
Research on Language and Computation manuscript No.
(will be inserted by the editor)

Performing aggregation and ellipsis using

discourse structures

Mariët Theune1, Feikje Hielkema2, Petra Hendriks3

1 Human Media Interaction, Department of Computer Science, University of
Twente, The Netherlands, e-mail: M.Theune@ewi.utwente.nl

2 Department of Computing Science, University of Aberdeen, Scotland, UK, e-
mail: fhielkem@csd.abdn.ac.uk⋆

3 Center for Language and Cognition, University of Groningen, The Netherlands,
e-mail: P.Hendriks@rug.nl

Received: date / Revised version: date

Abstract This article describes the generation of aggregated and ellip-
tic sentences, using Dependency Trees connected by rhetorical relations as
input. The system we have developed can generate both hypotactic and
paratactic constructions with appropriate cue words, and various forms of
ellipsis such as Gapping and Conjunction Reduction. We contend that De-
pendency Trees connected by rhetorical relations are excellent input for a
generation system that has to generate ellipsis, and we propose a taxonomy
of the most common Dutch cue words, grouped according to the kind of
discourse relations they signal. Finally, we argue that syntactic aggregation
should be performed in the Surface Realizer of a language generation sys-
tem, because it requires access to language-specific syntactic information.

Key words aggregation, dependency trees, discourse structure, ellipsis,
language generation

1 Introduction

Ellipsis and coordination are key features of natural language. For a Natu-
ral Language Generation (NLG) system to produce fluent, coherent texts, it
must be able to generate coordinated and elliptic sentences. The generation
of such sentences is part of a process called aggregation, which is one of the
basic tasks of any NLG system (Reiter and Dale, 2000). However, there is
no consensus on the definition of aggregation. It is an amalgam of processes

⋆ Feikje Hielkema carried out this work while she was at the University of
Groningen.

2 Mariët Theune et al.

that can be performed in different modules of a language generation system
(Cahill and Reape, 1999). Aggregation has been broadly defined as the com-
bination of two or more linguistic structures into one linguistic structure by
Reape and Mellish (1999), who distinguish several kinds of aggregation: con-
ceptual, discourse, syntactic, semantic, lexical and referential aggregation.
Shaw (2002) distinguishes four different types: interpretative, referential,
lexical and syntactic aggregation. Dalianis (1999) also distinguishes four
types: syntactic aggregation, elision, lexical and referential aggregation.

In this paper we focus on syntactic aggregation, which is the most com-
mon form of aggregation according to Reape and Mellish (1999). Shaw
(2002) defines syntactic aggregation as the combination of propositions us-
ing syntactic constructions, with hypotactic and paratactic aggregation as
the two main types. Dalianis (1999) equals syntactic aggregation with re-
moving redundant information at the syntactic level, while leaving at least
one item in the text to carry the meaning explicitly. We define syntactic
aggregation as the process of combining two clauses using any kind of syn-
tactic structure such as coordination, subordination, and also the absence
of overt syntactic structure in the case of ellipsis.

We describe how syntactic aggregation is implemented in a story gener-
ation system called the Virtual Storyteller. The focus lies on the generation
of coordinated and elliptic structures for the Dutch language. Although our
work aims in the first place at improving the texts produced by our story
generation system, we believe that our approach to syntactic aggregation
and ellipsis is sufficiently general to be relevant for all kinds of language gen-
eration systems. New aspects of our approach, compared to earlier work on
aggregation and ellipsis, are our use of Dependency Trees (Mel’cuk, 1988)
in combination with rhetorical relations, and the fact that we perform ag-
gregation in the Surface Realizer rather than in the Microplanner module
of our NLG system. Another contribution is our design of a taxonomy of
the most common Dutch cue words1 for use in the aggregation process.

This paper is structured as follows. In Section 2 we briefly describe the
Virtual Storyteller system, which forms the application context for our work.
The goals we set out to achieve are discussed in Section 3. In Section 4 we
describe the design of our language generation module (the Narrator), and
argue that syntactic aggregation should be located within the last stage
of the language generation process. In Section 5, we present the cue word
taxonomy that we developed for use in the aggregation process. In Section 6,
we discuss how we perform aggregation and ellipsis in our system, using
this taxonomy. In Section 7 we show some results, and we end with a brief
discussion and conclusions in Sections 8 and 9.

2 Background: The Virtual Storyteller

The Virtual Storyteller is a system that automatically creates fairy tales,
expressed in Dutch natural language. Story generation in the Virtual Story-
teller takes place in three stages, each handled by specialized components.

Performing aggregation and ellipsis using discourse structures 3

The first stage is plot generation, which is based on the actions of
semi-autonomous character agents in a virtual story world. These char-
acter agents are able to reason logically and can make plans to achieve their
personal goals. In addition, they are equipped with an emotion model. In
reaction to events and objects, the characters can experience emotions such
as joy and distress, love and hate, and their subsequent actions are influ-
enced by these emotions (Theune et al., 2004). What happens in the story
world is recorded in a structure called the fabula, a causal network that ex-
presses the relations between character actions and the goals and emotions
that motivate them. The fabula also records temporal information.

