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Abstract

This paper describes a technique to include acoustic confidence
scores as returned by automated speech recognisers in generic seman-
tic representations. The method we propose requires only minimal
changes to an existing grammar used for speech applications. Special
attention is paid to the treatment of multi-word lexemes and com-
bining several (N-best) speech recognition results into one semantic
representation. The approach has been implemented and tested us-
ing the Nuance speech recognition software and a chart parser, in the
formalism of underspecified discourse representations. The potential
relevance of confidence scores in rich semantic representations is illus-
trated by generating more flexible clarification questions in dialogue
systems.

1 Introduction

Many current commercial and research prototype spoken dialogue systems
use slot-filling as a technique to recover semantic information from the
speech recognition component. The speech recogniser thereby often returns
slot-value pairs together with a confidence score which is calculated on the
basis of the individual acoustic confidences of the words that trigger the
value of a slot. The slot-value pairs, and their respective confidence scores,
can then be used in subsequent processing by the dialogue manager to de-
cide how the dialogue should proceed (e.g. whether clarification or confir-
mation of the user’s utterance is needed or not). A case in point is the
commercial Nuance speech recognition and dialogue management software
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(http://www.nuance.com) or Scansoft’s ASR1600 SDK (former Lernout
and Hauspie, http://www.scansoft.com).

The slot-filling paradigm is successful in several applications such as
travel service and booking, reservation confirmation, price and availability
information, and call routing. For instance, the Nuance system is able to
return the following result from the recogniser for the utterance “Withdraw
fifteen hundred dollars from savings”:

Slot Value Confidence
action withdraw 49
amount $1500.00 72
account savings 61

From this output, the dialogue manager might conclude that the user
wants to perform some transaction on her savings account, but on the other
hand decide that it has to confirm the requested type of transaction. Fur-
thermore, the dialogue manager can make use of a set of slot-value pairs
derived from the N-best recognition results to decide whether it should ini-
tiate an alternative clarification question (e.g. in situations where different
values are assigned to the same slot in different hypotheses).

For speech applications that demand a deeper analysis of semantic in-
formation, the limitations of slot-filling approaches soon become an obstacle
for serious semantic interpretation. Dialogue systems in the area of home
automation show the need for a proper treatment of quantification and nega-
tion [7]. Speech-controlled mobile robots often have such a rich scenario of
primitive actions that slot-filling is simply infeasible [6]. These systems em-
ploy richer semantic representations and apply ambiguity resolution in a
second stage for sufficient understanding of speaker’s utterances. In other
research oriented approaches, such as collaborative problem solving [1] or
tutorial dialogues, the need for a fine-grained semantics is even more obvi-
ous.

The aim of this paper is to enrich fine-grained semantic representations
used in spoken dialogue systems with recogniser confidence scores. In par-
ticular, we will show how we can extend an existing grammar in a modular
way employing only minimal changes in both the syntactic analysis and the
corresponding semantic operations. We first consider single recognition re-
sults and then extend the approach to N-best processing. The result is a
system with new potential for computational semantics, showing the merit
of deep semantic analysis for generating clarification speech acts in spoken
dialogue systems, using an existing commercial speech recogniser.
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2 Confidence Scores and Clarification Dialogues

The main motivation for integrating acoustic confidence scores with deep
semantic representations is to improve the quality of interaction in spoken
dialogue systems, in particular with respect to clarification sub-dialogues.

The easiest way to decide whether clarification should be initiated for
a user utterance is to look at its overall confidence score computed by the
recogniser. This allows a system to ask the user to repeat/rephrase their
input or to use implicit confirmation of the utterance in the next turn.
However, it is often the case that some parts of an utterance are understood
quite well and clarification is only needed for certain sub-phrases of the
input. We already pointed out in the introduction that slot-based systems
can exploit (sets of) slot confidences returned by the recogniser to generate
clarification questions.

