
Towards Wide-Coverage Semantic Interpretation

Johan Bos

University of Edinburgh

1 Introduction

Wide-coverage and robust NLP techniques always seemed to go hand in
hand with shallow analyses. This was certainly true a couple of years ago,
but the state-of-the-art in stochastic approaches has advanced considerably
and nowadays there are sophisticated parsers available achieving high cov-
erage and producing accurate syntactic analyses. It seems we have finally
reached a stage in NLP where we can apply well known techniques of formal
and computational semantics to a larger scale, and get a detailed seman-
tic analysis from a wide-coverage parser. A proof of concept of this idea
was demonstrated in [BCS+04], with a coverage of over 95% on newspaper
texts. In this paper we discuss the further developments in this work, gener-
ating semantic representations for sentences or small texts, showing how we
can calculate background knowledge required for reasoning, and performing
inferences using state-of-the-art theorem provers and model builders.

The semantic representation language that we will use is a first-order
language, arguing that given the current state of automated deduction, any
language with more expressive power (such as second or higher-order logic)
cannot be used efficiently to perform inference tasks. There are however
highly sophisticated inference tools for first-order logic available which we
will use in our work.

Despite the tradition in formal semantics to use higher-order logics, first-
order logic is able to cover a (perhaps surprisingly) large variety of inter-
esting natural language phenomena. The language we are going to adopt is
developed in Discourse Representation Theory (DRT), closed under a trans-
lation to first-order logic, and is described in Section 2. The choice for DRT
is motivated by its impressive theoretical coverage of linguistic phenomena
[KR93, VdS92].

Next, of course, we need a grammar formalism suitable for computational
semantics (i.e. one that is able to produce fine-grained syntactic analyses).

1

We will use Combinatory Categorial Grammar (CCG) for this task, mainly
for three reasons: CCG handles a variety of long-distance dependencies and
coordination cases, there are fast parsers available achieving high coverage
and accuracy, and, finally, as CCG is a lexicalised theory of grammar, it is
an ideal framework to implement a compositional semantics. We will discuss
CCG and the syntax-semantics interface in Section 3.

However, just building semantic representations is not enough. If one is
willing to exploit them in their full power, that is, applying some kind of log-
ical inference, there is more required than just the semantics stemming from
the words: background knowledge. In Section 4 we show how to calculate
a part of this background knowledge (arguable the most important part),
by automatically generating ontological knowledge in the form of first-order
axioms using the WordNet lexical database.

2 The Semantic Formalism

2.1 The Core DRS Language

The semantic representations that we build comprise the basic DRS lan-
guage (as formulated in [KR93]) using a neo-Davidsonian analysis of events,
together with a theory of presuppositional expressions includin anaphora.
DRSs come with a model-theoretical interpretation, but the interpretation
that we will use is one via a translation to first-order logic, as formulated
in [Bos04]. This is advantageous from a practical and computational per-
spective, because it opens the door to use automated theorem provers for
first-order logic to implement inference tasks [BBKdN01].

The syntax of DRSs and DRS-conditions are defined by simultaneous
recursion, with respect to a set of first-order variables and a vocabulary
describing the predicate symbols and their respective arities. This is done
using the following clauses:

1. If {x1 . . . xn} is a finite set of variables, {γ1 . . . γm} a finite set of DRS-
conditions, then the ordered pair 〈{x1 . . .xn}, {γ1 . . . γm}〉 is a DRS;

2. If R is a relation symbol for an n-place predicate and x1. . . xn are variable s
then R(x1,. . . ,xn) is a DRS-condition;

3. If x1 and x2 are variables, then x1 = x2 and x1 6= x2 is a DRS-condition;

4. If B is a DRS, then ¬B, 2B, 3B are DRS-conditions;

5. If B1 and B2 are DRSs, then B1 ∨ B2 and B1 ⇒ B2 are DRS-conditions;

6. If x is a variable and B a DRS, then x:B is a DRS-condition.

2

Clause 1 defines DRSs in the standard way. Given a DRS B=〈D,C〉, D
is called the domain of B, C are the conditions of B, and members of D are
called B’s discourse referents. The basic conditions (clause 2–3) are defined
just as in standard DRT. Clause 4 introduces negation and the modal opera-
tors, and Clause 5 disjunction and implication. Clause 6 is non-standard—it
introduces a modal operator that explicitly associates variables ranging over
possible worlds with DRSs. As in [Bos04], we will use it to analyse construc-
tions with sentential complements and discourse relations.

