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Abstract

We combine two methods to tackle the
textual entailment challenge: a shallow
method based on word overlap and a
deep method using theorem proving tech-
niques. We use a machine learning tech-
nique to combine features derived from
both methods. We submitted two runs,
one using all features, yielding an ac-
curacy of 0.5625, and one using only
the shallow feature, with an accuracy of
0.5550. Our method currently suffers
from a lack of background knowledge and
future work will be focussed on that area.

1 Introduction

In this paper we summarise our submission to the
2004/5 Recognising Textual Entailment (RTE) chal-
lenge. In this task, given a pair of text fragments—a
text (T) and an hypothesis (H)—the system has to
decide whether the hypothesis is entailed by the text.
The system we developed is a hybrid system, using
both shallow and deep semantic analysis methods.

The shallow techniques establish a baseline per-
formance, but also complement the deep semantic
analysis. In the hybrid system, each T/H-pair is
represented by feature-value vectors that are derived
from either shallow or deep semantic analysis. The
features used are domain-independent to increase
scalability. An off-the-shelf machine learning tool
was then used to derive a decision tree model from
the RTE development set.

2 Shallow Semantic Analysis

The shallow semantic analysis measures only word
overlap between text and hypothesis. Both text

and hypothesis are tokenised and lemmatised. Each
lemma in the hypothesis is assigned its inverse doc-
ument frequency, using the Web as corpus, as its
weight. This standard procedure allows us to assign
more importance to less frequent words.

The word overlap overlap between text and hy-
pothesis is initialised as zero. Should a lemma in the
hypothesis also occur in the text, its weight is added
to overlap, otherwise it is substracted. In the end
overlap is normalised by dividing it by the sum
of all weights of the lemmas in the hypothesis. This
ensures that overlap is always a real number be-
tween 1 and −1 and also ensures independence of
the length of the hypothesis.1

Training a decision tree on the development set
with this feature alone yielded the following tree for
entailment, where TRUE associates with entailment,
and FALSE does not:2

overlap <= 0.161146: FALSE
overlap > 0.161146: TRUE

Accuracy on the development set (using 10-fold
cross-validation) was 0.594 and therefore clearly
beat the baseline of 0.50. In general this method
overestimates the number of true entailments in the
development set and achieved an F-measure of 0.672
for the class TRUE and only 0.474 for the class

1This word overlap measure is similar to the method used in
(Monz and de Rijke, 2003) and (Saggion et al., 2004) — how-
ever, they do not substract from the overlap measure a token in
the hypothesis which does not appear in the text. Hence, their
scores are within 0 and 1. We experimented with this varia-
tion on the development set, but achieved slightly better perfor-
mance with the scores that used substraction as well.

2We used Weka’s J48 classifier (http://www.cs.
waikato.ac.nz/˜ml/weka/) for all experiments in this
paper. We also used Weka’s confidence values for confidence
weighting scores.



FALSE. We submitted this baseline as Run2 and the
performance on the RTE test set was as follows:

cws: 0.5864
accuracy: 0.5550
precision: 0.5375
recall: 0.7875
f: 0.6389

Although the performance is still significantly
better than the baseline (5% level), it is worse than
on the development set, because the level of word
overlap in the test set was lower overall than in the
development set. This seems to be an indicator of a
different design of development and test set—using
10-fold cross-validation on the test set indicates that
an overlap value of between −0.20 and 0.92 al-
ready indicates a TRUE value in the test set, whereas
a value of over 0.92 indicates a FALSE value. The
latter anomaly, which indicates that if text and hy-
pothesis are very similar then the entailment is false,
is due to the fact that there are many examples in
the test set that are deliberately constructed to have
a high word overlap but nevertheless be FALSE.

3 Deep Semantic Analysis

We use a robust wide-coverage CCG-parser (Bos et
al., 2004) to generate fine-grained semantic repre-
sentations for each T/H-pair. The semantic represen-
tation language is a first-order fragment of the DRS-
language used in Discourse Representation Theory
(Kamp and Reyle, 1993). To check whether an en-
tailment holds or not, we used Vampire, a theorem
prover for first-order logic (Riazanov and Voronkov,
2002), and Paradox, a finite model builder (Claessen
and Sörensson, 2003).

To support the proofs we calculated background
knowledge using three kinds of sources:

• Generic axioms for, for instance, the semantics
of possessives, active-passives, and locations.

