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Abstract

Very few natural language understanding applications employ methods from automated deduction. This is mainly because (i) a
high level of interdisciplinary knowledge is required, (ii) there is a huge gap between formal semantic theory and practical im-
plementation, and (iii) statistical rather than symbolic approaches dominate the current trends in natural language processing.
Moreover, abduction rather than deduction is generally viewed as a promising way to apply reasoning in natural language un-
derstanding. We describe three applications where we show how first-order theorem proving and finite model construction can
efficiently be employed in language understanding.

The first is a text understanding system building semantic representations of texts, developed in the late 1990s. Theorem provers
are here used to signal inconsistent interpretations and to check whether new contributions to the discourse are informative or not.
This application shows that it is feasible to use general-purpose theorem provers for first-order logic, and that it pays off to use a
battery of different inference engines as in practice they complement each other in terms of performance.

The second application is a spoken-dialogue interface to a mobile robot and an automated home. We use the first-order theorem
prover SPASS for checking inconsistencies and newness of information, but the inference tasks are complemented with the finite
model builder MACE used in parallel to the prover. The model builder is used to check for satisfiability of the input; in addition,
the produced finite and minimal models are used to determine the actions that the robot or automated house has to execute. When
the semantic representation of the dialogue as well as the number of objects in the context are kept fairly small, response times are
acceptable to human users.

The third demonstration of successful use of first-order inference engines comes from the task of recognising entailment between
two (short) texts. We run a robust parser producing semantic representations for both texts, and use the theorem prover VAMPIRE to
check whether one text entails the other. For many examples it is hard to compute the appropriate background knowledge in order
to produce a proof, and the model builders MACE and PARADOX are used to estimate the likelihood of an entailment.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Since the mid 1990s I’ve been using tools from automated deduction, mainly general-purpose theorem provers and
model builders for first-order logic, to solve problems in natural language understanding.1 I’ve done this both from
the perspective of computational linguistics (testing and improving a linguistic theory by means of a computational
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1 The concept natural language understanding is not easy to define. Roughly, I take it to mean the capability to arrive at consistent semantic

interpretations of texts and the ability to draw correct inferences from texts, such as recognising whether one text follows from another.
1570-8683/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.jal.2007.07.008

http://www.elsevier.com/locate/jal
mailto:bos@di.uniroma1.it
http://dx.doi.org/10.1016/j.jal.2007.07.008


J. Bos / Journal of Applied Logic 7 (2009) 100–112 101
implementation) as well as that of natural language processing (using inference in applications such as question
answering and recognising textual entailment). In this article I will present three applications where these tools were
successfully employed, with the aim of convincing researchers—both from the natural language processing and the
automated deduction communities—that automated inference engines for first-order logic can be efficiently applied
to natural language understanding.

For an outsider it might seem obvious that one needs some form of computerised reasoning to model natural
language understanding. However, it is quite surprising to see how few tools from automated reasoning have actually
made it in linguistic applications, and I believe there are some specific reasons for this.

First of all, a rather high level of cross-disciplinarity is required. Knowledge about linguistics (and in particular
formal semantics) is required, but also about natural language processing, logic, lexical resources, knowledge repre-
sentation, and automated reasoning. As a matter of fact, only few researchers feel comfortable in the intersection of
these areas, and collaborations between researchers of these fields are rare. If anything, comparing the current situation
with that of the late 1980s and early 1990s, it seems that less and less research is devoted to this topic.

Secondly, there is an enormous gap between formal semantic theory and practical implementation. There is a vast
amount of theory on the semantics of natural language from formal linguistics and philosophy. However, most of it
does not lead easily to computational implementation. Many of the linguistic phenomena that are accounted for in
formal theory are quite rare in naturally occurring data, so a natural language engineer won’t gain much performance
in his system when taking formal theory into account. But more crucially, from an automated reasoning point of view,
almost all semantic phenomena are formalised in higher-order logic (a trend set by no-one less than the celebrated
philosopher Richard Montague, who pioneered the logical approach to natural language semantics [18]). As higher-
order logic allows quantification over predicates, it is extremely challenging to write an efficient theorem prover for
it. In contrast, various—relatively efficient—theorem provers exist for first-order logic. But transforming higher-order
theories of natural language semantics into interesting first-order fragments or approximations is often far from trivial,
and attempts to combine theories that focus on specific linguistic phenomena usually give rise to logical compatibility
problems [30].

