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Abstract

The Turin University Treebank (TUT) is a treebank with dependen-
cy-based annotations of 2,400 Italian sentences. By converting TUT
to binary constituency trees, it is possible to produce a treebank of
derivations of Combinatory Categorial Grammar (CCG), with an al-
gorithm that traverses a tree in a top-down manner, employing a stack
to record argument structure, using Part of Speech tags to determine
the lexical categories. This method reaches a coverage of 77%, resulting
in a CCGbank for Italian comprising 1,837 sentences, with an average
length of 22,9 tokens. The CCGbank for English has proven to be a
useful tool for developing efficient wide-coverage parsers for semantic
interpretation, and the Italian CCGbank is expected to be an equally
useful linguistic resource for training statistical parsers.

1 Introduction

Treebanks have played an important role in the development of robust
parsers exploring statistical methods to achieve wide coverage. The key
example in this tradition is the Penn Treebank [10], a large collection of
English sentences taken from the Wall Street Journal annotated with syn-
tactic structures. The aim of this article is to present the first version of an
Italian treebank based on categorial grammar, translated from an existing
manually crafted dependency-based treebank [4]. We focus on the various
translation steps required to achieve a high-quality treebank.

Our treebank is based on CCG, combinatory categorial grammar [12],
a lexicalised grammar formalism encoding all non-local dependencies in its
lexical categories. A further motivation for using CCG is its transparency
between syntactic categories and semantic types, providing an ideal plat-
form for automatically building formal semantic representations [2]. Other
treebanks based on categorial grammar have been developed in the past, of
which the English CCGbank [7] derived from the Penn Treebank [10] is the
prime example. The English CCGbank has proven to be a useful resource
for training robust parsers [6], and we follow its design as closely as possible.



For automatically deriving Italian categorial grammar, previous work
on has been carried out by [1], who provide a method for translating TUT
dependency structure to derivations of type-logical grammar, but only for a
relatively small set of examples with low structural complexity, producing
a lexicon of 1,909 words based on 400 derivations with an average of two
categories per words. Even though our work is similar in spirit, we also deal
with more complex cases extending the coverage considerably.

2 Background

2.1 The Turin University Treebank (TUT)

The starting point of our conversion in CCG is TUT, the Turin University
Treebank!. This Italian treebank currently includes 2,400 sentences corre-
sponding to around 72,150 tokens. This annotated corpus consists of three
parts: 1,100 sentences from newspaper texts (mainly from La Stampa and
La Repubblica), 1,100 sentences from the Italian Civil Law Code, and 200
sentences from the Italian section of the JRC-Acquis corpus.?

The development of TUT has its roots in a dependency-based annotation
following the major principles of Word Grammar [8]. Central to this is a no-
tion of argument structure described by a rich set of grammatical relations
that can include three components: morpho-syntactic, functional-syntactic,
and semantic information [3]. The TUT annotation process includes auto-
matic POS tagging and parsing [9], completed with a set of automatic and
manual correctness and consistency checks.

To promote applications of TUT, several efforts have been directed to
automatically converting the treebank into other formats. Among these are
bracketed labelling known from the Penn Treebank [10], as well as the Xbar-
like format called Constituency TUT (henceforth ConsTUT), which forms
an important step in converting TUT to CCG. These mappings to other for-
mats have not only increased the comparability with other existing linguistic
resources, but also improved the quality of the annotated material. Even
though the size of TUT is relatively small compared to the Penn Treebank,
the EVALITA 2009 shared task on parsing showed that dependency parsers
trained on TUT are close to the state-of-the-art [5].

2.2 Combinatory Categorial Grammar (CCG)

CCG is a lexicalised theory of grammar in which all syntactic dependencies
are encoded in the lexical categories [12]. The version of CCG that we adopt
is based on the English CCGbank [7], comprising a set of CCG derivations
derived from the Wall Street Journal texts from the Penn Treebank [10].