• Lexical knowledge that was created on the
fly with an algorithm that takes as input the
DRSs for the text and hypothesis, and out-
puts first-order axioms based on WordNet hy-
pernyms. This algorithm also performs sim-
ple word sense disambiguation and analysis of
complex concepts.

• Geographical knowledge from the CIA fact-
book was translated into first-order axioms.

To perform the actual search for a proof, the DRSs
for T and H were translated into first-order logic.
The theorem prover and model builder were used in
all tasks as complementary inference engines, where
the theorem prover attempts to prove the input, and
the model builder tries to find a model for the nega-
tion of the input. First we checked whether the
background knowledge (BK) was consistent with
the text, by giving ¬(BK ∧ T) to the theorem prover.
If there is a proof, indicating that the background
knowledge is inconsistent, we proceed with check-
ing for entailment without background knowledge,
by giving (T → H) to the theorem prover. Otherwise
we attempt to prove (BK ∧ T → H).

Although in theory the method of finding proofs
should work, in practice it does not work that well.
This is mostly due to the lack of appropriate back-
ground knowledge without which many true entail-
ments cannot be found. To overcome this problem
we also used a novel way of measuring approximate
entailments, relying on the model sizes computed by
the model builder. Using Paradox, we computed the
model size of (BK∧T) and that of (BK∧T∧H). The
underlying idea was that if the difference of these
two numbers is small, it is likely to be an entailment.
(In other words, the hypothesis does not introduce
any or little new information.)

This deep semantic analysis proposes a number of
features to describe the T/H-pairs:

entailed {proof,unknown}
inconsistent {proof,unknown}
domainsize numeric
domainsizeabsdif numeric
domainsizereldif numeric
modelsize numeric
modelsizeabsdif numeric
modelsizereldif numeric
negation {yes,no}
negationtext {yes,no}
negationhypo {yes,no}

The features entailed and inconsistent
have been discussed above. domainsize is the
value of the domainsize of the model for both T
and H, domainsizeabsdif is the absolute dif-
ference between the domain sizes of T and H,
and domainsizereldif the difference relative
to the model size. The modelsize is computed
by multiplying the domain size with the number
of all positive two-place predicates in the model.
The features negation, negationtext, and
negationhypo are determined by inspecting the
DRSs for the presence of negation operators.



4 Combining the Methods

For the combined run we used all shallow and deep
features for training a decision tree on the develop-
ment set. The tree generated for the development
data is displayed below:

entailed = proof: TRUE
entailed = unknown
| negationhypo = yes: FALSE
| negationhypo = no
| | overlap <= 0.161146: FALSE
| | overlap > 0.161146
| | | inconsistent = proof: TRUE
| | | inconsistent = unknown
| | | | domainsize <= 8
| | | | | negation = yes: FALSE
| | | | | negation = no
| | | | | | domainsize <= 6
| | | | | | | domainsizeabsdif <= 0: TRUE
| | | | | | | domainsizeabsdif > 0
| | | | | | | | modelsizereldif <= 0.595556: TRUE
| | | | | | | | modelsizereldif > 0.595556: FALSE
| | | | | | domainsize > 6: FALSE
| | | | domainsize > 8: TRUE

Note that not all features were used (negation in
the text, relative domain size difference, model size,
and absolute model size difference were not used).

We did not expect good results, as experiments us-
ing cross-validation on the development data yielded
around 60% accuracy (depending on the decision
tree parameters). However, on the test set, this run
performed better than the baseline at the 1% level
and slightly better than the shallow feature alone.
The actual results on the test set are detailed below.

cws: 0.5931
accuracy: 0.5625
precision: 0.5530
recall: 0.6525
f: 0.5986

5 Error Analysis

The hybrid system was able to create semantic rep-
resentations and then search for proofs for 774 of all
800 T/H-pairs in the test data, achieving a coverage
of 96.8%. Only 30 proofs were found by the system,
of which 23 were annotated as entailments in the
gold standard. These include adequately analysed
phenomena such as apposition (5x: 760, 929, 995,
1903, 1905), relative clauses (3x: 142, 1060, 1900),
coordination and attachment(3x: 898, 807, 893),
active-passive alternation (2x: 1007, 1897), posses-
sives (1x: 1010), the use of background knowledge
(6x: 236, 836, 1944, 1952, 1987, 1994) and more
or less straightforward cases (3x: 833, 1076, 741).
Note that two examples are included that were an-
notated as entailment, but strictly speaking they are
not (Examples 893 and 236, see also Section 6).