Thirdly, it is not trendy to use symbolic approaches such as theorem proving in natural language processing. In
contrast, stochastic approaches dominate the field nowadays, and after having been successfully applied to speech
recognition and syntactic processing, it probably won’t take long until statistics will dominate the field of semantic
processing and inference as well. However, I am often surprised by the shared view that using theorem proving in
natural language understanding is classified as the “traditional approach”. As I will show below in a discussion of
previous work, one can hardly talk of a tradition. Even though applying automated deduction was tried in the early
years of natural language processing, it never got to work well, for the following, obvious, reasons: first, theorem
proving hadn’t matured into a state as we know it today; and second, machines lacked the memory and speed to
perform the computations required by inference in reasonable time. As of now, it is probably fair to say that we are
only starting to understand the limitations and appreciate the added value of computerised reasoning in the semantic
interpretation of natural language.

1.1. Previous and related work

This article is mainly concerned with applying methods of automated deduction (more precisely, first-order theorem
proving and finite model generation) to natural language semantics. The idea of using deduction in natural language
understanding originated already in the early 1960s, especially in the context of automated question answering [2,21].
Research on theorem proving was given a big push by the development of Robinson’s resolution algorithm [32], and
AI researchers were attracted to the view of using a nice, clean, general representation language (i.e., first-order logic)
to model human language and commonsense knowledge. But because there was so little space to add heuristic rules in
the search for proofs, soon after, in the beginning of the 1970s, the focus of inference engines was shifted to procedural
deductive systems. Two influential examples of this branch of research are Winograd’s blocks world application using
the inference engine Planner [38], and Charniak’s work on modelling children’s story comprehension with Micro-
Planner [11]). It is perhaps interesting to note that Planner and Micro-Planner are often regarded as the precursors of
the logic programming language Prolog [12].

After these pioneering attempts, research evolved into two main streams: one following the initial ideas of Charniak
and Winograd of using incomplete Prolog-style reasoning (for instance, see [16]), the other giving up the idea of
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deduction as the principal form of inference but rather view abduction as the way forward. Prime examples of the
latter are [12,22,24] for story comprehension and discourse processing.

The work described here follows mostly that of the first tradition, namely using first-order logic as the representa-
tion language, and automated deduction methods as a way to implement reasoning. But unlike most previous work, we
will make use of general-purpose, complete inference engines for first-order logic, rather than incomplete reasoners
such as Planner and Prolog. We will also view finite model building as a way to complement theorem proving, by
using theorem proving and model building in parallel to solve inference problems.

1.2. Outline of this article

This article is devoted to three applications demonstrating successful use of classical first-order inference tools
in natural language understanding. The first of these applications is a text-understanding system that calculates pre-
suppositions of English sentences and performs consistency and informativeness checks on texts using a battery of
theorem provers. The second is a spoken dialogue system, interfaced to a mobile robot and an automated home en-
vironment, that uses theorem proving and model building for planning its linguistic and non-linguistic actions. The
third is a system for recognising textual entailment.

I will discuss the reasoning tools that were used, how they were used, what added value they provided, and what
their limitations were. The current article serves mainly as a survey of these issues. For technical details of these
applications I refer the reader to the papers mentioned throughout the text. I will also outline, at the end of this article,
a series of unresolved issues whose solutions would contribute to a better match of theorem proving techniques and
natural language understanding in general, and computational semantics in particular.

2. Presupposition projection

In the mid 1990s I started to implement tools for the semantic analysis of English texts, as part of my thesis work
at the University of the Saarland in Saarbrücken, Germany. One of the aims was to follow formal linguistic theory as
closely as possible and see how much of it could be implemented straight away. As a starting point I took Discourse
Representation Theory (DRT), initially developed by the philosopher Hans Kamp in the 1980s [26]. Initially, DRT
was developed to allow existential quantifiers to bind variables dynamically, solving some long-standing linguistic
puzzles to do with pronouns and quantifiers. Over the years, DRT developed into a well-documented theory covering
a wide range of linguistic phenomena in a unified framework, which was one of the main motivations for choosing
it as the basis for semantic formalism. DRT is viewed as a representational theory of semantics, using a box-like
representation called Discourse Representation Structure to represent the meaning of natural language expressions
[25]. In particular, I was interested in modelling the behaviour of presuppositions in texts, and aimed at implementing
an influential proposal by Rob van der Sandt, whose theory of presupposition was cast in DRT [35].2

My implementation efforts resulted in the DORIS system (Fig. 1). This system was able to parse English sentences
and compute a discourse representation structure (as formulated by DRT) of the input text. The linguistic phenomena
covered by the DORIS system included pronouns, quantifier and negation scope, and presuppositions [7]. It had a
reasonable grammar coverage: substantially more than a toy grammar, but certainly not reaching the level of today’s
wide coverage grammars.

