
Towards a large-scale formal semantic lexicon for text
processing∗

Johan Bos
Department of Computer Science

University of Rome “La Sapienza”, Italy
bos@di.uniroma1.it

Abstract

We define a first-order fragment of Discourse Representation Theory (DRT) and present a
syntax-semantics interface based on Combinatory Categorial Grammar (CCG) (with five ba-
sic categories N, NP, S, PP and T) for a large fragment of English. In order to incorporate a
neo-Davidsonian view of event semantics in a compositional DRT framework we argue that the
method of continuation is the best approach to deal with event modifiers. Within this theoret-
ical framework, the lexical categories of CCGbank were associated with the formal semantic
representations of our DRT variant, reaching high coverage of which practical text processing
systems can benifit.

1 Introduction
Formal approaches in semantics have long been restricted to small or medium-sized fragments of nat-
ural language grammars. In this article we present a large-scale, formally specified lexicon backed
up by a model-theoretic semantics. The aim of the lexicon is to provide wide-coverage parsers with
the possibility to produce interpretable structures in a robust yet principled way.

The semantic lexicon that we present is situated in Discourse Representation Theory (Kamp &
Reyle, 1993), and it follows to a great extent the theory as formulated by its orginator Hans Kamp
and colleagues. However, it deviates on certain points, as it comprises:

• a neo-Davidsonian view on representing event structures;

• a syntax-semantics interface based on categorial grammar and type-theory;

• a DRS language compatible with first-order logic.

In a neo-Davidsonian take on event semantics events are first-order entities and characterised by
one-place predicate symbols. An inventory of thematic roles encoded as two-place relations between
the events and the subcategorised arguments or modifiers completes this picture. We choose this way

* Published in: Proc. GSCL 2009 TODO . Seite ??–??.

4 Johan Bos

of representing events because it yields a more consistent analysis of event structure. As inventory
of thematic roles we take VerbNet (Kipper et al., 2008).

As a preliminary to semantics, we need syntax. The syntax-semantics interface illustrated here is
based on a categorial grammar, namely Combinatory Categorial Grammar, or CCG for short (Steed-
man, 2001). A categorial grammar lends itself extremely well for this task because it is lexically
driven and has only few “grammar” rules, and not less because of its type-transparency princi-
ple, which says that each syntactic type (a grammar category) corresponds to a unique semantic
type. The existence of CCGbank (Hockenmaier, 2003), a large collection of CCG derivations for a
newswire corpus, and the availability of robust parsers trained on it (Clark & Curran, 2004), make
CCG further a practically motivated choice.

The choice of first-order logic for the semantic interpretation of text is a restriction in terms of
expressiveness. However, it opens the way to implement logical reasoning in practical systems by
including automated deduction tools such as theorem provers and finite model builders for inference
tasks such as consistency and informativeness checking (Blackburn & Bos, 2005).

In the scope of this article we are primarily interested in defining proper semantic representations
for lexical categories. Hence resolving scope ambiguities, word sense disambiguation, thematic
role labelling, and anaphora resolution are tasks outside the scope of this article. They are, of
course, essential in a complete system for computational semantics, but these are tasks orthogonal
to the objectives of producing a formally grounded semantic lexicon. Instead, the challenges in
the context of this article are providing well-formed, interpretable, lexical semantic representations
for a broad variety of linguistic phenomena, and doing this on a large-scale, producing a lexicon
suited for wide-coverage, high precision natural language processing grammars for open-domain
text analysis.

2 Discourse Representation Theory (DRT)

DRT is a theory of natural language meaning, and was originally designed by Kamp to study the
relationship between indefinite noun phrases and anaphoric pronouns as well as temporal relations
(Kamp, 1981). Since its publication in the early 1980s, DRT has grown in depth and coverage,
establishing itself as a well-documented formal theory of meaning, dealing with a stunning number
of semantic phenomena ranging from pronouns, abstract anaphora, presupposition, tense and aspect,
propositional attitudes, ellipsis, to plurals (Kamp & Reyle, 1993, Klein, 1987, van der Sandt, 1992,
Asher, 1993, van Eijck & Kamp, 1997, Geurts, 1999, Kadmon, 2001).

