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Abstract
This paper shows how to construct semantic
representations from the derivations produced
by a wide-coverage CCG parser. Unlike the de-
pendency structures returned by the parser it-
self, these can be used directly for semantic in-
terpretation. We demonstrate that well-formed
semantic representations can be produced for
over 97% of the sentences in unseen WSJ text.
We believe this is a major step towards wide-
coverage semantic interpretation, one of the key
objectives of the field of NLP.

1 Introduction

The levels of accuracy and robustness recently
achieved by statistical parsers (e.g. Collins (1999),
Charniak (2000)) have led to their use in a num-
ber of NLP applications, such as question-answering
(Pasca and Harabagiu, 2001), machine transla-
tion (Charniak et al., 2003), sentence simplifica-
tion (Carroll et al., 1999), and a linguist’s search
engine (Resnik and Elkiss, 2003). Such parsers
typically return phrase-structure trees in the style
of the Penn Treebank, but without traces and co-
indexation. However, the usefulness of this output
is limited, since the underlying meaning (as repre-
sented in a predicate-argument structure or logical
form) is difficult to reconstruct from such skeletal
parse trees.

In this paper we demonstrate how a wide-
coverage statistical parser using Combinatory Cat-
egorial Grammar (CCG) can be used to generate se-
mantic representations. There are a number of ad-
vantages to using CCG for this task. First, CCG

provides “surface compositional” analysis of certain
syntactic phenomena such as coordination and ex-
traction, allowing the logical form to be obtained for
such cases in a straightforward way. Second, CCG is
a lexicalised grammar, and only uses a small num-
ber of semantically transparent combinatory rules to

combine CCG categories. Hence providing a com-
positional semantics for CCG simply amounts to as-
signing semantic representations to the lexical en-
tries and interpreting the combinatory rules. And
third, there exist highly accurate, efficient and ro-
bust CCG parsers which can be used directly for
this task (Clark and Curran, 2004b; Hockenmaier,
2003).

The existing CCG parsers deliver predicate argu-
ment structures, but not semantic representations
that can be used for inference. The present paper
seeks to extend one of these wide coverage parsers
by using it to build logical forms suitable for use in
various NLP applications that require semantic in-
terpretation.

We show how to construct first-order represen-
tations from CCG derivations using the λ-calculus,
and demonstrate that semantic representations can
be produced for over 97% of the sentences in unseen
WSJ text. The only other deep parser we are aware
of to achieve such levels of robustness for the WSJ

is Kaplan et al. (2004). The use of the λ-calculus
is integral to our method. However, first-order rep-
resentations are simply used as a proof-of-concept;
we could have used DRSs (Kamp and Reyle, 1993)
or some other representation more tailored to the ap-
plication in hand.

There is some existing work with a similar mo-
tivation to ours. Briscoe and Carroll (2002) gen-
erate underspecified semantic representations from
their robust parser. Toutanova et al. (2002) and Ka-
plan et al. (2004) combine statistical methods with a
linguistically motivated grammar formalism (HPSG

and LFG respectively) in an attempt to achieve levels
of robustness and accuracy comparable to the Penn
Treebank parsers (which Kaplan et al. do achieve).
However, there is a key difference between these
approaches and ours. In our approach the creation
of the semantic representations forms a completely
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Figure 1: An example CCG derivation with a provisional semantics using predicate-argument structures

separate module to the syntax, whereas in the LFG

and HPSG approaches the semantic representation
forms an integral part of the grammar. This means
that, in order for us to work with another seman-
tic formalism, we simply have to modify the lexical
entries with respect to the semantic component.