Presupposition is a linguistic phenomenon, and can be explained as a proposition that is taken for granted by the
speaker. A commonly used test to check whether p presupposes q if both p and ¬p entail q . Presuppositions are
known to be “triggered” by certain words or phrases. For instance, the noun phrase “Mia’s husband” presupposes that
Mia is married, and that Mia is a woman, because the sentence “Jody likes Mia’s husband” and its negated form “Jody
doesn’t like Mia’s husband” both entail that Mia is married and is a woman.

An interesting aspect of presuppositions is that they are sometimes neutralised by the linguistic context, and that
it is quite hard to pin down exactly when they are and when they are not, especially in sentences that contain some
form of implication, negation, or disjunction. Consider, for instance, the following three sentences (with the relevant
presupposition trigger typeset in bold face):

2 There are many different approaches to explaining presupposition, ranging from default logics and partial logics to pragmatic theories. In the
scope of this article I restrict myself to Van der Sandt’s work, and have no intention to compare it with other theories of presupposition.



J. Bos / Journal of Applied Logic 7 (2009) 100–112 103
Fig. 1. Screenshot of the DORIS system. In the upper window users can type or select an English sentence. The lower window provides several
parameters, for instance the selection of various theorem provers.

(1) If Mia is dating Vincent, then her husband is out of town.
(2) If Mia has a husband, then her husband is out of town.
(3) If Mia is married, then her husband is out of town.

Here (1) presupposes that Mia is married, but (2) and (3) do not. This is strange, as all sentence exhibit the same
syntactic structure. Van der Sandt’s theory explains this by constructing various possibilities of positioning the pre-
supposition, and then checking whether they are acceptable by posing a set of acceptability constraints upon them.
These constraints ensure that the text has a consistent and informative interpretation. Furthermore, they are applied
both to the global and local levels of discourse. Let me illustrate Van der Sandt’s theory by looking at an example.

For (3), there are two positions where the presupposition can “land”. The first possibility corresponds to the inter-
pretation where the proposition that Mia has a husband is presupposed, since the presupposition is projected on the
global level of discourse. This is a wrong interpretation, for sentence (3) does not presuppose that Mia has a husband.
The second possibility describes the situation where the presupposition is neutralised, since it is accommodated on a
local level of discourse. This corresponds to the correct interpretation. Hence, the acceptability constraints should rule
out the first possibility, and support the latter.

Below, the discourse representation structures generated for these two possibilities are shown, including para-
phrases in English of the meaning they express, with the presupposition trigger phrase set in bold face, and the
triggered presupposition underlined.

(3-a)

“Mia has a husband. If Mia is married, then her husband is out of town”.
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(3-b)

“If Mia is married and has a husband, then her husband is out of town”.

After generating these possible interpretations, the acceptability constraints are applied to them. The first solution,
shown in (3-a) above, violates a constraint: the antecedent of the conditional is not locally informative with respect to
its global context: if Mia has a husband, then the fact that she is married is not perceived as new information, given the
background knowledge that if someone has a husband, she is married. The second solution, pictured in (3-b), satisfies
all acceptability constraints: it is consistent and informative, both on the global and local levels. As a consequence,
interpretation (3-a) is rejected, and (3-b) is accepted as possible interpretation. Note that, for example (1), global
accommodation of the presupposition would not lead to a violation of the informativeness constraint.

Despite the adequacy of the predictions of the theory, there was still a practical problem when trying to implement
it in DORIS: the acceptability constraints require logical inference. Even though DRT was an established semantic
theory backed up with a model-theory, there were no (efficient) theorem provers available that could reason with the
discourse representation structures employed by DRT.3 Discussions with Patrick Blackburn and Michael Kohlhase
(both in Saarbrücken, at the time) developed the idea of using first-order theorem provers to implement Van der
Sandt’s acceptability constraints, with the help of a translation function from the DRT language to ordinary first-order
formula syntax [4]. This translation function, (.)d2f , is recursively defined as follows:

⎛
⎜⎜⎜⎝

x1, . . . ,xn

γ1
...

