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1 Introduction

In this paper we describe the syntax and semantics of a description language for
underspecified semantic representations. This concept is discussed in general and in
particular applied to Predicate Logic and Discourse Representation Theory.

The reason for exploring underspecified representations as suitable semantic
representations for natural language expressions emerges directly from practical
natural language processing applications. The so-called Combinatorial Explosion
Puzzle, a well known problem in this area, can succesfully be tackled by using
underspecified representations. The source of this problem, scopal ambiguities in
natural language expressions, is discussed in section 2.

The core of the paper presents Hole Semantics. This is a general proposal for a
framework, in principle suitable for any logic, where underspecified representations
play a central role. There is a clear separation between the object language (the
logical language one is interested in) and the meta language (the language that
describes and interprets underspecified structures). It has been noted by various
authors that the meaning of an underspecified semantic representation cannot be
expressed in terms of a disjunction of denotations, but rather as a set of denotations
(cf. Poesio 1994). We support this view, and use it as underlying principle for
the definition of the semantic interpretation function of underspecified structures.
Section 3 is an informal introduction to Hole Semantics, and in section 4 things are
formally defined. In section 5 we apply Hole Semantics to Predicate Logic, resulting
in an “unplugged” version of (static and dynamic) Predicate Logic. In section 6 we
show that this idea easily carries over to Discourse Representation Structures.

A lot of attention has been paid to “underspecified semantics” recently. Stron-
gly related to the work presented here are Quasi Logical Forms (Alshawi 1992,
Alsahwi and Crouch 1992), Underspecified Discourse Representation Structures
(UDRSs) (Reyle 1993), Minimal Recursion Semantics (Egg and Lebeth 1995), and
further (Poesio 1994, Muskens 1995, Pinkal 1995). The work presented here provides
a straightforward syntax and semantics for a general kind of scopally underspecified
representations.

2  Natural Language Ambiguities

In every day life, people communicate with each other by uttering true statements,
or to put this more generally: they say things that make sense. In a situation where
a speaker utters an utterance p, the hearer tries to interpret p in such a way that
p denotes truth (rather than falsity). This probably strongly affects the way ambi-
guous utterances are processed by human beings. Imagine a situation where someone
utters (1):

(1) Do not sleep and pay attention, please!

Utterance (1) is in isolation ambiguous. There is a reading where the nega-
tion outscopes “sleep and pay attention” and a reading where negation only has
scope over “sleep”. Normally, it is context, intonation, or world knowledge that
enables a person to select the appropriate reading. Disambiguation is not the topic
of this paper. What we are interested in 1s what introduces these ambiguities, how



we represent ambiguities in a logical representation, and how we interpret these
representations.

Ambiguities in natural language are caused by different sources, such as pre-
dicative ambiguities or structural syntactic ambiguities, but in this paper we will
restrict ourselves to semantic scope ambiguities. Among these we find all natural
language expressions that, when translated into some logical form, introduce boo-
lean operators, quantifiers, modals, questions, and many more. We will refer to these
as operators. When at least two operators appear related to each other in a natural
language expression, there is a chance that the expression is ambiguous. In (1) it is
the scope of negation (“not”) and conjunction (“and”) that cause the ambiguity.

In the following examples the ambiguity is caused by the scope of implication
and conjunction (2), and the scope of the intensional verb and disjunction (3). The
absence of prosodic information in these examples make them ambiguous.

(2) TIf a man walks then he whistles and a woman is happy

(3) Do you want tea or coffee?

Standard examples in the literature on quantifier scope ambiguities and un-
derspecification are (4) and (5). These kinds of examples are traditionally used to
provide evidence that human beings do not disambiguate while processing natu-
ral language input. While (4) is said to have thousands of readings, it seems very
unlikely that humans generate and test every one of them.

A politician can fool most voters on most issues most of the
(4)  time, but no politician can fool all voters on every single issue
all of the time

(5) Everybody is not here

In the previously mentioned references to underspecified semantics, most au-
thors seem to agree on an approach where an underspecified representation plays
a central role. Scope ambiguities are not resolved but are put together in a very
compact representation. Of interest is a kind of representation that describes the
(complete and sound) logical translations of ambiguous expressions. In this paper
we define a semantic representation that is able to express underspecification for
any kind of object language. First we sketch the basic 1dea of underspecified repre-
sentations, then we move on to precisely defining its ingredients and properties.