The second stage is narration, the generation of a text that expresses the
plot in natural language (in our case, Dutch). Originally, narration in the
Virtual Storyteller involved a simple mapping of character actions to fixed
sentence templates. To improve on this, we have developed a sophisticated
Narrator component, which takes a fabula structure as input and converts it
into a natural language text using knowledge about discourse structure and
Dutch syntax and morphology. In the rest of this paper, the Narrator will
be discussed in more detail, focusing on the way aggregation is handled. For
information on other aspects of the Narrator, we refer to Slabbers (2006).

The third generation stage is presentation: presenting the text generated
by the Narrator by means of speech synthesis. To make the speech produced
by standard text-to-speech systems more suitable for storytelling, we have
developed a method for converting ‘neutral’ speech into storytelling speech
by adapting the prosody (Theune et al., 2006).

3 Goal

So far, much of our work on the Virtual Storyteller system has focused on
plot creation and the development of believable characters. However, the
quality of a story depends not only on the actions and emotions of the char-
acters, but also on how these are expressed in natural language. However
high the quality of the plot may be, if it is badly expressed the result will
not be an enjoyable story. This can be illustrated by the text fragment given
below, which is an example of the kind of texts originally generated by the
Virtual Storyteller system. In this fragment, given together with its trans-
lation, two character agents accidentally meet in the desert (a location in
our virtual story world).

Diana gaat naar de woestijn. Diana goes to the desert.
Brutus gaat naar de woestijn. Brutus goes to the desert.
Diana is bang voor Brutus. Diana is afraid of Brutus.
Diana gaat naar het bos. Diana goes to the forest.
Brutus gaat naar het bos. Brutus goes to the forest.

As can be seen in this example, presenting only the bare facts of the story
using fixed sentences results in a monotone, uninteresting narrative. Some

4 Mariët Theune et al.

obvious improvements would be the use of pronouns, more suitable word
choice (e.g., having Diana flee rather than go to the forest) and variation in
the length and complexity of sentences. In this paper, we focus on the last
aspect: the aggregation of simple sentences into more complex ones.

Experimental research by Callaway and Lester (2001) has indicated that
aggregation (called revision in their system) is an important aspect of the
generation of narrative prose. When presented with different versions of
the same story, their test subjects showed a clear preference for narratives
on which revision had been performed, over narratives without revision.
Therefore we believe that having our Narrator perform syntactic aggregation
should help enormously to improve the liveliness of the generated narratives.
Our goal in designing an aggregation component for the Narrator has been
to allow for the production of at least the following structures:

– Paratactic constructions: these are constructions where two clauses
of equal status are coordinated. Example: ‘Diana verliet de woestijn en
Brutus betrad het bos’ (Diana left the desert and Brutus entered the
forest)

– Hypotactic constructions: these are constructions where one of the
combined clauses is subordinated to the other. Example: ‘Diana verliet
de woestijn, omdat ze Brutus zag’ (Diana left the desert, because she
saw Brutus)2

– Conjunction Reduction: these are paratactic, elliptic constructions
where the subject of the second clause is deleted. They only occur with
the cue words ‘en’ (and) and ‘maar’ (but). Example: ‘Diana betrad de
woestijn en zag Brutus’ (Diana entered the desert and saw Brutus)

– Right Node Raising: these are paratactic, elliptic constructions where
the rightmost string of the first clause is deleted. The ellipted string can
be a direct object, but it can also be a locative, or any other string,
as long as it is in the rightmost position of the first and second clause.
Example: ‘Diana schopt en de prins slaat Brutus’ (Diana kicks and the
prince hits Brutus)

– Gapping: these are paratactic, elliptic constructions where the main
verb of the second clause is deleted. In the following example, this is the
verb ‘verliet’ (left). Example: ‘Diana verliet de woestijn en Brutus het
bos’ (Diana left the desert and Brutus the forest)

– Stripping: these are paratactic, elliptic constructions where all con-
stituents but one are deleted from the second clause, and replaced by
the word ‘ook’ (too). This can happen with any constituent. Example:
‘Diana betrad de woestijn en Brutus ook’ (Diana entered the desert and
so did Brutus)3

Performing aggregation and ellipsis using discourse structures 5

All possible combinations of these structures should be generated as well,
for example sentences such as ‘Diana gaf Brutus een schop en de prins een
kus’ (Diana gave Brutus a kick and the prince a kiss), which is both gapped
and conjunction-reduced, as both verb and subject are deleted in the second
conjunct. We would also like to be able to coordinate single constituents,
e.g., ‘Diana schopte en vervloekte Brutus’ (Diana kicked and cursed Bru-
tus). Different cue words should be available to express different rhetorical
relations between the clauses. If more than one cue word is available for
each relation, this results in variety in the output.

