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This paper considers an approach that was suggested by John Nerbonne for assessing
how to best set parameters for the smoothing of dialect maps using statistical methods.
This approach involves correlating the smoothed maps for a regional linguistic variable
generated under various different settings of a parameter to the underlying raw map
and then graphing the results in order to estimate a reasonable value for that parameter.
In order to test this method, the relative frequencies of numerous words were mapped
across the counties of the contiguous United States based on an 8.9 billion word corpus of
geocoded Tweets. These relative frequency maps were then smoothed using a Getis-Ord
G local spatial autocorrelation analysis based on a nearest neighbor spatial weights
matrix, where the number of nearest neighbors was varied from between 1 and 200
locations. The analysis suggests that setting the value of this parameter at between 25
and 50 nearest neighbors, or alternatively at approximately 10% of the total locations
over which the variable was measured, generally yields acceptable results.

1 Introduction

One of the longest standing methodological problems in dialectology is how to make
sense out of the complex patterns of regional variation that are generally exhibited
by linguistic variables when mapped. The traditional solution to this problem has
been to draw isoglosses by hand that divide the map into regions where the different
values of the variable are more or less common. An alternative solution is to use
statistical methods to automatically smooth dialect maps, including a Getis-Ord G}
local spatial autocorrelation analysis (Getis & Ord 1992; Grieve, Speelman & Geer-
aerts 2011; Grieve 2016).

Basically, a Getis-Ord G local spatial autocorrelation analysis is a statistical
method that identifies underlying patterns of spatial clustering in the values of a
quantitative variable that has been measured across a set of locations. A Getis-Ord
G analysis functions by comparing the values of a variable around each location
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over which it is measured. If the values of the variable tend to be relatively high,
then that central location is assigned a positive z-score, whereas if those values tend
to be relatively low, then that location is assigned a negative z-score. These z-scores
are then mapped to identify underlying regional clusters of high and low value loca-
tions, much like drawing an isogloss.

This type of statistical approach to the analysis of dialect maps has several ad-
vantages over drawing isoglosses by hand. Most important, it allows for consistent,
efficient, and replicable analyses. This is especially useful when analyzing and com-
paring maps for many different linguistic variables, for example when the results of
dialect surveys are used to identify common patterns of regional linguistic variation.
In such studies, there is a very real possibility that dialectologist bias will substan-
tially affect the results of the analysis. On any given map, most dialectologists will
usually broadly agree on the placement of isoglosses, but when this procedure is
repeated for many different variables, for example as a first step toward the identifi-
cation of common patterns of regional linguistic variation, small variations in how
isoglosses are drawn can become amplified, possibly leading to major differences
when isoglosses are aggregated, which can reflect the preconceptions of the dialec-
tologist about where important dialect boundaries lie.

The use of statistical methods for identifying underlying regional signals in dialect
maps therefore greatly limits the influence of dialectologist bias, but it does not elim-
inate this bias entirely. As is generally the case with all but the simplest statistical
methods, including most of the methods that are commonly applied in dialectometry,
there are numerous parameters that must be set by the dialectologist. Most notably,
an important step in conducting a Getis-Ord G analysis is to define a spatial weights
matrix, which specifies the relationship between every pair of locations over which
the variable is measured. Essentially, the spatial weights matrix defines what consti-
tutes a nearby location. For example, in the most basic type of spatial weights matrix,
two locations are assigned a weight of 1 if they are considered to be nearby to each
other and a weight of 0 if the are not considered to be nearby to each other. Prox-
imity can be defined in various ways, including by the number of nearest neighbors,
where for each location the n nearest neighboring locations are assigned a weight
of 1 and all other locations are assigned a weight of 0. How one chooses to set the
number of nearest neighbors is an important decision that affects the smoothness of
the resultant maps. Specifically, the smaller the number of nearest neighbors taken
into consideration, the more similar the resultant map will be to the original map. Of
course, the goal of applying a local spatial autocorrelation analysis in the first place is
to smooth the map and so it is always necessary to this set this parameter to a value
larger than 1, but otherwise setting this value is an important and often challenging
decision (Getis 2009), where dialectologist bias can enter into the analysis. Perhaps
most important, if these parameters are set too liberally, over-smoothing can result,
where the smoothed map no longer accurately reflects the underlying regional pat-
tern visible in the map for the variable under analysis.