3  Underspecified Representations

Semantic representations of natural language expressions are traditionally construc-
ted on the basis of their syntactic analysis. Since expressions can be semantically
ambiguous, this is a one-to-many mapping. The idea of underspecified representati-
ons is to make this mapping functional, i.e., a one-to-one mapping from syntactic to
semantic structure. The interpretation of an underspecified semantic representation
is (hence) the set of interpretations that are expressed in it.

The way we define underspecified representations is as follows. Take an object
language (the logic in which you are interested), and define the syntax of its basic
formulas. We label these formulas for an obvious reason: it will be very easy to
talk about them on a meta level. Labels are used as constants. Then we introduce
variables over labels, which we will refer to as holes, as arguments of scope bearing
operators. The last step is to add a set of constraints on the labels and holes, that tell
how the different pieces of structures fit together, in such a way that all readings



are covered. So what we end up with is a set of labeled formulas, a set of meta
variables (holes), and a set of constraints. This is our underspecified representation
(UR).

Constraints state relations between the different formulas in UR with respect
to scope. For example, it is possible to say that a formula (with label /) is in the
scope of an operator (with hole h) by [ < h. This constraint forces [ to be directly
or indirectly in the scope of A of the relevant operator (e.g., [ is in the scope of an
operator with label I, and !’ is in the scope of h).

So, metaphorically speaking, holes underspecify scope in an UR. In order to
give URs a non-ambiguous interpretation, the holes should be plugged with the
(labeled) formulas of UR in such a way that all the constraints of UR are satisfied.
We illustrate this idea with a simple example, where we take Propositional Logic as
object language. We use the following notational conventions: holes are represented
by h;i, ¢ an index. We label a formula ¢ as {;: ¢, where [ is a label with index <.

Consider again (1). Assume that there is some syntactic analysis for it on
which we build our UR. Translate the negation (“do not”) as “l; : =hy”, and the
disjunction (“or”) as “ly : ho V h3”. Take “I3 : S” as translation for “sleep”, and
“ly . P” for “pay attention”. As variable for “widest scope” we take “hy”. Finally, we
set our constraints in the following way: “sleep” should be in the scope of negation
(I3 < hy) and in the scope of the left disjunct (I3 < ha), “pay attention” in the
scope of the right disjunct ({4 < hg), and the operators {; and [ can both take wide
scope (I < hg and I3 < hg). Then a graphical representation of the UR for (1) is
(the constraints are graphically realized by arrows):

ho
/ AN
(6) Iy :=hy ly: he V hs
AN / AN
l3:5 P

Now we will pay attention to the interpretation of (6), by taking into consi-
deration the possible mappings from holes to labels (pluggings). In other words: a
plugging is a bijective assignment function, with the set of holes as scope and the
set of labels as range. In this example, there are exactly two possible pluggings, Py
and Ps:

(1) Pr:{ho=l hi=1s,ha =15, hs =i}

(8) Po:{ho=l hi=ls,ha =1, hs =1L}

The reader may check that these are indeed the only admissible pluggings: for
hole hq label I3 does not come into question since it will never be in the scope of hy
or hy and hence not all constraints would be satisfied; for hole hg, the only suitable
candidate is /4. The two pluggings (7) and (8) correspond to the object language
formulas in (9) and (10) respectively. The interpretation of (6) is a set, containing
the interpretation of (9) and that of (10).

(9)  (—(sleep V pay_attention))

(10) ((—sleep) V pay_attention)

We summarize and discuss this section shortly. An UR consists of a set of
labeled formulas, a set of meta variables that represent scope (holes), and a set of



constraints on these. The idea of labeling 1s taken directly from Reyle’s Underspe-
cified DRSs (Reyle 1993). A notable difference is that Reyle uses labels for DRSs,
whereas we use them for smaller logical units, since this gives us an advantage with
respect to the descriptive power of URs. In this section we sketched by way of an
example what URs are. The next section formalizes these ideas.

4 Hole Semantics

The underspecified representations proposed in the previous section are now subject
to more formal specifications. We define the syntax and semantics of an UR, and
also the notions proper UR, consistent UR, and possible pluggings. Let us start
with the syntax.

Definition 1: SYNTAX UR

Let H a set of variables over formulas, L the set of labeled X-formulas,
and C' the set of constraints on H U L. Then an UR U = (H, L, C)

In the rest of the paper, we will use U for an underspecified representation
and Hy, Ly, and Cy to refer to the holes, labeled formulas and constraints of
U respectively. The syntax of expressions in Ly obviously depends on the object
language, therefore we do not pay any attention to it just now, but postpone it to
the next section, where we take predicate logic as our target language. We use P
(sometimes indexed) for pluggings, which are total assignments from holes to labels.

