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Abstract. We use logical inference techniques for recognising textual
entailment, with theorem proving operating on deep semantic interpre-
tations as the backbone of our system. However, the performance of
theorem proving on its own turns out to be highly dependent on a wide
range of background knowledge, which is not necessarily included in pub-
lically available knowledge sources. Therefore, we achieve robustness via
two extensions. Firstly, we incorporate model building, a technique bor-
rowed from automated reasoning, and show that it is a useful robust
method to approximate entailment. Secondly, we use machine learning
to combine these deep semantic analysis techniques with simple shallow
word overlap. The resulting hybrid model achieves high accuracy on the
RTE testset, given the state of the art. Our results also show that the
various techniques that we employ perform very differently on some of
the subsets of the RTE corpus and as a result, it is useful to use the
nature of the dataset as a feature.

1 Introduction

Recognising textual entailment (RTE) is the task to find out whether some text
T entails a hypothesis text H. This task has recently been the focus of the RTE
challenge, an evaluation exercise organised by the PASCAL network in 2004/05
[DGMO05]. Two examples from the dataset issued as part of this challenge are
shown below[] In Example 1550 H follows from T (hence it is marked TRUE)
whereas this is not the case in Example 731 (which is therefore annotated as
FALSE).

Example: 1550 (TRUE)

T: In 1998, the General Assembly of the Nippon Sei Ko Kai (Anglican
Church in Japan) voted to accept female priests.

H: The Anglican church in Japan approved the ordination of women.

L All examples in this article are from the corpus released as part of the RTE
challenge, keeping the original example identifiers. This corpus is available via
http://www.pascal-network.org/Challenges/RTE/.

J. Quinonero-Candela et al. (Eds.): MLCW 2005, LNAI 3944, pp. 404-[AZ6] 2006.
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Example: 731 (FALSE)

T: The city Tenochtitlan grew rapidly and was the center of the
Aztec’s great empire.
H: Tenochtitlan quickly spread over the island, marshes, and swamps.

The recognition of textual entailment needs access to a wide range of syn-
tactic and lexical knowledge and is without doubt one of the ultimate challenges
for any natural language processing (NLP) system: if it is able to recognise en-
tailment with reasonable accuracy, it is clearly an indication that it has some
thorough understanding of how language works. Moreover, recognising entail-
ment bears similarities to Alan Turing’s famous test to assess whether machines
can think, as access to different sources of knowledge and the ability to draw
inferences seem to be among the primary ingredients for an intelligent system.
In addition, many NLP tasks have strong links to entailment: in summarisa-
tion, a summary should be entailed by the text; in machine translation, the
source and target text should mutually entail each other; in question answering,
a valid answer entails the question; and in information extraction, the extracted
information should also be entailed by the text.

In this article we discuss two methods for recognising textual entailment.
Firstly, we present a shallow method that relies mainly on weighted word overlap
between text and hypothesis. Secondly, we use a method based on deep semantic
analysis, borrowing techniques from the field of automated deduction, namely
theorem proving and model building, to perform logical inference. As theory
for natural language semantics we use Discourse Representation Theory, DRT
IKR93]. Semantic representations are built in a compositional way for the text
and hypothesis with the help of Combinatory Categorial Grammar, CCG [Ste01],
using a wide-coverage statistical parser [CC04].

To increase transferrability to other datasets and tasks, both the shallow
and deep method are domain-independent, and neither has been tailored to any
particular test suite. In this article we test their accuracy and robustness on the
RTE datasets as one of the few currently available datasets for textual inference.
We also combine the two methods in a hybrid approach using an off-the-shelf
machine learning tool.

In particular, we are interested in the following questions:

Can either of the methods presented improve significantly over the baseline

and what are the performance differences between them?

— How far does deep semantic analysis suffer from a lack of lexical and world
knowledge and how can we perform robust logical inference in the face of
potentially large knowledge gaps?

— Does the hybrid system using both shallow and deep semantic analysis im-
prove over the individual use of these methods?

— How does the design of the test suite affect performance? Are there subsets

of the test suite that are more suited to any particular textual entailment

recognition method?
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This article is organised as follows. First, we will describe the shallow seman-
tic approach (Section 2)). This is followed by a detailed description of the deep
semantic approach in Section Bl where we will also explain how to integrate
theorem proving and model building, and how this combination achieves a level
of robustness in using logical inference. Both Sections 2] and [3 list the features
derived from these methods that are then used in several machine learning exper-
iments. Section @] describes these experiments, including a hybrid deep/shallow
system for entailment recognition. In Section [§] we perform an error analysis,
and Section [6] discusses the RTE challenge in general. Finally, related work is
presented in Section [7

2 Shallow Semantic Analysis

We use several shallow surface features to model the text, hypothesis and their
relation to each other. A basic shallow feature we believe might play a role in
textual entailment is word overlap.

2.1 Word Overlap Measures

For many textual entailment example pairs there is a dependency between sur-
face string similarity of text and hypothesis and the existence of entailment. In
particular, the inclusion of all or almost all words of the hypothesis in the text
makes entailment likely. A case in point is Example 125 below, where all words
in the hypothesis are contained in the text and entailment holds.

Example: 125 (TRUE)

T: On November 25, 2001, a baby Asian elephant was born at the
National Zoo in Washington, DC.
H: baby elephant born

In contrast, the occurrence of words in the hypothesis that are unrelated to any
word in the text makes entailment unlikely. This is the case in Example 731 in
the Introduction where the words swamps, islands and marshes in the hypothesis
introduce new information that is not in the text.