2 Combinatory Categorial Grammar
We assume familiarity with CCG (Steedman, 2000),
an entirely type-driven lexicalized theory of gram-
mar based on categorial grammar. CCG lexical en-
tries pair a syntactic category (defining syntactic va-
lency and directionality) with a semantic interpre-
tation. For example, one of the categories for the
verb cost can be written as follows, with a provi-
sional Montague-style semantics expressed in terms
of predicate-argument structure:1

��
VP � �

VP � NP ��� NP �� NP :
λxλyλpλz � cost � � p zx � yxz

Combinatory rules project such lexical category-
interpretation pairs onto derived category-
interpretation pairs. The specific involvement
in CCG of rules of functional composition (indexed� B and � B in derivations) and type-raising (in-
dexed � T and � T) allows very free derivation of
non-standard constituents. This results in semantic
interpretations that support the “surface composi-
tional” analysis of relativization and coordination,
as in Figure 1 for the sentence It could cost tax-
payers £15 million to install and BPC residents 1
million a year to maintain.2

1This semantic notation uses x � y � z and p � q � r� s as variables,
identifies constants with primes and uses concatenation a b to
indicate application of a to b. Application is “left-associative,”
so abc is equivalent to � ab � c. The order of arguments in the
predication is “wrapped”, consistent with the facts of reflexive
binding.

2Some details of the derivation and of the semantics of
noun phrases are suppressed, since these are developed be-

While the proliferation of surface constituents al-
lowed by CCG adds to derivational ambiguity (since
the constituent taxpayers £15 million to install is
also allowed in the non-coordinate sentence It could
cost taxpayers £15 million to install), previous work
has shown that standard techniques from the statisti-
cal parsing literature can be used for practical wide-
coverage parsing with state-of-the-art performance.

3 The Parser
A number of statistical parsers have recently been
developed for CCG (Clark et al., 2002; Hocken-
maier and Steedman, 2002b; Clark and Curran,
2004b). All of these parsers use a grammar de-
rived from CCGbank (Hockenmaier and Steedman,
2002a; Hockenmaier, 2003), a treebank of normal-
form CCG derivations derived semi-automatically
from the Penn Treebank. In this paper we use the
Clark and Curran (2004b) parser, which uses a log-
linear model of normal-form derivations to select an
analysis.

The parser takes a POS tagged sentence as in-
put with a set of lexical categories assigned to
each word. A CCG supertagger (Clark and Cur-
ran, 2004a) is used to assign the categories. The
supertagger uses a log-linear model of the target
word’s context to decide which categories to assign.
Clark and Curran (2004a) shows how dynamic use
of the supertagger — starting off with a small num-
ber of categories assigned to each word and gradu-
ally increasing the number until an analysis is found
— can lead to a highly efficient and robust parser.

The lexical category set used by the parser con-
sists of those category types which occur at least 10
times in sections 2-21 of CCGbank, which results
in a set of 409 categories. Clark and Curran (2004a)
demonstrates that this relatively small set has high
coverage on unseen data and can be used to create

low. Some categories and interpretations are split across lines
to save space.



a robust and accurate parser. The relevance of a rel-
atively small category set is that, in order to obtain
semantic representations for a particular formalism,
only 409 categories have to be annotated.

The parser uses the CKY chart-parsing algorithm
from Steedman (2000). The combinatory rules
used by the parser are functional application (for-
ward and backward), generalised forward composi-
tion, backward composition, generalised backward-
crossed composition, and type raising. There is also
a coordination rule which conjoins categories of the
same type.

The parser also uses a number of unary
type-changing rules (Hockenmaier and Steedman,
2002a) and punctuation rules taken from CCGbank.
An example of a type-changing rule used by the
parser is the following, which takes a passive form
of a verb and creates a nominal modifier:

S � pss ��� NP � NP � NP (1)

This rule is used to create NPs such as the role
played by Kim Cattrall. An example of a comma
rule is the following:

S � S ��� S � S (2)

This rule takes a sentential modifier followed by a
comma and returns a sentential modifier of the same
type.

Type-raising is applied to the categories NP, PP
and S � adj ��� NP (adjectival phrase), and is imple-
mented by adding the relevant set of type-raised
categories to the chart whenever an NP, PP or
S � adj ��� NP is present. The sets of type-raised cate-
gories are based on the most commonly used type-
raising rule instantiations in sections 2-21 of CCG-
bank, and currently contain 8 type-raised categories
for NP and 1 each for PP and S � adj ��� NP.