!See http://www.di.unito.it/~tutreeb/, [4].
2See http://langtech. jrc.it/JRC-Acquis.html.



The basic categories are s (sentence), n (noun), pp (prepositional phrase),
np (noun phrase) and t (text). Functor categories are composed out of the
basic categories with the help of slashes indicating order and position of
arguments: a functor category o\[ yields a category « when it finds an
argument of category [ on its left, and a functor category a/f yields a
category a when it finds an argument of category g on its right. We follow
the convention introduced in CCGbank and associate the category s with a
feature indicating sentence mood or aspect of verb phrases (Fig. 1).

tutta balcanica
------ [lex] ----[lex]
aria (n\n)/(n\n) n\n
--[lex] -------——-----—- [fa]l
questa  vicenda un’ n n\n
--[lex] --[lex] --[1lex] [ba]
In np/n n tira np/n n
[lex] [fa] ---[lex] [fal
(s:dcl/s:dcl)/np np s:dcl/np np
[fa] [fa]
s:dcl/s:dcl s:dcl .
[fa] --[lex]
s:dcl t\s:dcl
[bal
t

Figure 1: CCG derivation for In questa vicenda tira un’ aria tutta balcanica.

To combine categories deriving new categories, CCG is equipped with a
small set of combinatory rules and a couple of non-combinatory rules. The
combinatory rules combine two categories and produce a new one. They
comprise forward application (>), backward application (<), forward and
backward composition (>B and <B), forward and backward substitution
(>S and <8S), their crossing variants, and generalised versions of the com-
position rules. All of these rules have a direct semantic interpretation, and
give expressive power that go beyond context free grammars [12].

The non-combinatory rules consist of the type-raising and type-changing
rules. They are unary rules, mapping a single category into a new one.
The type-raising rules (>T and <T) change an argument in a functor in
a systematic way. The type-changing rules are used for covering elliptical
expressions, such as pro-drop, adjective-like participles, and determinerless
noun phrases.

3 Method

We take as input a set of sentences in the TUT dependency format. These
are first mapped onto constituency trees, then transformed into binary trees,
and finally converted into CCG derivations.



3.1 From Dependency Structures to Constituency Trees

ConsTUT is a constituency-based annotation with constituents decorated by
TUT relations. In ConsTUT trees each terminal category X corresponds to a
node (i.e. token) of a TUT tree, and projects into non-terminal nodes which
represent intermediate (Xbar) and maximal (XP) projections of X, following
Xbar theory [11]. Each node is classified as either head (h), argument (a), or
modifier (m). To illustrate this projection of categories, consider for instance
the adverb tutta in Fig. 2. This adverb projects on ADVbar and then on
ADVP, as the ConsTUT tree in Fig. 3 shows.

PREP-RMOD- LOC+METAPH
VERE\\‘
SUBJ

In
PREP- ARg\ \ET+INDEF ARG
questa aria
DET+DEF-ARG ADJC+QUALIF-RMOD
vicenda balcanica
/—\DVB+QUANTIF—RMOD
tutta

Figure 2: TUT A-6, In questa vicenda tira un’ aria tutta balcanica.

Further following Xbar theory, the distinction between arguments and
modifiers is structurally marked. Arguments, usually closer to their head,
are daughters of intermediate projections and sisters of terminal categories.
Modifiers, on the other hand, are both sisters and daughters of interme-
diate projections. Schematically, this can be viewed as: [XP (Xbar (Xbar
(X)(ARG)) (MOD))].

The conversion algorithm from TUT to ConsTUT is adapted from [13],
who employed it for the conversion of dependency structures in Penn Tree-
bank style phrase structures, i.e., constituents featuring a minimal projection
strategy. The input of our algorithm are ordered dependency trees, that is
projective structures where dependents of the same head are ordered accord-
ing to their positions in the sentence. Explicit marking of null elements can
occur to resolve cases of non-projectivity too. The output of the algorithm
are constituency trees applying a maximal projection strategy.