2.2 Interpretation by Translation

A number of (meaning preserving) translations from DRSs to first-order logic
formula syntax are known. The “standard” translation can be found in for
instance [KR93]. The way these translations work is by translating discourse
referents into existential quantifiers, except if they appear in the antecedent
DRS of an implicational condition—in that case they are translated into
universal quantifiers. DRS-conditions are translated into a conjunction of
their respective translations.

The standard translation covers all constructs of our core DRS language,
except the modal DRS-conditions 2B, 3B and x:B. To deal with these, we
need to use a technique called reiteration, a well-known method to trans-
late modal logics into first-order logic. The translations of these modal
expressions are defined, with respect to a translation function (x,φ)t, in the
following way:

(v,2B)t = ∀w(R(v,w)→(w,B)t)
(v,3B)t = ∃w(R(v,w)∧(w,B)t)
(v,x:B)t = (R(v,x)∧(x,B)t)

For the full translation the reader is referred to [Bos04]. From a compu-
tational point of view, the standard translation is preferred to the “modal”
translation, for the latter introduces additional quantifiers and relations in
the output formula. This simple insight is exploited in the implementation,
where the standard translation is used unless the input DRS contains one
of the modal DRS conditions.

2.3 Extending the Core DRS Language

Several extensions to the core DRS language are required to deal with se-
mantic underspecification and to combine it with the lambda calculus (see
next section) for semantic construction. We will use the binary α operator

3

to indicate presupposed and anaphoric information, and the binary ; oper-
ator to indicate merge of DRSs. Both operators take DRSs as arguments.
Ambiguity resolution will always result in a DRS built over the core DRT
ingredients (i.e. those shown in clauses 1–6 above), i.e. a DRS that can be
translated to first-order logic.

We will adopt Van der Sandt’s “presupposition as anaphora” theory
[VdS92] to analyse presupposition triggers, including determiners (such as
the, both, another, all), possessives, pronouns, presuppositional adjectives
(such as other, previous, new), and proper names. Elementary presupposi-
tions are marked in the lexicon by the binary α-operator, indicating that its
first argument is a presupposed DRS, and its second argument an asserted
DRS. Consider for instance the DRS for ‘it includes another country’ (as usual
we will show DRSs in the box notation for convenience):

(
x

neuter(x)
α(

y

country(y)
α

z e

country(z) z 6= y
include(e)

agent(e,x) theme(e,z)

))

DRSs constructed with the α operator are subject to presupposition
resolution, and can therefore be seen as underspecified semantic represen-
tations. Following Van der Sandt, presuppositions can either be resolved
by binding them to a suitable antecedent or by accommodating them on
an accessible level of DRS. We use the algorithm described in [Bos03] to
implement presupposition resolution. Resolved DRSs are defined over the
core DRS syntax, and hence can be translated into first-order logic, which
in turn makes it possible to implement logical reasoning (see Section 4).

3 The Syntax-Semantics Interface

3.1 Combinatory Categorial Grammar and DRT

Combinatory Categorial Grammar (CCG) is a type-driven lexicalised theory
of grammar based on categorial grammar [Ste01]. The lexical entries in
CCG pair a syntactic category (defining syntactic valency and directionality)
with a semantic representation. We will use the λ-calculus as a tool for
building semantic representations compositionally, and combine it with the
DRS language introduced before. Consider some example lexical entries (@
denotes functional application):

a: 〈NP/N, λpλq.(
x

;p@x;q@x)〉 man: 〈N, λx.
man(x)

〉

4

lied: 〈S\NP, λn.(n@λx.
e

lie(e) agent(e,x)
)〉

Combinatory rules project such lexical categories onto derived categories.
The CCG formalism we use employs forward and backward application, gen-
eralised forward composition, backward composition, generalised backward-
crossed composition, and type raising. There is also a coordination rule
conjoining categories of the same type. This inventory of rules allow free
derivation of non-standard constituents, supporting various cases of rela-
tivization and coordination [Ste01]. Consider a simple derivation using the
lexical entries given above (applying β-convertion and merge reduction when
possible):

a man: 〈NP, λq.(
x

man(x)
;q@x)〉 (forward app.)

a man lied: 〈S,
x e

man(x) lie(e) agent(e,x)
〉 (backward app.)

