
Exploring Model Building for Natural
Language Understanding

Johan Bos

Institute for Communicating and Collaborative Systems
Division of Informatics, University of Edinburgh

2 Buccleuch Place, Edinburgh EH8 9LW, Scotland, United Kingdom
jbos@ inf. ed. ac.uk

Abstract

In this paper the use of model building for natural language understanding in practi-
cal systems is investigated. After outlining several interpretation tasks where model
construction would be useful, we perform experiments using two state-of-the-art
model builders on the interpretation of imperatives in discourse. The results are
acceptable for small discourses and small domains, but don’t scale up for larger
domains or longer discouses: the complexity of model generation rises sharply in
relation to the difficulty of a task and the size of the dialogue. Several suggestions
are provided for future research to improve the performance of model building for
larger domains and richer texts.

1 Introduction

This paper introduces a discipline in the field of automated reasoning that has
received only little attention within computational semantics: model building
(sometimes also referred to as model generation, model construction, or model
searching) for first-order logic. Automatic model builders offer a positive
handle on the satisfiability problem and are therefore often used in tandem
with theorem provers (who offer a negative handle on satisfiability). But a
model builder, as its name suggests, has another attractive property: it is
able to construct concrete models for first-order theories. As I will show in
this paper, the representations of such models are not only flat and extremely
easy to process—they also embody the information required for many natural
language understanding tasks.

Although it is certainly true that automated model building hasn’t reached
a state of matureness that automated theorem proving has achieved in the last
decades, it is also fair to say that performances in model building have sig-
nificantly improved the last years and have reached a level close to be useful
in linguistic applications. These recent developments haven’t gone entirely



unnoticed by computational linguists—as recent applications for question an-
swering [11,2] and natural language disambiguation [6,7] show. Nevertheless,
I would like to position model building as a central task in natural language
understanding. In particular, model building might play an important role in
linking up natural language processing front ends with information or actions
anchored in databases or situations.

Let’s be more concrete about this and exemplify what roles theorem prov-
ing and model building might play within a natural language understanding
system. Let’s assume this system captures the discourse in a semantic rep-
resentation (i.e., the logical form) compatible with first-order logic. Given a
portion of discourse D and a goal G, the proposed procedure runs along the
following steps:

(i) Construct a set of first-order representations Θ for D.

(ii) For each θ ∈ Θ, attempt to build a model for θ and background knowledge
Φ, by simultaneously:
(a) giving (θ ∧ Φ) to a model builder, possibly resulting in a model M

(for consistent theories θ).
(b) giving ¬(θ ∧ Φ) to a theorem prover, possible resulting in a proof

(for inconsistent theories θ). Remove θ from Θ.

(iii) Use M to extract information required for G using a model checker.

Step (i) presupposes tools that construct semantic representations for nat-
ural language discourses. Due to ambiguities inherent in natural language,
this results usually in a set of logical forms. This process can involve speech
recognition, parsing, semantic construction, and ambiguity resolution. Var-
ious of these tools are available nowadays [2], albeit for small domains and
restricted coverage. Finally, note that semantic representations need not be
in directly in first-order format. For instance, translations from Discourse
Representation Structures [8] to first-order logic are available [3].

Step (ii) attempts to construct a model for theory θ. The result of ambigu-
ity resolution as part of the previous step of processing might result in several
alternative theories, some of them being inconsistent. Now, theorem provers
are used to detect inconsistent theories, and model builders to find minimal
models for consistent theories. The concept of minimality is important here,
because it ensures that no redundant information will enter M. For efficiency
reasons, this step should ideally be realized by running (ii)(a) and (ii)(b) in
parallel.

Step (iii), finally, links models to actions. That is, we use the informa-
tion provided by the models to carry out certain tasks, such as retrieving a
database or letting a robot perform some physical action. Once you know
what you’re looking for in the model, given a goal G, this is the easiest part
of the procedure. It is also convenient to use a model checker for this task, as
illustrated in [2]. I will illustrate the use of model checkers in Section 2.5.

2



As will be clear from the procedure outlined above, this framework for
natural language understanding uses an explicit intermediate level of repre-
sentation, namely the model constructed in Step (ii). There are two (related)
reasons that motivate this additional layer in the architecture:

• models are flat structures and hence extremely easy to process

• models contain no explicit quantification or boolean structures

This is precisely why model building is a useful tool for applications in
computational linguistics, particularly in combination with model checking
and theorem proving. Model building offers us simple means to construct
normalised information states from semantic representations, performing all
the necessary reasoning involving quantification and boolean connectives. In
addition, model checking techniques allow us to extract information from con-
structed models or test for certain properties of models. Theorem proving will
help us to detect inconsistent theories.