Note that several linguists have proposed a unified analysis of various
types of reduced coordinate structures (Tai, 1969; van Oirsouw, 1987; Hart-
mann, 2000); see Shaw (1998, 2002) for an NLG framework based on these
insights. However, in this paper we analyze Conjunction Reduction, Right
Node Raising and Gapping as related but different types of syntactic con-
structions that can be combined with each other. (See Harbusch and Kem-
pen (2006) for a similar approach.) This is motivated by the frequently
made observation that Right Node Raising is insensitive to syntactic is-
lands and does not respect syntactic constituency (see Zwarts (1986), for
Dutch), whereas Gapping is sensitive to syntactic islands and does respect
syntactic constituency (see Neijt (1979), for Dutch). For this reason, it does
not seem wise to collapse them.

4 Design of the Narrator

In this section we present the design of the Narrator component of the
Virtual Storyteller. First we provide a global description of the Narrator
architecture. Then we discuss the placement of the aggregation component
in this architecture. Finally we zoom in on Rhetorical Dependency Graphs,
the linguistic representation we use as a basis for aggregation and ellipsis.

4.1 Architecture

The design of the Narrator is based on the pipe-lined NLG architecture
described by Reiter and Dale (2000), who distinguish three stages in the
NLG process:

– Document planning: this involves determining the content and the
global structure of the information to be presented. The outcome is an
abstract message specification.

– Microplanning: at this stage, the message specification is fleshed out
further. This involves the generation of referring expressions, lexicaliza-
tion (word choice), and aggregation.

– Surface realization: here, the abstract message specification is con-
verted into real text, using knowledge about syntax, morphology, etc. In
addition, mark-up may be added for use by external components.

6 Mariët Theune et al.

Document plan

Fabula

Rhetorical Dependency Graph

Surface Form

Document planner:
− Selecting relevant information
− Adding rhetorical relations

− Referring expression generation
− Surface form generation

− Syntactic aggregation
Surface Realizer:

Microplanner:
− Generating sentence plans
− Lexicalization

Fig. 1 Architecture of the Narrator

The Narrator consists of three modules that correspond to these three
stages: a Document Planner, a Microplanner and a Surface Realizer. The
input for the Narrator consists of a plot representation (the fabula net-
work) specifying the actions of each of the characters, their emotions and
goals, linked together by causal relations. The Document Planner turns this
into a document plan by mapping the links from the network to appropri-
ate rhetorical relations, while removing irrelevant information and adding
background information when necessary. For instance, the Document Plan-
ner may add information about the properties of characters and objects
that play a role in the story. These are added to the document plan using
an Elaboration relation.

The Microplanner then converts the document plan into what we call
a Rhetorical Dependency Graph (see Section 4.3) by mapping the plot ele-
ments at its leaf nodes to Dependency Trees, while maintaining the rhetor-
ical relations between them. We call this process sentence plan generation.
Currently this is done in a fairly simple fashion, using templates for Depen-
dency Trees expressing various actions, events and states. The Microplanner
also performs lexicalization, mapping the concepts from the document plan
to Dutch words. These words are still uninflected, as morphology is taken
care of in the Surface Realizer. References to characters and objects are
not lexicalized yet at this stage, because this is part of referring expression
generation, which is also performed in the Surface Realizer.

Finally, given a Rhetorical Dependency Graph as input, the Surface Re-
alizer decides which of the Dependency Trees making up its leaf nodes should
be aggregated, which cue words should be used to express the relations be-
tween the trees, and whether ellipsis should be applied to the aggregated

Performing aggregation and ellipsis using discourse structures 7

trees (and if so, which type of ellipsis). How this is done, is discussed in
detail in Section 6. As the next step, referring expressions are generated for
the remaining (non-ellipted) references to characters and objects, e.g., using
a proper name, a descriptive noun phrase, or a pronoun, depending on fac-
tors such as recency of mention and the presence of alternative antecedents.
Finally, the words in the (possibly aggregated) Dependency Trees are in-
flected and ordered, obeying rules that dictate the order of the child nodes,
using their dependency labels. Punctuation is added when the Surface Form
is complete. The global architecture of the Narrator is shown in Figure 1.

4.2 Where to perform aggregation

As can be noted from the above description, the architecture of the Narrator
deviates from the NLG architecture presented by Reiter and Dale (2000)
with respect to the location of two important NLG tasks: aggregation and
the generation of referring expressions, which we have placed in the Surface
Realizer rather than the Microplanner module of our system.