Let us first make a brief excursion to lattice theory, from which we borrow
some principles. We can view a U = (H, L, C'} as a join semi-lattice (Hy U Ly, <).
< 1s reflexive, transitive and antisymmetric and therefore a partial order. For any
ks, k; € Hy U Ly, there is a k such that £ is the least upper bound of &; and k;. End
of excursion. Now we define subordination for labels or holes in U as SUB(k,k’),
meaning “k is subordinated to k7, or k¥’ subordinates k.

Definition 2: SUBORDINATION (SUB)

Let ! be a label, A a hole, k a hole or a label of U. Then:

1. SUBy(k, k);

2. SUBy(k, k") if there isa k < k' € Cy

3. SUBy(h,!) ifthere is a ¢ such that [ : ¢ € Ly and h is an argument
of l : ¢ and it is not the case that SUBy(l, h);

SUBy (k, k') if there is a k" such that SUBy (k, k") and SUBy (k" k);
5. SUB is only defined on the basis of 1-4.

e~

The second clause is the explicit way of defining subordination: if there is a
constraint < present in U. The first clause represents reflexivity, the third clause
defines subordination on labeled formulas that have holes as arguments. The fourth
clause expresses transitivity. With SUB we can define a proper UR.

Definition 3: PROPER UR

An UR U is proper iff for all k, k' € Hy U Ly it is the case that there is
a k" such that SUBy (k,k”) and SUBy (k' ,k"").

A proper UR is one which describes a join semi-lattice. Yet we are able to
define what, with respect to a plugging, a consistent UR is, using the following
notational convention: for any k € Hy U Ly, we define Ip(k) = P(k) iff k € Hy,



and Ip(k) = k iff k € Ly. A consistent UR is an UR which is proper, taking
pluggings into account.

Definition 4: CONSISTENT UR

CONSy p iff for all £, k' such that SUB(k,k'), it is the case that either
I(k) = I(k"), or I(k) # I(k") and SUB(k’,k) is not supported.!

We have not yet defined what possible pluggings are. Pluggings are, as we have
discussed in the previous section, bijective functions from holes to labels. A plugging
for an UR U 1s possible, if the UR, with respect to this plugging, is consistent.
In other words, when the underspecified representation, taking the plugging into
account, has the properties of a join semi-lattice. Since we have already defined
what a consistent UR is, defining possible pluggings is an easy job.

Definition 5: POSSIBLE PLUGGING (PP)

PPy = {P| CONSp}

A plugging is possible, if U is consistent with respect to this plugging. We will
illustrate this with two examples. First example: suppose that U = < {ho}, {l; :
é},{lh < ho} for some formula ¢. Hence, SUB({1,{1), SUB(hq,h1), and SUB(l1,h;)
are valid. Then a possible plugging P for U is one such that P(hg)=/1, since
CONSUVP holds.

Second example: consider the following constraints of an UR: {h; < lj, hy <
12, 12 S ho, ll S ho, 13 S hl, 13 S hz}, then a pluggmg P where P(ho):lg, P(hl)zlz,
and P(hs)=l; is not possible. The UR to which these constraints belong is not
consistent, since, for example, SUB(/3,hs) and SUB(hq,hy) are valid and with P
lead to “SUB(I3,l;)” and “SUB(/y,l3)”, violating antisymmetry.

So far, so good. We have defined the syntax, properness, and consistency of
an UR. For the semantic interpretation of an UR we need to be able to address the
label or hole that subordinates all others. We call this TOP, and define it as follows.

Definition 6: TOP

TOPpy = I(k) iff & € Hy U Ly and there is no k' such that k' €
Hy ULy, k 75 ]C/, and CONS—SUBPVCU(]C, k‘/)

The semantic interpretation of an UR is that of its TOP. As interpretation
function for URs, with respect to a model M we will use [[.[lpg, as to avoid confusion
with the interpretation function of the object language, for which we will adopt the
traditional [.Jpg p-

Definition 7: SEMANTICS UR ([.])

I]IU]]]M = { [[TOPP,U]]M,P | P e PPy }

This definition states that the interpretation of an underspecified representa-
tion UX | is the set of object language denotations, as many as there are possible
pluggings for UX. For some reasons it might be an advantage to redefine this func-
tion. For example, when the object denotations are truth values, the interpretation
of an UR for this particular object language has three different values: {0}, {1}, and
{0, 1}. This approach is too weak to capture the fact that an UR might have more
than one interpretation with the same denotation. This situation can be avoided

1. Read this giving disjunction scope over conjunction!



if we relate the object denotation to a plugging, as we do in our revised semantic
interpretation function.