In the remainder of this paper, I will underline and further exemplify these
points by first presenting the structure of first-order models, and show how
they are constructed for first-order theories (Section 2). Specific applications,
from a computational linguistic point of view, are presented and demonstrated
in Section 3. I will show the practical use of model building by presenting
results for two state-of-the-art model builders for first-order logic in Section 4.

2 Model Building

2.1 Off-the-Shelf Model Builders

Simply put, a model builder is a system that tries to generate a finite model
for a given theory (a set of first-order formulas). This is essentially done by
systematically searching in the space of possible models, given by universes
and interpretations. Throughout the paper we will discuss practical experience
obtained from two model builders:

• MACE 2.0 (developed by Bill McCune)
http://www-unix.mcs.anl.gov/AR/mace/

• PARADOX 0.4.1 (developed by Koen Claessen and Niklas Sörensson)
http://www.math.chalmers.se/~koen/paradox/

MACE uses the Davis-Putnam-Loveland-Logeman decision procedure to
find models. The input of MACE can be formulated in first-order formula
syntax. MACE is an excellent inference tool—performing a tandem with the
theorem prover OTTER it was winner in the SAT division (a collection of
first-order satisfiable problems) of the CASC-16 competition. 1 PARADOX is

1 CASC is short for the CADE ATP System Competition, CADE is the annual international
Conference on Automated Deduction. Information on the latest CADE can be found on
http://www.CADE-19.info/.

3



a newly developed tool using a similar algorithm as MACE but with further
optimisations. PARADOX was winner of the SAT/Model class at CASC-
19 and, as we will see in Section 4, it outperforms MACE for the linguistic
problems we consider.

In the scope of this paper we will only consider the performances of MACE
and PARADOX, to my knowledge (and experience) two of the best model
builders for first-order logic around today. Other model builders that I expect
will perform well on linguistic problems are GANDALF (developed by Tanel
Tammet) and MACE4 (also known as ICGNS).

2.2 First-Order Models

Before introducing the actual process of model building, let us recall the nature
of first-order models. In a fairly abstract way, models can best be viewed as
a description of certain aspects of a situation. First-order models, to be more
precise, consist of two parts: a non-empty domain D of objects (or individuals)
and an interpretation function F that assigns properties to these objects.
Models are always given with respect to a certain signature. A signature tells
us which symbols we use in our semantic representations, and what arity they
have. For instance, here is a signature:

0-place predicates: mia, vincent, butch

1-place predicates: man, woman

2-place predicates: know

A signature (or a vocabulary) is just there to keep track of the symbols
we use, and how we use them. F will assign values following the specification
in the signature: it will map 0-place predicates (or constants) to members of
D, it will map 1-place predicates to sets of members of D, and it will map
2-place predicates to sets of pairs of members of D. To give an example, let’s
consider a model over the above signature for a situation snap shot starring
three individuals: a woman named Mia, and two men named Vincent and
Butch. In this situation Butch knows Vincent, and Vincent knows both Mia
and Butch:

D={d1,d2,d3}

F(mia)=d1 F(man)={d2,d3}

F(butch)=d2 F(woman)={d1}

F(vincent)=d3 F(know)={(d2,d3),(d3,d1),(d3,d2)}

The models we work with in the scope of this article are taken to be
implicitly representing negative information (cf.[2]). So from the above model
we can conclude that Mia is not a man, that Vincent and Butch aren’t women,
that Mia does not know any of the other persons in the domain, and so on.
In fact, according to this model, none of the persons knows him/herself.

4



2.3 Constructing Models for Logical Theories

Suppose we work with the signature introduced above. Now let’s construct a
first-order theory (a set of formulas) describing the situation where Mia does
not know Vincent, every man knows a woman, Butch is a man, Vincent is a
man, Mia is a woman, and men are disjoint from women. These statements
can be represented by the following first-order theory:

¬know(mia,vincent) ∀x(man(x)→ ∃y(woman(y)∧know(x,y)))
man(butch) man(vincent) woman(mia) ∀x(man(x)→ ¬woman(x))
To check whether this theory is consistent (or satisfiable), we try to find at

least one model that satisfies all the formulas of the theory. A model builder
systematically attempts this by first considering a model with a domain of a
single individual, and if it fails to do so it will try to check whether there is
a model with a domain consisting out of two members—and so on—until it
finds one. Both MACE and PARADOX use this process of iteration, although
this procedure can be sped up by specifying an expected domain size or range
of domain sizes by an additional command-line parameter.