3.2 The Clark and Curran Parser

Previous work has shown that standard statistical techniques can be used
for practical wide-coverage parsing with state-of-the-art performance, de-
spite the derivational ambiguity allowed by CCG. A number of parsers have
been developed, which all use a grammar derived from CCGbank [HS02], a
treebank of normalform CCG derivations derived semi-automatically from
the Penn Treebank. In the work described in this paper we used the Clark
and Curran parser [CC04] to generate DRSs.

The Clark and Curran parser takes a POS tagged sentence as input and
assigns categories using a CCG supertagger, leading to a highly efficient
and robust parser. The lexical categories used by the parser consists of those
occurring at least ten times in the CCGbank, resulting in 409 categories. For
about 300 (the most frequent) of these categories we assigned a semantic
representation in the form of a λ-DRS. (In principle, nothing stops us to
assign semantic representations to all 409 categories.)

This relatively small set can be used to create a robust and accurate
DRS parser. Higher coverage can be achieved by a semantic template for
parts of the derivation tree that could not be analysed (due to unsupported
categories). This was done for the ten most frequent categories. This has
the welcoming effect that even if some of the categories are unknown, there

5

will still be a semantic analysis in many cases for the remaining part of the
sentence.

Apart from the derivation rules mentioned before, the parser uses also a
small set of type-changing rules and a couple of punctuation rules taken from
CCGbank. Hence, for a given input sentence, the automatically extracted
grammar can produce a very large number of derivations. A packed chart
is used to represent the derivation space, and efficient algorithms are used
for finding the most probable derivation [CC04].

3.3 Semantic Construction

The output of the Clark and Curran parser is a normal form derivation
coded as a tree structure, where the leaves represent lexical items and the
nodes represent one of the CCG combinatorial rules, a unary type-changing
rule, or a punctuation rule. Given that we have assiged appropriate semantic
representations to the lexical items, translating the normal form derivation
into a DRS is a process consisting of the following tasks:

1. interpreting the combinatorial rules in terms of functional application;

2. dealing with the type-changing rules and punctuation rules;

3. applying β-reduction to the resulting tree structure (producing a DRS).

The first task deals with the CCG combinatorial rules. The rules we
currently use are forward application (fapp), backward application (bapp) ,
generalised forward composition (gfcomp), backward composition (bcomp),
generalised backward cross composition (gbcross), and type-raising (tr).
These are interpreted in terms of the lambda calculus along the following
rules:

fapp(φ,ψ) = (φ@ψ)
bapp(φ,ψ) = (ψ@φ)

gfcomp(φ,ψ) = λ~x.(φ@(~x@ψ))
bcomp(φ,ψ) = λx.(ψ@(x@φ))

gbcross(φ,ψ) = λ~x.(ψ@(φ@~x))
tr(φ) = λx.(x@φ)

The second task deals with the type-changing and punctuation rules.
Currently no semantic interpretation is given to the punctuation rules. The
type-changing rules are dealt with by looking up the specific rule and re-
placing it by the resulting semantics. For instance, the rule for bare nouns
that changes category N to NP converts the semantics φ as follows:

6

typechange(N,NP,φ) = λp.(
x

;φ@x;p@x)

Tasks 1–2 are implemented using a recursive algorithm that traverses the
normal form derivation as output by the parser and returns a λ-expression.
Task 3 reduces this to the target semantic representation by applying β-
reduction to this λ-expression. The system is able to output underspecified
DRSs as well as fully resolved DRSs, either in Prolog format or in XML.
Some example output of our system is shown in Figure 1.

sem(7,

[word(7001,’Mubarak’),word(7002,reviewed),word(7003,the),word(7004,blueprints),word(7005,for),word(7006,a),

word(7007,number),word(7008,of),word(7009,other),word(7010,huge),word(7011,national),word(7012,projects),

word(7013,’,’),word(7014,known),word(7015,as),word(7016,’Egypts’),word(7017,’21st’),word(7018,century),

word(7019,project),word(7020,’.’)],

[pos(7001,’NNP’),pos(7002,’VBN’),pos(7003,’DT’),pos(7004,’NNS’),pos(7005,’IN’),pos(7006,’DT’),

pos(7007,’NN’),pos(7008,’IN’),pos(7009,’JJ’),pos(7010,’JJ’),pos(7011,’JJ’),pos(7012,’NNS’),pos(7013,’,’),

pos(7014,’VBN’),pos(7015,’IN’),pos(7016,’NNS’),pos(7017,’JJ’),pos(7018,’NN’),pos(7019,’NN’),pos(7021,’.’)],