Our general model for measuring word overlap is a simple bag-of-words
model, i.e. word order and syntactic structure are ignored. The exact procedure
is as follows:

1. Both text and hypothesis are tokenised and lemmatised.

2. The overlap measure between text and hypothesis is initialised as zero.

3. Should a lemma in the hypothesis be related to a lemma in the text, its
weight is added to the overlap measure, otherwise it is ignored.

4. In the end the overlap is normalised by dividing it by the sum of the weights
of all lemmas in the hypothesis. This ensures that the overlap is always a
real number between 0 and 1 and also ensures independence of the length of
the hypothesis.
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Variations of this simple measure depend on the definition of word relatedness
as well as on which formula for weighting lemmas is used. Thus, it is possible to
define relatedness simply as equality of lemmas. This can handle examples like
125 above well, where all lemmas in the hypothesis are exactly matched in the
text. However, it falls short of recognising, for example, simple synonym variation
in word choice as the replacement of found by discovered in Example 1987 below.

Example: 1987 (TRUE)
T: The girl was found in Drummondville earlier this month.

H: The girl was discovered in Drummondville.

Therefore the word overlap we use takes into account equality, synonymy and
morphological derivations. WordNet [Fel98]| is used as the knowledge source for
synonymy and derivations. We therefore say that a lemma I; in the hypothesis
is said to be related to a lemma I5 in the text iff [ and l5 are equal, belong to
the same WordNet synset (e.g., “murder” and “slay”), are related via WordNet
derivations (e.g. “murder” and “murderer”) or are related via a combination of
synonymy and derivations (e.g. “murder” via “murderer” to “liquidator”). No
word sense disambiguation is performed and all synsets for a particular lemma
are considered.

Regarding weight assignment, each lemma in the hypothesis is assigned its
inverse document frequency, accessing the Web as corpus via the GoogleAPI,
as its weight. We prefer this procedure over equal weighting of all lemmas as it
allows us to assign more importance to less frequent words.

2.2 Shallow Semantic Features

Apart from the overlap measure wnoverlap we take into account length (as
measured by number of lemmas) of text and hypothesis, because in most true
entailments the hypothesis is shorter than the text as it contains less informa-
tion. This is covered by three numerical features measuring the length of the
text, of the hypothesis and the relative length of hypothesis with regard to the
text.

3 Deep Semantic Analysis

3.1 Overview

In a nutshell, the deep semantic analysis aims to produce fine-grained seman-
tic representations for both the text and hypothesis of an entailment pair. It
then uses techniques from automated deduction, in particular first-order theo-
rem proving and finite model building, to predict whether the text entails the
hypothesis or not.

To achieve this, both the text and hypothesis are tokenised using
NLProcesseif] and fed into a robust wide-coverage parser, which uses a statistical

2 A product from Infogistics, see http://www.infogistics.com/textanalysis.html
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model based on CCG [CC04]. The parser produces CCG-derivations. Consider
for instance the derivations for Example 78 below:

Clinton ’s new book is not big seller here

N (NP [nb]/N)\NP N/N N (S[dcl]\NP)/NP (S[XI\NP)\(S[XI\NP) N/N N (S[XI\NP)\ (S[XI\NP)

——————— > Bx >

NP N (8[dc1]\NP) /NP N
___________________ < [

NP [nb] /N NP

> >
NP [nb] S[dc1]\NP
S[dcl]l\NP
Sldcl]
>P
Sldcl]
Clinton ’s book is a big seller

NP [nb] /N NP [nb]

NP [nb] S[dc1]\NP

Sldel]

>P
Sldcl]

The CCG-derivations produced by the parser are the basis to construct
discourse representation structures (DRSs, the semantic representations from
DRT). This is done in a compositional way using the lambda-calculus as a
“glue” to connect CCG with DRT [BCS™04, Bos05]. The semantic represen-
tations are then translated into first-order logic expressions. This allows
us to perform inferences using a general-purpose theorem prover and model
builder.

3.2 Semantic Interpretation

The semantic representation language is a first-order fragment of the DRS-
language used in Discourse Representation Theory [KR93], conveying argument
structure with a neo-Davidsonian analysis and including the recursive DRS struc-
ture to cover negation, disjunction, and implication. A basic DRS is an ordered
pair of a set of discourse referents and a set of conditions imposed on these dis-
course referents. For convenience, we use the boxed notation to visualise DRSs,
with the discourse referents at the top and the conditions at the lower part
of the box. Consider for example the following entailment pair and the DRSs
constructed for it:

Example: 78 (FALSE)
T: Clinton’s new book is not big seller here.
H: Clinton’s book is a big seller.



RTE with Robust Logical Inference 409

x1 x2 x3
book(x1
b00k§x2§ x1 x2 e3 x4
B book(x1)
x1=x2 clinton(x2)
clinton(x3) of(x1 x2)
d(T): of(x1,x3) d(T): i)
ed x5
seller(x4)
big(x5% be(e3)
= Sekl)ler(jf) ) agent(e37xl)
e(e X A
agentgeﬁl,xlg patient(e3,x4)
patient(e4,x5)
here e4§

Proper names and definite descriptions are treated as anaphoric, and bound
to previously introduced discourse referents if possible, otherwise accommo-
dated [VdS92, [Bos03]. Some lexical items are specified as presupposition trig-
gers. An example is the adjective new which has a presuppositional reading, as
shown by the existence of two different “book” entities in d(T). Scope is fully
specified.

