

# Detecting novel metaphor using selectional preference information

- › Hessel Haagsma and Johannes Bjerva
- > University of Groningen, The Netherlands



# Outline

- 1. Types of metaphor
- 2. Selectional preference violation
- 3. Approach & implementation
- 4. Evaluation & results
- 5. Analysis & discussion



# **A definition of metaphor**

A lexical unit is metaphorical if it has a more basic contemporary meaning in other contexts than in the current context



# **A definition of metaphor**

A lexical unit is metaphorical if it has a more basic contemporary meaning in other contexts than in the current context

> Wide range of metaphor:
1. 'Do the Greeks have a word for it?'
2. 'only little scientific evidence supports the link'



# **Degrees of metaphoricity**

1. None

Literal meaning, most basic, in lexicon

2. Conventional

Metaphorical meaning, non-basic, in lexicon

3. Novel

Metaphorical meaning, non-basic, not in lexicon



### **Examples**

#### 1. No metaphor

'The scientists **eat** their sandwiches.' eat#1 (take in solid food)



# **Examples**

### 1. No metaphor

'The scientists **eat** their sandwiches.' eat#1 (take in solid food)

### 2. Conventional metaphor

'Firefox is **eating** my memory.' eat#5 (use up (resources or materials))



# **Examples**

1. No metaphor

'The scientists **eat** their sandwiches.' eat#1 (take in solid food)

### 2. Conventional metaphor 'Firefox is eating my memory.' eat#5 (use up (resources or materials))

### 3. Novel metaphor

'You wanted to **eat** up my sadness.' eat#? (take away/cure/remove)



# **Metaphor processing and WSD**

- > Problem: which is the meaning of this ambiguous word/phrase in this specific context?
- WSD and metaphor processing overlap on conventional metaphors
- > Novel metaphor outside of scope WSD
- > Improved handling of metaphor can benefit WSD



# Outline

- 1. Types of metaphor
- **2. Selectional preference violation**
- 3. Approach & implementation
- 4. Evaluation & results
- 5. Analysis & discussion



# **Selectional preference violation**

- Selectional preferences capture intuitive knowledge about what fits in a certain domain
- > Metaphor combines a source and target domain
- Violation of selectional preferences as an indicator of two distinct domains, metaphor



# **Examples**

1. No metaphor

'The scientists **eat** their sandwiches.' eat#1 (take in solid food)

### 2. Conventional metaphor 'Firefox is eating my RAM.' eat#5 (use up (resources or materials))

### 3. Novel metaphor

'You wanted to **eat** up my sadness.' eat#? (take away/cure/remove)





# **Novel metaphor**

- Automatically acquired selectional preferences capture frequency, not basicness
- Conventional metaphor sometimes more frequent than literal
  - e.g. 'uncover a treasure' vs. 'uncover a secret'
- > Assumption: novel metaphors are always infrequent



# Outline

- 1. Types of metaphor
- 2. Selectional preference violation

# **3. Approach & implementation**

- 4. Evaluation & results
- 5. Analysis & discussion



# Approach

- Gather verb-subject and verb-object pairs from a large, parsed English corpus
- > Extract selectional preference metrics
- > Generalize over co-occurrence counts
- > Use as features in a logistic regression classifier to detect metaphors in the VUAMC



# **Selectional preference information**

- > Word-level verb metaphor detection
- Parse Wikipedia dump (1.6B words), extract and count verb-noun pairs
- Calculate conditional probability (CP), log probability (LP), selectional association (SA) and selectional preference strength (SPS)
- > CP, LP, SA represent likelihood of verb-noun pair
- > SPS represents selectivity of verb



# Generalization

- Generalization helps going from word-word pairs to domain-domain pairs
- > Three approaches
  - 1. Pre-trained Brown clusters, from Derczynski et al. (2015), 80-5120 clusters
  - 2. K-means clustered GloVe embeddings (300D/840B), 400k vocabulary, 80-5120 clusters
  - 3. Neural net predictor of LP, based on embeddings, single hidden layer, 600 units, ADAM, Dropout



# **Training data**

| Verb     | Subj.  | Obj.  | CP-s  | LP-s  | SPS-s | SA-s | ••• | Label |
|----------|--------|-------|-------|-------|-------|------|-----|-------|
| maintain | couple | link  | 0.005 | -7.51 | 0.93  | 6.20 |     | 1     |
| need     | we     | pilot | 0.05  | -2.98 | 0.73  | 0.17 |     | 0     |



# Outline

- 1. Types of metaphor
- 2. Selectional preference violation
- 3. Approach & implementation
- 4. Evaluation & results
- 5. Analysis & discussion