When we are dealing with richer semantic representations, however, the
recogniser does not provide us with a mapping from semantic entities to
acoustic confidences. We have to find a new way to integrate acoustic con-
fidence scores with sub-formulas in the semantic representation and it is a
much harder task to decide (1) which part of the input needs clarification,
and (2) how to phrase the actual clarification question. Note that with-
out considering individual word confidences these two questions cannot be
decided at all (we could then only talk about the recognition result as a
whole). Let us illustrate this with an example from the IBL corpus [6] us-
ing the Nuance speech recogniser. The recognition engine returns the best
hypothesis for an input utterance together with an overall confidence score
and individual confidence scores for each word. In the example below, the
first number in the recognised string reflects the overall confidence score
and the scores following each word in paranthesis indicate their individual
confidence scores:

File 1: u1 GA MD 1.wav

Transcription: again you walk straight ahead

Recognised(50): again(66) you(60) walk(49) straight(28) ahead(58)

If we only consider the recognition result and its overall confidence score,
we can only ask for clarification with respect to the whole utterance (e.g.
“Do you want me to go straight ahead?”). We cannot focus on specific
parts of the input utterance with particularly low confidence scores simply
because this information is not available. Suppose now that we are also
given the confidence scores on the word level but without a possibility to
include them in the semantic representation. The best a system could do
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is asking “Did you say straight?” or simply “Straight?”. In contrast, if we
had a semantic representation augmented with confidence scores, we could
interface to a domain ontology or the selectional restrictions of the verb to
produce more informative clarifications like “Sorry, which direction?” or
“Where shall I go?”. Attaching confidence scores to sub-formulas in the
semantic representation would allow us in this case to focus on a particular
sub-constituent of the utterance and to select the appropriate WH-word (or
phrase) needed to refer to this constituent. Another advantage of putting
confidence scores in the semantic representation is that it allows us to pose
clarification questions that relate to the task that the user has to perform
[9]. Suppose the recogniser hypothesised “Walk past the bridge” with a low
confidence for the preposition. In this case, the system might react with a
question like “You mean towards Tescos?” if indeed there is an appropriate
landmark in the computed direction.

We can also use the confidence scores to decide whether the system
should pose alternative questions when faced with competing hypotheses (N-
best processing). First of all, we can compare the scores for the alternatives
and may find out that one of them is sufficiently better than the others. In
this case there is no need to clarify. If, on the other hand, two alternatives
have approximately the same confidence, we can check whether they make
a difference for the task at all (e.g. small words like determiners often do
not make a difference when the semantic representation is translated to
action primitives). Only if there is a difference on the task level, we have to
clarify and may use task-level reformulations as discussed above to make the
differences in interpretations more apparent to the user. Finally, we imagine
that confidence scores can also help us to pose clarification questions related
to pronoun resolution. For example, if we have a high confidence score for a
pronoun but cannot find an antecedent for it in the semantic representation,
the system can come up with a question like “Who/what do you mean by
he/it?”.

3 Grammar Extension with Confidence Scores

Our approach to integrating confidence scores in semantic representations
involves altering the grammar used for interpretation in such a way that
it treats confidence scores as numbers that are part of the string to be
parsed. This requires only minimal adaptations to the grammar rules, the
corresponding semantic rules and the lexicon.

The semantic representations in our system are produced with the help of
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a unification grammar, using operations borrowed from the lambda-calculus
as a “glue language”, such as functional application and β-conversion. We
refer to this as the base grammar. The base grammar is used to derive
two grammars: a speech recognition grammar (in the Nuance GSL format,
using the UNIANCE compiler [3]), and a confidence assignment grammar
(see Fig. 1). The confidence assignment grammar is built by extending the
base grammar in two ways: (1) extending the rule set to deal with confidence
scores, and (2) integrating confidence scores into the lexical semantics. Note
that, because the speech recognition grammar is a proper subset of the base
grammar, and the confidence assignment grammar is only extended with
respect to the coverage of confidence scores, it is guaranteed that any output
of the speech recogniser is covered by the confidence assignment grammar.

Transfor-
mation

Transfor-
mation

Input
Utterance

Semantic Re-
presentation

Speech Rec.
Grammar

Confidence
Grammar

Base Grammar

Figure 1: Deriving different grammars from one common base grammar.

It is common practice in dialogue system design to use a shared gram-
mar resource which is then compiled out into different formats needed by the
various components of the actual application. An example is SRI’s GEM-
INI platform [5] which also generates Nuance GSL format and additionally
includes a generation component.

So what are the minimal changes to our grammar required to parse
utterances including word confidence scores? First of all, we need to extend
it with pre-terminal rules expanding to all possible confidence scores. As
confidences are simply numerical values in the range [0 . . . 100], this will
amount to the following rules, introducing the new syntactic category Conf :

Conf

0

Conf

1
. . .