The DRS language, with its quantifier free and rather flat representations,
is useful for resolving ambiguities, such as pronoun resolution and presupposi-
tion projection. However, no efficient reasoning engines that work directly on
DRSs exist. Therefore we use a translation from DRSs to first-order formula
syntax, which opens the doors for using first-order theorem proving technology
[BBKANO1]. The literature on DRT offers several translation functions that map
DRS onto first-order logic — here we apply the so-called standard translation
from DRS to first-order logic (see e.g. [KR93, BBKdNO1]). This function, f, is
defined by the following clauses:

X1 ... Xn
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f(P(x)) = P(x)
fR(xy)) = R(xy)

Here B, By and By are variables ranging over DRSs, C; is a DRS-condition, P
is a one-place predicate symbol and R a two-place predicate symbol. To illustrate
the translation function, consider the result of translating d(T) and d(H) from
Example 78 above:

£(d(T)): 3x1 Ix2 Ix3 (book(x1l) A book(x2) A = (x1=x2) A clin-
ton(x3) A of(x1,x3) A = Jed I x5( big(xb) A seller(x5) A
be(e4) A agent(ed,x1) A patient(ed,x5) A here(ed)))

f(d(H)): 3x1 3x2 Je3 Ix4 (book(xl) A clinton(x2) A of(x1,x2)
A big(x4) A seller(x4) A be(e3) A agent(e3,x1) A pa-
tient(e3,x4))

3.3 Theorem Proving

There are two kinds of first-order inference engines we use to perform reasoning:
a theorem prover, and a model builder. First we will discuss the use of the
theorem prover. We have integrated the prover Vampire [RV02] into our system,
which is a general-purpose off-the-shelf theorem prover.

Given a textual entailment pair T/H, a theorem prover can be used to find
an answer to conjecture (A):

f(d(T))— f(d(H)) (A)

If the theorem prover manages to find a proof for this conjecture, then we
predict that T entails H. (Note that we use the term “predict” here. There are
cases in which the theorem prover finds a proof, although we are not actually
dealing with a true entailment. This is due to inaccurate semantic analysis. See
Section [l for further discussion on this topic.)

In addition, we can also use a theorem prover to detect inconsistencies in a
T/H pair by letting it handle the input (B):

~(f(d(T)Af(d(H))) (B)

If the theorem prover returns a proof for (B), we know that combining T and
H yields an inconsistent state, thereby predicting that T does not entail H. An
example is a pair T: John is a doctor and H: John is not a doctor. (Note that
although it is the case that if T and H (combined) are inconsistent, then T does
not entail H, the reverse does not hold. Therefore consistency checking is only a
partial method to check for non-entailment.)

The RTE dataset contains only few inconsistent T/H pairs. Even although
Example 78 might look like a case in point, it is not inconsistent. It would be if
the T in the example were Clinton’s new book is not a big seller. The addition
of the adverb here makes T+H consistent.
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Let’s consider some examples that our system deals with successfully. Exam-
ple 1005 is a case with apposition, and Example 898 one involving VP coordi-
nation.

Example: 1005 (TRUE)

T: Jessica Litman, a law professor at Michigan’s Wayne State Uni-
versity, has specialized in copyright law and Internet law for more
than 20 years.

H: Jessica Litman is a law professor.

Example: 898 (TRUE)

T: After the war the city was briefly occupied by the Allies and then
was returned to the Dutch.
H: After the war, the city was returned to the Dutch.

Examples like these are rather trivial from the inference point of view, because
they rely almost exclusively on correct syntactic analyses (here: apposition and
coordination) and no additional knowledge is required to support the theorem
prover. However, the majority of the entailment pairs require background knowl-
edge to predict an entailment. In the next section we show what kind of back-
ground knowledge we use and how we integrate it.

3.4 Background Knowledge

To perform any interesting reasoning, the theorem prover needs background
knowledge to support its proofs. For the RTE challenge we distinguished between
three kinds of background knowledge: generic knowledge, lexical knowledge and
geographical knowledge.

Knowledge is represented as axioms in first-order logic. Assume that BK is
a conjunction of first-order axioms representing the relevant background knowl-
edge for a T/H pair. The input to the theorem prover is then:

BK A (f(d(T))— f(d(H))) (A)

Generic Knowledge. Axioms for generic knowledge cover the semantics of
possessives, active-passive alternation, and spatial knowledge. There are a dozen
different axioms in the current system and these are the only manually generated
axioms. Some examples include:

VxVyVz(in(x,y) A in(y,z) — in(x,z))
VeVxVy(event(e)Aagent(e,x)Ain(e,y)—in(x,y))
VeVxVy(event(e)Apatient(e,x)Ain(e,y)—in(x,y))
VeVxVy(event(e)Atheme(e,x)Ain(e,y)—in(x,y))
VxVy (in(x,y) —Je(locate(e) Apatient (e,x) Ain(e,y)))
VxVy (of(x,y)—Je(have(e) Aagent(e,y) Apatient(e,x)))
VeVx(event(e) Aagent(e,x)—by(e,x))
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The last axiom in this list, for instance, helps Vampire to find a proof for
Example 1977, which is a case of active-passive alternation.

Example: 1977 (TRUE)
T: His family has steadfastly denied the charges.
H: The charges were denied by his family.

el x2 x3 x4

el x2 x3

male(x4) male(x3)
fzrfr(fl?;zifs)) charge(x3)

. . deny(el

d(T): charge(x2) d(H): patien?c/((el )X3)

deny(el) of(x2 X3’)
agent(el,x3) famﬂ};(XQ)
patient(el,x2) by(el,x2)

steadfastly(el)

Lexical Knowledge. Lexical knowledge is created automatically from Word-
Net. A hyponymy relation between two synsets A and B is converted into
Vx(A(x)—B(x)). Two synset sisters A and B are translated into Vx(A(x)—
—B(x)). Here the predicate symbols from the DRS are mapped to WordNet
synsets using a variant of Lesk’s WSD algorithm [MS99]. The aforementioned
Example 78 would be supported by the following lexical axioms:

Vx(clinton(x)—person(x))
Vx(book(x)—artifact(x))
Vx(artifact(x)— —person(x))

Consider for instance Example 1952 below. The axiom Vx(soar(x)—rise(x))
suffices for finding a proof for this entailment pair:

Example: 1952 (TRUE)

T: Crude oil prices soared to record levels.