alfa(nam,drs([7001:A],[7001:pred(’Mubarak’,[A]),7001:ne(A,’I-PER’)]),

alfa(def,drs([7003:B],[7004:pred(blueprint,[B])]),

merge(drs([7006:C],[7007:pred(number,[C])]),

merge(merge(drs([7009:D],[]),

alfa(def,drs([0:E],[7010:pred(huge,[E]),7011:pred(national,[E]),

7012:pred(project,[E])]),

drs([],[7009:not(drs([],[0:eq(D,E)])),

7010:pred(huge,[D]),7011:pred(national,[D]),

7012:pred(project,[D])]))),

drs([7014:F,7016:G,7002:H],[7008:pred(of,[C,D]),7014:pred(know,[F]),

7014:pred(patient,[F,C]),7016:pred(egypt,[G]),

7017:pred(’21st’,[G]),7017:ne(G,’I-DAT’),

7018:pred(century,[G]),7018:ne(G,’I-DAT’),

7019:pred(project,[G]),7015:pred(as,[F,G]),

7005:pred(for,[B,C]),7002:pred(review,[H]),

7002:pred(agent,[H,A]),7002:pred(patient,[H,B])])))))).

/*

______________ _______________ ____________ ______________ ________________ ________________

| x1 | | x2 | | x3 | | x5 | | x4 | | x7 x8 x6 |

|--------------| |---------------| |------------| |--------------| |----------------| |----------------|

(| Mubarak(x1) |A(| blueprint(x2) |A(| number(x3) |;((| huge(x5) |A| _________ |);| of(x3,x4) |)))

| ne(x1)=I-PER | |_______________| |____________| | national(x5) | | | || | know(x7) |

|______________| | project(x5) | | __ |---------|| | patient(x7,x3) |

|______________| | | | x4 = x5 || | egypt(x8) |

| |_________|| | 21st(x8) |

| huge(x4) | | ne(x8)=I-DAT |

| national(x4) | | century(x8) |

| project(x4) | | as(x7,x8) |

|________________| | project(x8) |

| for(x2,x3) |

| review(x6) |

| agent(x6,x1) |

| patient(x6,x2) |

|________________| */

Figure 1: Example DRS output in Prolog format and pretty print for
Mubarak reviewed the blueprints for a number of other huge national projects,
known as Egypts 21st century project.

7

4 Semantic Interpretation

4.1 Reasoning

Computational semantics is only computational semantics if one is able to
perform reasoning with the representations that are produced. Reasoning
can come in various ways for different NLP applications. We will here con-
centrate on one test: consistency checking [BBKdN01]. A DRS is said to be
consistent if it is satisfiable in a model. A DRS is inconsistent if its negation
is valid, i.e. satisfiable in any model. Using the translation to first-order
logic, we can test this using a model builder and a theorem prover. We
translate the DRS into a first-order formula φ, and if a model builder is
able to construct a model for φ we know that the DRS is consistent. If a
theorem prover is able to show that ¬φ is a theorem, we know that the DRS
is inconsistent.

Now, inferences without any appeal to background knowledge (lexical
knowledge, ontological knowledge, world knowledge, situational knowledge)
are rather dull and not very useful. We need to incorporate some back-
ground knowledge relevant to the DRS and use that to support the consis-
tency checking task. For small, closed domains it is relatively easy to pin
down background knowledge. For a wide-coverage system, we need a robust
method to approximate this. We will use the relations in WordNet [Fel98]
to achieve this. Of course, to compile the entire WordNet into first-order
logic and give that to a theorem prover won’t bring us anywhere—theorem
provers are designed to deal with mathematical problems, they are not good
at dealing with huge chunks of formulas. We need to chop down WordNet
to a database that just covers the concepts appearing in the DRS. We call
these subsets of WordNet MiniWordNets and the next section shows how
we construct them.

4.2 Calculating Background Knowledge

Calculating background knowledge is a difficult problem of which we only
will scratch the surface. Even though the availability of a rich resource such
as WordNet gives us a firm push in the right direction, there are a number of
issues we won’t consider in the scope of this paper. Although we won’t deal
with word-sense disambiguation or words that are not found in WordNet,
we show that we actually can automatically generate background knowledge
in the form of small ontologies.