# **Evaluation data**

- > VU Amsterdam Metaphor Corpus (VUAMC), parsed
- > Extract all verbs
  - Verb-subject-object: 5,539
  - Verb-subject: 13,466
  - Verb-object: 3,913
- Downside: broad definition of metaphor, highly conventionalized metaphors dominate
- > Manual inspection of metaphor type



### Classifier

- > Logistic regression with L2 regularization
- > 10-fold cross-validation
- > Separate classifier per dataset
- > Back-off to majority class (non-metaphor)



# **Re-weighting**

- > Re-weighting of examples to counter class imbalance
  - Subject-verb: 13.0%
  - Verb-object: 34.7%
  - Subject-verb-object: 36.4%
- > Assign more weight to minority class examples



# **Results (1)**

### Without re-weighting of training data

| Data    | BL   | СР  | LP   | Pred-LP | SPS | SA  | All  |
|---------|------|-----|------|---------|-----|-----|------|
| Subject | 23,0 | 0,0 | 0,0  | 0,0     | 0,0 | 0,0 | 1,3  |
| Object  | 50,8 | 0,0 | 3,2  | 1,4     | 0,0 | 0,0 | 2,4  |
| Both    | 53,4 | 0,0 | 18,1 | 0,7     | 0,0 | 2,3 | 32,1 |



# **Results (1)**

### Without re-weighting of training data

| Data    | BL   | СР  | LP   | Pred-LP | SPS | SA  | All  |
|---------|------|-----|------|---------|-----|-----|------|
| Subject | 23,0 | 0,0 | 0,0  | 0,0     | 0,0 | 0,0 | 1,3  |
| Object  | 50,8 | 0,0 | 3,2  | 1,4     | 0,0 | 0,0 | 2,4  |
| Both    | 53,4 | 0,0 | 18,1 | 0,7     | 0,0 | 2,3 | 32,1 |

#### With re-weighting of training data

| Data    | BL   | СР   | LP   | Pred-LP | SPS  | SA   | All  |
|---------|------|------|------|---------|------|------|------|
| Subject | 23,0 | 24,5 | 24,5 | 23,2    | 20,9 | 26,4 | 33,6 |
| Object  | 50,8 | 53,4 | 45,6 | 49,2    | 49,0 | 51,2 | 47,6 |
| Both    | 53,4 | 54,2 | 44,3 | 50,0    | 50,5 | 63,8 | 57,8 |



# **Results (2)**

### With Brown clustering

| Data    | BL   | 80   | 160  | 320  | 640  | 1280 | 2560 | 5120 |
|---------|------|------|------|------|------|------|------|------|
| Subject | 23,0 | 26,3 | 28,8 | 27,9 | 25,9 | 26,3 | 26,6 | 25,3 |
| Object  | 50,8 | 48,7 | 47,7 | 45,3 | 46,9 | 44,7 | 44,6 | 46,2 |
| Both    | 53,4 | 52,7 | 52,8 | 53,7 | 54,3 | 53,5 | 54,3 | 54,5 |

#### With k-means clustering

| Data    | BL   | 80   | 160  | 320  | 640  | 1280 | 2560 | 5120 |
|---------|------|------|------|------|------|------|------|------|
| Subject | 23,0 | 24,2 | 23,5 | 30,7 | 28,6 | 24,4 | 23,6 | 22,9 |
| Object  | 50,8 | 40,4 | 44,8 | 45,8 | 44,2 | 48,9 | 48,8 | 49,8 |
| Both    | 53,4 | 49,8 | 48,2 | 50,4 | 49,2 | 47,6 | 50,4 | 49,5 |



# Outline

- 1. Types of metaphor
- 2. Selectional preference violation
- 3. Approach & implementation
- 4. Evaluation & results
- 5. Analysis & discussion



### Generalization

- > In the current set-up, generalization does not work
  - Brown ≈ k-means ≈ prediction
  - No clear effect of cluster size
- > Information loss outweighs generalization gain
- > Clusters do not form coherent domains



# university of groningen

# **Error analysis**

- > Large number of (unresolved) pronouns
- True positives contain many light verbs (*take, have, make, put*).
- Logistic regression exploits corpus distribution
- > One example of novel metaphor:
  - [...] Adam might have **escaped** the file memories for years, [...]



# Conclusion

- > Is selectional preference information useful for detecting novel metaphors?
- > Better evaluation data is needed
  - Annotate novel/OOV senses in VUAMC
  - Annotate metaphor on a scale, not binary
  - Use selectional preference violation to discover novel metaphors