H: Crude oil prices rise.

el x2 x5 x6
crude(x5) el x2 x3
0il(x6) crude(x2)
nn.(XG,X5) oil(x3)
any: o R e
price(x2)
agent(el,x5) rise(el)

patient(el,x2)
record(x2)
level(x2)

agent(el,x2)
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Geographical Knowledge. Because a high number of examples in the develop-
ment set required knowledge about geography, we automatically compiled a set
of axioms from the CIA factbook (http://www.cia.gov/cia/publications/
factbook/ , covering knowledge about capitals, countries and US states. Some
examples are:

VxVy (paris(x) Afrance(y) —in(x,y))
VxVy(pago pago(x)Aamerican samoa(y)—in(x,y))

However, we could not find any examples where the theorem prover found a
proof due to geographical knowledge in the test set.

3.5 Model Building

While theorem provers are designed to prove that a formula is a theorem (i.e.,
that the formula is true in any model), they are generally not good at deciding
that a formula is mot a theorem. Model builders are designed to show that a
formula is true in at least one model. Hence, in addition to the Vampire theorem
prover we also use the model builder Paradox [CS03].

To exploit the complementary approaches to inference, we use both a theo-
rem prover and a model builder for any inference problem: the theorem prover
attempts to prove the input whereas the model builder simultaneously tries to
find a model for the negation of the input. If the model builder finds a model for

=(f(d(T))—f(d(H))) (=-4)

we know that there cannot be a proof for its negation (hence no entailment).
And if the model builder is able to generate a model for

f(d(T)Af(d(H)) (=-B)

we know that T and H are consistent (maybe entailment). (In practice, this is
also a good way to terminate the search for proofs or models: if the theorem
prover finds a proof for =¢, we can halt the model builder to try and find a
model for ¢ (because there won’t be one), and vice versa.)

Another interesting property of a model builder is that it outputs a model
for its input formula, if the input is satisfiable. A model is here the logical notion
of a model, describing a situation in which the input formula is true. Formally,
a model is a pair (D, F) where D is the set of entities in the domain, and F a
function mapping predicate symbols to sets of domain members. For instance,
the model returned for f(d(T)) in Example 78 is one where the domain consists
of three entities (domain size = 3):

D = {d1,d2,d3} F(loc) = {}
F(book) = {d1,d2} F(seller) = {}
F(clinton) = {d3} F(be) = {}
F(of) = {(d1,d3)} F(agent) = {}
F(big) = {} F(patient) = {}
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Model builders like Paradox generate such finite models by iteration. They
attempt to create a model for domain size 1. If they fail, they increase the
domain size and try again, until either they find a model or their resources run
out. Thus, although there are possibly infinitely many models, model builders
generally build a model with a minimal domain size. (For more information on
model building consult [BB03]).

In the next section we show how to explore these finite models by using the
domain and model size in predicting entailment.

3.6 Approximating Entailment

In an ideal world we calculate all the required background knowledge and by ei-
ther finding a proof or a countermodel, decide how T and H relate with respect to
entailment. However, it is extremely hard to acquire all the required background
knowledge. This is partly due to the limitations of word sense disambiguation,
the lack of resources like WordNet, and the lack of general knowledge in a form
suitable for automated inference tasks.

To introduce an element of robustness into our approach, we use the models
as produced by the model builder to measure the “distance” from an entailment.
The intuition behind it is as follows. If H is entailed by T, the model for T+H
is not informative compared to the one for T, and hence does not introduce new
entities. Put differently, the domain size for T+H would equal the domain size of
T. In contrast, if T does not entail H, H normally contains some new information
(except when it contains negated information), and this will be reflected in the
domain size of T+H, which then is larger than the domain size of T. It turns
out that this difference between the domain sizes is a useful way of measuring
the likelihood of entailment: large differences are mostly not entailments, small
differences mostly are.

Consider the following example:

Example: 1049 (TRUE)

T: Four Venezuelan firefighters who were traveling to a training
course in Texas were killed when their sport utility vehicle drifted
onto the shoulder of a highway and struck a parked truck.

H: Four firefighters were killed in a car accident.

Although this example is judged as a true entailment, Vampire (the the-
orem prover that we use) does not find a proof because it lacks the back-
ground knowledge that one way of causing a car accident is to “drift onto
the shoulder of the highway and strike something”. On the other hand, Para-
dox, the model builder that we use, generates a model with domain size 11
for f(d(T)), and a model with domain size 12 for f(d(T))Af(d(H)). The ab-
solute difference in domain sizes is small, and therefore likely to indicate an
entailment. Apart from the absolute difference we also compute the difference
relative to the domain size. For the example above the relative domain size yields
1/12 = 0.083.
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The domain size only tells us something about the number of entities used
in a model—not about the number of established relations between the model’s
entities. Therefore, we also introduce the notion of model size. The model size is
defined here by counting the number of all instances of two-place relations (and
three-place relations, if there are any) in the model, and multiplying this with
the domain size. For instance, the following (arbitrary) model

D = {d1,d2,d3}

F(cat) = {d1,d2}

F(john) = {d3}

F(of) = {(d1,d3)}

F(like) = {(d3,d1),(d3,d2)}

has a domain consisting of three entities and three instantiated two-place rela-
tions, yielding a model size of 3 %3 = 9.

