


Baby Born Talking - Describes Heaven



- Title of Chapter 9 of Steven Pinker's book "The Language Instinct".
- Of course, children are not born talking.
  But sometimes their
- But sometimes their productive skills may be well ahead of their comprehensive skills.

## Overview of the Talk

- · Contrastive stress
- Acquisition of productive and comprehensive skills does not proceed at the same pace.
- · Production sometimes precedes comprehension.
- Proposed explanation in terms of bidirectional Optimality Theory.
- Distinction between speaker's perspective and hearer's perspective.
- Can we use these asymmetries in acquisition as a test for bidirectional optimization?

# General Pattern in First Language Acquisition

• Usually, correct comprehension of a given form precedes correct production of this form.

Cf. Bates, Dale and Thal (1995); Benedict (1979); Clark (1993); Fraser, Bellugi and Brown (1963); Goldin-Meadow, Seligman and Gelman (1976); Layton and Stick (1979).

 However, there are exceptional cases where correct production precedes correct comprehension by several years.

### Production/Comprehension Asymmetries

- Subject-object order in English (Chapman & Miller, 1975).
   Pronouns (the "Pronoun Interpretation Problem": de Villier
- Pronouns (the "Pronoun Interpretation Problem": de Villiers, Cahillane & Altreuter, 2005; Spenader, Smits & Hendriks, in prep.).
- Indefinite subjects and objects in Dutch (de Hoop & Krämer, to appear).
  Contrastive stress (Cutler & Swinney 1987)
- Contrastive stress (Cutler & Swinney, 1987).Scalar implicatures (e.g., Papafragou & Musolino, 2003).
- Perhaps other phenomena?
- General pattern: Children show correct production by the age of 3 or 4, but fail to show correct comprehension until the age of 6 or 7.

nation Stockholm U

## Types of Explanation for Observed Asymmetries

- Children appear to have the relevant knowledge in production, but in fact they don't (Cutler & Swinney, 1987; McClellan, Yewchuk & Holdgrafer, 1986).
- Children appear to lack the relevant knowledge in comprehension, but this is caused by:
  - processing difficulties (Avrutin, 1999; Reinhart, e.g. 2004),
  - lack of pragmatic knowledge (Chien & Wexler, 1990),
     interference of task requirements or world knowledge (Bloom et
  - al., 1994; Grimshaw & Rosen, 1990; McClellan et al., 1986).

re and Intonation. Stockholm University, October 28

These asymmetries are real and require a linguistic explanation (this talk).

## Do Children Have Knowledge in Production?

- Cutler & Swinney (1987: p. 145): "The previous literature on the development of prosodic competence shows an apparent anomaly in that young children's productive skills appear to outstrip their receptive skills".
- "In general, children's semantic/pragmatic abilities follow the general rule of linguistic performance: production is at best as good as comprehension, it never outstrips it. Only prosodic performa seems to be an exception" (p. 162).
- Their explanation: Accenting is a primitive physiological reaction associated with speaker excitation (cf. Bolinger, 1983). No linguistic intention or underlying meaning representation need be involved in children's correct production of contrastive accent. •

ation Structure and Intonation. Stockholm U

## Focus Particle Only

- The focus particle *only* associates with the focus of the utterance: - Only John swims
- Focus evokes a set of alternatives (contrast set): - {John, Sue, Mary, ...}
- Only asserts that the focused phrase has some property that the other members of the contrast set lack (exhaustivity): - Sue, Mary, ..., don't have the property of swimming.
- A different placement of stress can result in a different choice of the focus, which can give rise to a change in truth conditions.

# Bound Focus and Stress

- 1) Tigger only threw a chair to PIGLET.
  - Default stress.
  - Ambiguous: Focus on indirect object or entire VP.
  - False if Tigger also threw a chair to Winnie
  - OR if Tigger also did something else.
- 2) Tigger only threw a CHAIR to Piglet.
  - Marked stress.
  - Not ambiguous: Focus on direct object.
  - False if Tigger also threw a table to Piglet.