The main information that is present in a constituency tree, but not in
a dependency tree, is the type of non-terminal nodes (e.g. NP, VP and S).
Therefore, the major goal of the algorithm is to recover the types of phrases
that each node of the dependency tree projects. In other words, the task here
is to find the expansions in constituency terms of the grammatical category
of terminal nodes, which have to be annotated as non-terminal nodes in the
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Figure 3: ConsTUT tree for In questa vicenda tira un’ aria tutta balcanica.

constituency trees. The trees also contain Part of Speech (POS) tags on
terminal nodes, using a simplified tagset of that used in TUT [3].
Grammatical categories can interact in dependency trees. To build a
corresponding constituency tree, one needs to know how one can represent
this interaction in constituency terms, that is, how grammatical categories
and their projections combine in constituency structure. This is governed
by language specific constraints, depending on the types of modifiers and
arguments that a head can take and their positions related to the head itself.
All this information is encoded in a look-up table that the converter exploits.

3.2 From Constituency Trees to Binary Trees

The lexical categorisation algorithm, which is last in the pipeline, requires
binary trees (trees with at most two branches) as input. The syntactic
analyses of ConsTUT are represented by n-ary trees, but not necessarily
binary trees (see Fig. 3). Given the distinction between head, modifier and
argument, there are four possible kinds of trees (Fig. 4).

To map a tree with n (n > 2) branches into a tree with n — 1 branches,
we select a HEAD-X or X-HEAD sequence from the ordered list of branches
(where X is ARG or MOD), and replace it by a new branch marked by HEAD
forming a binary tree of the two selected branches. This process is iterated



Figure 4: Possible binary sub-trees.

for each node until it is completely binary. The procedure is illustrated for
a ternary tree mapped to a binary tree in Figure 5.

/1IN N\

/1A => /N N\
H/ X\ H/  \X \
/1 N\ / AN

Figure 5: Producing binary trees.

This is a general rule — there are specific rules that cover awkward
cases such as punctuation. At this stage we also deal with Italian “definite
prepositions” such as sulla, which are contractions of a preposition and a
definite article. In ConsTUT these appear as two different nodes (PREP and
ART-DE) in the tree, related to each other by co-indexing. These two nodes
are mapped onto a newly marked node (DEFPREP) in order to distinguish
it from ordinary prepositions in the categorisation process.

3.3 From Binary Trees to Categorial Grammar Derivations

The categorisation algorithm takes a binary constituency tree as input and
produces a CCG derivation. The core of the algorithm is based on “pure”
categorial grammar, using only forward application (>) and backward ap-
plication (<) of the set of combinatory rules. In a nutshell, the algorithm
proceeds as follows: it traverses the binary input tree in a top-down fashion,
starting with the root node. The final values for the categories for the nodes,
however, are generated via a bottom-up strategy, determined by the POS
tags. The algorithm makes use of a stack on which it pushes the categories
of arguments encountered in the binary tree. The elements of the stack
determine the lexical categories of heads.

There are four general rules that deal with the standard cases in Fig. 4,
which can be overridden by more specific rules to cover special linguistic
constructions, such as punctuation or coordination. First consider the two
modifier cases, where the algorithm produces a CCG derivation for the head
first. Suppose this yields category X, then we make the category for the
modifier X\X in the HEAD-MOD case, introducing the backward application
rule (<). The MOD-HEAD case forms a mirror image of this mapping, yielding



the category X/X for the modifier by virtue of the forward application rule
(>). Note that, in both cases, nothing is altered to the value of the stack
(S); it is just passed on when translating HEAD (Fig. 6).

/'\ ccg(T1,S) ccg(T2,[1)
ccg( H/ M ,9) -~ 5 nE
/ N ____ <
T1 T2 X
. ccg(T1,[1) ccg(T1,8)
/\ e &
ccg( M/ \H ,8) = X/X X
/ N ____ >
T1 T2 X

Figure 6: The modifier case for translating binary trees to CCG.