For the rather simple theory above, a model builder will soon find out that
it is impossible to construct a model that contains just one individual. For,
according to our theory, Vincent is a man and Mia is a woman, and men are
disjoint from women. However, the model builder will succeed in finding a
model with a domain of two elements, namely the following one:

D={d1,d2} F(mia)=d1 F(man)={d2}

F(butch)=d2 F(woman)={d1}

F(vincent)=d2 F(know)={(d2,d1)}

Note that this model might not be intuitive at first sight—it assigns the
same individual (d2) to both Vincent and Butch. As model builders attempt
to find minimal models, and because we didn’t say anything about Butch and
Vincent being two different persons, this is a proper model for our theory. (So
incidentally, model building also turns out to be a valuable method for veri-
fying the correctness of background knowledge—models often reveal insights
that were unclear from the difficult to read axioms that define the knowledge
that support semantic analysis.) We might revise our theory, by adding extra
information such as ¬butch=vincent. This will yield models with at least
three entities. Alternatively, we might consider only so-called Herbrand mod-
els, which is a class of models where all 0-place predicates (the constants)
map to themselves in the model’s domain. Indeed, the model builder MACE
comes with features to simulate properties of Herbrand models, but we won’t
explore this feature in this paper.

A little bit more needs to be said about minimal models. The concept of
minimality can be applied to (i) the number of entities in the model’s domain,
and (ii) the number of positive predicate extensions (for predicates with an
arity higher than 0). Both MACE and PARADOX will generate models with

5



a minimal domain by default. PARADOX however, using heuristics for initial
settings for predicate extensions, does not necessarily produce models with
minimal predicate extensions.

Going back to the example, it is important to note that there are infinitely
many models satisfying the input theory, and in general there could be several
minimal models output by the model builder. However, there is also the
possibility that the model builder won’t succeed in finding a model, even
though the input theory is consistent. Consider the following theory:

person(butch) ∀x(person(x)→ ∃y(person(y)∧parent(x,y)))
∀x∀y∀z(parent(x,y)∧parent(y,z)→parent(x,z)) ¬∃x parent(x,x)

The model builders that we are considering here are only able to construct
finite models, that is models with a fixed domain-size. The above theory has
no finite model: for each person has a parent, which is also (a different) person,
and that person has a parent, which is also a person, and so on. Now, although
the problem of finding a finite model for a given domain size is decidable, most
model builders, including MACE and PARADOX, require a range of domain
sizes in which to search for models in order to avoid getting entangled in an
infinite loop.

For the above input, both MACE and PARADOX will find out relatively
quickly (depending on the estimated domain size) that there are no models
for the given input theory. Estimating the expected domain size is a non-
trivial matter but important for high-speed performances, as will be shown in
Section 4. One way to derive model-size estimations in practical systems is
using machine learning techniques—a method which needs to be explored in
future work.

2.4 Inconsistent Theories and Theorem Proving

It is easy to come up with a theory that has no model. For instance, we
could describe the unlikely situation where Butch happens to be a man and a
woman, and where men are disjoint from women:

man(butch) woman(butch) ∀x(man(x)→ ¬woman(x))
It is impossible to construct a model such that all of the above formulas are

true. The theory is inconsistent or unsatisfiable. In general it is not advisable
to use model builders to detect inconsistencies. For extremely simple theories,
such as the above, model builders will be able to do so, but when theories are
more elaborate they will reach a stage of computational unpleasantness.

