply
calls on all available tools.9 That is, we interface DORIS to a piece of
middleware called MathWeb, farming out the inference task to a wide
range of theorem provers and model builders over the internet (Franke
and Kohlhase, 1999). In effect, DORIS starts a race, and waits for the
winner to report back. For technical details, including comparison with
other theorem provers on this task, see Blackburn et al. (1998).

The present version of DORIS makes use of Hans de Nivelle’s BLIK-
SEM, a prover optimized for dealing with the guarded fragment of
first-order logic (Andréka et al., 1998)); SPASS, a theorem prover for
first-order logic with equality (Weidenbach et al., 1996); Peter Baum-
gartner’s FDPLL, a first-order theorem prover based on the Davis-
Putnam-Logeman-Loveland procedure (Baumgartner, 2000); and the
model builder MACE for first-order logic and equality (McCune, 1998).
An interesting feature of BLIKSEM is that it is a complete first-order
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theorem prover that actually decides the guarded fragment (De Niv-
elle, 1998).10 In addition, it offers impressive performance on natural
language examples.

4. The Local Constraints

The main message of the previous section is straightforward: there is
a simple bridge between DRT and first-order logic, and once we have
converted a DRS inference problem to a first-order inference problem
we can use theorem proving and/or model generation to resolve it.
But now we encounter a difficulty. Van der Sandt imposes further
constraints which we will call local constraints. Unfortunately, it is
unclear from his description what the relevant DRS inference problem
actually is, and until this is resolved we cannot reduce these constraints
to first-order logic.

Roughly speaking, van der Sandt’s locality constraints are as fol-
lows: superordinated DRSs should neither imply a subordinated DRS
(we will term this local informativity), nor a negated subordinated
DRS (this we call local consistency). The most important effect of the
locality constraints is that they filter out certain (mostly global or
intermediate) accommodation possibilities. To illustrate this, note that
the following example does not presuppose that Mia has a husband (in
this example, and in the ones that follow, the relevant presupposition
trigger is underlined).

EXAMPLE 5. If Mia is married, then her husband is out of town.

The local informativity constraints prevent global accommodation
of the fact that Mia has a husband, because this information follows
from the antecedent DRS.11

Van der Sandt does not precisely define the local principles; all he
says about them is the following (slightly reformulated):

The resolved DRS does not give rise to a structure in which (the
negation of) some subordinate DRS is entailed by the DRSs which
are superordinated to it. (Van der Sandt (1992), p. 367)

The problem lies in the interpretation of “entailed by the DRSs
which are superordinated to it”. To take a concrete example, let’s say
we have a DRS B0 containing a conditional formed out of the DRSs B1

and B2:

B0:
B1 ⇒ B2
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In order to check the condition above, we first need to determine
pairs that consist of a set of superordinated DRSs and a subordinated
DRS. In the example above, there are two such pairs: 〈{B0},B1〉, and
〈{B0,B1},B2〉. The second assumption we have to make is that “entailed
by the DRSs” means conditionally implied by the merge of all these
DRSs.12 This yields the following DRSs:

DRS 9.
B1 ⇒ B2

⇒ B1

for the pair 〈{B0},B1〉, and

DRS 10. B1 ⊕
B1 ⇒ B2

⇒ B2

for the instance 〈{B0,B1},B2〉 (here ⊕ denotes merge of DRSs).
The problem lies with the second entailment, paraphrased by DRS 10.
Translating a DRS of this form into first-order logic yields a validity.
This means that the local informativity constraint is useless as it rules
out any DRS with an implicational condition.

These problems are just a tip of the iceberg, but instead of further
discussing the difficulties, let us turn straightaway to our positive pro-
posal. We suggest this: redefine Van der Sandt’s local constraints as
follows.

Local Informativity
Let B be a DRS containing a subordinated DRS Bi, and B1,. . . ,Bn

be subordinated DRSs subordinating Bi in B. Then Bi is locally
informative iff the DRS B∗ ⊕ B1 ⊕ · · ·⊕ Bn does not entail Bi,
where B∗ is B minus the conditions that contain B1,. . . ,Bn,Bi.