In the HEAD-ARG and ARG-HEAD cases, the argument is analysed first.
The resulting category is pushed on the stack (plus its direction: \ or /).
Suppose that the translation of ARG yields the category Y, then the HEAD-
ARG case maps to a forward application rule with X/Y being the category
for the head constituent. The ARG-HEAD case is a mirror image of the HEAD-
ARG translation rule. Here we introduce the backward application rule with
X\Y being the category for HEAD, and the category produced for ARG is
pushed onto the stack. This is illustrated by Fig. 7.

/'\ ccg(T1,push(/Y,8))  ccg(T2,[1)
ccg( B/ N\ ,8) o~ w v
/ N\ N

T1 T2 X
/'\ ccg(T2,[1) ccg(T1,push(\Y,$S))
ccg( A/ NE LS =~ oy ny
/ \N o __ <

T1 T2 X

Figure 7: The argument case for translating binary trees to CCG.

These four general rules are used in traversing the binary tree in a top-
down fashion. Once a leaf node is reached, the lexical categories are de-
termined, which in turn provide information to determine the values of the
non-lexical categories encountered earlier. The mapping from a leaf node to
a lexical CCG category depends on whether it is playing the role of head,



argument, or modifier. A leaf node of type MOD is either of the form X /X or
X\X, where X is already determined by the head using either the HEAD-MOD
or MOD-HEAD rule. In the case of ARG, the lexical category is determined by
the assigned Part of Speech in TUT (see Table 2). For HEAD we follow the
same strategy as for ARG, but we resort to the stack to determine the num-
ber and direction of arguments. The features introduced on the category s
are shown in Table 1.

Passive sentences are marked in ConsTUT by empty argument nodes
marked as logical subject of a verb phrase. These are pushed onto the
stack as were they ordinary arguments. However, when generating a lexical
category for a verb phrase, the feature chosen for s will be pss when a
logical subject is a member of the stack. Coordination is dealt with by
giving conjunctors the category (X\X)/X, where X can be any category.

Finally, a post-processing procedure deals with empty nodes, clitics, nor-
malisation of accents, and certain kinds of punctuation. Empty nodes, such
as Italian pro-drop, introduce type-changing rules in the CCG derivation.
Verbal clitics are explicitly marked as arguments combined with an applica-
tion rule. Opening and closing parentheses and quotes are given categories
(X/p)/X and X\ (X/p), respectively, where X can be any category. We also
normalize the accents post-processing step, since TUT allows for distinct
ways of encoding Italian accents.

4 Results

Recall that the conversion process from TUT dependencies to CCG deriva-
tions forms a pipeline of three components. These conversion steps are all
performed automatically, and hence prone to errors. Reasons for failure in
the conversion are complex cases of coordination, clitics, verbal structures,
or elliptical phrases. In part these can and will be dealt with in future, re-

Table 1: Features on category s (verb phrases and sentences).
’ Part of Speech Lexical Category Description ‘

VMA-GE s:ger gerund
VMA-PA S:pap past participle
VMA-PE S:prp present participle
VMA-RE s:dcl present
VMA-IN s:inf infinitive
VMA-IP s:imp imperative
s:adj adjective phrase
s:pss passive
s:ynq yes/no-question
s:whq wh-question




Table 2: Mapping from POS tags to lexical categories.
Part of Speech Lexical Category Description

VMA s main verb
VMO S modal verb
VAU s auxiliary verb
ART np article

PRDT np pre-determiner
PRO np pronoun
PRO-PO np, n possessive pronoun
NOU n, np common noun
ADJ s:adj\np, n/n, n\n adjective
PREP pp, X/X, X\X preposition
NUMR n, np numeral
PUNCT-END t punctuation
CONJ X conjunction

vised versions of the treebank, by adding more specific transformation rules
to the algorithm.