DRT can be divided into three components. The central component is a formal language defining
Discourse Representation Structures (DRSs), the meaning representations for texts. The second
component deals with the semantic interpretation of DRSs. The third component constitutes an al-
gorithm that systematically maps natural language text into DRSs, the syntax-semantics interface.
Let’s consider these components in more detail in our version of DRT.

One of the main principles of the theory is that a DRS can play both the role of semantic content,
and the role of discourse context (van Eijck & Kamp, 1997). The content gives us the precise
model-theoretic meaning of a natural language expression, and the context it sets up aids in the
interpretation of subsequent anaphoric expressions occuring in the discourse. A key ingredient of
a DRS is the discourse referent, a concept going back to at least the work of Karttunen (1976). A
discourse referent is an explicit formal object storing individuals introduced by the discourse, along

Towards a large-scale formal semantic lexicon 5

with its properties, for future reference. The recursive structure of DRSs determines which discourse
referents are available for anaphoric binding.

Semantic interpretation of DRSs is carried out by translation to first-order logic. The DRS lan-
guage employed in our large-scale lexicon is nearly identical to that formulated in Kamp & Reyle
(1993). It is, on the one hand, more restrictive, leaving out the so-called duplex conditions because
they do not all permit a translation to first-order logic. Our DRS language forms, on the other hand,
an extension, as it includes a number of modal operators on DRSs not found in Kamp & Reyle
(1993) nor van Eijck & Kamp (1997). This DRS language is known to have a translation to ordinary
first-order formulas. Examples of such translations are given in Kamp & Reyle (1993), Muskens
(1996), and Blackburn et al. (2001), disregarding the modal operators. A translation incorporating
the modal operators is given by Bos (2004). We won’t give the translation in all its detail here, as it
is not the major concern of this article, and interested readers are referred to the articles cited above.

Various techniques have been proposed to map natural language text into DRS: the top-down
algorithm (Kamp & Reyle, 1993), DRS-threading (Johnson & Klein, 1986), or compositional meth-
ods (Zeevat, 1991, Muskens, 1996, Kuschert, 1999, van Eijck & Kamp, 1997, de Groote, 2006). We
will follow the latter tradition, because it enables a principle way of constructing meaning permitting
broad coverage — it also fits very well with the grammar formalism of our choice, CCG. Hence, in
addition to the formal language of DRSs, we need a “glue language” for partial DRSs — we will
define one using machinery borrowed from type theory. This will give us a formal handle on the
construction of DRSs in a bottom-up fashion, using function application and β-conversion to reduce
complex expressions into simpler ones.

Let’s turn to the definition of partial DRSs.1 The basic semantic types in our inventory are e
(individuals) and t (truth value)2. The set of all types is recursively defined in the usual way: if τ1

and τ2 are types, then so is 〈τ1, τ2〉, and nothing except the basic types or what can be constructed
via the recursive rule are types. Expressions of type e are either discourse referents, or variables.
Expressions of type t are either basic DRSs, DRSs composed with the merge (;), or DRSs formed
by function application (@):

<expe> ::= <ref> | <vare>

<expt> ::=
<ref>∗

<condition>∗
|(<expt>;<expt>)|(<exp〈α,t〉> @ <expα>)

Following the conventions in the DRT literature, we will visualise DRSs in their usual box-like
format. As the definition above shows, basic DRSs consist of two parts: a set of discourse referents,
and a set of conditions. The discourse referents can be seen as a record of topics mentioned in
a sentence or text. The conditions tell us how the discourse referents relate to each other, and
put further semantic constraints on their interpretation. We distinguish between basic and complex
conditions. The basic conditions express properties of discourse referents or relations between them:

<condition> ::= <basic> | <complex>

<basic> ::= <sym1>(<expe>) | <sym2>(<expe>,<expe>) | <expe>=<expe>
| card(<expe>)=<num> | named(<expe>,<sym0>)

1 We employ Backus-Naur form in the definitions following. In using this notation, non-terminal symbols are enclosed
in angle brackets, choices are marked by vertical bars, and the asterix suffix denotes zero or more repeating items.