Despite its deviation from the ‘standard’, our decision to perform ag-
gregation in the Surface Realizer is not unprecedented. The RAGS-project
(Cahill and Reape, 1999), in which the architecture of nineteen NLG systems
was investigated, showed a lack of consensus on the location of the aggrega-
tion process in the NLG pipe-line. Instead, the situation varied widely over
different NLG-systems, with a number of systems performing aggregation in
the Surface Realizer. This divergence is partly caused by the fact that many,
quite different processes are gathered under aggregation (see Reape and Mel-
lish (1999) for an overview). However, the Narrator only deals with syntactic
aggregation. Because syntactic aggregation involves grammatical processes
(coordinating sentences and deciding which elements can be deleted without
rendering the sentence ungrammatical), in our view it should be situated
in the Surface Realizer together with the other grammatical processes. For
example, one of the structures we focus on (viz. Gapping) is sensitive to
syntactic island restrictions such as the Complex NP Constraint, respects
syntactic constituency, and must target the main verb (Neijt, 1979). To
decide whether Gapping is possible or not, we therefore need access to syn-
tactic information. The same holds for Right Node Raising, which applies to
the rightmost material in a clause and therefore requires information about
linear word order.

In short, we perform aggregation in the Surface Realizer module of our
system because the syntactic information it should have access to, is avail-
able there. A consequence of this decision is that referring expression gener-
ation also has to be performed in the Surface Realizer (after aggregation),
to avoid generating referring expressions that will be deleted during ellipsis.
Still, while being placed in the same module and (potentially) making use
of the same syntactic resources, aggregation and the generation of referring
expressions are handled separately from the actual surface form generation
that, naturally, also takes place in the Surface Realizer.

8 Mariët Theune et al.

4.3 Rhetorical Dependency Graphs

The Surface Realizer receives as input what we call a Rhetorical Dependency
Graph: a graph with Dependency Trees expressing simple propositions as
nodes, connected by rhetorical relations.

Dependency Trees are a prominent feature of Meaning-Text theory (Mel-
’cuk, 1988). They are constructed on the basis of predicates and arguments.
There is no dependence on linear word order, and no limit on the number of
children a node can have. This means the trees are able to handle variation
in word order easily, so that they translate well over different languages. In
fact, Dependency Trees have been used with success in Machine Translation
(Lavoie et al., 2000). The fact that Dependency Trees are largely language
independent means that a generation system using Dependency Trees can
be adjusted to another language quite easily; only the rules specific to the
generated language have to be replaced, the generation algorithm remains
the same. In addition, the independence of word order, and the dependency
labels that specify which role a node performs in its parent syntactic cate-
gory, make Dependency Trees easy to manipulate, especially for the purpose
of generating ellipsis. These two properties make Dependency Trees an at-
tractive formalism for representing sentence plans in the Narrator.

A standard of Dependency Trees is set by the Spoken Dutch Corpus
(van der Wouden et al., 2002). The Alpino parser (Bouma et al., 2001), a
computational analyzer for Dutch, follows this standard, albeit with some
practical adaptations. In the Narrator we adopt the Alpino format for De-
pendency Trees with some minor changes: a tag for morphology has been
added, and the tags that indicate the position of a word or constituent in
the Surface Form are left out initially (these are added during lineariza-
tion). An example Dependency Tree for the sentence ‘Diana vlucht naar de
bergen’ (Diana flees to the mountains) is given in Figure 2.

Dependency Trees expressing basic plot elements (i.e., simple facts about
the current state of the story world) are connected by rhetorical relations
to form a so-called Rhetorical Dependency Graph. The use of such graphs
was inspired by Rhetorical Structure Theory (RST) (Mann and Thompson,
1987). This theory was originally developed as a descriptive framework for
the analysis of text structure, but it has also been used in several NLG
applications (for an overview, see Hovy (1993)). In RST, rhetorical rela-
tions have been defined independently from the lexical and grammatical
forms of a text. Thus it can be argued that these rhetorical relations are
language-independent, as is illustrated by the fact that RST has been ap-
plied successfully to various languages including English, Dutch, Portuguese
and Japanese (see Taboada and Mann (2006) for an overview). However,
rhetorical relations do have an influence on syntactic structure and lexical
choice. Scott and de Souza (1990) describe the relation between rhetorical
relations and syntactic structure. They propose a number of heuristics to
guide the generation process, such as “Embedding can only be applied to the
Elaboration relation” (Scott and de Souza (1990), p.57) and “The parat-

Performing aggregation and ellipsis using discourse structures 9

Fig. 2 Dependency Tree for ‘Diana vlucht naar de bergen’ (Diana flees to the

mountains)

Fig. 3 Example Rhetorical Dependency Graph. (The internal structure of the
Dependency Trees is not shown.)

actic marker and must only be applied to Sequence and List, but to Con-

trast, and or to Alternative” (Scott and de Souza (1990), p.67). Shaw
(2002) points out the relation between rhetorical relations and hypotactic
constructions: using rhetorical relations, one can decide which hypotactic
structure is appropriate to use. According to Hendriks (2004), rhetorical
relations also influence the use of certain elliptic structures, such as Gap-
ping: a gapped sentence cannot have a Causal relation between its clauses,
but only a Resemblance relation, such as Additive or Contrast. All this
means that we need information about rhetorical relations as input for the
aggregation process, to be used for the selection of a suitable syntactic, pos-
sibly elliptic, structure when combining two Dependency Trees. (However,
see White (2006) for a sophisticated method to generate elliptic structures
without making use of rhetorical relations.)