Theorem provers are precisely the tools one needs to detect inconsistencies.
This is done by giving the negation of the theory to a theorem prover. If a
proof is found (the negated theory is a validity, i.e. true in any model), this
implies the original theory is unsatisfiable. Some state-of-the-art theorem
provers suitable for this task are:

• BLIKSEM

6



http://www.mpi-sb.mpg.de/~bliksem/

• SPASS
http://spass.mpi-sb.mpg.de/

• VAMPIRE
http://www.cs.man.ac.uk/~riazanoa/Vampire/

The problem of detecting whether a first-order formula is valid is not decid-
able. In theory, this means that a theorem prover might never come back with
an answer for certain input formulas. In practice, this means that one needs
to specify certain amounts of resources (time and memory allocations) that
theorem provers can use when attempting to find a proof. In a setting where
theorem provers and model builders are used to work on the same problem,
they can help each other out. If the model builder finds a model for φ while a
theorem prover is attempting to find a proof for ¬φ, the theorem prover can
be informed to quit attempting to prove the conjecture, because it will never
succeed in doing so. Similarly, if the theorem prover proves ¬φ, the model
builder will never be able to find a model for φ.

2.5 Model Checking

A model builder is a tool that, given a first-order theory, produces a finite
model if there exists one. A model checker, on the other hand, is a tool that
given a model and a first-order query, tells us whether that model satisfies the
query or not. The simplest form of queries are first-order sentences (formulas
containing no free variables), prompting the model checker to return yes or
no (assuming the query is built over the same vocabulary of symbols as the
model). More complex queries can contain free variables, which in the process
of model checking will be bound to specific values of the model’s domain. An
example of a model checker that allows the latter option is provided in [2].

3 Linguistic Applications

Model building deals automatically with quantification and boolean operators.
The property of constructing minimal models, and the accessible structure
of the generated models themselves, make model builders interesting to use
in linguistic applications. Minimality ensures that no redundant or irrelevant
information will be specified in the model. The flat structures ensure whatever
information is searched for can be accessed without any appeal to recursion
or forms of heavy inference. Furthermore, model checkers allow one to query
generic properties formulated in first-order logic.

We will exemplify the idea of using first-order models with examples from
natural language understanding systems, involving question answering and
action interpretation. A system that implements these ideas consists at least
of a natural language component that maps natural language into semantic
representations, a model builder, a theorem prover, and (optionally) a model

7



checker. The semantic representation captures the ongoing dialogue between
user and system, and forms the input to the model builder (to generate a
model) and the theorem prover (to check for contradictions). The generated
model is the primary information source for the system to decide what question
to ask next or what action to perform.

3.1 Information Seeking Dialogue

The situation considered here is one where the system provides the caller a
route description on the basis of the caller’s destination, origin of travel, time,
and whether he or she wants the quickest or the shortest route. Tradition-
ally this is done via slot filling, where a frame suitable to a specific applica-
tion (here route descriptions) comes with certain slots (here: destination,
origin, time, kind-of-route) and possible values. In the course of the di-
alogue, these slots gets instantiated, and as soon as all slots are filled the
system will calculate a route and present it to the user. We won’t abandon
this method as such—what we will propose to change though is how these
slots are filled. In fact what we show is that models are in a way very general
(and flexible) frames.

An example dialogue in this domain could run as follows.

S: Where do you want to go to? (1)
U: I would like to go from Edinburgh to London. (2)
S: When would you like to go from Edinburgh to London? (3)
U: Tomorrow. (4)
S: OK. Please wait while I calculate your route. (5)

The semantic representation for utterance (2) is (ignoring temporal and
modal information for clarity):

∃e(go(e)∧agent(e,user)∧from(e,edinburgh)∧to(e,london))
The next step is to generate a model for this representation. As remarked

before we normally provide background knowledge in the form of first-order
axioms to construct the models we desire. The relevant background knowledge
for the verb “to go” can be stated as follows:

∀e∀x∀a(go(e)∧agent(e,a)∧from(e,x)→origin(a,x))

∀e∀x∀a(go(e)∧agent(e,a)∧to(e,x)→destination(a,x))

∀e∀x∀a(go(e)∧agent(e,a)∧temploc(e,x)→time(a,x))

These formulas say something about the relationship between the event
translated to the first-place relation symbol go and its argument structure pro-
vided in a neo-Davidsonian style and the slots origin and destination, both
represented as two-place relations. (In general there are many of these axioms
required for a system to be interesting, and further ontological knowledge is
required—not shown here—that supplies information about disjointness and
inheritance of concepts.) Now consider the model generated for the semantic

8



representation for (2) supported by the background knowledge axioms given
above:

D={d1,d2,d3,d4}

F(user)=d1 F(agent)={(d2,d1)} F(origin)={(d1,d3)}

F(go)={d2} F(from)={(d2,d3)} F(time)={}

F(edinburgh)=d3 F(to)={(d2,d3)}

F(london)=d4 F(destination)={(d1,d4)}

The system’s next response is solely based on the content of this model.
The next utterance of the system (3) is prompted because time is the only
“slot” in the model that hasn’t got a value yet.