Local Consistency
Let B be a DRS containing a subordinated DRS Bi, and B1,. . . ,Bn

be subordinated DRSs subordinating Bi in B. Then Bi is locally
consistent iff the DRS B∗ ⊕ B1 ⊕ · · ·⊕ Bn does not entail ¬ Bi,
where B∗ is B minus the conditions that contain B1,. . . ,Bn,Bi.

The crucial change is that we have removed the conditions that
contains the subordinated DRS. This enables us to avoid the problems
noted above.
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In our view, these conditions capture van der Sandt’s intentions. Cer-
tainly their empirical predictions (as checked by DORIS), seem to coin-
cide with Van der Sandt’s expectations. Note that it is immediate which
first-order problems these acceptability constraints correspond to: we
merely form the required merges, translate, and determine whether the
required entailments hold or not. Furthermore, note that computing
these constraints places a heavy burden on the inference component:
every sub-DRS gives rise to two calls to the theorem prover and/or
model builder. Indeed this is precisely why we find van der Sandt’s
algorithm such an interesting testbed for inference in computational
semantics: it makes incessant non-trivial demands of any proposed
inference mechanism.

Summing up, now we have what we believe is a faithful imple-
mentation of van der Sandt’s algorithm. In fact, this implementation
transformed our views of the importance of first-order inference tech-
niques for natural language processing. Prior to this, we tended to
view such techniques as interesting, useful as teaching material, but
ultimately as of questionable relevance. This view was swept away the
first time we hooked up a theorem prover and saw how well it coped
with van der Sandt’s ideas. For a start, it was pleasant to be able to
calculate van der Sandt’s predictions instead of laboriously working
them out by hand. More significantly, it swiftly became apparent that
we now had a “presupposition laboratory” on our hands: we could
explore van der Sandt’s ideas to our hearts content, extending, refining,
and just plain experimenting, with ease. For example, van der Sandt
fleetingly mentions that linking an α-DRS A to a superordinated DRS
B is allowed “such that the conditions of B are compatible with the
conditions of A” (Van der Sandt (1992), p. 358), under a substitution
that maps the discourse referents from A to B. In effect, he wants to
allows (semantically justified) partial matches between the antecedent
DRS and the DRS with the presupposed information. This idea can be
implemented in our “presupposition laboratory”, yielding a mechanism
for coping with with direct bridges.

5. Concluding Remarks

We have argued that state of the art theorem provers and model builders
are of direct relevance to computational semantics. Our discussion has
been, at best, preliminary: many difficult issues have not been ad-
dressed. Perhaps the most significant omission is any discussion of how
well these methods will scale up (or, more accurately, what is lacking
is discussion of what to do when these methods fail to scale up, for fail
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they certainly will with large enough discourses and knowledge bases).
But in spite of this limitation, we believe that there is at least one
application in which such methods have a good chance of playing an
important role in the near future: the development of computational
tools for exploring formal semantics. To close the paper, we’d like to
explain why.

Richard Montague’s work is arguably the most significant contribu-
tion to formal semantics since the pioneering work of Frege. Prior to
Montague, formal semantics was based on analogies between natural
and formal languages; Montague swept analogy aside and replaced it
with the use of precisely specified translation algorithms. In our view,
there are clear signs that the study of semantics is on the brink of
taking a further step forward. This step (which we view as the natural
fulfillment of Montague’s vision) could be described as moving from
Montague’s method of fragments to what we like to call the Method of
Architectures.

Over the next few years, progress in semantics is likely to depend
on integrating the insights from diverse areas of inquiry. To put it
another way, synthesis, not further analysis, is likely to be the key to
significant progress. But with every passing day it seems clearer that the
widespread availability of massive computing power and the internet
will make it possible to develop computational tools which can help
semanticists to “think in bigger chunks”. We certainly hope so, for in
our view such tools could transform the study of semantics.

Now, such tools will probably develop by plugging together the best
available components—from graphical interfaces to parsers—into ever
more usable and flexible systems. Moreover, a key component of any
such tool will be an inference mechanism (or inference mechanisms).
Of course, it is impossible to predict what sort of inference mechanism
might ultimately be favored; nonetheless, first-order inference is a likely
candidate: it fits in well theoretically, and even if we assume the worst
about the problem of scalability, this is far less likely to be crippling
in a piece of software designed to help semanticists than it would in a
more down to earth application.