The basic set of rhetorical relations that we currently use in the Nar-
rator consists of Cause, Contrast, Temporal and Additive relations (see
Section 5.2). These relations are based on, but not identical to, those from
Rhetorical Structure Theory. RST distinguishes far more, and far more spe-

10 Mariët Theune et al.

cific, rhetorical relations, most of which are simply too detailed for the rel-
atively simple stories created by the Virtual Storyteller. Moreover, some of
the distinctions made in RST are less useful from the perspective of the
Narrator. In text analysis, Cause and Consequence can be seen as two dif-
ferent relations, distinguished by the roles of the nucleus and the satellite.
If the nucleus (the important clause, which the satellite supports) expresses
the cause and the satellite the consequence, we see a Consequence rela-
tion. Alternatively, if the satellite is the cause, we see a Cause relation. The
Virtual Storyteller makes no such distinction. The Document Planner first
determines that two plot elements are important enough to mention, and
then that there is a cause-consequence relation between the two. Because it
has no way to distinguish between a Cause and a Consequence relation, and
because in practice these two relations can be realized at the surface level in
the same way, we have only defined a Cause relation, in which the satellite
is always the cause and the nucleus the consequence. In temporal relations,
the satellite always corresponds to the event that is first in chronological or-
der. So unlike RST, where the nucleus/satellite distinction indicates relative
importance, in our Rhetorical Dependency Graphs we use the distinction
to indicate the different roles of the elements in the relation. This is illus-
trated by the Rhetorical Dependency Graph shown in Figure 3, which shows
that Diana’s seeing Brutus causes her to be afraid, and the combination of
the two events causes Diana to go (flee) to the desert.4 Another difference
with RST is that (for practical reasons) we do not have multi-nuclear rela-
tions. Instead, in relations that are considered multi-nuclear in RST, such
as Contrast, a nucleus and a satellite are arbitrarily assigned.

5 Cue word taxonomy

Cue words are a natural language’s resources to signal different rhetori-
cal relations, and as such are a vital part of syntactic aggregation. They
have great influence on the syntactic structure of an aggregated sentence.
Sanders and Noordman (2000) show that rhetorical relations (which they
call coherence relations) play an important part in human text processing,
and that cue words cause faster processing of coherence relations between
two segments.

Dalianis (1999) describes a system in which the aggregation and the
cue word system are interleaved. Where aggregation has taken place, the
clauses involved are marked with a cue primitive (e.g., joint or disjunct) to
disambiguate the aggregated sentence. During surface generation the cue
primitives are then translated into cue words. In our system, cue words are
selected based on the rhetorical relation between two Dependency Trees, and
the selected cue word determines if and how the trees are aggregated. In this
section we describe the taxonomy of Dutch cue words we have developed
for this purpose. First we discuss related work on cue word taxonomies for
English and Dutch.

Performing aggregation and ellipsis using discourse structures 11

5.1 Taxonomies for English and Dutch cue words

Knott and Dale (1994) collected a corpus of English cue words and classified
them according to their function in discourse, using a substitutability test.
Put simply, this test is used to determine whether two cue words signal
(partly) the same features, by checking whether one can be substituted by
the other in a particular context. For instance,

Kate and Sam are like whereas Kate is only
chalk and cheese. Sam + on the other hand interested in
lives for his books; * then again martial arts.

I don’t know where to then again, we had curry
eat tonight; The Star of + on the other hand just the
India is always good; * whereas other night.

(examples are taken from Knott and Dale (1996)). A plus sign means
that a cue word is a suitable substitute, whereas an asterisk means it is
not. The example shows that on the other hand signals only those features
that whereas and then again have in common, while whereas and then again
signal opposing features. On this basis Knott and Dale created a taxonomy
of English cue words. This taxonomy is hierarchical, as some cue words
signal more features than others.

Following the same method, Knott and Sanders (1998) created a similar
taxonomy for Dutch cue words, using the cognitive primitives that were
proposed by Sanders et al. (1992) to differentiate between the classes. A
drawback of this taxonomy is that it is rather complex, and will presumably
be hard to implement in a practical NLG system. In addition, Knott and
Sanders admit that their taxonomy was created using only those cue words
that were easiest to classify; other cue words will be even harder to classify
and may cause the taxonomy to be even more complex. For these reasons
we have decided to create a less convoluted taxonomy for our own purposes
(see Figure 4). This taxonomy is presented in the next section.

5.2 A cue word taxonomy for syntactic aggregation

For the purpose of syntactic aggregation in our storytelling system, a small
taxonomy charting only the most prevalent cue words in Dutch has been
constructed, using a variant of the substitutability test described by Knott
and Dale (1994). Because our taxonomy is meant to be used before the
words in a Dependency Tree are ordered to produce the surface form (lin-
earization), unlike Knott and Dale we paid no attention to any changes a
cue word might make in the word order in the clauses. We also allowed sub-
stitutions that changed the clause order, as long as this did not influence
the meaning of the sentence. In short, we only looked at substitutability
with respect to meaning, regardless of surface form.