Fortunately, it is possible to record and scrutinize the effects of these decisions,
which is impossible when isoglosses are drawn by hand. Furthermore, given that a
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local spatial autocorrelation analysis produces quantitative results, it is also possible
to compare the smoothed maps to each other and to the original raw map in order to
assess the degree of smoothing, and in particular to consider whether the maps have
been over-smoothed. This paper considers one such approach to assessing smooth-
ing parameters, which was suggested to the author by John Nerbonne at the 2014
Methods in Dialectology conference that he hosted in Groningen. Specifically, the
suggestion was to assess the degree of smoothing of dialect maps by measuring the
correlation between the raw map and the smoothed maps generated using different
parameter settings.

2 Analysis

The corpus analyzed in this study consists of 8.9 billion words of geo-coded Ameri-
can mobile Twitter data, totaling 980 million tweets written by 7 million users from
across the contiguous United States, downloaded between October 11th, 2013 and
November 22nd, 2014 using the Twitter API (see Huang et al. 2016; Grieve, Nini &
Guo 2016). To analyze patterns of regional linguistic variation in this variety of lan-
guage, the corpus was geographically stratified by county using the longitude and
latitude provided with each Tweet. In total the corpus contains 3,075 county equiv-
alents out of a total of 3,108 county equivalents in the contiguous United States. On
average, the corpus contains 2 million words per county, but the number of words
per county ranges from 300 to 300 million words. Overall, 98% of the counties are
represented by at least 10,000 words and 79% of the counties are represented by at
least 100,000 words. Twitter provides a uniquely large and accessible source of geo-
coded natural language data, which is also a highly informal variety of language that
is participated in by millions of people from across the United States, making it a
valuable source of data for dialectologists.

To test the effect of varying the number of nearest neighbors used to define the
spatial weights matrix for a Getis-Ord G} analysis of dialect maps, the relative fre-
quencies of a series of words were measured across the counties in the corpus. This is
not the type of linguistic variable commonly analyzed in dialectology, where lexical
variation tends to be measured as alternations between equivalent forms (e.g. pail
vs. bucket, pop vs. soda vs. coke); nevertheless, word frequencies still do generally
show regional patterns and are therefore as suitable as any other type of linguistic
variable for testing the effect of varying smoothing parameter settings. For example,
the relative frequency map for the word love-the most common content word in the
corpus—is presented in the first cell of Figure 1, showing that the usage of this word
is relatively more common in the Upper South. Similarly, the relative frequency map
for the word know-the second most common content word in the corpus-is pre-
sented in the first cell of Figure 2, showing that the usage of this word is relatively
more common in the Deep South.

Next, smoothed maps for each of these words were generated using a Getis-Ord G
analysis based on a series of 200 different nearest neighbors spatial weights matrices
defined for between 1 and 200 nearest neighbors. As discussed above, each of these
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Figure 1: Relative frequency and local spatial autocorrelation maps for love.
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Figure 2: Relative frequency and local spatial autocorrelation maps for know.
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analyses generates a z-score for each location over which the variable is measured,
which can then be mapped to visualize the patterns of spatial clustering identified by
the analysis. For example, the remaining cells in Figure 1 show the smoothed maps
for love generated based on 2, 5, 10, 25, 50, 100, and 200 nearest neighbors spatial
weights matrices, while the remaining cells in Figure 2 show the smoothed maps for
know for these same parameter settings. When the number of nearest neighbors is
set very low, the smoothed maps basically reproduce the raw data, whereas when
the number of nearest neighbors is set very high, there is clearly over-smoothing
present. For example, looking at the final smoothed map in the series for love (i.e. for
200 nearest neighbors), all of Utah is incorrectly identified as being a relatively low
value region. Similarly, looking at the final smoothed map in the series for love, all of
Florida is incorrectly identified as being a relatively high value region. It is therefore
necessary to set the number of nearest neighbors somewhere between these two
extremes in order to produce usefully smoothed maps that still accurately reflect
the underlying patterns present in the raw data. In particular, looking at both sets of
local spatial autocorrelation maps reproduced in Figures 1 and 2, it would appear that
local spatial autocorrelation analysis based on between 25 and 50 nearest neighbors
is ideal as values in this range strike a balance between over- and under-smoothing.