Surely, any system without a deep semantic analysis can get similar results
by using key word spotting techniques and similar patterns as described in
our background knowledge to find the appropriate values for the slots of the
application. But there is a crucial difference. The model building approach
naturally deals with negation and disjunction. Consider the following more
complex examples of potential user utterances:

I want to fly from Heathrow or Gatwick. (6)
I do not want to fly to Heathrow. (7)
I’d like to fly from any London airport except from Luton on Mondays. (8)

In (6) the speaker does not commit him/herself to the starting location of
travelling. The model building approach will generate two minimal models for
this case. (7) contains negated information. Here, the generated model will
never associate Heathrow with the slot for destination. Even more complicated
reasoning is involved in (8), which a model builder will perform automatically.

3.2 Controlling a Mobile Robot

In this scenario we consider an indoor mobile robot which can be controlled
by natural language instructions, and show how model building is useful to
determine what action the robot should perform in a given situation. Direc-
tives can express simple or complex commands, but can be warnings or advice
as well, as is exemplified by the following instructions given by the user to the
robot:

Go to the kitchen! (9)
Clean all the rooms on the second floor! (10)
Go forward and you will fall down the stairs. (11)

Again we translate natural language statements into a semantic represen-
tation. To deal with actions such as above in (9), we will adopt a slightly more
complicated version of the translation into first-order logic. Actions are repre-
sented as three-place relation between a situation that holds the information
before the action is performed, a situation that describes the action, and the

9



resulting situation after performing the action. Consider the translation for
(9):

∃a∃b∃c∃k∃e(action(a,b,c)∧go(b,e)∧agent(b,e,robot)∧
kitchen(b,k)∧to(b,e,k))
The robot will react by inspecting the model generated for this repre-

sentation and supporting background knowledge (including frame axioms).
Typically, this supporting knowledge includes a notion of “actual world”, the
situation in which the robot is currently being part of. Hence, a model for (9)
might look like:

D={d1,d2,d3,d4,d5,d6}

F(robot)=d1 F(go)={(d3,d5)}

F(world)={d2,d3,d4} F(action)={(d2,d3,d4)}

F(actual)={d2} F(agent)={(d3,d5,d1)}

F(to)={(d3,d5,d6)} F(kitchen)={(d2,d6),(d3,d6),(d4,d6)}

In general, there might be several actions in a model: actions that have
been executed in the past, actions that are possible to carry out in the cur-
rent world, or actions to be performed in future situations. Models, however,
directly lists which actions are relevant (those situated in the actual world)
and which ones are not. Moreover, actions might be part of warnings (10).
These are translated using universal quantification:

∃a∃s(stairs(a,s)∧
∀b∀c∀e(action(a,b,c)∧go(b,e)∧agent(b,e,robot)∧forw(b,e)
→fall(c,robot,s)))

If this information is supplied to the model builder, as well as with the
translation for “Go forward!”, the generated model will list the consequences
of the action. If there are further axioms stating that falling down ought to
be avoided, an inconsistent information state will result. This is the case for
warnings, such as in (10). The robot might avoid this inconsistent state by
disobeying the command “Go forward!”.

Model building also helps with breaking down complex actions into atomic
ones. Consider for instance commands involving universal quantification. Sup-
pose our robot has a built-in vacuum cleaner and we tell it (10). Let’s also
supply some background knowledge that rooms can only be cleaned if they
are dirty. Given a state of the house where there are three rooms based on the
second floor, one of which is already clean, the model that will be generated
will contain two actions, each describing the cleaning of a room.

3.3 Question Answering

The use of model building for question answering has been proposed in related
work [11,2]. In this human-system dialogue scenario the user is allowed to

10



pose queries in natural language. The system answers these questions on the
basis of the information provided by the model generated by the semantics
of the question and background information (a database and possibly the
ongoing dialogue between user and system). As shown in [2] with the CURT
system, additional model checking is particular useful to present an answer.
Furthermore, theorem proving is required for answer verification, because the
answers available in the model do not always follow from the input theory
(for instance in cases with disjunction). The CURT system is a nice example
showing the use of a model builder, theorem prover and model checker in one
architecture.