Well—we’d certainly like to see things turn out this way and perhaps
they will. In the meantime, let’s start experimenting.
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Notes

1 http://www.coli.uni-sb.de/~bos/doris
2 In our experience, this community is interested in natural language applications,

and is often prepared to try and accommodate its special needs. In fact, the proof
problems generated by the DORIS system discussed below are currently finding their
way into the CADE system competition (Sutcliffe and Suttner, 1997) as challenge
problems to the automated theorem proving community.

3 Of course, the idea of using first-order theorem proving techniques for NLP
tasks is not new; it’s as old as AI itself, and Allen 1995, for example, contains a
good textbook level discussion. Nonetheless, few computational semanticists seem
aware of developments in contemporary theorem proving and model generation, or
of their potential relevance for computational semantics. We think such tools should
be a standard part of the computational semanticist’s arsenal.

4 The motivation for both the consistency and informativity constraints should
be familiar to most readers. Van der Sandt attributes his version of these ideas to
Stalnaker.

5 Interesting work already exists; for example (Reyle and Gabbay, 1994; Monz and
de Rijke, 1998) discuss automated theorem proving calculi for DRT and DPL, and
the latter is even implemented as a prototype system. A major problem that these
approaches share with the translation approach advocated in this paper is that they
are non-incremental, i.e. for each proof problem, the corresponding theorem prover
has to be re-initialized with the whole knowledge base and the logical representation
of the discourse so far. This problem is addressed in (Kohlhase, 2000) in the context
of DRT.

6 This is the translation given in Kamp and Reyle 1993. A variety of other
translations are known (see, for example, the translation given in Van Eijck and
De Vries (1992) and Muskens (1996)) and it would be interesting to experiment
with these as well. One other piece of background information is worth knowing: it
is straightforward to give a reverse translation from first-order logic to the language
of DRSs (a very simple one is given in Chapter 1 of Blackburn and Bos (2000b)).
This means that the language of DRSs has full first-order strength. An immediate
consequence is that the consistency and informativity constraints are, in general,
undecidable.

7 Actually, some theorem provers offer more than this choice between “Yes, valid!”
and “I don’t know!”; some can offer conclusive proof of invalidity for some input.
For example, some theorem provers blend theorem proving and model generation
techniques. If such a system says that that a formula is not valid, this means it
has definitive evidence of invalidity: it has constructed a countermodel. Moreover,
some theorem provers—and the BLIKSEM theorem prover discussed below is one of
them—are capable of determining that special kinds of input formulas are invalid.

8 Be warned, while important, the grip on satisfiability offered by model builders
is necessarily partial: the set of satisfiable first-order formulas is not recursively
enumerable. (It is precisely because of this that validity is only semi-decidable.)

tilburg.tex; 9/04/2005; 20:42; p.16



17

9 This well-known technique is called competitive parallelism in automated the-
orem proving, and has been shown to provide super-linear speedups. That is, on
average, n competing automated theorem provers find a proof of a given theorem in
less than 1/nth of the average proof time. In fact, a requent winner of the annual
CADE automated theorem proving competition (Sutcliffe and Suttner, 1997) is the
Gandalf system that time-slices several theorem proving strategies in one system,
imitating competitive parallelism.

10 That is, BLIKSEM will terminate on all input formulae in this large subclass of
first-order logic. In our experience, the formulae generated by the DRT translation
are almost always in this class in practice. Of course this cannot hold universally (see
note 5) or for the background knowledge, but it is safe to say that the proof problems
generated by DORIS are near the guarded fragment, giving theorem provers like
BLIKSEM an edge for this application

11 This is nice, but in our view van der Sandt’s local informativity constraints are
too strong. For example, they rule out discourses such as ‘Vincent eats a cheese-
burger. If he eats a cheese-burger, he enjoys it.’ and ‘Vincent eats a burger. Every
burger goes with a five dollar shake.’ Incidentally, in DORIS local informativity is
implemented as a “soft” constraint.

12 This is the only interpretation that makes sense from a logical point of view.
If it meant that each of the superordinated DRSs entailed the subordinated DRS,
problems with free variables would appear immediately.
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