To assess how similar the local spatial autocorrelation maps are to the raw relative
frequency maps upon which they are based, each local spatial autocorrelation map
(i.e. the Getis-Ord G z-scores measured over the 3,075 counties) were correlated to
the corresponding raw maps (i.e. the relative frequencies measured over the 3,075
counties), following the suggestion made by John Nerbonne. The resulting Pearson
correlation coefficients were then plotted against the number of nearest neighbors.
The resulting graph for love is presented in the first cell of Figure 3 and the resulting
graph for know is presented in the second cell of Figure 3. As one would expect, both
graphs show that as the number of nearest neighbors increases the correlation be-
tween the raw map and the smoothed maps decreases, although overall the strength
of the correlation remains substantial. The decrease, however, is not linear. Rather,
the decrease starts off very steep and then gradually flattens. Furthermore, there
notably appears to be an inflection point in both graphs between 25 and 50 nearest
neighbors, which corresponds to the impressionistic analysis of the smoothed maps
described above, where it was argued that conducting the local spatial autocorrela-
tion analysis on spatial weights matrix based on between 25 and 50 nearest neighbors
was best.

The other cells in Figure 3 present the results of the same analysis repeated for
several other words, which were selected to represent a range of word frequencies
and degrees of spatial clustering. Remarkably, all these graphs show very similar pat-
terns, with inflections points falling in the same range, i.e. between 25 and 50 nearest
neighbors, suggesting that this value represents a consistently applicable parameter
setting for the smoothing of maps based on this dataset. This conclusion is supported
by an analysis of the maps for these variables (not shown), which exhibit similar re-
sults to the smoothed maps presented for love and know in Figures 1 and 2—clearly
exhibiting over-smoothing at higher parameter settings. Given that there are 3,075
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locations in this dataset, it would therefore appear that using a number equal to ap-
proximately 10% of the total locations to set the spatial weights matrix is in general
a reasonable value for this parameter.
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3 Conclusion

This paper has briefly explored a general method for setting smoothing parameters
for the analysis of individual patterns of regional linguistic variation in dialect maps,
which was conceived by John Nerbonne. This method involves correlating maps
smoothed using different parameter settings to the underlying raw maps and graph-
ing these results. By inspecting the resultant graph, an approximate point of inflec-
tion is estimated and the smoothing parameter under consideration is then set to
this value. In particular, this method was used in this paper to assess the number
of nearest neighbors used to generate a nearest neighbor spatial weights matrix, an
important step in conducting a Getis-Ord G local spatial autocorrelation analysis,
which is an increasingly common method for smoothing dialect maps in dialectome-
try. Based on this approach, this study found evidence suggesting that using a num-
ber of nearest neighbors equal to approximately 10% of the total number of locations
under analysis is a reasonable way to set this parameter for a Getis-Ord G} analysis—
generating usefully smoothed maps, while guarding against over-smoothing. Con-
siderably more analysis both within this dataset and across other dialect datasets,
however, is necessary to fully support this claim. In addition, it is important to test
the applicability of this approach for setting the parameters associated with other
types of spatial weights matrices as well as to test the applicability of this approach
more generally for setting the parameters associated with other methods for smooth-
ing used in dialectometry. Nevertheless, this relatively simple method appears to be
a promising approach for helping to resolve an important modern methodological
problem in dialectometry.
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