γm

⎞
⎟⎟⎟⎠

d2f

= ∃x1 · · · ∃xn((γ1)
d2f ∧ · · · ∧ (γm)d2f )

(R(x1, . . . ,xn))
d2f = R(x1, . . . ,xn)

(τ1 = τ2)
d2f = τ1 = τ2

(¬B)d2f = ¬(B)d2f

(B1 ∨ B2)
d2f = (B1)

d2f ∨ (B2)
d2f

⎛
⎜⎜⎜⎝

x1, . . . , xn

γ1
...

γm

⇒ B

⎞
⎟⎟⎟⎠

d2f

= ∀x1 · · · ∀xn

((
(γ1)

d2f ∧ · · · ∧ (γm)d2f
) → (B)d2f

)

With this translation at our disposal, all we needed was a theorem prover for first-order logic. The theorem prover
BLIKSEM, developed by Hans de Nivelle, was among the first that was put to the test [17]. And the first results looked
promising: BLIKSEM could handle most of the presupposition problems given to it, in reasonable time.

However, as some natural language examples could cause hundreds of consistency checking tasks (due to a com-
binatorial explosion of linguistic ambiguities), it took a long time before BLIKSEM had dealt with them all. This
problem was solved with the help of the MATHWEB middleware, a collection of web-based inference services [20].

3 It is unlikely that specialized inference engines would help at all for the core fragment of DRT, which is equivalent to first-order logic. However,
one could think of specialized provers that go beyond the first-order DRT fragment.
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What MATHWEB did was farming out a set of inference problems to different computers using a common software
bus. Using the Internet and many machines around the world (I recall that there were machines running in Edinburgh,
Budapest, Saarbrücken, and Sydney, among other sites), MathWeb could basically be viewed as a parallel supercom-
puter.4

To cut a long story short, DORIS was interfaced directly to MATHWEB, and many different theorem provers for
first-order logic were added: SPASS [37], FDPLL [1], OTTER [29], and VAMPIRE [31]. This experiment showed that
there was a diversity in the way inference engines dealt with the inference problems generated by DORIS: some
provers were better at satisfiable problems, others were faster at small problems, some problems were problematic for
all provers, and so on, backing up the idea that it is a good idea to use a collection of various theorem provers with
different strategies in a parallel environment.

In sum, the DORIS system was a first practical demonstration that first-order inference can play an interesting role in
natural language processing, albeit with limitations [4]. As a side-effect, it generated a new application area for auto-
mated deduction. As a matter of fact, many of the problems generated by DORIS were donated to the TPTP collection
[34]. The use of off-the-shelf first-order reasoning tools also shed a whole new light on research in computational
semantics—one could not just build a semantic representation for a given natural language expression (which was
what the state-of-the-art reflected), but also reason with the result [3].

Incidentally, DORIS also helped to precisely formulate the acceptability constraints of Van der Sandt’s theory of
presupposition projection [5]. The global constraints on consistency and informativeness were, using the translation
function, relatively straightforward to formulate (see also [3]). The local constraints, however, were originally rather
informally presented in Van der Sandt’s paper [35], which did not lead straightforwardly to computational implemen-
tation. Several theoretical attempts to precisely formulate them shipwrecked on this rock. Using DORIS and MATHWEB

as a testbed, a new definition of the local constraints was successfully developed and evaluated [5].
Despite these promising results, there were several obvious limitations in using first-order theorem proving for

understanding natural language texts. Scalability was one of them. A state-of-the-art theorem prover would do well
on a couple of sentences, but—not surprisingly given the computational properties of first-order logic—would just
“choke” on larger texts. Linguistic coverage was another limitation. Some linguistic phenomena require richer se-
mantic representations and therefore harder problems. For instance, tense and aspect require a richer sortal hierarchy,
cardinal expression require counting, and plural noun phrases require elements of set theory. Formulating first-order
approximations of the meaning of these linguistic phenomena results in significantly harder problems for theorem
provers.

The last version of DORIS was released in 2001 [7]. Although I still view it as an important step in the development
of computational semantics in general, and the implementation of Discourse Representation Theory in particular, the
limited grammatical coverage of DORIS and its unfocused application domain left it without a future. At the time I
thought that it would take at least twenty years to develop a parser that achieved both wide-coverage and syntactic
representations of enough detail to construct meaningful semantic representations (I was, fortunately, very wrong!
See Section 4). In order to reach a new level of sophistication in computational semantics, I instead focused on
small domains, in which the grammatical coverage and necessary background knowledge could be specified a-priory.
Human-computer dialogue systems turned out to be the killer application for pursuing this strategy.