In Table 3 we report coverage of the conversion process by the number of
well-formed trees that we obtain as output after each processing step. The
civil law corpus yields the highest coverage, probably because it is a part
of TUT containing many relatively short sentences, with less complex, legal
language. This claim is confirmed by looking at the length of the sentences
in the three corpora: the newspaper corpus has an average length of 24.04
(19,355 tokens on 807 sentences), the civil law corpus 20.97 (18,766 tokens
on 896 sentences), and the JRC-Acquis corpus 29.08 (3,839 tokens on 132
sentences). Hence, it is likely that the JRC-Acquis corpus produces a high
number of mistakes because the sentences are significantly longer. Moreover,
this corpus is only recently been added to TUT, and as a consequence still
contains a number of syntactic constructions that are not yet covered by the
dependency to constituency conversion step.

Table 3: Number of trees in the three corpora after each processing step.
’ Corpus TUT — ConsTUT — Bin — CCG ‘

Newspaper | 1,100 — 890 — 827 — 807 (73%)
Civil Law 1,100 — 93 — 909 — 898 (82%)
JRC-Acquis 200 — 147 — 133 — 132 (66%)

The total number of different lexical categories generated for all three
corpora is 1,152, of which 627 occur more than once. For comparison, the
English CCGbank hosts 1,286 different lexical categories, of which 847 occur
at least twice [7]. The ten most frequent categories are shown in Table 4,



and the average number of categories per token is 1.66.

Since one of the aims of the Italian CCGbank is to produce statistical
language models, an important question to ask is whether the size of the
treebank is large enough for this purpose. The size of TUT is relatively
small compared to the size of the Penn Treebank, but it would be helpful
to estimate the required size of a CCGbank as developing annotated tree
structures is a costly business. We can’t completely answer this question,
but what we can do, is look at the number of different categories produced
for each corpus to get a rough idea.

Table 4: Frequency of the ten most common categories.
Category ‘ Newspaper | Civil Law | JRC-Acquis ‘ Total ‘

n 4477 4572 904 | 9,953
np/n 1,807 1,658 345 | 3,810
(n\n)/n 1,228 1,050 288 | 2,566
n\n 1,254 932 365 | 2,551
pp/n 707 945 255 | 1,907
t\s:dcl 720 593 122 | 1,435
np 604 645 50 | 1,299
n/n 706 377 128 | 1,211
n/pp 279 359 142 780
s:dcl/s:dcl 297 248 52 597

We do this in Table 5, where we show the number of different categories,
as well as the number of different POS-category pairs. We also computed
these values with (+) and without (—) features on these categories. As
the table shows, the numbers differ substantially, clearly caused by the size
of the respective corpora. Next, we investigated the relation between the
number of lexical categories and the size of the treebank. A treebank with a
good coverage would show an emerging plateau in the number of categories
by an increase of the number of sentences considered.

Table 5: Number of POS and categories of the three corpora.
’ ‘ Newspaper | Civil Law | JRC-Acquis ‘ Total ‘

CAT () 541 411 188 | 714
CAT (+) 841 657 291 | 1,154
POS+CAT (—) 826 640 277 [ 1,121
POS+CAT (+) 1,121 876 362 | 1,576

As Fig. 8 shows, the growth of categories is clearly decreasing, yet rising.
This is caused in part by the small size of the treebank, but we think it is also
due to the absence of forward and backward (crossed) composition rules in
the categorisation algorithm implemented so far. Adding such combinatory
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Figure 8: Growth of lexical categories with respect to number of sentences.

rules for specific but common linguistic structures is part of future work,
as is abstracting over modifier and conjunction categories, to gain a further
reduction of distinct lexical categories [7]. The current version of the Italian
CCGbank is released under a creative commons license via http://www.di.
unito.it/~tutreeb/CCG-TUT/ in various formats: the derivations printed
in human-readable format (as in Fig. 1), derivations printed as Prolog terms,
or as token-POS-category tuples.
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