Obviously, it is harder for model builders to generate a minimal model than
just any model. In practice, a model builder like Paradox generally constructs
models with a minimal domain size, but not necessarily one with a minimal
model size. It is unclear how much this influenced our results but we plan to ex-
periment with other model builders in future work, or taking aboard algorithms
that transfer a model into a minimal model.

3.7 Deep Semantic Features

Given our approach to deep semantic analysis, we identified eight features rel-
evant for recognising textual entailment. The theorem prover provides us with
two features: entailed determining whether T implies H, and inconsistent
determining whether T together with H is inconsistent. The model builder gives
us six features: domainsize and modelsize for T+H as well as the absolute
and relative difference between the sizes of T and T+H, both for the size of the
domains (domainsizeabsdif, domainsizereldif) and the size of the models
(modelsizeabsdif, modelsizereldif).

4 Experiments

There are not many test suites available for textual inference. We use throughout
this section the dataset made available as part of the RTE challenge. We used
the t-test for the difference between two proportions to measure whether the
difference in accuracy between two algorithms or an algorithm and the baseline
is statistically significant at the 5% level.

4.1 Dataset Design and Evaluation Measures

The organisers released a development set of 567 sentence pairs and a test set
of 800 sentence pairs. In both sets, 50% of the sentence pairs were annotated as
TRUE and 50% as FALSE, leading to a 50% most frequent class baseline for
automatic systems.
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The examples are further distinguished according to the way they were de-
signed via a so-called Task variable. Examples marked CD (Comparable Doc-
uments) comprise sentences with high lexical overlap in comparable news ar-
ticles, whereas the hypotheses of examples marked QA (Question Answering)
were formed by translating questions from e.g., TREC into statements. The
other subsets are IE (Information extraction), MT (Machine Translation) RC
(Reading Comprehension), PP (Paraphrase Acquisition) and IR (Information
Retrieval).

The different examples and subsets cover a wide variety of different aspects of
entailment, from incorporation of background knowledge to lexical to syntactic
entailment and combinations of all these. For a more exhaustive description of
dataset design we refer the reader to [DGMO5].

4.2 Experiment 1: Human Upper Bound

To establish a human upper bound as well as investigate the validity of the
datasets issued, one of the authors annotated all 800 examples of the test
set for entailment, following the short RTE annotation guidelines available at
http://www.pascal-network.org/Challenges/RTE/Instructions. The an-
notation was performed before the release of the gold standard annotation for
the test set and was therefore independent of the organisers’ annotation. The
organisers’ and the author’s annotation yielded a high percentage agreement of
95.25%. However, 33% of the originally created examples were already filtered
out of the corpus before release by the organisers because of agreement-related
problems. Therefore we expect that human agreement on textual entailment in
general is rather lower. A further discussion of the gold standard dataset can be
found in Section

4.3 Decision Trees for Entailment Recognition

We expressed each example pair as a feature vector, using different subsets of
the features described in Section [2 and Section [3] for each experiment. We then
trained a decision tree for classification into TRUE and FALSE entailment on
the development set, using the Weka machine learning tool [WFEQ0], and tested
on the test set.

Apart from a classification, Weka also computes a confidence value between
0.5 and 1 for each decision, dependent on the leaf in the tree that the classified
example falls into: if the leaf covers = examples in the training set, of which y
examples are classified wrongly, then the error rate is y/z and the confidence
value is 1 — y/x.

Following the RTE challenge, the evaluation measures are accuracy (acc)
as the percentage of correct judgements as well as confidence-weighted average
score (cws), which rewards the system’s ability to assign a higher confidence
score to correct judgements than wrong ones [DGMO05]: after the n judgements
are sorted in decreasing order by their confidence value, the following measure
is computed:
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1 «~ #correct-up-rank-i
cws =
n 2 -

i=1 !
All evaluation measures are computed over the whole test set as well as on the 7
different subsets (CD, IE, etc.). The results are summarised in Table Il We also
computed precision, recall and F-measure for both classes TRUE and FALSE
and will discuss the results in the text whenever of interest.

Experiment 2: Shallow Features. In this experiment only the shallow fea-
tures (see Section [2)) were used. The overall accuracy of 56.9% is significantly
higher than the baseline.

Column 2 in Table [I] shows that this decent performance is entirely due to
excellent performance on the CD subset. (Recall that the CD set was designed
explicitly with examples with high lexical overlap in mind.)

In addition, the method overestimates the number of true entailments, achiev-
ing a Recall of 0.926 for the class TRUE, but a precision of only 0.547 on the
same class. In contrast, it has good precision (0.761) but low recall (0.236) for
the FALSE class. Thus, there is a correspondence between low word overlap and
FALSE examples (see also the discussion of Example 731 in Section [2); high
overlap, however, is normally necessary but not sufficient for TRUE entailment
(see also Example 78 in Section [3]).