The algorithm for generating a MiniWordNet takes as input a DRS and
outputs world knowledge in the form of first-order axioms. It works as fol-

8

lows. We take all symbols used in the DRS that corresponds to common
nouns or proper names. This can be done easily because the extended DRS
format has pointers to the parts of speech of the different words that con-
tributed to its compositional meaning (see Figure 1). For each of the symbols
(which correspond to the lemmas of the original words) we generate its hy-
pernyms, using only the most frequent sense of that word. The hypernym
relations of the words are then taken to compute an “isa-hierarchy”, where
the nodes are WordNet synsets and the edges represent isa-relations. The
directed graph that we get in this way is further chopped down by removing
all redundant concepts, using the following rules:

1. Replace isa(A,B) and isa(B,C) by isa(A,C) if there is no X A6=X such
that isa(X,B). Don’t do this if A is a terminal node.

2. Remove isa(A,B) if there is an X such that isa(X,A), and there is no
X such that isa(B,X), and there is no X A6=X such that isa(X,B).

3. Add isa(X,top) for all X such that there is no Y such that isa(X,Y).

Rule 1 removes a non-branching node between two other nodes. This is
safe to do, as it won’t add any inferential power, in fact it will only increase
the amount of background knowledge which is bad from the theorem prover’s
point of view. We don’t apply rule 1 to terminal nodes to avoid losing
information about synonyms. Rule 2 chops off non-branching top elements
of the graph. Again, this is fine as they add nothing to the inferential
process. Rule 3, finally, adds a common top concept to turn everything into
a connected graph.

_top

entity_physical_thing measure_quantity_amount_quantum

region artifact_artefact kilometer_kilometre_km time_period_period_of_time_period

Aswan_Assuan Egypt_Arab_Republic_of_Egypt area_country newspaper_paper place_of_worship

Gazette newspaper templeAswan Egypt area Cairo_capital_of_Egypt

CAIRO Cairo

kilometer April_Apr Thursday_Th

April Thursday

Figure 2: MiniWordNet for CAIRO , April 15 (Xinhua) – Egypt has planned
to maintain 12 ancient temples in the area of Aswan, 700 kilometers south of
Cairo, the Egyptian Gazette newspaper reported Thursday.

9

Figure 2 gives an example of such a structure. This structure can be
translated into first-order logic and produce three kinds of information. Each
isa(A,B) is translated as ∀x(A(x)→B(x)). Two terminals A and B that
stand in the isa-relation to the same concept must be synonyms, hence are
translated as ∀x(A(x)↔B(x)). Finally, two non-terminal nodes A and B
with the same mother nodes are disjoint, yielding ∀x(A(x)→ ¬B(x)). For
the isa-hierarchy in Figure 2 we get (among others) the following axioms:

∀x(Cairo(x)→Cairo capital of Egypt(x))
∀x(newspaper paper(x)→artifact artefact(x))
∀x(Cairo capital of Egypt(x)→area country(x))
∀x(area country(x)→region(x))
∀x(region(x)→entity physical thing(x))
∀x(artifact artefact(x)→ ¬entity physical thing(x))

4.3 Inference

Since we use first-order logic, there is no need to build ourselves an inference
engine. There are many theorem provers and model builders available for
first-order logic, and for the work described in this paper, we chose to work
with the model builder Paradox 1.0 [CS03] and the theorem prover Vam-
pire 7.0 [RV02]. (The motivation to pick these inference engines is bluntly
because they are currently the best inference tools for first-order logic, at
least according to the results of the latest CADE ATP system competi-
tion, http://www.cs.miami.edu/~tptp/CASC/.) We use Paradox to check
whether a DRS is consistent, and Vampire to check whether the DRS is
inconsistent. Ideally these tests are carried out in parallel, in order to be
able to halt the theorem prover when a counter-model is found and vice
versa. We ran a test on one of Section 00 of the WSJ corpus, to verify the
consistency of the semantic representations and the calculated background
knowledge. We were able to produce DRSs and MiniWordNets for 96.0% of
the (1902) sentences. In 88% of the cases Paradox found a model, mean-
ing that the DRS and background knowledge was consistent. In 12% cases
Vampire found a proof, indicating contradictory information. (In none of
the cases neither the theorem prover nor the model builder came back with a
result.) It is interesting to look at the inconsistent cases. They were caused
by errors in anaphora and presupposition resolution, incorrect CCG deriva-
tions, and inadequate semantic representations. These findings give us good
indications where to improve the system. Put differently, we have a system
that automatically detects its own mistakes using off-the-shelf inference.

10

5 Conclusion and Future Work

We showed that it is possible to have a robust and wide-coverage system
that generates semantic representations with relevant background knowledge
from texts and perform first-order inferences on the result. The key feature
of this approach is its wide coverage. We don’t know any work that converts
raw text into logical form and performs inferences with the results, achieving
a coverage of 96% (of which 88% logically consistent).