2 Type t corresponds to truth value in static logic, however in a dynamic logic like DRT one might want to read it as a
state transition, following van Eijck & Kamp (1997).

6 Johan Bos

Here <symn> denotes an n-place predicate symbol, and <num> a cardinal number. Most nouns
and adjectives introduce a one-place relation; prepositions, modifiers, and thematic roles introduce
two-place relations. (In our neo-Davidsonian DRS language we don’t need ternary or higher-place
relations.) The cardinality condition is used for counting quantifiers, the naming condition for proper
names. The equality condition explicitly states that two discourse referent denote the same individ-
ual.

Now we turn to complex conditions. For convenience, we split them into unary and binary com-
plex conditions. The unary complex conditions have one DRS as argument and cover negation,
the modal operators expressing possibility and necessity, and a “hybrid” condition connecting a
discourse referent with a DRS. The binary conditions have two DRSs as arguments and form impli-
cational, disjunctive, and interrogative conditions:

<complex> ::= <unary> | <binary>

<unary> ::= ¬<expt> | !<expt> | "<expt> | <ref>:<expt>

<binary> ::= <expt>⇒<expt> | <expt>∨<expt> | <expt> ? <expt>

The unary complex conditions are mostly activated by negation particles or modal adverbs. The
hybrid condition is used for the interpretation of verbs expressing propositional content. The binary
complex conditions are triggered by conditional statements, certain determiners, coordination, and
questions.

Finally, we turn to expressions with complex types. Here we have three possibilities: variables,
λ-abstraction, and function application:

<exp〈α,β〉> ::= <var〈α,β〉> | λ<varα>.<expβ> | (<exp〈γ,〈α,β〉〉>@<expγ>)

To graphically distinguish between the various types of variables we will make use of different
(indexed) letters denoting different types (Table 1). This table also illustrates the language of partial
DRSs with some first examples.

Note that variables can range over all possibly types, except type t. This restriction permits us to
use the standard definition of β-conversion to avoid accidental capturing of free variables by forcing
the functor to undergo the process of α-conversion. Applying a functor expression to an argument
expression of type t could result in breaking existing bindings, because DRSs can bind variables
outside their syntactic scope. Since we don’t have variables ranging over type t in our language of
partial DRSs, this can and will never happen. In practical terms, the syntax-semantics interface is
not affected by this limitation, and therefore the price to pay for this restriction of expressiveness is
low.

3 Combinatory Categorial Grammar (CCG)
Every semantic analysis presupposes a syntactic analysis that tells us how meaning representations
of smaller expressions can be combined into meaning representations of larger expressions. The
theory of syntax that we adopt is CCG, a member of the family of categorial grammars (Steedman,
2001). In a categorial grammar, all constituents, both lexical and composed ones, are associated with
a syntactic category. Categories are either basic categories or functor categories. Functor categories
indicate the nature of their arguments and their directionality: whether they appear on the left or on
the right. In CCG, directionality of arguments is indicated within the functor category by slashes: a

Towards a large-scale formal semantic lexicon 7

Table 1: Examples of (partial) DRSs
Type Variable Expression Example

e x, x1, x2, . . .
e, e1, e2, . . .

t

x e

manager(x)
smoke(e)

theme(e,x)

a manager smoked

〈e, t〉 p, p1, p2, . . . λx.
company(x)

company

〈〈e, t〉, t〉 n, n1, n2, . . . λp.(
x

bank(x)
;(p@x)) a bank

forward slash / tells us that an argument is to be found on its immediate right; a backward slash \
that it is to be found on its immediate left.