3. Spoken dialogue systems

At the University of Edinburgh I was involved in developing a spoken dialogue system which was interfaced to
a (real) robot. The robot in question was a RWI Magellan Pro robot, with sonars, infrared sensors, bumpers, and a
video camera (Fig. 2). It was equipped with an on-board computer connected to the local network via a wireless LAN
interface. The robot moved about at the basement of Buccleuch Place, and people could direct it, ask it questions, or
provide it with new information, all via speech. A typical conversation could be:

Human: Robot?
Robot: Yes?

4 This sounds perhaps quite ordinary today, but at the time it was a sensation.
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Fig. 2. The talking robot, using a first-order theorem prover and finite model builder to plan its utterances, engaged in conversation with roboticist
Tetsushi Oka (Buccleuch Place, Edinburgh, 2001).

Human: Where are you?
Robot: I am in the hallway.
Human: OK. Go to the rest room!

Such kinds of dialogues were relatively straightforward to model with the then state-of-the-art in human-machine
dialogue. Yet, the robot was still “semantically challenged”: it had no means to draw inferences. What I aimed to do
was use components of the DORIS system to give the robot means to perform consistency checking, answer questions,
and calculate its next actions. In particular, I was interested in letting the robot react to inconsistent information or
obvious information, resulting in dialogues such as:

Human: Where are you?
Robot: I am in the hallway.
Human: You are in my office.
Robot: No, that’s not true!
Human: You are in the hallway.
Robot: Yes, I know.

I knew this was feasible because of the DORIS experience: Theorem provers can rather easily handle the amount
of information necessary for this type of dialogue. Moreover, the required background knowledge, given the limited
domain and environment, was relatively easy to compute and maintain. Indeed, we succeeded in building a robot that
checked whether each assertion of the user was consistent and informative with its current state and knowledge of the
dialogue. We only used one theorem prover, and took the first interpretation of the user’s utterance that was consistent
and informative as the correct one. This turned out to work well in practice. Our choice for theorem prover was SPASS

[37], one of the strongest theorem provers at the time that was freely available for research purposes.
After having accomplished this, we were interested in using first-order theorem proving for planning the actions

of a command given by a human to the robot. This was done primarily from a semantic point of view. We considered
commands that involved negation, disjunction, or quantification, because they pose interesting challenges on a correct
interpretation. Examples of utterances that illustrate this are:

(4) Turn on a light.
(5) Clean every room.
(6) Switch on every light in the hallway.



J. Bos / Journal of Applied Logic 7 (2009) 100–112 107
(7) Turn off every light except the light in the office.
(8) Go to the kitchen or the rest room.

On hearing (4), the robot had to turn on a light that was currently switched off, and it had to complain when all the
lights were already on. On (5), it had to clean all rooms that were currently dirty (some of the rooms could be clean
already). On (6), it should only consider lights in the hallway, in other words, it needs to deal correctly with restrictive
quantification. On (7), it should consider all lights minus those in the office, taking the implicit negation expressed by
the preposition “except” into account. On (8), it should either go to the kitchen or the rest room.

To illustrate the problem, consider the discourse representation structure constructed for example (5):

(9)

Because discourse representation structures are recursively defined, they are hard to use directly to determine the
primitive actions for the robot. In (9), the number of actions requested to the robot depends on the number of rooms in
the domain.5 With a theorem prover this is hard to find out. The only thing a theorem prover could tell us was whether
a statement was inconsistent or uninformative. Even although some of the theorem provers could deal with satisfiable
problems reasonably well, their output was hard to translate into something that could form the basis of a low-level
action describing the robot’s movements.