We would like to be in a position to be able to further evaluate the ap-
proach, in particular to test semantic accuracy and semantic adequacy (it
is important to distinguish these two notions). For now, it is impossible to
measure semantic accuracy as there is no corpus with gold standard repre-
sentations that would make comparison possible. Ideally a gold standard
would be independent from any particular semantic formalism but whether
it is possible to arrive at such an annotation scheme remains far from un-
clear, as there is little consensus on what constitutes the ideal semantic
formalism in computational semantics.

Measuring semantic adequacy can in principle be done by running the
system on controlled inference tasks for selected semantic phenomena. We
know two of such test suites. The first is one developed in the FRACAS
project [CCVE+96]. It is however inspired by examples taken from text-
books on formal semantics, covering a lot of complex phenomena related to
generalized quantifiers, plurals, comparatives, attitudes, anaphora, ellipsis,
and temporal phenomena. We are just not ready to perform satisfactorily
on such a test suite with a system that emphasises high coverage rather
than semantic precision. The second is the “Recognising Textual Entail-
ment Challenge” evaluation exercise that just has been proposed as part
of the PASCAL Challenges Program. We envisage to say more about the
semantic adequacy of our system by participating in this task.

Although we are aware that this is just the beginning of an architecture
for robust wide-coverage semantic interpretation, and there is a lot of work
to be done to get a system with high semantic precision, we also believe that
the system presented in this paper is already of great value for numerous
NLP applications. Existing applications such as question answering, sum-
marisation and machine translation are likely to be improved by using more
detailed semantic representations, which we aim to achieve in future work.

11

References

[BBKdN01] Patrick Blackburn, Johan Bos, Michael Kohlhase, and Hans de Nivelle.
Inference and Computational Semantics. In Harry Bunt, Reinhard
Muskens, and Elias Thijsse, editors, Computing Meaning Vol.2, pages
11–28. Kluwer, 2001.

[BCS+04] J. Bos, S. Clark, M. Steedman, J.R. Curran, and Hockenmaier J.
Wide-Coverage Semantic Representations from a CCG Parser. In
Proceedings of the 20th International Conference on Computational
Linguistics (COLING ’04), Geneva, Switzerland, 2004.

[Bos03] J. Bos. Implementing the Binding and Accommodation Theory for
Anaphora Resolution and Presupposition Projection. Computational
Linguistics, 2003.

[Bos04] J. Bos. Computational Semantics in Discourse: Underspecification,
Resolution, and Inference. Journal of Logic, Language and Informa-
tion, 12(2), 2004.

[CC04] S. Clark and J.R. Curran. Parsing the WSJ using CCG and Log-Linear
Models. In Proceedings of the 42nd Annual Meeting of the Association
for Computational Linguistics (ACL ’04), Barcelona, Spain, 2004.

[CCVE+96] R. Cooper, R. Crouch, J. Van Eijck, C. Fox, J. Van Genabith, J. Jas-
pars, H. Kamp, M. Pinkal, D. Milward, M. Poesio, and S. Pulman.
Using the Framework. Technical report, FraCaS: A Framework for
Computational Semantics, 1996. FraCaS deliverable D16.

[CS03] K. Claessen and N. Sörensson. New techniques that improve mace-
style model finding. In Model Computation – Principles, Algorithms,
Applications (Cade-19 Workshop), Miami, Florida, USA, 2003.

[Fel98] C. Fellbaum, editor. WordNet. An Electronic Lexical Database. The
MIT Press, 1998.

[HS02] J. Hockenmaier and M. Steedman. Generative Models for Statistical
Parsing with Combinatory Categorial Grammar. In Proceedings of
40th Annual Meeting of the Association for Computational Linguistics,
Philadelphia, PA, 2002.

[KR93] H. Kamp and U. Reyle. From Discourse to Logic; An Introduction
to Modeltheoretic Semantics of Natural Language, Formal Logic and
DRT. Kluwer, Dordrecht, 1993.

[RV02] A. Riazanov and A. Voronkov. The Design and Implementation of
Vampire. AI Communications, 15(2–3), 2002.

[Ste01] M. Steedman. The Syntactic Process. The MIT Press, 2001.

[VdS92] R.A. Van der Sandt. Presupposition Projection as Anaphora Resolu-
tion. Journal of Semantics, 9:333–377, 1992.

12