# Children's Use of Contrastive Stress

- Children's production of default stress and marked stress seems adult-like from the age of 3 or 4.
  - (e.g. Baltaxe, 1984; Hornby & Hass, 1970; Nederstigt, 2001)
- Children's comprehension of default stress is adult-like from the age of 4.
- However, their comprehension of *marked* stress is around chance until at least 5 or 6: They allow for VP focus as well. (e.g., Gennari, Gualmini, Meroni, Maciukaite & Crain, 2001;

Gualmini, Maciukaite & Crain, 2002; Halbert, Crain, Schankweiler & Woodams, 1995, for English, and Szendröi, 2004, for Dutch)

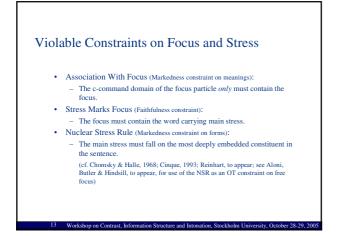
# Optimality Theory (OT)

- Introduced into linguistics by Prince & Smolensky (1993).
- · Optimization over possible outputs.
- · Possible outputs are evaluated through the parallel (and possibly
- cross-modular) application of constraints.
- · Constraints are output-oriented:

rast Infor

- Markedness constraints
- Faithfulness constraints
- · Constraints are potentially conflicting and differ in strength.
- · Speaker's perspective: input is meaning, output is form.
- · Hearer's perspective: input is form, output is meaning.

# Hypothesis


#### Children's pattern can be modeled by OT:

Speaker's perspective 
> Optimization from meaning to form:

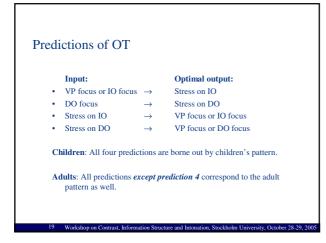
- Production of VP focus Production of Indirect Object focus
- Production of Direct Object focus
- Hearer's perspective 
  > Optimization from form to meaning:
  - Interpretation of stress on Indirect Object
  - Interpretation of stress on Direct Object

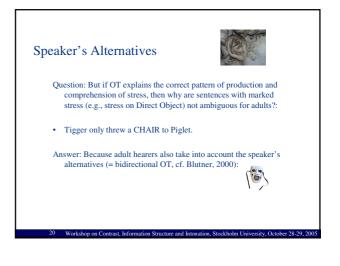
Because the constraints (the grammar) are asymmetrical, the results can be different for production and comprehension.

and Intonation Stockholm University Octob



|   |                            |                           |                       | 1                 |
|---|----------------------------|---------------------------|-----------------------|-------------------|
|   | Input: VP focus            | Association<br>With Focus | Stress Marks<br>Focus | Nuclear<br>Stress |
|   | Stress on DP <sub>S</sub>  |                           | *!                    | *                 |
|   | Stress on V                |                           |                       | *!                |
|   | Stress on DP <sub>DO</sub> |                           |                       | *!                |
| æ | Stress on DP <sub>IO</sub> |                           |                       |                   |


Г


|            |                            |                           | Object Fo             |                   |
|------------|----------------------------|---------------------------|-----------------------|-------------------|
|            | Input: IO focus            | Association<br>With Focus | Stress Marks<br>Focus | Nuclear<br>Stress |
|            | Stress on DP <sub>S</sub>  |                           | *!                    | *                 |
|            | Stress on V                |                           | *!                    | *                 |
|            | Stress on DP <sub>DO</sub> |                           | *!                    | *                 |
| <b>7</b> * | Stress on DP <sub>IO</sub> |                           |                       |                   |

| OT F | ro | duction of I               | Direct Ol                 | oject Foci            | 15                |               |
|------|----|----------------------------|---------------------------|-----------------------|-------------------|---------------|
|      |    | Input: DO focus            | Association<br>With Focus | Stress Marks<br>Focus | Nuclear<br>Stress |               |
|      |    | Stress on DP <sub>S</sub>  |                           | *!                    | *                 |               |
|      |    | Stress on V                |                           | *!                    | *                 |               |
|      | œ۴ | Stress on DP <sub>DO</sub> |                           |                       | *                 |               |
|      |    | Stress on DP <sub>IO</sub> |                           | *!                    |                   |               |
| 16   | Wo | rkshop on Contrast, Inforn |                           | Internation Stankhol  | las Universita    | Ootobox 28-20 |

| mei | pretation of S           | Stress on I               | ndirect Ob            | ject              |
|-----|--------------------------|---------------------------|-----------------------|-------------------|
|     | Input: stress on<br>IO   | Association<br>With Focus | Stress Marks<br>Focus | Nuclear<br>Stress |
|     | Focus = DP <sub>S</sub>  | *!                        | *                     |                   |
|     | Focus = DP <sub>DO</sub> |                           | *!                    |                   |
| æ   | Focus = DP <sub>IO</sub> |                           |                       |                   |
| æ   | Focus = VP               |                           |                       |                   |
|     | Focus = IP               | *!                        |                       |                   |