Instead, this seemed a natural task for a finite model builder though. Via the DORIS system I already came into
contact with Karsten Konrad’s model builder KIMBA [27], but I had never used model builders other than for checking
satisfiability. We started using Bill McCune’s MACE because it searched models by iteration over domain size, and
generally generating models that were both domain-minimal and minimal in the extensions of the predicates [28]. An
example output of Mace when given a modal first-order translation of (9) is shown below.6

D = {d1,d2,d3,d4,d5,d6,d7,d8}
F(possible_world) = {d1,d2,d3}
F(robot) = {(d1,d4),(d2,d4),(d3,d4)}
F(room) = {(d1,d5),(d2,d5),(d3,d5),

(d1,d6),(d2,d6),(d3,d6),
(d1,d7),(d2,d7),(d3,d7)}

F(action) = {(d1,d2,d3)}
F(clean_object) = {(d2,d5),(d2,d6),(d2,d7)}
F(is_dirty) = {(d1,d5),(d1,d6),(d1,d7)}
F(is_clean) = {(d3,d5),(d3,d6),(d3,d7)}

Here the domain contains three rooms. Information about the domain is expressed in the background knowledge
given in addition to the theorem prover and model builder. Because MACE produces minimal models, no redundant

5 Here the DRS-language is extended by two operators. The δ operator takes a DRS as argument denoting an action term. The ! operator takes
an action term as argument forming a DRS-condition denoting an action that has to be executed.

6 This translation function translates formulas with respect to variables ranging over possible worlds. For instance, given the current world w, a
modal formula �(p(x) ∧ q(x)) is translated as ∀v(R(w,v) → (p(v, x) ∧ q(v, x)), where R is an accessibility relation over worlds. Each n-ary
relation is translated into a relation of n + 1 arguments, the extra argument playing the role of current possible world (or “state”, if you prefer).
Action terms are translated into three-place relations, where the first argument is the current world, the second argument the world during execution
of the action, and the third argument the resulting world.
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information is produced in the model. As a pleasant side-effect, the actions that the robot has to perform can be
accessed directly from the model [10]. To illustrate this, consider the example model above: the action the robot has
to perform is denoted by d2 in the current world d1, which involves cleaning three objects, d5, d6 and d7, the three
rooms, resulting in the possible world d3, where all rooms are clean. Because it is a minimal model, no irrelevant
actions or objects are part of it.

The theorem prover SPASS was still used to check for inconsistencies and uninformative utterances. Hence, given
the discourse representation structure of an utterance, it was translated into first-order logic, and given to the model
builder MACE. At the same time, the negation of the input was given to SPASS. When SPASS found a proof, the model
builder was halted, and when MACE found a model, the theorem prover was stopped. This parallel architecture was
able to give meaningful responses in real-time. The robot in action was regularly demonstrated to visitors at Buccleuch
Place as well as to the general public at the National Museum of Scotland in Edinburgh.

Of course, there were limitations in using first-order tools. As with the DORIS system, the size of the inference
problem was limited and corresponded to roughly two natural language utterances while still keeping response-times
of the robot acceptable to human participants. The problems were also slightly harder than those generated by DORIS,
as we were using a first-order language with possible worlds to model the semantics of actions [10]. Also, the number
of different objects in the domain was limited (given the background axioms of the robot, MACE produced models
in reasonable time for models up to domain size 20). Nevertheless, the overall system was impressive, and showed
what one could do with general-purpose, off-the-shelf, first-order inference tools in a practical system. In particular,
it demonstrated the idea of using a theorem prover and model builder in parallel, and taking decisions on the basis of
the content of the produced model.

4. Recognising textual entailment

The rapid developments in statistical parsing in the 1990s were initially only followed from a distance by re-
searchers in computational semantics. Although some of the parsers developed were impressive with respect to
coverage, the level of detail in the syntactic derivations that were produced by these parsers were unsuitable as a
basis for constructing semantic representations in a systematic, principled way. Moreover, it would require a large
number (probably several thousands) of carefully handcrafted rules specifying the compositional semantics of natural
language expressions.

It is not an exaggeration to say that the release of statistical wide-coverage parser for CCG (Combinatorial Cate-
gorial Grammar) in 2004 gave rise to a little breakthrough in computational semantics. This CCG parser, developed
by Stephen Clark and James Curran [14], and trained on a tree-bank (a collection of annotated syntactic analyses)
created by Julia Hockenmaier and Mark Steedman [23], had the best of both worlds: it achieved wide coverage on
texts, and produced detailed syntactic derivations. Because of the correspondence between syntax and semantic rules
in CCG, this framework was the ideal setting for producing semantic representations of the kind employed in the
DORIS system.

Because CCG is a heavily “lexicalised” theory, it has a large number of lexical categories (dictionary entries that
map words to categories), and only a handful of grammar rules. In order to translate the output of the parser (a CCG
derivation) into a DRT representation (which was my main aim, in order to reuse the existing tools that I developed
for DRT and automated inference), I coded a lambda-expression for each of the ca. 400 syntactic categories that
were known to the parser. Using the lambda-calculus to produce DRT representations, we succeeded in building a
system that translated newspaper texts into semantic representations, with a coverage of around 95% [6,8]. This was
an excellent starting point to exploit computerised reasoning for natural language on a wider scale.