Conf

100

In a second step we have to replace each pre-terminal rule PT → terminal
with two new rules: one that combines with a confidence score, and one that
replaces the original pre-terminal rule. This transformation can be depicted
as follows:
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PT

terminal
⇒

PT

PT′ Conf

PT′

terminal
The modified grammar now allows us to parse utterances where each

word is followed by a confidence score. For example, the (lexical) parse tree
for the word ‘again’ now looks like this:

ADV

again
⇒

ADV

ADV′

again

Conf

66

These transformational rules minimise the changes to our grammar be-
cause we only have to rewrite pre-terminal rules, which can easily be au-
tomated. The rest of the grammar is not affected. Another advantage of
this method is that later we will only have to devise one additional semantic
construction rule, namely the rule that combines our new pre-terminals with
the confidence scores.1

One obstacle in the transformation we need to deal with is a proper
treatment of multi-word terminals generated by a single preterminal sym-
bol. The problem is that all words within a multi-word sequence will be
assigned a confidence score by the recogniser, but a naive extension of the
transformation procedure only allows for a single confidence score at the end
of each sequence:

Name

Name′

pizza hut

Conf

57

To remedy this problem, we choose to generalise the grammar trans-
formation in a different way. We replace pre-terminal rules for multi-word
lexemes by the following set of rules:

1We should note, however, that the transformation as it stands strictly requires that
there is a single pre-terminal rule for each terminal symbol. That is, it cannot handle
rules of the form X → terminal Y , where Y is a non-terminal. Rules of this form
have to be substituted by two new rules: one where terminal is replaced by a unique
pre-terminal P and a new pre-terminal rule P → terminal. We did not extend our
transformation algorithm to deal with such cases because in our implementation there is
a strict separation between lexical rules (pre-terminal rules) and all other grammar rules.
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PT

term1 . . . termn

⇒
PT1

term1

. . .
PTn

termn

PT

PT1 Conf . . . PTn Conf

This allows for a confidence score after each word in the input utterance
as produced by the speech recogniser. Given these new rules we now get the
following parse tree for “pizza 62 hut 43”:

Name

PizzaHut1

pizza

Conf

62

PizzaHut2

hut

Conf

43

Another reason to choose such a flat analysis for multi-word sequences
is to facilitate the semantic construction process in a smooth and straight-
forward way. As argued above for single word terminals, we only have to
devise one additional semantic rule that, for multi-word terminals, combines
several words and their confidences scores into one semantic representation
for the mother category.

4 Semantic Representations and Confidence Scores

Now that we know how to parse a string decorated with confidence scores,
we introduce the process of building semantic representations in the trans-
formed grammar. Again, the changes that are required are minimal: we
need to formulate the semantic rules mirroring the newly introduced gram-
mar rules, and modify the lexical semantics of each category to incorporate
the confidence scores.

The semantic representations that we use are underspecified discourse
representations (UDRs), adopted from Hole Semantics [2] and Reyle’s un-
derspecified DRSs [8]. The structures used in Hole Semantics represent
ambiguities as a set of sub-structures with holes, governed by a set of con-
straints on how these holes can be filled. Here we take these sub-structures
to be DRSs, and use labels to refer to them in the constraints. Resolving an
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underspecified representation amounts to plugging the holes with DRSs in
such a way that no constraints are violated. The syntax of UDRs is defined
as follows:

1. If U is a finite set of variables, and L is a finite set of UDR-
conditions, and C is a finite set of scoping constraints, then
the tuple 〈U,L,C〉 is a UDR;

2. If U1 and U2 are UDRs, then so is (U1;U2);

3. If l is a label, B a proto-DRS, then l:B is a UDR-condition;

4. If U1 and U2 are UDRs, then U1
∨

U2 is a UDR-condition;
5. If l is a label and h is a hole, then l≤h and l=h are UDR-

constraints.

Basic UDRs are defined by Clause 1. The variables (ranging over holes
and labels) introduced in the domain of a UDR bind occurrences of variables
in the UDR-conditions and UDR-constraints. Clause 2 introduces merging
of UDRs. The merge ; for UDRs is dynamic (like the merge for DRSs),
and for a UDR (U1;U2), variables introduced in U1 bind free occurrences
in U2. Clause 3 defines labelled DRSs as in the original formulation of hole
semantics. Clause 4, disjunction, is used to encode lexical or structural
(non scope) ambiguities. The scoping constraints (Clause 5) are relations
over labels and holes and express dominance within tree structures. For
instance, l≤h states that h dominates l, or in other words, label l is in the
scope of hole h, or h out-scopes l. The equality constraint identifies a hole
with a label. The proto-DRSs required by Clause 3 are like ordinary DRSs,
but with the difference that labels or holes can occur in argument positions
for DRSs. Consider an example UDR for “every manager of a company”:

h0 h1 h2 l1 l2 l3 l4 l5 v1 v2

l1:
(

v1
;l2) ⇒ h1

l2:
manager(v1)

l3:((
v2

;l4);h2)

l4:
company(v2)

l5:
of(v1,v2)

l1≤h0 l3≤h0 l5≤h1 l5≤h2

UDRs are used for semantic underspecification, representing ambiguities
invoked by scope and anaphora in a compact way. In the example above,
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the nuclear scopes of ‘every manager’ and ‘a company’ are underspecified
by the holes h1 and h2, respectively. To incorporate confidence scores, we
will add a new modality to UDRs, and extend UDRs to tuples 〈U,L,C, S〉,
where S is a finite set of values of confidence scores for labels in U . The
use of labelling in multi-modal linguistic formalisms is not novel in itself—a
case in point is the VIT formalism used in the Verbmobil project [10].

h0 h1 h2 l1 l2 l3 l4 l5 v1 v2

l1:
(

v1
;l2) ⇒ h1

l2:
manager(v1)

l3:((
v2

;l4);h2)

l4:
company(v2)

l5:
of(v1,v2)

l1≤h0 l3≤h0 l5≤h1 l5≤h2

conf(l1)=42 conf(l2)=65 conf(l3)=45 conf(l4)=72 conf(l5)=49

These are the semantic representations we work with. In order to inte-
grate the recogniser’s confidence scores into UDRs, we have to address to
further issues: (1) how to connect confidence scores for individual words to
the appropriate sub-formulas in the semantic representation and (2) how
to combine the lexical semantics of a word with a confidence score in a
compositional way.

To attach a confidence score to a sub-formula we make use of the fact
that each sub-formula in UDR is identified with a unique label and associate
this label with the word’s confidence score. In order to do this, we have
to identify the appropriate label for each word’s lexical semantic value (or
semantic macro as we call it). Given this label, we can add a new condition
conf(l)=c, where c is the confidence score associated with the word label
l. As we use the lambda calculus to steer the process of building semantic
representations, we can add a further abstraction to lexical entries that deal
with the confidence scores. For example, the original UDR and the modified
one for the noun “route” look as follows:

λv.λh.λl. l:
route(v)

l≤h

λc.λv.λh.λl.
l:

route(v)

l≤h

conf(l)=c
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Basically, the trick is to add a new lambda operator abstracting over
the confidence score to each lexical semantic representation and use this as
a functor which is applied to the semantic representation of the confidence
score (in our case a number in the range [0 . . . 100]). The relevant semantic
rule for the newly introduced grammar rule then looks as follows:

PT:φ(ψ) → PT′:φ Conf:ψ

Let us consider a simple example. The semantic representation for “route
66”, i.e., the word “route” recognised with a confidence score of 66, can now
be compositionally constructed using function application and β-conversion.

λc.λv.λh.λl.
l:

route(v)

l≤h

conf(l)=c

(66) = λv.λh.λl.
l:

route(v)

l≤h

conf(l)=66

Finally, we turn to the issue of multi-word lexemes. In the lexicon they
are treated as single words but with the new syntactic rules we introduced
above we now have to combine several words and several confidence scores
into one semantic representation. We do this by attaching the semantic rep-
resentation of the entire former sequence to the first new terminal symbol
introduced by our grammar transformation rule. The remaining words of the
sequence will have an empty semantic value. As for the confidence scores,
we simply calculate the unbiased average of the individual word confidences
for the whole sequence. The semantic combination rule for multi-word se-
quences thus looks like follows:

PT:φ(
∑n

i=1
ψi

n ) → PT1:φ Conf:ψ1 . . . PTn : ∅ Conf:ψn

Preliminary experiments with the Nuance recogniser indicate that it
might be better to use a weighted average based on the length of the
individual words. The best results we achieved so far were obtained by
looking up each word in the CMU pronunciation dictionary (http://www.
speech.cs.cmu.edu/cgi-bin/cmudict) and weighting them by the num-
ber of phonemes (counting long vowels twice).

We implemented and tested the approach using a medium sized gram-
mar applied to a corpus of spoken instructions to a mobile robot [6]. We
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used the Nuance 7.0 system for speech recognition, with a GSL grammar
compiled from the base grammar using the UNIANCE compiler [3]. We used
a bottom-up right-to-left chart parser to integrate the confidence scores in
the semantic representations.