Incorrect proofs were found for seven cases.
Some of these are due to the lexical semantics of

certain linguistic categories, others to a lack of back-
ground knowledge. As an example, the current sys-
tem does not deal adequately with ordinals and thus
finds proofs for 1617 (see below) and 2040.

Example: 1617

T: In 1782 Martin Van Buren, the first US president who
was a native citizen of the United States, was born in
Kinderhook, N.Y.

H: The first US president was born in Kinderhook, N.Y.

It also found a proof for 2025, where the text con-
tained the hypothesis in an if-clause. Again this was
due to an incorrect lexical semantics, and is easy to
fix. More complex cases involving modifiers were
2030 and 2082 (see below). It is hard to see what
kind of background knowledge can preclude proofs
for such cases. (For 2030, the knowledge that Paris
is the capital of France, and that each country has at
most one capital, would suffice. Unfortunately our
system does not select this as background knowl-
edge because the trigger Paris is mentioned neither
in the text nor in the hypothesis.)

Example: 2030

T: Lyon is actually the gastronomic capital of France.

H: Lyon is the capital of France.

Example: 2082

T: Microsoft was established in Italy in 1985.

H: Microsoft was established in 1985.

For 2055, the system correctly associated Einstein
to be the subject of being the president of Israel,
but it incorrectly assumed that begin invited to X is
being X. A restriction on this class of modal verbs
could fix this problem. (In the development data,
however, there were similar cases that were anno-
tated as entailments.)

Example: 2055

T: The fact that Einstein was invited to be the president of
Israel is critical to an accurate understanding of one of
the greatest individuals in modern history.

H: Einstein is the president of Israel.

Finally, background knowledge that if X is in Y,
then X is located in Y, wrongly predicted an entail-
ment for 2079. A more sophisticated lexical analysis
of prepositions could improve on such examples.

Example: 2079

T: US presence puts Qatar in a delicate spot.

H: Qatar is located in a delicate spot.



In sum, the backbone of the deep semantic anal-
ysis, trying to find proofs, has a small coverage,
but is reasonably accurate. Selecting more appro-
priate background knowledge and revising some of
the lexical semantics will improve its precision. We
already improved its recall by incorporating the fea-
tures concerning model size differences.

6 Discussion of the entailment task

We will now discuss some observations we made on
the task definition and the annotated data sets.

Task definition The current RTE dataset classified
entailment as binary TRUE and FALSE. Following
FRACAS, the semantic test suite in (Coopper et al.,
1996), a classification that respects three values (yes,
don’t know, inconsistent), is probably more in its
place. For instance, not only are examples 1301 and
1310 below not entailments, the hypotheses are in-
consistent with the corresponding texts as well:

Example: 1301

T: The former wife of the South African president did not
ask for amnesty, and her activities were not listed in
the political reports submitted by the African National
Congress to the Truth and Reconciliation Commission
in 1996 and 1997.

H: Winny Mandela, the President’s ex-wife, is requesting
amnesty.

Example: 1310

T: Although the hospital insists that King Hussein is not
fully free of the cancer, they are hopeful that he will
recover.

H: The statement added that King Hussein has been cured
completely.

In the current RTE task definition FALSE sub-
sumes both the “don’t know” and “inconsistent” val-
ues used in the FRACAS test suite.

Annotated datasets We found several cases
where entailments were incorrectly annotated in our
opinion. Example 236 (see below), for instance, was
judged as entailment. But taking tense into account
(which, incidentally, our system is currently not able
to do), it is strictly speaking not a textual entailment.

Example: 236

T: Yasir Arafat has agreed to appoint a longtime loyalist as
interior minister to take charge of the country’s security.

H: Yasir Arafat nominated a loyalist as interior minister.

Another example is 893: the adverb perhaps in the
text clearly expresses doubt on the date of establish-
ment of settlements on Jakarta, and the hypothesis
establishes it as a fact. This clearly is not entailment.

Example: 893

T: The first settlements on the site of Jakarta were estab-
lished at the mouth of the Ciliwung, perhaps as early as
the 5th century AD.

H: The first settlements on the site of Jakarta were estab-
lished as early as the 5th century AD.

It would also be helpful if human agreement fig-
ures and explicit guidelines for annotation could be
released for the task. For a small test, one of the
authors annotated all 800 examples of the test set
for entailment, using the short rules that were indi-
cated on the entailment web page (for example, dis-
regarding tense). Comparing to the final gold stan-
dard, now released, we had 38 differences, yielding
an agreement of 95.25%. This indicated good agree-
ment, but one has to take into account that both an-
notations used the indicated simplified guidelines.
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