The inventory of basic categories in a CCG grammar usually comprises S, N, PP, and NP, denoting
categories of type sentence, noun, prepositional phrase, and noun phrase, respectively (Steedman,
2001). Functor categories are recursively defined over categories: If α is a category and β is a
category, then so are (α/β) and (α\β).3 Note that, in theory, there is no limit to the number of
categories that we are able to generate. In practice however, given the way natural language works,
the number of arguments in a functor category rarely succeeds four.

Consider for instance S\NP, a functor category looking for a category of type NP on its immediate
left, yielding a category of type S. This category, of course, corresponds to what traditionally would
be called an intransitive verb or verb phrase in a grammar for English. Other examples of functor
categories are N/N, a pre-nominative adjective, and (S\NP)/NP, a transitive verb.

These simple examples demonstrate a crucial concept of a categorial grammar: functor categories
encode the subcategorisation information directly and straightforwardly. All such syntactic depen-
dencies, local as well as long-range, are specified in the categories corresponding to lexical phrases.
This process of “lexicalisation” is a trademark property of categorial grammars and manifests itself
in a lexicon exhibiting a large variety of categories complemented with a small set of grammar rules
— the essence of a categorial grammar.

The most simplest of categorial grammar, pure categorial grammar, has just two combinatory
rules: forward and backward application. CCG can be viewed as a generalisation of categorial
grammar, and the initial C it is blessed with is due to the variety of combinatory rules that it adds
to the grammar of pure categorial grammar. The complete collection of binary combinatory rules
in CCG consists of the application rules, the rules for composition and their crossing variants (in-
cluding the generalised versions), and the substitution rules (not covered in this article). In addition,
CCG comes with rules for type raising. Some variations of CCG have special rules for dealing with
coordination.

3 Outermost brackets of a functor category are usually suppressed.

8 Johan Bos

The Application Rules

Forward application (> in Steedman’s notation), and backward application (<), are the two basic
combinatory rules of classic categorial grammar. Below we will give the schemata of these rules,
and make use of the colon to associate the category with its semantic interpretation. Following the
partial-DRS language defined in the previous section, we use @ to denote function application.

X/Y: φ Y: ψ
>

X: (φ@ψ)

Y: φ X\Y: ψ
<

X: (ψ@φ)

Here X and Y are variables ranging over CCG categories, φ and ψ are partial DRSs. The > rule
can be read as follows: given an expression of category X/Y with interpretation φ, followed by an
expression of category Y with interpretation ψ, we can deduce a new category X, with interpretation
φ applied to ψ. Along the same lines, the < rule cam be paraphrased as follows: given the category
X\Y with interpretation ψ, preceeded by a category Y with interpretation ψ, we can deduce a new
category X, with interpretation ψ applied to φ.

The Composition Rules

Here we have forward and backward composition, rules that were originally introduced to deal with
various cases of natural language coordination. Steedman refers to these rules by >B and <B,
blessed after the Bluebird from Raymond Smullyan’s tale of the “logical forest” and its feathered
friends.

X/Y: φ Y/Z: ψ
>B

X/Z: λx.(φ@(ψ@x))

Y\Z: φ X\Y: ψ
<B

X\Z: λx.(ψ@(φ@x))

The >B rule can be paraphrased as follows: given an expression of category X/Y, we’re looking
for an expression of category Y on our right, but find an expression of category Y/Z instead, then
we can deduce X/Z (because, after all, we did encounter Y, if we can promise to find a Z later as
well). A similar explanation can be given for the <B rule, reversing the direction of subcategorisa-
tion. Semantically, something interesting is happening here. Since we haven’t find Z yet, we need
to postpone its semantic application. What we do is introduce the variable x and apply it to the
interpretation of Y/Z (or Y\Z in the <B rule), and then abstract over it again using the λ-operator.