4 Using Model Builders in Practice

4.1 Experimental Setup

So far we’ve introduced model building, and presented three potential linguis-
tic applications where the method could play an important role. But what
are the limits of model building in practical applications anno 2003, employing
analysis based on methods of formal semantics?

To find out, we undertook several experiments in an existing spoken dia-
logue system [4] which uses model building for semantic interpretation, using
the two model builders MACE and PARADOX. The context in which the ex-
periments were conducted is similar to that of controlling a robot, as described
in the previous section. However, in this scenario we are able to control several
domestic devices (lights, radios, fans) by spoken commands, such as:

Turn off a light. (13)
Flip on every light. (14)
Switch on all lights. (15)
Turn on every light except the black light. (16)
Switch the black light off. Switch it on. (17)

The system managing the dialogue converts these utterances into Dis-
course Representation Structures, DRSs [8], resolving context-sensitive ex-
pressions such as pronouns, definite descriptions, and other presuppositional
expressions. The DRSs obtained from the dialogue are then translated into
first-order logic, and additional background knowledge (ontological informa-
tion, theory of actions and possible worlds) stated as a first-order theory is
calculated based on the content of the DRS. In addition, the current state
of the devices in the environment (which devices are available, how they are
distinguished from other devices, and whether they are on or off) is translated
into first-order logic as well. We call this situational knowledge.

For each interpretation task, the translated DRS, the required background
knowledge and the situational knowledge are given to a model builder, and
at the same time the negation of the input formula is given to the theorem
prover SPASS in order to find a counter-proof. For the purpose of this paper

11



we focus on the performances of the model builders MACE and PARADOX
for this task. Both of these model builders search for models by iteration,
but the performance of MACE can be considerably speed up by specifying
an expected model size. PARADOX was used with parameter --priority

ConPredFun. MACE was used with parameter -k 200000 to allocate extra
memory. We will refer to MACE∗ as the process of executing MACE with
the additional parameter -n X, X specifying the size of the model, which was
obtained empirically.

What is left to note is that the problems in this experiment are relatively
hard for first-order inference engines, who are mostly tuned to mathematical
problems. But linguistic problems, in particular those involving multi-sentence
discourse, generate problems high in size (mostly due to background knowl-
edge) and with a relatively high number of different predicates. Example (13),
for instance, involves two 1-place predicates, forty-five 2-place predicates, and
five 3-place predicates.

4.2 Results

The generated models were checked manually for correctness. The models
contained information about the different devices and their status, the dia-
logue participants (user and system), and possible worlds, in this application
used to model the flow of time. For example, the model generated for (13)
contains nine entities: three devices, two participants, one event, and three
possible worlds (one designating the current world, one designating the world
in which the event of turning of the light takes place, and one designating the
future world in which the effects of the turning on event hold).

Table 1
Timing results for model building for several example natural language commands.

Number of Time (seconds)
Example Devices MACE MACE∗ PARADOX Model Size

(13) 3 3.73 1.62 1.70 9

(14) 3 4.08 1.74 1.80 9

(15) 3 20.16 5.55 5.00 10

(16) 3 3.25 6.86 2.00 9

(17) 3 15.98 4.49 3.20 11

Table 1 shows performances of MACE and PARADOX for different linguis-
tic phenomena, including simple indefinite noun phrases (13), quantification
(14), plural descriptions (15), negation (16), and anaphora (17). The results
show that the treatment of plurals is costly—this is not surprising, as extra
axioms are triggered and a new entity in the model is required for modelling

12



sets. Similarly, even small discourses such as (17) require more computing—
again because of the fact that the model increases, in this case the addition
of two possible worlds.

Table 2
Timing results for model building with respect to increasing application domain
sizes by adding devices. Results exceeding a time limit of 30 seconds are marked

with “–”. See Table 1 for further information on specifications.

Number of Time (seconds)
Example Devices MACE MACE∗ PARADOX Model Size

(13) 3 3.73 1.62 1.70 9

(13) 6 26.70 6.81 3.80 12

(13) 9 – 18.92 7.90 15

(17) 3 15.98 4.49 3.20 11

(17) 6 – 19.26 8.20 15

(17) 9 – – 12.60 17

Table 1 also reveals that PARADOX outperforms MACE in most of the
cases. The processing speech for finding a model for a particular problem
can be highly reduced by supplying the expected domain size to the model
builder, particularly in the case of MACE. These domain sizes are of course not
known in advance while running practical applications, but maybe obtained
using machine learning techniques. Although these results seem encouraging,
they were obtained in a situation with only three devices. Table 2 shows
some results by increasing the devices in the application domain, for instance
by adding some lights, radios or fans. This results in growth of situational
knowledge, with a strong negative impact on the performances of the model
builders.