For a given sentence, the automatically extracted
grammar can produce a very large number of deriva-
tions. Clark and Curran (2003) and Clark and Cur-
ran (2004b) describe how a packed chart can be used
to efficiently represent the derivation space, and also
efficient algorithms for finding the most probable
derivation. The parser uses a log-linear model over
normal-form derivations.3 Features are defined in
terms of the local trees in the derivation, including
lexical head information and word-word dependen-
cies. The normal-form derivations in CCGbank pro-
vide the gold standard training data.

For a given sentence, the output of the parser is
a set of syntactic dependencies corresponding to the

3A normal-form derivation is one which only uses type-
raising and function composition when necessary.

most probable derivation. However, for this paper
the parser has been modified to simply output the
derivation in the form shown in Figure 2, which is
the input for the semantic component.

4 Building Semantic Representations
4.1 Semantic Formalism

Our method for constructing semantic representa-
tions can be used with many different semantic for-
malisms. In this paper we use formulas of first-order
logic with a neo-Davidsonian analysis of events. We
do not attempt to cover all semantic phenomena;
for example, we do not currently deal with the res-
olution of pronouns and ellipsis; we do not give
a proper analysis of tense and aspect; we do not
distinguish between distributive and collective read-
ings of plural noun phrases; and we do not handle
quantifier scope ambiguities.

The following first-order formula for the sentence
A spokesman had no comment demonstrates the rep-
resentation we use:

�
x(spokesman(x) �
	 y(comment(y) �� � e(have(e) � agent(e,x) � patient(e,y)))).

The tool that we use to build semantic representa-
tions is based on the lambda calculus. It can be used
to mark missing semantic information from natural
language expressions in a principled way using λ,
an operator that binds variables ranging over vari-
ous semantic types. For instance, a noun phrase like
a spokesman can be given the λ-expression

λp.
�

x(spokesman(x) � (p@x))

where the @ denotes functional application, and the
variable p marks the missing information provided
by the verb phrase. This expression can be com-
bined with the λ-expression for lied, using func-
tional application, yielding the following expres-
sion:

λp.
�

x(spokesman(x) � (p@x))@
λy.

�
e(lie(e) � agent(e,y)).

β-conversion is the process of eliminating all oc-
currences of functional application by substituting
the argument for the λ-bound variables in the func-
tor. β-conversion turns the previous expression into
a first-order translation for A spokesman lied:

�
x(spokesman(x) � � e(lie(e) � agent(e,x))).

The resulting semantic formalism is very sim-
ilar to the type-theoretic language Lλ (Dowty et



al., 1981). However, we merely use the lambda-
calculus as a tool for constructing semantic rep-
resentations, rather as a formal tool for model-
theoretic interpretation. As already mentioned, we
can use the same method to obtain, for exam-
ple, Discourse Representation Structures (Kuschert,
1999), or underspecified semantic representations
(Bos, 2004) to deal with quantifier scope ambigu-
ities.

4.2 Method and Algorithm

The output of the parser is a tree representing a
CCG derivation, where the leaves are lexical items
and the nodes correspond to one of the CCG com-
binatory rules, a unary type-changing rule, a type-
raising rule, or one of the additional miscellaneous
rules discussed earlier. Mapping the CCG deriva-
tion into a semantic representation consists of the
following tasks:

1. assigning semantic representations to the lexi-
cal items;

2. reformulating the combinatory rules in terms
of functional application;

3. dealing with type-raising and type-changing
rules;

4. applying β-conversion to the resulting tree
structure.