Both composition rules have so-called “crossing” variants: backward crossing composition (<Bx)
and forward crossing composition (>Bx). Backward crossing occurs in cases of adjunctal modifi-
cation in English. Forward crossing is not needed for an English grammar, but supports languages
with freer word order such as Italian. The crossing rules are specified as follows:

X/Y: φ Y\Z: ψ >Bx

X\Z: λx.(φ@(ψ@x))

Y/Z: φ X\Y: ψ <Bx

X/Z: λx.(ψ@(φ@x))

The Generalised Composition Rules

The composition rules also have generalised variants, in order to guarantee a larger variety of modifi-
cation types. Steedman introduces a technical device to abstract over categories, the $, a placeholder
for a bounded number of directional arguments (Steedman, 2001).

Towards a large-scale formal semantic lexicon 9

X/Y: φ (Y/Z)$: ψ >B$
(X/Z)$: λ$x.(φ@(ψ@$x))

(Y\Z)$: φ X\Y: ψ <B$
(X\Z)$: λ$x.(ψ@(φ@$x))

X/Y: φ (Y\Z)$: ψ >Bx$
(X\Z)$: λ$x.(φ@(ψ@$x))

(Y/Z)$: φ X\Y: ψ <Bx$
(X/Z)$: λ$x.(ψ@(φ@$x))

Here we introduce a vectorised variable as short-hand notation for the number of abstractions and
applications respectively required. This number, of course, depends on the number of arguments of
the functor category that is involved.

Type Raising

CCG also comes with two type raising rules, forward and backward type raising. Steedman calls
these >T and <T, respectively, after Smullyan’s Thrush. They are unary rules, and effectively
what they do is change an argument category into a functor category. The standard CCG example
illustrating the need for type raising is non-constituent coordination such as right-node raising, a
phenomenon that can be accounted for in CCG by combining type raising with forward composition.
The type raising rules are defined as follows:

X: φ >T
Y/(Y\X): λx.(x@φ)

X: φ <T
Y\(Y/X): λx.(x@φ)

Type-raising is an extremely powerful mechanism, because it can generate an infinitely large number
of new categories. Usually, in practical grammars, restrictions are put on the use of this rule and the
categories it can apply to.

4 Building a Formal Semantic Lexicon
The method we follow to construct a large-scale semantic lexicon has two parts: a theoretical part,
defining a mapping between the base categories of CCG and semantic types; and a practical part, as-
signing to each lexical category a suitable partial DRS of the right type, guided by CCG’s type trans-
parency principle (Steedman, 2001). As we have seen from the previous section, the combinatory
rules of CCG are equipped with a direct semantic interpretation, completing the syntax-semantics in-
terface. Recall that the main basic categories in CCG are N (noun), S (sentence), NP (noun phrase)
and PP (prepositional phrase). In addition we will take on board the basic category T (text) and
motivate this addition below. Our main task here is to map these basic categories to the two basic
semantic types we have at our disposal: e (entities), and t (truth value).

The Category N

The CCG category N is assigned a semantic type 〈e, t〉, a type corresponding to properties. This
makes sense, as what nouns are essentially doing is expressing kinds of properties. This decision
allows us to view some first examples of associating lexical items with λ-DRS. So let’s consider the
word squirrel of category N, and the adjective red of category N/N and their semantic representa-
tions:

N: 〈e, t〉: λx.
squirrel(x)

N/N: 〈〈e, t〉, 〈e, t〉〉: λp.λx.(
red(x)

;(p@x))

10 Johan Bos

The Category PP

We also assign the type 〈e, t〉 to the category PP. It is perhaps confusing and misleading to connect
two different syntactic categories with the same semantic type (because it seems to obscure CCG’s
principle of type transparancy (Steedman, 2001)). However, from a semantic perspective, both N
and PP denote properties, and it seems just to assign them both 〈e, t〉 (see the example for at a table
below). One could attempt to make a semantic distinction by sorting entities into individuals and
eventualities, because in CCG a PP usually plays the role of a subcategorised argument of a verb.
But this wouldn’t lead us anywhere, as the PP could, in principle, also be an argument of a relational
noun as illustrated below for wife:

PP: 〈e, t〉: λx1.
x2

table(x2)
at(x1,x2)

N/PP: 〈〈e, t〉, 〈e, t〉〉: λp.λx1.(

x2

person(x1)
wife(x2)

role(x1,x2)

;(p@x2))

The Category NP

At first thought it seems to make sense to associate the type e with the category NP, as for example
Steedman (2001) does. After all, a noun phrase denotes an entity. However, this is not what we
propose, because it would require a type-raised analysis in the lexicon for determiners to get proper
meaning representations for quantifiers. In CCGBank (Hockenmaier, 2003), on which our practical
implementation is based, determiners such as every are categorised as NP/N rather than their type-
raised variants (T/(T\NP))/N and (T\(T/NP))/N, which would permit us to assign the type e to
NP and still give a proper generalised quantifier interpretation. The motivation of CCGBank to
refrain from doing this is obviously of practical nature: it would increase the number of categories
drastically. Nevertheless, by associating the category NP with the type 〈〈e, t〉, t〉 we are able to yield
the required interpretation for determiners.

Essentially, what we are proposing is a uniform type-raised analysis for NPs, denoting functions
from properties to truth values. This is, of course, an idea that goes back to Montague’s formalisation
for a fragment of English grammar (Montague, 1973), illustrated by the following example for
someone:

NP: 〈〈e, t〉, t〉: λp.(
x

person(x)
;(p@x))

The Category S

Now we turn to the category for sentences, S. Normally, one would associate the type t to S: after all,
sentences correspond to propositions and therefore denote truth values. Yet, the semantics of events
that we will assign to verbal structures, following Davidson, requires us to connect the category S
with the type 〈〈e, t〉, t〉. As this is slightly unconventional, we will motivate this choice in what
follows.

The neo-Davidsonian approach that we are following yields DRSs with discourse referents de-
noting event-like entities. For instance, the DRS for the sentence a manager smoked would be one
similar as the one shown in Table 1. This would be a fine DRS. But what if we continue the sentence,
with a modifier, as in a manager smoked in a bar, or with a sequence of modifiers, as in a manager

Towards a large-scale formal semantic lexicon 11

smoked in a bar yesterday? As we wouldn’t have any λ-bound variables at our disposal, it is impos-
sible to connect the modifiers in a bar and yesterday to the correct discourse referent for the event
(e). In CCG, such modifiers would typically be of category S\S or S/S (i.e. sentence modifiers) and
(S\NP)\(S\NP) or (S\NP)/(S\NP) (i.e. verb phrase modifiers). It is not difficult to see that associat-
ing a DRS to category S would lead us astray from the principles of compositional semantics, when
trying to maintain a neo-Davidsonian first-order modelling of event structures. We would need an
ad-hoc mechanism to ensure the correct binding of the event discourse referent. Several “tricks”
could be performed here. Event discourse referents could always have the same name (say e0), and
modifiers would be represented with a free variable of the same name. This would require a modifi-
cation of the definition of closed expressions and variable renaming — it would also exclude a DRS
with two different events discourse referents. Another possibility is to treat modifiers as anaphoric,
linking to the event discourse referent closest in proximity. This would establish a dichotomy in the
analysis of modifiers, and would moreover require modification of the β-conversion procedure too,
as variables ranging over type t would be introduced. No further comments needed — such ad-hoc
methods aren’t welcome in any systematic syntax-semantic interface.