Table 1. Summary of Results for Experiments 1 to 6

Exp 1: Human 2: Shallow  3: Strict 4: Deep 5: Hybrid 6: Hybr/Task
Task acc cws acc Cws acc Cws acc CwS acc Cws  acC  Cws

CD 0.967 n/a 0.827 0.881 0.547 0.617 0.713 0.787 0.700 0.790 0.827 0.827
IE 0.975 n/a 0.508 0.503 0.542 0.622 0.533 0.616 0.542 0.639 0.542 0.627
MT 0.900 n/a 0.500 0.515 0.500 0.436 0.592 0.596 0.525 0.512 0.533 0.581
QA 0.961 n/a 0.531 0.557 0.461 0.422 0.515 0.419 0.569 0.520 0.577 0.531
RC 0.979 n/a 0.507 0.502 0.557 0.638 0.457 0.537 0.507 0.587 0.557 0.644
PP 0.920 n/a 0.480 0.467 0.540 0.581 0.520 0.616 0.560 0.667 0.580 0.619
IR 0.922 n/a 0.511 0.561 0.489 0.421 0.567 0.503 0.622 0.569 0.611 0.561
all 0.951 n/a 0.569 0.624 0.520 0.548 0.562 0.608 0.577 0.632 0.612 0.646

Experiment 3: Strict Entailment. To test the potential of entailment as
discovered by theorem proving alone, we now use only the entailment and
inconsistent features. As expected, the decision tree shows that, if a proof for
T implies H has been found, the example should be classified as TRUE, otherwise
as FALSE. The inconsistent feature was not used by the decision tree, which
was not surprising as very few examples were covered by that feature.

The deep semantic analysis was able to create semantic representations and
then search for proofs for 774 of all 800 T /H-pairs in the test data, achieving a
coverage of 96.8%. The precision (0.767) for the class TRUE is reasonably high:
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if a proof is found, then an entailment is indeed very likely. The exceptions where
we found a proof but entailment did not hold are discussed further in Section [l
However, recall is very low (0.058) as only 30 proofs were found on the test set
(for some examples see Section[J). This yields an F-measure of only 0.10 for the
TRUE class. Due to the low recall, the overall accuracy of the system (0.52, see
Table [T)) is not significantly higher than the baseline.

Thus, this feature behaves in the opposite way to shallow lexical overlap and
overgenerates the FALSE class. Missing lexical and background knowledge is the
major cause for missing proofs.

Experiment 4: Approximating Entailment. As discussed in Section
we now try to compensate for missing knowledge and improve recall for TRUE
entailments by approximating entailment with the features that are furnished
by the model builder. Thus, Experiment 4 uses all eight deep semantic analysis
features, including the features capturing differences in domain- and modelsizes.
The recall for the TRUE class indeed jumps to 0.735. Although, unavoidably,
the FALSE class suffers, the resulting overall accuracy (0.562, see Column 4 in
Table [I)) is significantly higher than when using the features provided by the
theorem prover alone (as in Experiment 3). The confidence weighted score also
rises substantially from 0.548 to 0.608. The approximation achieved can be seen
in the different treatment of Example 1049 (see Section B.6) in Experiments 3
and 4. In Experiment 3, this example is wrongly classified as FALSE as no proof
can be found; in Experiment 4, it is correctly classified as TRUE due to the
small difference between domain- and modelsizes for T and T+H.

There is hardly any overall difference in accuracy between the shallow and the
deep classifier. However, it seems that the shallow classifier in its current form
has very little potential outside of the CD subset whereas the deep classifier
shows a more promising performance for several subsets.

Experiment 5: Hybrid Classification. As shallow and deep classifiers seem
to perform differently on differently designed datasets, we hypothesized that a
combination of these classifiers should bring further improvement. Experiment 5
therefore used all shallow and deep features together. However, the overall per-
formance of this classifier (see Column 5 in Table [I]) is not significantly better
than either of the separate classifiers. Closer inspection of the results reveals that,
in comparison to the shallow classifier, the hybrid classifier performs better or
equally on all subsets but CD. In comparison to the deep classifier in Column 4,
the hybrid classifier performs equally well or better on all subsets apart from MT.
Overall, this means more robust performance of the hybrid classifier over differ-
ently designed datasets and therefore more independence from dataset design.

Experiment 6: Dependency on Dataset Design. As Experiment 5 shows,
simple combination of methods, while maybe more robust, will not necessarily
raise overall performance if the system does not know when to apply which
method. To test this hypothesis further we integrated the subset indicator as a
feature with the values CD, IE, MT, RC, IR, PP, QA into our hybrid system.
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Indeed, the resulting overall accuracy (0.612) is significantly better than either
shallow or deep system alone. In addition, the performance over all subsets is
now more even and robust.

Note that using both a combination of methodologies and the subset indicator
is necessary to improve on individual shallow and deep classifiers for this corpus.
We integrated the subset indicator also into the shallow and deep classifier by
themselves, yielding classifiers Shallow+Task and Deep+Task, with no or only
very small changes in accuracy (these figures are not included in Table [I).

5 Error Analysis

A full error analysis of the hybrid system is beyond the scope of this paper as it
incorporates a multitude of factors, including errors of shallow and deep methods
as well as errors induced by the learning model and the combination of methods.
We will, however, discuss error types of the shallow word overlap and the main
theorem proving component of our system in the following two subsections.

5.1 Shallow Methods

As discussed in Experiment 2 above, the word overlap method tends to overgen-
erate the TRUE class. Typical examples that lead to such false positives can be
summarized as follows:

— Negation that is not present in the hypothesis but is present in the text (see

Example 78 in Section ().

Structural conversions, as we use a bag-of-words model only (for example,

active-passive conversions).

Conditional information in text or hypothesis, for example in “if”-clauses;

ordinals; idioms. This includes Examples 1617, 2040, 2025, 2055, 2030, 2082

and 2079, which were also a problem for the theorem proving component

and are in detail discussed in Section below.

— Underestimation of crucial non-matching words in the hypothesis (see Exam-
ple 828 below, where the mismatch of 20-year-old is underestimated due to
considerable overlap of other words like Jennifer Hawkins, Australia, beauty
queen etc.).