| ter | pretation of S          | Stress on I               | Direct Obje           | ect               | C |
|-----|-------------------------|---------------------------|-----------------------|-------------------|---|
|     | Input: stress on DO     | Association<br>With Focus | Stress Marks<br>Focus | Nuclear<br>Stress |   |
|     | Focus = DP <sub>S</sub> | *!                        | *                     |                   |   |
| 8   | $Focus = DP_{DO}$       |                           |                       |                   |   |
|     | $Focus = DP_{IO}$       |                           | *!                    |                   |   |
| 9   | Focus = VP              |                           |                       |                   |   |
|     | Focus = IP              | *!                        |                       |                   |   |







nd I

n. Stockholm Un

| ir | st Round of Optimiz                                            | zation                    |                       | EE                |
|----|----------------------------------------------------------------|---------------------------|-----------------------|-------------------|
|    |                                                                | Association<br>With Focus | Stress Marks<br>Focus | Nuclear<br>Stress |
|    | <stress dp<sub="" on="">DO, Focus=DP<sub>S</sub>&gt;</stress>  | *                         | *                     | *                 |
|    | <stress dp<sub="" on="">DO, Focus=DP<sub>DO</sub>&gt;</stress> |                           |                       | *                 |
|    | <stress dp<sub="" on="">DO, Focus=DP<sub>IO</sub>&gt;</stress> |                           | *                     | *                 |
|    | <stress dp<sub="" on="">DO, Focus=VP&gt;</stress>              |                           |                       | *                 |
|    | <stress dp<sub="" on="">DO, Focus= IP&gt;</stress>             | *                         |                       | *                 |
|    | <stress dp<sub="" on="">IO, Focus= DP<sub>S</sub>&gt;</stress> | *                         | *                     |                   |
|    | <stress dp<sub="" on="">IO, Focus=DP<sub>DO</sub>&gt;</stress> |                           | *                     |                   |
| ð  | <stress dp<sub="" on="">IO, Focus=DP<sub>IO</sub>&gt;</stress> |                           |                       |                   |
| ð  | <stress dp<sub="" on="">IO, Focus=VP&gt;</stress>              |                           |                       |                   |
|    | <stress dp<sub="" on="">IO, Focus=IP&gt;</stress>              | *                         |                       |                   |

| lo | cking Alternative F                                            | orms                      |                       | E H              |
|----|----------------------------------------------------------------|---------------------------|-----------------------|------------------|
|    |                                                                | Association<br>With Focus | Stress Marks<br>Focus | Nuclea<br>Stress |
|    | <stress dp<sub="" on="">DO, Focus=DP<sub>S</sub>&gt;</stress>  | *                         | *                     | *                |
|    | <stress dp<sub="" on="">DO, Focus=DP<sub>DO</sub>&gt;</stress> |                           |                       | *                |
|    | <stress dp<sub="" on="">DO, Focus=DP<sub>IO</sub>&gt;</stress> |                           | *                     | *                |
|    | <stress dp<sub="" on="">DO, Focus=VP&gt;</stress>              |                           |                       | *                |
|    | <stress dp<sub="" on="">DO, Focus= IP&gt;</stress>             | *                         |                       | *                |
| х  | <stress dp<sub="" on="">IO, Focus= DP<sub>S</sub>&gt;</stress> | *                         | *                     |                  |
| х  | <stress dp<sub="" on="">IO, Focus=DP<sub>DO</sub>&gt;</stress> |                           | *                     |                  |
| ð  | <stress dp<sub="" on="">IO, Focus=DP<sub>IO</sub>&gt;</stress> |                           |                       |                  |
| ð  | <stress dp<sub="" on="">IO, Focus=VP&gt;</stress>              |                           |                       |                  |
| х  | <stress dp<sub="" on="">IO, Focus=IP&gt;</stress>              | *                         |                       |                  |

| )C | king Alternative M                                             | eanings                   |                       |                   |
|----|----------------------------------------------------------------|---------------------------|-----------------------|-------------------|
|    |                                                                | Association<br>With Focus | Stress Marks<br>Focus | Nuclear<br>Stress |
|    | <stress dp<sub="" on="">DO, Focus=DP<sub>S</sub>&gt;</stress>  | *                         | *                     | *                 |
|    | <stress dp<sub="" on="">DO, Focus=DP<sub>DO</sub>&gt;</stress> |                           |                       | *                 |
| Х  | <stress dp<sub="" on="">DO, Focus=DP<sub>IO</sub>&gt;</stress> |                           | *                     | *                 |
| Х  | <stress dp<sub="" on="">DO, Focus=VP&gt;</stress>              |                           |                       | *                 |
|    | <stress dp<sub="" on="">DO, Focus= IP&gt;</stress>             | *                         |                       | *                 |
| Х  | <stress dpio,="" focus="DPS" on=""></stress>                   | *                         | *                     |                   |
| Х  | <stress dp<sub="" on="">IO, Focus=DP<sub>DO</sub>&gt;</stress> |                           | *                     |                   |
| ð  | <stress dp<sub="" on="">IO, Focus=DP<sub>IO</sub>&gt;</stress> |                           |                       |                   |
| 8  | <stress dpio,="" focus="VP" on=""></stress>                    |                           |                       |                   |
| х  | <stress dp<sub="" on="">IO, Focus=IP&gt;</stress>              | *                         |                       |                   |