There are two basic directions to surmount this problem, while maintaining a compositional sys-
tem. The first is to abstract over the event variable, and introduce the discourse referent when the
parse of the sentence is completed. We call this the method of delay and it would yield the type 〈e, t〉
for the S category. The second approach is to introduce the discourse referent for the event in the
lexicon, but reserve a place for any modifier that comes along later in the parse. This option, which
we dub the method of continuation, would yield the type 〈〈e, t〉, t〉 for S. We show the partial DRSs
for both options:

λe.

x

manager(x)
smoke(e)
agent(e,x)

λp.(

x e

manager(x)
smoke(e)
agent(e,x)

;(p@e))

Is there a practical difference between the two options? Yes, there is. The delayed approach (shown
on the left) will always introduce the discourse referent on the outermost level of DRS. This will give
the incorrect prediction for sentences with scopal operators such as quantifiers in subject position.
The continuation approach (shown on the right) doesn’t suffer from this limitation, as the discourse
referent is already introduced. Moreover, the continuation approach also gives us control over where
in the DRS modifiers are situated which the delay approach doesn’t. This motivates us to favour
the continuation approach. To illustrate the impact of the method of continuation on the lexical
categories, consider the partial DRS for the intransitive verb smoked:

(S[dcl]\NP): 〈〈〈e, t〉, t〉, 〈〈e, t〉, t〉〉: λn1.λp2.(n1@λx3.(

e4

smoke(e4)
agent(e4,x3)

;(p2@e4)))

The Category T

The category T (for text) corresponds to the semantic type t and as a consequence to an ordinary
DRS (or an expression that can be reduced to a DRS) which can be translated to first-order logic.
It is not usually a lexical category, but typically introduced by punctuation symbols that signal the

12 Johan Bos

end of the sentence. For instance, the full stop maps to a CCG category that turns a sentence into a
text: T\S. This makes sense from a linguistic point of view, because a full stop (or other punctuation
symbols such as exclamation and question marks) signals that the sentence is finished and no more
sentence of verb phrase modifiers will be encountered.

5 Practical Results

Our inventory of lexical categories is based on those found in CCGbank (Hockenmaier, 2003) and
used by the C&C parser for CCG (Clark & Curran, 2004). CCGbank is a version of the Penn
Treebank (Marcus et al., 1993) and consists of a set of CCG derivations covering 25 sections of texts
taken from the Wall Street Journal, comprising a total of over one million tagged words. CCGBank
contains nearly 49,000 sentences annotated with a total of 1,286 different CCG categories, of which
847 appear more than once.

Given the theoretical foundations presented in the previous sections, we manually encoded the
majority of the lexical categories found in CCGbank with partial DRSs (categories not used by
the C&C parser, and some extremely rare categories, were not taken into account). Even though
there is a one-to-one mapping between the CCG categories and semantic types — and this must
be the case to ensure the semantic composition process proceeds without type clashes — the actual
ingredients of a partial DRSs can differ even within the scope of a single CCG category. A case in
point is the lexical category N/N can correspond to an adjective, a superlative, a cardinal expression,
or even common nouns and proper names (in compound expressions). In the latter two cases the
lexical entry introduces a new discourse referent, in the former cases it does not. To deal with these
differences we also took into account the part of speech assigned by the C&C parser to a token to
determine an appropriate partial DRS.

This system for semantic interpretation was implemented and when used in combination with
the C&C parser achieves a coverage of more than 99% on re-parsed Wall Street Journal texts, and
similar figures on newswire text. With coverage we mean here the percentage of sentences for which
a well-formed DRS could be produced (not necessarily a DRS that is semantically adequate). The
robustness of the overall framework for deep text processing is good enough to make it possible for
practical tasks with non-restricted domains, such as open-domain question answering (Bos et al.,
2007) and recognising textual entailment (Bos & Markert, 2005).

Summing up: formal semantics isn’t a paper-and-pencil game anymore, nor is it limited to im-
plementations of toy fragments of natural language. It has genuinely matured to a level useful for
applications in the real world.

References
Asher, N. (1993). Reference to Abstract Objects in Discourse. Kluwer Academic Publishers.

Blackburn, P. & Bos, J. (2005). Representation and Inference for Natural Language. A First Course in
Computational Semantics. CSLI.

Blackburn, P., Bos, J., Kohlhase, M., & de Nivelle, H. (2001). Inference and Computational Semantics. In
H. Bunt, R. Muskens, & E. Thijsse, editors, Computing Meaning Vol.2, pages 11–28. Kluwer.