Lexical items are ordered pairs consisting of the
CCG category and a lemmatised wordform. This in-
formation is used to assign a λ-expression to the leaf
nodes in the tree. For most open-class lexical items
we use the lemma to instantiate the lexical seman-
tics, as illustrated by the following two examples
(intransitive verbs and adjectives):

�
S[dcl]\NP, walk ���

λqλu.q@λx.
�

e(walk(e) � agent(e,x) � u@e)
�
N/N, big ���

λpλx.(big(x) � p@x)

For closed-class lexical items, the lexical seman-
tics is spelled out for each lemma individually, as in
the following two examples:

�
(S[X]\NP)\(S[X]\NP), not ���

λvλqλf. � ((v@q)@f)
�
NP[nb]/N, all ���

λpλq.	 x(p@x � q@x)

The second task deals with the combinatory rules.
The rules we currently use are forward and back-
ward application (FAPP, BAPP), generalised for-
ward composition (FCOMP), backward composition
(BCOMP), and generalised backward-crossed com-
position (BCROSS).

FAPP
�
x � y ��� �

x@y �
BAPP

�
x � y ��� �

y@x �
FCOMP

�
x � y ��� λu � � x@

�
u@y ��

BCOMP
�
x � y ��� λu � � y@

�
u@x ��

BCROSS
�
x � y ��� λu � � y@

�
x@u ��

The type-raising and type-changing rules are
dealt with by looking up the specific rule and replac-
ing it with the resulting semantics. For instance, the
rule that raises category NP to S[X]/(S[X]\NP)
converts the semantics as follows:

TYPERAISE(NP, S[X]/(S[X]\NP), x)
= λvλe.((v@x)@e)

The following type-changing rule applies to the
lexical semantics of categories of type N and con-
verts them to NP:

TYPECHANGE(N, NP, y)
= λp.

�
x(y@x � p@x)

Tasks 1–3 are implemented using a recursive al-
gorithm that traverses the derivation and returns a
λ-expression. Note that the punctuation rules used
by the parser do not contribute to the compositional
semantics and are therefore ignored.

Task 4 reduces the λ-expression to the target rep-
resentation by applying β-conversion. In order to
maintain correctness of this operation, the functor
undergoes α-conversion (renaming all bound vari-
ables for new occurrences) before substitution takes
place. β-conversion is implemented using the tools
provided by Blackburn and Bos (2003).

4.3 Results
There are a number of possible ways to evaluate the
semantic representations output by our system. The
first is to calculate the coverage — that is, the per-
centage of syntactic parses which can be given some
analysis by the semantic component. The second is
to evaluate the accuracy of the semantic representa-
tions; the problem is that there is not yet an accepted
evaluation metric which can be applied to such rep-
resentations.

There is, however, an accepted way of evaluat-
ing the syntactic component of the system, namely
to calculate precision and recall figures for labelled
syntactic dependencies (Clark et al., 2002). Given



bapp(’S[dcl]’,
bapp(’NP’,

fapp(’NP[nb]’,
leaf(’NP[nb]/N’,’the’),
fapp(’N’,

leaf(’N/N’,school-board’),
leaf(’N’,’hearing’))),

fapp(’NP\NP’,
bapp(’(NP\NP)/S[dcl]’,

leaf(’(NP\NP)/NP’,’at’),
leaf(’((NP\NP)/S[dcl])\((NP\NP)/NP)’,’which’)),

bapp(’S[dcl]’,
leaf(’NP’,’she’),
fapp(’S[dcl]\NP’,

leaf(’(S[dcl]\NP)/(S[pss]\NP)’,’was’),
leaf(’S[pss]\NP’,’dismissed’)))),

fapp(’S[dcl]\NP’,
leaf(’(S[dcl]\NP)/(S[pss]\NP)’,’was’),
fapp(’S[pss]\NP’,

leaf(’(S[pss]\NP)/PP’,’crowded’),
fapp(’PP’,

leaf(’PP/NP’,’with’),
bapp(’NP’,

lex(’NP’,leaf(’N’,’students’)),
conj(’conj’,’NP’,’NP\NP’,

leaf(’conj’,’and’),
lex(’NP’,leaf(’N’,’teachers’)))))))).

some A ((school-board[A] & hearing[A]) & some B (female[B] & some C
(dismiss[C] & (patient[C,B] & (at[A,C] & some D (crowd[D] & (patient[D,A]
& ((some E (student[E] & with[D,E]) & some F (teacher[F] & with[D,F])) &
event[D]))))))))

Figure 2: Parser output and semantic representation for the example sentence:
The school-board hearing at which she was dismissed was crowded with students and teachers

that the CCG parser produces dependencies which
are essentially predicate-argument dependencies,
the accuracy of the syntactic component should be
a good indication of the accuracy of the semantics,
especially given the transparent interface between
syntax and semantics used by our system. Hence
we report coverage figures in this paper, and repeat
figures for dependency recovery from an earlier pa-
per.