12 Mariët Theune et al.

after

before

voordat,
voor

ooit,
vroeger

sequence gap

nadat,
vervolgens,
daarna

gap

sequence

when

suddenly

as soon as

wanneer,
als

zodra plotseling tenslotte,
(uit)eindelijk

ooit,
later

terwijl

finally

en, omdat

dus,
daarom

Cause-first Cause-last

Voluntary

maar,
echter

toch,
hoewel

unrealised consequence

Contrast

bovendien

moreover

om

Purpose

Involuntary

Cause

Additive

Purpose

want

zodat, daardoor,
waardoor, doordat

en, ook,
en …ook,
zowel …
als

doordat

Temporal during

Involuntary Voluntary

Fig. 4 Taxonomy of Dutch cue words

The test was used on two types of data: sentences taken from a fairy
tale book (Andersen, 1975), and sentences based on the original output
of the Virtual Storyteller (see Section 3). The tested cue words all had a
frequency of >100 in a representative sample from the Spoken Dutch Corpus
(van der Wouden et al., 2002), to exclude rare cue words. Only cue words

Performing aggregation and ellipsis using discourse structures 13

that seemed appropriate for narrating a story (not too difficult, because the
obvious target group are children) were included.

The set of cue words is divided into four main classes: cue words signal-
ing Cause, Temporal, Contrast and Additive relations. Each of these classes
has been subdivided into smaller subsets to allow for finer distinctions in
meaning, to be discussed below. A cue word in a small subset can always be
replaced by a more general cue word, i.e., a cue word included in a superset
from the same category. The resulting taxonomy is given in Figure 4. All
features used in the taxonomy are in principle available to the story gen-
eration system. For instance, temporal information can be retrieved from
the fabula structure. Empty boxes indicate ‘missing cue words’, i.e., no cue
words were found to express a relation with the indicated properties.

For Cause relations, one feature denotes whether the cause is expressed
in the first or second clause in a complex sentence. A further distinction is
whether the consequence was voluntary (consciously willed by an actor) or
not. The cue words expressing a Purpose relation turned out to be the same
as the cue words signaling a voluntary Cause relation, with one addition:
‘om’ (to, as in Diana picked up the sword to kill Brutus).

The cue words signaling a Temporal relation are divided into subsets
according to the order of events expressed by the first and second clause:
before, after, sequence, finally, during, suddenly and once (for the specific
storytelling expression ‘Er was eens’ (Once upon a time)).

In the Contrast relation, there is one subset named ‘unrealized con-
sequence’. This subset encompasses the cases where one clause expresses
something that is the direct opposite of what you would expect it to be,
based on the ‘default’ consequence of what is expressed in the other clause.
For instance in Although Diana was scared, she did not flee we would have
expected the second clause to express the consequence of the first clause
(e.g., Diana was scared, so she fled).

The most general Dutch cue word, which seems to be appropriate in
the case of underlying Causal, Additive, Temporal and (in some contexts)
Contrast relations is ‘en’ (and).5 In principle, it can be substituted for any
other cue word, so it might be argued that this cue word should occupy
the empty box in the middle of our taxonomy. However, because this cue
word strongly suggests an Additive relation and leaves any other relations
very much implicit, we decided not to use it in this general fashion in our
system, as we prefer a more explicit signaling of the rhetorical relations in
the generated stories.

6 Performing aggregation and ellipsis

The cue word taxonomy is used in the Surface Realizer during the syntac-
tic aggregation process, which consists of three steps. First, based on the
rhetorical relation between two Dependency Trees, an appropriate cue word
is selected that expresses this relation. Then, depending on the properties

14 Mariët Theune et al.

of the selected cue word, the two Dependency Trees may be joined together
using a specific syntactic construction. Finally, the joined Dependency Trees
are checked for repeated elements that can be ellipted. Below we go through
each of these steps in more detail, but first we briefly discuss how pairs of
Dependency Trees are selected for aggregation.

6.1 Selecting Dependency Trees for aggregation

The Rhetorical Dependency Graph representing a story structure has the
form of a binary branching tree, with Dependency Trees representing simple
propositions as its leaves and relations as its non-terminal nodes. See Fig-
ure 3 for a very simple example; a full story will have a much larger Graph.
The syntactic aggregation algorithm goes through the Rhetorical Depen-
dency Graph depth-first, looking for relations that have two Dependency
Trees as their children. If it finds one, such as that shown in Figure 5, it
is passed through the aggregation steps described below to transform it, if
possible, into a complex Dependency Tree combining its nucleus and satel-
lite. If aggregation succeeds, the Rhetorical Dependency Graph is updated
with the new, complex Dependency Tree replacing the original relation, and
the algorithm continues looking for relations to transform.