Producing semantic representations is one thing, but evaluating the quality, or in other words, the semantic ade-
quacy, is something else. It is hard to say what constitutes a good semantic representation, for instance with respect
to the level of abstraction. There is also no corpus with annotated gold-standard semantic representations available,
so no simple evaluation schemes exist. Meanwhile, in the same year, 2005, the first challenge to recognising textual
entailment (RTE) was organised [15]. This is a shared task for implemented systems to detect whether one (small) text
entails another (small) text. The RTE campaign seemed to be just right to test wide-coverage computational semantic
formalisms.
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To give an impression of the task given in the RTE challenge, consider an example of a positive and an example
of a negative entailment pair. Here T stands for the text, and H for the hypothesis, using the terminology of the RTE
campaign:

Example: 115 (TRUE)
T: The World Bank has also been criticized for its role in financing projects that have been detrimental to human

rights and the natural environment.
H: The World Bank is criticized for its activities.

Example: 117 (FALSE)
T: The release of its report led to calls for a complete ivory trade ban, and at the seventh conference in 1989, the

African Elephant was moved to appendix one of the treaty.
H: The ban on ivory trade has been effective in protecting the elephant from extinction.

In the RTE challenge a participating system is given a set of entailment pairs and has to decide, for each T–H pair,
whether T entails H or not. The baseline (randomly guessing) already gives a score of 50%, as half of the dataset
correspond to true entailments, and the other half to false ones. The best systems on the RTE-1 campaign achieved a
score approaching 60%. Arguably, the RTE shared task measures the semantic adequacy of a system: in order for a
system to perform well, a system needs to have the ability to make inferences.

With the CCG parser at our disposal, and the ability to produce semantic representations achieving wide coverage
of English texts, we decided to implement a system that used logical inference to approach the RTE challenge. The
overall idea, given the available tools, was straightforward: produce a DRT representation for T and H, translate
these to first-order logic, and then use an off-the-shelf prover to check whether T ′ → H ′ (where T ′ and H ′ are the
translations of T and H, respectively). We installed VAMPIRE [31] for this task, motivated by its good performance at
the recent CASCs [33]. As an example, consider the discourse representation structures in (10) and (11) for the T and
H of example 115 above:

(10)

x9 x1 x7 x8 x2 x3 x4 x6 x5
named(x9,world_bank,org)
criticize(x1) patient(x1,x9)

project(x3) nn(x8,x3) financing(x8)
neuter(x7) of(x2,x7) role(x2)
detrimental(x4,x3) to(x4,x5)

human(x6) rights(x6) to(x4,x6)
natural(x5) environment(x5)
in(x2,x3) for(x1,x2) also(x1)

(11)

x4 x1 x3 x2
named(x4,world_bank,org)

criticize(x1) patient(x1,x4) for(x1,x2)
neuter(x3) of(x2,x3) activity(x2)

At first, the performance of our RTE system was limited. The system performed quite well on cases such as 115 above,
where most of the information needed to make the inference can be derived directly from the information in the texts.
However, many of the examples in the RTE data-set require a substantial amount of background knowledge to draw
the correct inference. We used WordNet [19] to compute some of these background axioms automatically. WordNet
is an electronic dictionary, where content words are connected to each other by linguistic relations. One relation
that was useful for our purposes was hyponymy, more or less resembling the ISA relation known from knowledge
representation approaches in AI. For instance, for the RTE example 115 given earlier, WordNet would tell us that a
role is a kind of activity.

Yet still there were knowledge gaps, and often a little omission of background knowledge would lead to the theorem
prover not finding a proof. Ideally, one would like to have an inference engine that would also be able to say that it
“almost found a proof” and quantify the amount of missing information, instead of just saying “no proof”. To address
this problem, and a way to generate a probability of an entailment between T and H, we used finite model builders.
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Fig. 3. Example output screen for recognising textual entailment using the theorem prover VAMPIRE and the model builders MACE and PARADOX.

Model builders, such as MACE [28] produce finite models for satisfiable input (given a certain domain size). Such
finite models are the ideal mathematical objects to approximate the “almost found a proof” scenario.