5 Conclusion

The results suggest that, on the one hand, it is possible to use first-order
inference for natural language interpretation in practical applications with
(very) small domains. On the other hand though, the approach doesn’t seem
to scale up very well. However, there are good reasons to believe that the
situation can be improved.

First of all, the current approach doesn’t work in an incremental way—all
the information used for building a model is discarded as soon as the discourse
is extended and reinterpreted. Different strategies have been proposed for
incremental model generation in the context of natural language interpretation
[1,9], but so far none have been implemented or used in practical systems.

13



Secondly, situational knowledge might be translated directly in the model
representation rather than into first-order logic. A lot of the computation
involved in the model construction experiments in this paper would be un-
necessary if the model builder would permit pre-constructed models as initial
values, rather than empty models. In the context of the described experi-
ments, these pre-constructed models could contain all relevant devices and
their status.

Thirdly, the size of the DRS can be constrained by suppressing informa-
tion not relevant to the current topic of conversation. One idea is to use the
“right frontier” of the unfolding discourse structure (the right-hand side of the
discourse, represented as a tree [12]) and so minimise the amount of informa-
tion given to the model builder. An alternative way to deal with this issue is
assigning dynamic salience values to entities introduced into a discourse and
formulating model generation rules in a resource sensitive way [10,5]. As a
consequence, models are constructed using only entities whose salience values
are high enough. Finally, the search space of the model builder can be reduced
by using a sorted first-order logic.

Acknowledgements

I would like to thank Koen Claessen for assistence in running PARADOX, Bill
McCune for help with MACE, and Patrick Blackburn, Ewan Klein, Alexander
Koller, Malvina Nissim as well as three anonymous ICoS-reviewers for their
comments on earlier versions of this article.

References

[1] Baumgartner, P. and M. Kühn, Abducing coreference by model construction,
in: Proceedings of the 1st Workshop on Inference in Computational Semantics
(ICoS-1), Amsterdam, 1999, pp. 21–38.

[2] Blackburn, P. and J. Bos, Representation and Inference for Natural Language.
A First Course in Computational Semantics (2003), draft available at
http://www.comsem.org.

[3] Blackburn, P., J. Bos, M. Kohlhase and H. de Nivelle, Inference and
Computational Semantics, in: H. Bunt, R. Muskens and E. Thijsse, editors,
Computing Meaning Vol.2, Kluwer, 2001 pp. 11–28.

[4] Bos, J. and T. Oka, An Inference-based Approach to Dialogue System Design,
in: COLING 2002. Proceedings of the 19th International Conference on
Computational Linguistics, Taipei, Taiwan, 2002, pp. 113–119.

[5] Burchardt, A. and S. Walter, “BuGS, A Tableau Machine for Language
Understanding,” Master’s thesis, Universität des Saarlandes (2001).

14



[6] Gardent, C. and K. Konrad, Interpreting definites using model generation,
Journal of Language and Computation 1 (2000), pp. 193–209.

[7] Gardent, C. and B. Webber, Towards the use of automated reasoning in
discourse disambiguation, Journal of Logic, Language and Information 10
(2001).

[8] Kamp, H. and U. Reyle, “From Discourse to Logic; An Introduction to
Modeltheoretic Semantics of Natural Language, Formal Logic and DRT,”
Kluwer, Dordrecht, 1993.

[9] Kohlhase, M., Model generation for discourse representation theory, in:
Proceedings of the 14th European Conference on Artificial Intelligence, 2000,
pp. 441–445.

[10] Kohlhase, M. and A. Koller, Resource-Adaptive Model Generation as a
Performance Model, Logic Journal of the IGPL 11 (2003), pp. 435–456.

[11] Ramsay, A. and H. Seville, Relevant Answers to WH-Questions, in: P. Blackburn
and M. Kohlhase, editors, ICoS-3, Inference in Computational Semantics, 2001,
pp. 73–86.

[12] Webber, B. L., Structure and Ostension in the Interpretation of discourse deixis,
Language and Cognitive Processes 6 (1991), pp. 107–135.

15