To keep the resulting sentences from getting too complex, at most three
simple Dependency Trees can be combined. In cases where this restriction
prohibits aggregation it may still be possible to express the relation between
two Dependency Trees by adding an adverb such as then, however, etc. to the
second tree. To express the maximum of relations, after the initial traversal
and transformation of the Rhetorical Dependency Graph, the algorithm
makes another pass through it and expresses some final relations by adding
adverbs to non-aggregated sentences.

Fig. 5 Example input for aggregation.

Performing aggregation and ellipsis using discourse structures 15

6.2 Cue word selection

When two Dependency Trees are selected for aggregation, the first step is to
choose an appropriate cue word to express their relation. A relation can have
features that correspond to certain subclasses in the cue word taxonomy
from Figure 4. If the values for these features are known, a highly specific
cue word can be selected. If the relation has no specific features, a more
general cue word is chosen. It is not necessarily the most specific applicable
cue word that gets selected; discourse history plays a part as well: if a cue
word has been recently used, it is less likely to get chosen again. The cue
word selection algorithm first tries to find an appropriate coordinating cue
word, i.e., a cue word that combines two trees. If coordinating cue words
are unavailable or disallowed, an adverb is selected and added to either
the nucleus or the satellite, without aggregation. Coordinating cue words
are disallowed if the resulting aggregated tree would get too complex (see
Section 6.1). When a cue word is selected, a node is created for it in the tree
of the relation and the result is passed on to the next step, where either the
dependency trees are combined, or the cue word is added to one of them.

As an example, assume that the Contrast relation from Figure 5 is se-
lected for aggregation. Its satellite is a Dependency Tree expressing that
Diana is scared and its nucleus a Dependency Tree expressing that Di-
ana wants to kill Brutus. The relation is not specified for the ‘unrealized-
consequence’ feature (see Figure 4) so the choice of cue words is limited
to ‘maar’ (but) and ‘echter’ (however). Of these, ‘maar’ is a coordinator,
and ‘echter’ is an adverb. Since both nucleus and satellite of the relation
are simple Dependency Trees there is no reason to prefer a non-coordinated
construction, and we assume that ‘maar’ gets selected.6

6.3 Aggregation

The next step is to create a grammatical, aggregated Dependency Tree from
the nucleus and satellite of the relation, given the selected cue word. Only
entire trees are combined at this stage; the conjunction of single constituents
(i.e., nodes in the Dependency Trees) is handled in the next step, Ellipsis.
The structure of the aggregated Dependency Tree depends on the proper-
ties of the selected cue word. If the cue word is a coordinator, a paratactic
structure is created. A new Dependency Tree is constructed with a root la-
beled conj (conjunction). Its child nodes are a coordinator (the cue word)
and two conjuncts (the nucleus and satellite of the old relation). Other than
in Alpino-trees, the conjuncts do not have the same label: the distinction
between nucleus and satellite is kept, because in some relations this is im-
portant for linearization (for instance, in a paratactic structure expressing a
causal relation, we do not want to put the consequence before the cause). If
the selected cue word is a subordinator, a hypotactic structure is created. If
the cue word is an adverb, the cue word is added to either the nucleus or the
satellite of the relation (depending on the cue word), and the separate trees

16 Mariët Theune et al.

are added to the result, the unmodified tree first. In our example, the cue
word ‘maar’ is a coordinator, so it requires the creation of a paratactic tree.
A new Dependency Tree is built, with as its root node a Conjunction. The
nucleus and satellite of the tree become its conjuncts and its coordinator is
‘maar’. This new tree is then passed on to the next stage, Ellipsis.

6.4 Ellipsis

The final step is to perform ellipsis, i.e., to remove superfluous nodes or
branches from a Dependency Tree. This step only applies to paratactic con-
structions. First both conjuncts of the aggregated Dependency Tree are
checked for identical nodes or branches. This search is restricted to con-
stituents and direct children of the root of the Dependency Tree. Like Dalia-
nis (1999) we use unique identifiers to distinguish different instances of the
same concept, so that ellipsis is only applied to nodes with identical refer-
ents. If the conjunction is nested, the nodes that the nested conjuncts share
are compared to the nodes in the other conjunct. Any identical nodes found
in the Dependency Tree are marked. When all identical nodes have been
found and marked, it is determined which operations are suitable.

If no nodes are marked at all, no Ellipsis will take place. If one or more
nodes are marked (but more than one node has been left unmarked), the la-
bels of the nodes that are identical determine which operation is performed:
Gapping (where the verb of the second conjunct is removed), Right Node
Raising (removal of the rightmost part of the first conjunct) or Conjunction
Reduction (removal of the subject of the second conjunct). These three op-
erations can be performed in combination. For example, if only the subjects
of the coordinated clauses are marked as identical, Conjunction Reduction
is selected, but when both the subjects and the main verbs are marked,
then both Conjunction Reduction and Gapping are performed. An example
would be the sentence Diana is in love with the prince and afraid of Brutus,
formed by aggregating the simple sentences Diana is in love with the prince
and Diana is afraid of Brutus and applying both Conjunction Reduction
and Gapping. Right Node Raising and Gapping cannot be applied in all
cases: they can only be used to express additive or contrast relations, be-
cause these constructions rule out a causal interpretation (Hendriks, 2004).
Conjunction Reduction is feasible with all relations. Right Node Raising
can be applied to multiple constituents. For example, in a sentence such as
Diana kicks and the prince hits Brutus in the desert Right Node Raising
has applied to both Brutus and in the desert.