# Second Round of Optimization

|   |                                                                | Association<br>With Focus | Stress Marks<br>Focus | Nuclear<br>Stress |
|---|----------------------------------------------------------------|---------------------------|-----------------------|-------------------|
|   | <stress dp<sub="" on="">DO, Focus=DP<sub>S</sub>&gt;</stress>  | *                         | *                     | *                 |
| 8 | <stress dp<sub="" on="">DO, Focus=DP<sub>DO</sub>&gt;</stress> |                           |                       | *                 |
| Х | <stress dp<sub="" on="">DO, Focus=DP<sub>IO</sub>&gt;</stress> |                           | *                     | *                 |
| Х | <stress dp<sub="" on="">DO, Focus=VP&gt;</stress>              |                           |                       | *                 |
|   | <stress dp<sub="" on="">DO, Focus= IP&gt;</stress>             | *                         |                       | *                 |
| Х | <stress dp<sub="" on="">IO, Focus= DP<sub>S</sub>&gt;</stress> | *                         | *                     |                   |
| Х | <stress dp<sub="" on="">IO, Focus=DP<sub>DO</sub>&gt;</stress> |                           | *                     |                   |
| ð | <stress dp<sub="" on="">IO, Focus=DP<sub>IO</sub>&gt;</stress> |                           |                       |                   |
| ð | <stress dp<sub="" on="">IO, Focus=VP&gt;</stress>              |                           |                       |                   |
| Х | <stress dp<sub="" on="">IO, Focus=IP&gt;</stress>              | *                         |                       |                   |

# Modeling Children's Pattern

- · Optimality Theory distinguishes between speaker's perspective and hearer's perspective.
- Children's problems in comprehension seem to be the result of adopting a hearer's perspective (unidirectional optimization). ➔ Production/comprehension asymmetries.
- Cf. de Hoop & Krämer's (to appear) OT analysis of the interpretation of indefinites; Hendriks & Spenader's (2004) OT analysis of pronoun interpretation.

## Modeling the Adult Pattern

- Adult-like production and comprehension seem to be the result of the ability to take into account the conversational partner's alternatives as well (bidirectional optimization). → Symmetrical competence grammar.
- · Bidirectional optimization appears to be acquired relatively late (from the age of 6-7)

## Reinhart's Reference-Set Computation

- Reinhart (2004): Reference-set computations are required by the parser (both for children and adults) only when interpreting marked stress, resulting in extra processing costs.
- Prediction Reinhart: For children as well as adults interpreting marked stress is more difficult than interpreting default stress.
- Prediction OT model: If bidirectional optimization is automatized, and if ambiguity is assumed to yield processing difficulties, adults are expected to experience more difficulties with default than with marked stress.
- Gennari, Meroni & Crain (in press) show by means of an eye-tracking experiment with 53 adult subjects that marked stress facilitates comprehension.  $\rightarrow$  Cf. OT model.

## Counterevidence?

- Children have difficulty comprehending contrastive stress
- · Children have difficulty calculating scalar implicatures
- However: According to Miller, Schmitt, Chang & Munn (2005), children (4;1-5;5) are correctly able to access the quantity •
- implicature associated with focused some.
- Target sentence: Make some faces happy
- Implicature: some → not all
- Result: 90% adult-like comprehension when some is stressed; only 50% adult-like comprehension when some is unstressed.
- Their conclusion: Children as young as 4 are already able to correctly calculate scalar implicatures. Contrastive stress facilitates calculation of the implicature

## Discussion

- Miller et al.'s results are a striking exception to the general pattern that 4 year olds have difficulties with contrastive stress and implicatures.
- What is happening here?
- Possible explanation: Target sentences require no calculation of implicature, but merely the activation of a contrast set. Children are able to do this from a young age on.
- Perhaps we can use production/comprehension asymmetries as a test for bidirectional optimization. Contrast set: Does not require reasoning about alternative forms
- and meanings.
- Contrastive stress, implicatures, etc.: Require reasoning about alternative forms and meanings

and Intonation. Stockholm University, October 28-