Figure 2: Parser output for ‘walk 58 past 40 pizza 62 hut 43’

As an example for the semantic construction of a multi-word sequence we
include a screen shot (Fig. 2) of our chart parser GUI for the sentence “walk
58 past 40 pizza 62 hut 43”. The upper part of Fig. 2 shows the semantics
associated with the PP “past 40 pizza 62 hut 43”. The DRS label D is
associated with the multi-word expression ‘pizza 62 hut 43’ and is assigned
a confidence score of 52 (we use integer division to calculate the average).
The preposition “past” is represented by the condition labelled with E and
is assigned a confidence score of 40.

5 Parsing Word Lattices

So far we have only discussed our approach with respect to the best re-
sult returned by the speech recogniser. Things get more complicated when
we want to combine several analyses of the speech recogniser into one se-
mantic representation. We are currently investigating the use of meta-level
disjunction to represent different recogniser hypotheses in a compact way.

Here we consider the output of the recogniser structured as a word lattice.
A word lattice is a topologically ordered directed acyclic graph representing
all possible recogniser hypotheses. N-Best lists include the highest scoring
paths through the lattice. We will illustrate this with an example.

11



Assume that the recogniser returned a word lattice instead of a single
string of words (the Nuance 7.0 recogniser does not return lattices, but a set
of N-best hypotheses). We can then define possible alternatives as partial
paths that cover the same span in the lattice and are assigned the same
syntactic category by the grammar. Consider the following simple made-up
word lattice with confidence scores:

0 1 2 3 4walk 56
past 47

over 52

the 45 bridge 72

There are two hypotheses for the preposition in the lattice. One gives
rise to the PP “past the bridge” and the other to the PP “over the bridge”.
In UDR, we can represent this by using meta-level disjunction.

λv.λh.λl.

l l1 l2 v1

l:((
v1

;l2)α l1) l2:
bridge(v1)

l1:
past(v,v1)

conf(l1)=47

∨ l1:
over(v,v1)

conf(l1)=52

l≤h l1≤h

conf(l)=45 conf(l2)=72

To construct these representations we have to make two substantial
changes to the parser. It has to (1) accept lattices (directed graphs) as
input, and (2) combine the semantics of edges with the same syntactic cat-
egory and the same start and end vertices during parsing.

The first change is rather simple: we represent lattices as a set of edges
and initialise the agenda of the chart parser with all edges of the input lattice
(see e.g. [11, 4]). The second modification is more complex and requires a
change to the main parsing algorithm. Whenever we introduce a new edge
into the chart we check whether an edge of the same syntactic category and
same start and end vertices is already present in the chart. If not, we simply
add the edge to the chart. Otherwise, we delete the existing edge from the
chart and recursively all other edges that have it as a daughter. We then
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combine the semantics of this edge with the semantics of the new edge, add
the resulting edge to the agenda, and resume processing.2

As for the combination of two semantic representations, we require that
two edges of the same syntactic category also have the same semantic type.
Two semantic representations can then be combined by unifying their lambda
prefixes and joining their bodies by a meta-disjunctive operator. A schematic
representation of the combination is given below, where ci = (ai unif bi).

{
λa1.λa2. . . . λam.Ua

λb1.λb2. . . . λbm.Ub

}
⇒ λc1.λc2. . . . λcm.

Ua∨Ub

Note that by unifying the abstracted variables we do not introduce any
free variables. All variables that where bound before combination are also
bound after combination. Further note that in-situ β-conversion of the se-
mantic representation is required each time a new edge is produced in order
to guarantee combination of two categories using the above rule.

6 Conclusions

We presented a method to include acoustic confidence scores as returned by
automated speech recognisers in generic semantic representations, requiring
only minimal changes to an existing grammar used for speech applications.
We are not aware of any previous work aiming to reach this goal. We im-
plemented our formalism using off-the-shelf commercial speech recognition
software.

A promising application area for this kind of multi-modal semantic rep-
resentation is the generation of clarification questions in spoken dialogue
systems, and we are currently investigating ways to implement such a utili-
sation. One idea is to combine confidence scores for sub-formulas recursively
and decide which constituent we want to clarify.

Of course, speech recognition confidence scores are not the only sources
that might trigger clarification dialogues. Other factors include ambiguities
(attachment, scope, reference) as well as plausibility, relevance, consistency
and informativeness of the utterance in a specific situation. Future research

2We are aware that this approach results in re-parsing the same syntactic structures
with new semantic values. A more efficient way of doing this would be to replace the
semantics of all relevant edges in the chart by the new combined semantics.
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should address the issue of combining these elements for generating clarifi-
cation questions in spoken dialogue systems.
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