Example: 828 (FALSE)

T: Jennifer Hawkins is the 21-year-old beauty queen from Australia.

H: Jennifer Hawkins is Australia’s 20-year-old beauty queen.

— Word sense ambiguity. As the shallow method does not perform any WSD,
this can lead to incorrectly relating lemmata in hypothesis and text like hit
and shot in Example 1959 below.

Example: 1959 (FALSE)
T: Kerry hit Bush hard on his conduct on the war in Iraq.
H: Kerry shot Bush.
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5.2 Strict Entailment

Experiment 3 showed that strict entailment creates many false negatives due to
missing background knowledge. In contrast, when the theorem prover found a
proof it was usually correct. Only 30 proofs were found by the system, of which 23
were annotated as entailments in the gold standard. These include adequately
analysed phenomena such as apposition (5 times: 760, 929, 995, 1903, 1905),
relative clauses (3 times: 142, 1060, 1900), coordination and attachment(3 times:
898, 807, 893), active-passive alternation (twice: 1007, 1897), possessives (once:
1010), the use of background knowledge (6 times: 236, 836, 1944, 1952, 1987,
1994) and more or less straightforward cases (3 times: 833, 1076, 741). Two of
such examples (1005 from the training set and 898 from the test set) are given
in Section Bl

Incorrect proofs were found for seven cases. It is interesting to find out why
our system discovered a proof in these cases. It turns out that they are due to
incorrect lexical semantics, the lack of dealing with metaphors, the restricted ex-
pressivity of first-order logic, and the inability to deal with idiomatic expressions.
We will discuss these cases in detail.

Ordinals were not dealt with correctly in Examples 1617 and 2040. In both
cases the relative clause (1617) and the infinitive construction (2040) were not
part of the restriction of the ordinal, giving an incorrect semantic representation:

Example: 1617 (FALSE)

T: In 1782 Martin Van Buren, the first US president who was a native
citizen of the United States, was born in Kinderhook, N.Y.
H: The first US president was born in Kinderhook, N.Y.

Example: 2040 (FALSE)

T: Stjepan Mesic was the first Croatian president to deliver a public
address at Harvard.
H: Stjepan Mesic was the first Croatian president.

Example 2025 shows a text with a conditional. The current system does not
adequately deal with all discourse adverbials yet, causing it to assert that Poland
joins the EU rather than placing it in the antecedent of a conditional.

Example: 2025 (FALSE)

T: There are a lot of farmers in Poland who worry about their future
if Poland joins the European Union.
H: Poland joins the European Union.

A rather similar case is Example 2055, where the system correctly associated
Einstein to be the subject of being the president of Israel, but it incorrectly
assumed that being invited to X is being X. A restriction on this class of modal
verbs will fix this problem. (In the development data, however, there were similar
cases that were annotated as entailments.)
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Example: 2055 (FALSE)

T: The fact that Einstein was invited to be the president of Israel
is critical to an accurate understanding of one of the greatest
individuals in modern history.

H: Einstein is the president of Israel.

An interesting example is 2030. Here it seems that capital in 2030-T is used
metaphorically, in the sense that it is the most important location with respect
to gastronomy. As our system did not spot this, it incorrectly found a proof
instead.

Example: 2030 (FALSE)

T: Lyon is actually the gastronomic capital of France.

H: Lyon is the capital of France.

A neo-Davidsonian analysis based on first-order logic is problematic for cases

such as Example 2082. Although we analyse the modifiers of a verb all intersec-
tively, it seems that established in Italy should be analysed restrictively.

Example: 2082 (FALSE)
T: Microsoft was established in Italy in 1985.
H: Microsoft was established in 1985.

Example 2079, finally, shows that some entailment pairs require a sophisti-
cated analysis of idiomatic expressions:

Example: 2079 (FALSE)
T: US presence puts Qatar in a delicate spot.

H: Qatar is located in a delicate spot.

These examples of false positives show once more how hard recognising textual
entailment is. Overall, however, the backbone of our deep semantic analysis is
reasonably accurate. Its recall for TRUE entailments can be increased by finding
methods for selecting appropriate background knowledge, and revising some of
the lexical semantics will improve its precision.

6 Discussion of the Entailment Task

We will now discuss some observations we made on the task definition and the
annotated data sets.

6.1 Task Definition

The current RTE dataset classified entailment as binary TRUE and FALSE.
Following FRACAS, the semantic test suite in [CCVET96|, a classification that
respects three values (yes, don’t know, inconsistent), is probably more in its
place. For instance, not only are examples 1301 and 1310 below not entailments,
the hypotheses are inconsistent with the corresponding texts as well:



422 J. Bos and K. Markert

Example: 1301 (FALSE) (sic)

T: The former wife of the South African president did not ask for
amnesty, and her activities were not listed in the political reports
submitted by the African National Congress to the Truth and
Reconciliation Commission in 1996 and 1997.

H: Winny Mandela, the President’s ex-wife, is requesting amnesty.

Example: 1310 (FALSE) (sic)

T: Although the hospital insists that King Hussein is not fully free
of the cancer, they are hopeful that he will recover.

H: The statement added that King Hussein has been cured com-
pletely.

6.2 Annotated Datasets

When establishing the upper bound in Experiment 1, we made several obser-
vations that could have an effect on the design of future test suites. The dis-
agreements in annotation fell roughly into three categories. Firstly, the amount
of background knowledge assumed by our annotation sometimes differed from
the one taken into account by the gold standard annotation. Thus, the anno-
tating author judged Example 825 below as FALSE, as she was not aware that
Beiji was in the north of Iraq. The question of how much background knowledge
can be assumed and how many examples should draw on extensive background
knowledge in future datasets was extensively discussed at the RTE workshop.