Definition 8: SEMANTICS UR (revised) ([.]*)
[UT; = { < P, [TOPpulpng p > | P € PPy }

Here [[.]I* is defined as a function from URs to a set of pairs of pluggings
and object language denotations. And this ends the general specification of Hole
Semantics. In the next section we will apply Hole Semantics to Predicate Logic.

5 Predicate Logic “Unplugged”

In this section we take Predicate Logic as object language, resulting in Predicate
Logic Unplugged (PLU). Given the framework of Hole Semantics described in the
previous section, we only need to define the syntax of PLU formulas and their
model interpretation. Taking as convention that terms (written as t1,...,1,) are
either object language variables or constants, PLU formulas are defined as follows:

Definition 9: Syntax PLU formulas

1. If by, h; are holes, then h; — h;, h; V h;, h; Ah; are PLU formulas;
. If his a hole, then —hA is a PLU formula,;
3. If z is an object language variable, & a hole, then V& h and Jz A
are PLU formulas;
4. If R is a predicate symbol for an n-place predicate, and 1, ....1,
are terms, then Rty,...,1, 1s a PLU formula;
5. Nothing else is a PLU formula.

The syntax of PLU formulas is in principle the same as that of ordinary Pre-
dicate Logic, with the exception that holes in places, where normally PL-formulas
are found, are introduced. We will illustrate Predicate Logic Unplugged with an
example. Consider (5), repeated here for convenience as (11), and its translation

(12) in UPL,

(11) Everybody is not here

I < hg

ho I : Ve b 2 <
hi < hy

h1 121h2—>h3 l<_h

(12) << hy 3, l3: Bz R

h3 l4i_|h4 2>

h ls : He la < ho

: 5 I5 < hs
5 < hy

Note that I(hg) is TOP, and the label which is plugged into this sy will receive
widest scope. The other holes in (12) are introduced by the scope bearing operators
(universal quantifier, negation, and implication). Further, notice that we constrain
l3 to be directly in the scope of hs via the constraints [3 < hs and hs < 3, and this
is also the case for {; and hy. These extra constraints exclude unwanted readings.
In a graphical representation, the UR looks like:



/ AN
ll ZVl‘hl
(13) lT 141 —|h4
12 h2 — h3
i AN /
l3: Bz s : Hx

There are two pluggings (the interested reader may verify this). Plugging (14)
interprets (12) as giving the universal quantifier wide scope, outscoping negation.
The corresponding formula in predicate logic is (15), which is true in a model where
all persons (in the relevant domain, of course) do not have the property being at
the speaker’s location.?

(14) Py :{ho=1i,h1 =13,hy =13,h3 =1l4,hy =I5}

(15) Va(Bx — —Hux)

Plugging (16) interprets (12) as negation outscoping the universal quantifier.
In a model where there is some person that is not at the speaker’s location this
interpretation denotes truth. A corresponding formula in predicate logic is (17).

(16) Po:{ho=ly,hi =1, ho =13 hs=15ha= 10}

(17) —Va(Bx — Hx)

The model interpretation of PLU can be sketched as follows. Call [.J¥£Y the
interpretation function for PLU formulas, and M = < D F > a model. D'is the
domain (a nonempty set) and F an interpretation function (F(d) € D if d is a
constant, and F(R) C D" for an n-place predicate symbol R). As usual, we use g¢
and ¢’ for total assignment functions. For a term ¢, [t]ar 4 is g(¢) if ¢ is a variable,
and F(t) is t is a constant.

Definition 10: Interpretation Function for PLU ([.]J¥1Y)

Lo [hi—hilgg =1

iff [[hl]]ﬁz—’,g =0or [[hj]]ﬁz—’,g =1
. JqPLU
2. [hevhilgf, =1
iff [h; Ili/fi,g = 1or [k Ili/fi,g =1
. JqPLU
3. [hinhilyfy, =1
iff [[hl]]ﬁz—’,g = [[hj]]ﬁz—’,g =1
JPLU
4. [k Mp, =
: JPLU
iff [hilgf'p, = 0
JPLU
5. e by, =1

: o TPLU —
iff for all d € D it is the case that [[hl]]M,P,g[d/x] =1

JPLU  _
6. [Fz hy Mp, = 1

iff for at least some d € D it is the case that [[hl]]l'li/ﬂD dlafs] = 1

2. We translate the deictic property “being here” simply as H, for convenience.



7[Rt GIRES =1

i< [0t g s [tnars >€ F(R)

Using definition 11, we are able to define an interpretation of underspecified
representations of PLU itself, since this definition does not depend on the object
language. In fact, using the syntax of PLU, it is fairly easy to define a dynamic
underspecified Predicate Logic.