By generating minimal models for T ′ and for T ′ ∧ H ′, we argued that comparing the number of entities of the two
models would give us a useful handle on estimating entailment.7 If the difference is relatively small, it is likely that
T entails H—after all, if the difference in sizes is zero, H hasn’t introduced any new information. If the difference
is relatively large, it is unlikely that T entails H. What counts as relatively small and large has to be determined
empirically.

Although this is, obviously, not a sound form of reasoning, in practice it turned out to work well for predicting
entailments. We exploited standard machine learning techniques to estimate the thresholds of the model sizes, and
used both the size of the domain as well as the number of instantiated relations in the model. We noticed that MACE

was quite slow for longer textual entailment examples. We tried PARADOX [13], which is known to be faster, but it does
not always return minimal models (with respect to the predicate extensions). To overcome this, we used PARADOX to
calculate the domain size, and then called MACE to generate the model given that domain size.

The resulting system scored significantly better than the baseline and ranked among the best performing systems
at the RTE-1 challenge [9]. Fig. 3 shows a screenshot of the system.

5. Future directions

It seems that in applying first-order reasoning tools to natural language understanding, we have only scratched the
surface of what seems to be an interesting and fruitful application area. A basic proof-of-concept is given, but there
is ample space for improvement in performance. Several avenues can be explored that would make the integration
of theorem provers and model builders in computational semantics even more successful. I will present them in this
section.

The theorem provers and model builders, in the way we used them straight out-of-the-box, were not designed with
the application of natural language interpretation in mind. One aspect of natural language understanding is that the
linguistic context is continually being updated. In the way we used the inference tools, for each new contribution to the

7 To deal with negation, one also has to calculate the models for ¬T ′ and ¬(T ′ ∧ H ′) and compare their model sizes. To deal with disjunction,
one has to do this for all minimal models for T and H. This hasn’t been implemented in the system described here, but this omission has little
consequence for the RTE as examples with negation are relative rare, and ones with disjunction even rarer.
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dialogue or text, new inference problems for the theorem prover and model builder were computed from scratch. No
knowledge of previous inferences was used, and as each new inference problem contains more contextual knowledge,
the performance time increases for each new utterance. In practical applications, this forces one to limit the amount of
linguistic context taken into consideration. For instance, in the talking robot application, only the last two utterances
in the ongoing dialogue are considered, and previous contributions of the dialogue participants are removed from the
dialogue history. This is, obviously, not an optimal solution.

One way to overcome this situation is to make theorem provers and model builders incremental. Rather than starting
from scratch each time, an inference engine might be used in a client-server situation, where the application client
provides new information to the inference engine server, which integrates it with its current state, and gives a signal
when a proof is found (in the case of a theorem prover), or extends the model (in the case of the model builder). I
believe that especially model builders would benefit from such an architecture. It is perhaps also thinkable that model
builders extend an existing pre-calculated model, perhaps a model representing a fixed context (going back to the
talking robot application, this could consist of the static objects in the environment). Furthermore, in a dialogue or
text, not all of the previous linguistic information is relevant. If some of the past conversation topics are dealt with by
the dialogue participants, they do not need to be part of future inference problems generated for the inference engines.
One way to decide what information is relevant or not is to take the discourse structure into account [36].

Finally, finite model builders such as MACE and PARADOX construct models by iteration over domain size. When
the domain size is known, or when the lower or upper bound of the domain is known, this information can be useful
for speeding up a model builder. Various ways of dealing with this problem can be thought of. One is a brute-force
method of farming out a model generation task over a large set of model builders in a distributed environment, each
trying to build a model for the input for a different domain size. Another idea is to estimate the domain size using
standard machine learning techniques. A further consideration is to use a sorted first-order language, since typically,
a large part of what the background knowledge does is specifying a simple hierarchy of concepts. Model builders that
are tailored to sorted languages would be able to cut down the search space drastically and hence be more efficient.8

6. Conclusion

First-order inference tools, such as automated theorem provers and model builders, can be successfully used in
natural language understanding applications. Obviously, there are limitations, but in many interesting tasks these
limitations play a subordinate role. Whether computerised (logical) reasoning will ever become part of mainstream
research in natural language processing is questionable, though. We will have to see to what extent statistical ap-
proaches (currently dominating computational linguistics) can be applied to natural language interpretation tasks.
Meanwhile, collaboration between researchers working in automated deduction and computational linguistics should
be stimulated to get a better understanding of the boundaries of applying automated reasoning to natural language
understanding and push its potential forward.
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