We do not evaluate the accuracy of the system
output directly, but we do have a way of check-
ing the well-formedness of the semantic represen-
tations. (The well-formedness of the representation
does not of course guarantee the correctness of the
output.) If the semantic representation fails to β-
convert, we know that there are type conflicts re-
sulting from either: incorrect semantics assigned to
some lexical entries; incorrect interpretation of one
of the combinatory rules; or an inconsistency in the
output of the syntactic component.

We assigned lexical semantics to the 245 most

frequent categories from the complete set of 409,
and implemented 4 of the type-raising rules, and the
10 unary type-changing rules, used by the parser.
We used section 00 from CCGbank for development
purposes; section 23 (2,401 sentences) was used as
the test set. The parser provides a syntactic analysis
for 98.6% of the sentences in section 23. The ac-
curacy of the parser is reported in Clark and Curran
(2004b): 84.6% F-score over labelled dependencies
for section 23. Of the sentences the parser analyses,
92.3% were assigned a semantic representation, all
of which were well-formed. The output of the sys-
tem for an example sentence is given in Figure 2.

The reason for the lack of complete coverage is
that we did not assign semantic representations to
the complete set of lexical categories. In future
work we will cover the complete set, but as a simple
remedy we have implemented the following robust-
ness strategy: we assign a semantic template to parts
of the tree that could not be analysed. For example,
the template for the NP category is λp.

�
x(p@x).



This was done for the 10 most frequent categories
and results in a coverage of 98.6%.

Although we expect the accuracy of the seman-
tic representations to mirror those of the syntactic
component, and therefore be useful in NLP applica-
tions, there is still a small number of errors arising
from different sources. First, some constructions are
incorrectly analysed in CCGbank; for example, ap-
positives in CCGbank are represented as coordinate
constructions (Hockenmaier, 2003). Second, errors
are introduced by the semantic construction com-
ponent; for example, the non-head nouns in a noun-
noun compound are currently treated as modifiers of
the head noun, in the same way as adjectives. And
finally, the parser introduces errors because of in-
complete coverage of the lexicon, and mistakes due
to the parsing model. We expect general improve-
ments in statistical parsing technology will further
improve the accuracy of the parser, and we will fur-
ther develop the semantic component.

5 Conclusions and Future Work

This paper has demonstrated that we can construct
semantic representations using a wide-coverage
CCG parser, with a coverage of over 97% on un-
seen WSJ sentences. We believe this is a major step
towards wide-coverage semantic interpretation, one
of the key objectives of the field of NLP.

The advantages of our approach derive largely
from the use of CCG. The lexicalised nature of the
formalism means that our system has a high degree
of modularity, with separate syntactic and semantic
components.

We have shown how to construct simple first-
order semantic representations from CCG deriva-
tions. We have not dealt with all semantic phe-
nomena, such as quantifier scope ambiguities and
anaphora resolution. In future work we will in-
vestigate using underspecified semantic representa-
tions. The utility of our system for NLP applications
will be tested by integration with an existing open-
domain Question-Answering system (Leidner et al.,
2003).

We will also investigate the construction of a tree-
bank of semantic representations derived automati-
cally from CCGbank. Previous work, such as Li-
akata and Pulman (2002) and Cahill et al. (2003),
has attempted to generate semantic representations
from the Penn Treebank. Cahill et al. use a transla-
tion of the Treebank to LFG F-structures and quasi-
logical forms. An advantage of our approach is
that our system for constructing semantic represen-
tations, whatever semantic formalism is used, can
be applied directly to the derivations in CCGbank.
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