Suppose that [[]]DPLU is the interpretation function that interprets labeled

PLU-formulas as in Dynamic Predicate Logic (DPL) (Groenendijk and Stokhof
1991). An assignment g is a function from variables to elements of D, ¢'[x]¢ means
that ¢’ is an z-variant of g.

Definition 11: Interpretation Function for DPLU ([.JPF£Y)

1. [hi— h; ]]DPLU

{{g,9) | Vg’ (( ') € [hi ]]DPLU —3"((g', ¢") € [k ]]DPLU))}
2. [hvhj ]]DPLU

{{g.9) | 30 (. ¢') € [hs IRV g, 0') € IIREED)

3. [[hi/\h]' ﬁj?f] =

{{g,9") 139" {9, 9") € [hlyg 3" &la" a") € ThiIR 273
4. [~h; ]]DPLU —
{{g.9) | =3¢'((g.9") & [hs Ing e}

5. Ve hR{E =

{{g.9) 1 Y9/ (s'[2lg — 39" ({g'. 4" € [hs It 0}
6. [ h]RFLV =

{{g,9 >|3g”( "[2]gdelg", ") € [hilRr 3 )}

T IR, IR =
. 9) |< [t]3r,, - [tallarg >€ F(R)}

6 Underspecified Discourse Representation Structures

As stressed before, Hole Semantics is in principle independent of the object language.
Besides Predicate Logic, we could also take Discourse Representation Structures
(DRSs, as proposed in Discourse Representation Theory (DRT) Kamp and Reyle
1993) as object language, resulting in DRT Unplugged (DRTU). We first define
DRTU formulas:

Definition 12: Syntax DRTU formulas

1. If h;, h; are holes, kq,..., k, holes or labels, then [ |h; — hj],
k1, ..., knt, [ |17hi], [ |hs V hj]} are DRTU formulas;

2. If x is a discourse marker, P a symbol for an n-place predicate,
then [z| ] and [ |P(z1, ..., ,)] are DRTU formulas.

3. Nothing else is a DRTU formula.

Here a DRS is represented as [D|C1], D the set of discourse markers, C' the set
of conditions. The merger (®) makes one DRS out of several by taking the union



of the domains and the conditions respectively of its argument, a set of DRSs.
The definition of [.JPfTY can for example be realised along the lines presented in
Kohlhase et al. 1995 or Muskens 1993. We will not present it here, but instead give
an example. Consider again (2), repeated here as (18). The UR translation is shown

in (19).

(18) TIf a man walks then he whistles and a woman is happy

ll : [ | hl - h2 ]

lo: @{hs, ha}

l3: ®{l4,15,l6} 3 < hy
ho l4[l‘|] 172]12
hi l5: [ | man(l‘) ] {7 2 hs

(19) < q ha 2,4 ls:[| walk(x)] Y ls<h g
h l7 : [ | whistle(z) ] o
3 7 L <hg

ha ls : @{lg, lio, 111} Iy < hg

lo:[y]] B

110 : [ | woman(y) ]

111 : [ | happy(y) ]

There are two possible pluggings for (19), and therefore two readings for (2)
available. The first reading (paraphrased as a linear DRS in 21, and for convenience
in the more familiar boxed notation 25) triggered by plugging (20) corresponds to
the “wide scope disjunction” reading.

(20) Pr:{ho=lL,hi=1I3,ho =1 hsa =17, ha = I3}

(21) [|[z]|man(z) walk(z)] — [y | whistle(x) woman(y) happy(y) 1]

" y
22 | Mo ) | — | whistle(x)
woman(y)
walk(x) happy(y)

The other possible plugging (23) results in a reading where conjunction out-
scopes disjunction. The DRS for this reading is shown in (24) and (25).

(23) Pr:{ho=bL,hi=1I3,ho =1l; ha =11, ha = I3}

(24) [y | woman(y) happy(y) [« | man(z) walk(x)] — [ | whistle(z)]]

y

woman(y)
happy(y)

(25)

X

man(x)

walk(x)

whistle(x)




7 Conclusion

We proposed a framework for underspecified semantics representations in general,
called Hole Semantics, and claimed that, due to a clear seperation of object and
meta level, it is independent of the object languages. Underspecified Representati-
ons in Hole Semantics correspond to a partial descriptions of the semantics, using
meta variables (holes) and subordination constraints. We have shown that Hole Se-
mantics can be applied both to Predicate Logic (static and dynamic) and Discourse
Representation Theory, with respect to semantically ambiguous scope.
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