Bos, J. (2004). Computational Semantics in Discourse: Underspecification, Resolution, and Inference. Jour-
nal of Logic, Language and Information, 13(2), 139–157.

Towards a large-scale formal semantic lexicon 13

Bos, J. & Markert, K. (2005). Recognising textual entailment with logical inference. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing, pages 628–635.

Bos, J., Guzzetti, E., & Curran, J. R. (2007). The Pronto QA System at TREC 2007: Harvesting Hyponyms,
Using Nominalisation Patterns, and Computing Answer Cardinality. In E. Voorhees & L. P. Buckland,
editors, Proceeding of the Sixteenth Text RETrieval Conference, TREC-2007, pages 726–732, Gaithersburg,
MD.

Clark, S. & Curran, J. (2004). Parsing the WSJ using CCG and Log-Linear Models. In Proceedings of the
42nd Annual Meeting of the Association for Computational Linguistics (ACL ’04), Barcelona, Spain.

de Groote, P. (2006). Towards a montagovian account of dynamics. In Proceedings of Semantics and Lin-
guistic Theory XVI (SALT 16).

Geurts, B. (1999). Presuppositions and Pronouns. Elsevier, London.

Hockenmaier, J. (2003). Data and Models for Statistical Parsing with Combinatory Categorial Grammar.
Ph.D. thesis, University of Edinburgh.

Johnson, M. & Klein, E. (1986). Discourse, anaphora and parsing. In 11th International Conference on
Computational Linguistics. Proceedings of Coling ’86, pages 669–675, University of Bonn.

Kadmon, N. (2001). Formal Pragmatics. Blackwell.

Kamp, H. (1981). A Theory of Truth and Semantic Representation. In J. Groenendijk, T. M. Janssen, &
M. Stokhof, editors, Formal Methods in the Study of Language, pages 277–322. Mathematical Centre,
Amsterdam, Amsterdam.

Kamp, H. & Reyle, U. (1993). From Discourse to Logic; An Introduction to Modeltheoretic Semantics of
Natural Language, Formal Logic and DRT. Kluwer, Dordrecht.

Karttunen, L. (1976). Discourse referents. In J. McCawley, editor, Syntax and Semantics 7: Notes from the
Linguistic Underground, pages 363–385. Academic Press, New York.

Kipper, K., Korhonen, A., Ryant, N., & Palmer, M. (2008). A large-scale classification of english verbs.
Language Resources and Evaluation, 42(1), 21–40.

Klein, E. (1987). VP Ellipsis in DR Theory. Studies in Discourse Representation Theory and the Theory of
Generalised Quantifiers.

Kuschert, S. (1999). Dynamic Meaning and Accommodation. Ph.D. thesis, Universität des Saarlandes.

Marcus, M. P., Santorini, B., & Marcinkiewicz, M. A. (1993). Building a large annotated corpus of english:
The penn treebank. Computational Linguistics, 19(2), 313–330.

Montague, R. (1973). The proper treatment of quantification in ordinary English. In J. Hintikka, J. Moravcsik,
& P. Suppes, editors, Approaches to Natural Language, pages 221–242. Reidel, Dordrecht.

Muskens, R. (1996). Combining Montague Semantics and Discourse Representation. Linguistics and Philos-
ophy, 19, 143–186.

Steedman, M. (2001). The Syntactic Process. The MIT Press.

van der Sandt, R. (1992). Presupposition Projection as Anaphora Resolution. Journal of Semantics, 9, 333–
377.

14 Johan Bos

van Eijck, J. & Kamp, H. (1997). Representing Discourse in Context. In J. van Benthem & A. ter Meulen,
editors, Handbook of Logic and Language, pages 179–240. Elsevier, MIT.

Zeevat, H. W. (1991). Aspects of Discourse Semantics and Unification Grammar. Ph.D. thesis, University of
Amsterdam.