Example: 825 (TRUE) (own annotation FALSE)

T: A car bomb that exploded outside a U.S. military base near Beiji,
killed 11 Iraqis.

H: A car bomb exploded outside a U.S. base in the northern town of
Beiji, killing 11 Iragis.

Secondly, in a few cases, sentences that were isolated from their original
context in the examples made it hard to annotate them correctly. Thus, our own
annotation for Example 961 was FALSE as the first name of Seiler as Audrey is
not inferrable from the text without a wider context.

Example: 961 TRUE (own annotation FALSE)

T: Seiler was reported missing March 27 and was found four days
later in a marsh near her campus apartment.
H: Abducted Audrey Seiler found four days after missing.

Thirdly, several entailments were incorrectly annotated the gold standard in
our opinion. Example 236 (see below), for instance, was judged as entailment.
But taking tense into account (which, incidentally, our system is currently not
able to do), it is strictly speaking not a textual entailment.
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Example: 236 (TRUE) (sic)

T: Yasir Arafat has agreed to appoint a longtime loyalist as interior
minister to take charge of the country’s security.

H: Yasir Arafat nominated a loyalist as interior minister.

Another example is 893: the adverb perhaps in the text clearly expresses doubt
on the date of establishment of settlements on Jakarta, and the hypothesis es-
tablishes it as a fact. This clearly is not entailment.

Example: 893 (TRUE) (sic)

T: The first settlements on the site of Jakarta were established at the
mouth of the Ciliwung, perhaps as early as the 5th century AD.

H: The first settlements on the site of Jakarta were established as
early as the 5th century AD.

7 Related Work

Our shallow analysis is similar to several shallow models presented as part of
the RTE challenge, in particular the word overlap methods by [JdR05] and the
shallow baselines by [HPV05]. The results achieved by us and them give a cur-
rent upper bound of 55-57% accuracy for shallow overlap methods. This is also
confirmed by [DGMO05], who cite a non-participating system by Rada Mihalcea
based on shallow features only with an accuracy of 56.8%. [PAQ05] adapted the
BLEU algorithm that relies mainly on n-gram overlap. They report that the
resulting system did not beat the 50% baseline. This difference in results might
be due to the fact that the BLEU algorithm is not directional, i.e. it penalises
difference in information and length between text and hypothesis also if the
hypothesis is completely included and entailed by the text but, for example,
contains much less information. All these approaches confirm the fact that shal-
low methods do best on the CD subtask and have the tendency to overestimate
TRUE entailments. IDF models for entailment and question answering, but not
within the RTE framework, have also been proposed by [MdR03, ISGH™04].
The main idea of our deep analysis, using a detailed semantic analysis and
first-order inference, goes back to [BB05]. Other approaches to textual entail-
ment that are comparable to our “strict” entailment as carried out in Experi-
ment 3 include the OTTER theorem prover [AKhO5, [FHH'05] and EPILOG in
IBBFT05]. Both these systems (like our “strict” system) do not beat the base-
line, with [BBFT05] explicitly mentioning lack of background knowledge and
inference rules as the reason, confirming our experience. We incorporate model
building as a central part of the inference mechanism as a partial solution to
this problem, an approach not adopted by any other system as far as we know.
We have shown that using model generation is a promising way to approximate
entailment and can improve the low recall of theorem proving. It is interesting
to compare our approach to [RNM05]. Although they do not use model builders,
a similar basic idea of relaxing the constraints of strict theorem proving and
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weighing the differences between hypothesis and text underlies their weighted
abduction approach.

As far as we are aware, our combination of a shallow with a deep approach
into a single hybrid system is unique and adds to the robustness of our approach.
We also show that differences in dataset design can be exploited by such a hy-
brid approach, resulting in a significant overall improvement. The task variable
was also explored by [NSDCO05] and [RNMO5] with neither of them reporting
statistically significant differences between their systems with and without the
task variable. We believe the reason for this discrepancy compared to our results
might lie in the fact that their systems do not incorporate two fundamentally dif-
ferent inference strategies. As discussed in Section ] using the task variable with
the deep or shallow approach alone does not improve results, whereas the com-
bination of two different strategies plus the task variable yields improvements.

Results of other approaches to determining textual entailment indicate that
it is an extremely hard task. The RTE workshop revealed that participating
systems reached accuracy figures ranging between 0.50 and 0.59 and cws scores
between 0.50 and 0.69 [DGMO05]. Comparing this with our own results (accuracy
0.61 and cws 0.65) shows how well our systems performs on the same data set.

8 Conclusions

Relying on theorem proving as a technique for determining textual entailment
yielded high precision but low recall due to a general lack of appropriate back-
ground knowledge. We used model building as an innovative technique to sur-
mount this problem to a certain extent. Still, it will be unavoidable to incorporate
automatic methods for knowledge acquisition to increase the performance of our
approach. Future work will be directed to the acquisition of targeted paraphrases
(as for example in [BL03]) that can be converted into background knowledge in
the form of axioms.

Our hybrid approach combines shallow analysis with both theorem proving
and model building and achieves high accuracy scores on the RTE dataset com-
pared to other systems that we are aware of. The results for this approach also
indicate that (a) the choice of entailment recognition methods might have to
vary according to the dataset design and/or application and (b) that a method
that wants to achieve robust performance across different datasets might need
the integration of several different entailment recognition methods as well as an
indicator of design methodology or application.
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