If all nodes are marked except one, as for instance in the tree represent-
ing ‘Diana gaat naar het bos en Brutus gaat naar het bos’ (Diana goes to the
forest and Brutus goes to the forest), where both conjuncts are identical ex-
cept for the subject, the transformation is more radical. Two constructions
can be chosen: 1) Stripping and 2) coordination of the unmarked nodes.
With Stripping, all the identical nodes of the nucleus are deleted and re-
placed by a node representing the discourse particle ‘ook’ (too), to realize

Performing aggregation and ellipsis using discourse structures 17

a construction such as ‘Diana gaat naar het bos en Brutus ook’ (lit. Di-
ana goes to the forest and Brutus too). As an alternative, in Constituent
Coordination the non-identical nodes are combined into one, and the sec-
ond conjunct is deleted in its entirety, thus realizing constructions such as
‘Diana en Brutus gaan naar het bos’ (Diana and Brutus go to the forest).

The conjunct that is ellipted is marked cnj-ellipted, unless the op-
eration was Right Node Raising. In that case the conjunct is marked cnj-

raised, because with Right Node Raising something is deleted from the
first conjunct of the Surface Form, while with the other operations a node
from the second conjunct is removed. So different labels are needed to de-
termine which conjunct comes first in linearization.7 Superfluous nodes are
deleted, but their parent node receives a connection to the remaining twin.
This connection is marked ‘borrowed’ to show that the node should not
appear in the Surface Form. This means that the elliptic conjunct has the
same structure as the intact conjunct, but is ellipted in the Surface Form.

In our example, the Dependency Tree created by the Surface Realizer
was paratactic. The conjuncts have one node in common, i.e., their subject,
Diana. When only the subject is identical, Conjunction Reduction is the
suitable elliptic structure. The subject node of the second conjunct (the nu-
cleus) is removed, and replaced by a connection with the subject of the first
conjunct (the satellite). The result is shown in Figure 6. This Dependency
Tree could be realized as ‘Diana was bang, maar wilde Brutus doden’ (Di-
ana was scared, but wanted to kill Brutus). This concludes our description of
how aggregation and ellipsis are performed in the Virtual Storyteller; more
details can be found in Hielkema (2005).

Fig. 6 Output of the Elliptor.

7 Results

In this section we take a look at the results that are actually produced
by the syntactic aggregation algorithm. Because a reimplementation of the
plot creation component of the Virtual Storyteller is being carried out, the
Narrator currently has no fabula input available (see Section 2). Therefore,

18 Mariët Theune et al.

the algorithm has been tested with hand-made document plans. First, let us
consider the original output of the Narrator as presented in Section 3. This
text is repeated in Figure 7 as text (1). The original version of the Narrator
made no use of rhetorical relations, but for the sake of comparison let us
assume that Causal relations hold between the facts expressed in sentences
3-5, and Additive relations between the rest. Given these relations, the new
version of the Narrator (using aggregation, ellipsis and pronominalization)
would express the story fragment as text (2) in Figure 7.

(1) 1 Diana gaat naar de woestijn Diana goes to the desert.

2 Brutus gaat naar de woestijn. Brutus goes to the desert.

3 Diana is bang voor Brutus. Diana is afraid of Brutus.

4 Diana gaat naar het bos. Diana goes to the forest.

5 Brutus gaat naar het bos. Brutus goes to the forest.

(2) 1+2 Diana en Brutus gaan naar de Diana and Brutus go to the

woestijn. desert.

3+4 Diana gaat naar het bos, want Diana goes to the forest, because

ze is bang voor Brutus. she is afraid of Brutus.

5 Daarom gaat Brutus ook naar Therefore Brutus goes to the

het bos. forest too.

Fig. 7 Old and new version of Narrator output

We see that in text (2), the first two sentences of text (1) are combined
using Constituent Coordination, that the third and fourth sentence are co-
ordinated using the causal cue word ‘want’ (because) and that the causal
adverb ‘daarom’ (therefore) has been added to the last sentence. It is clear
that text (2) flows more smoothly and appears more coherent than text (1).
However, the coherence of text (2) is still not optimal. This is not a problem
of the aggregation algorithm, but of the limited input to the algorithm: the
Document Plan, based on the original example, does not include all the in-
formation that is relevant for the story. In particular, apart from emotional
states, information about the motivations of the characters is lacking. For
instance, in text (2) it is still not clear why Brutus goes to the forest too.
(In fact he is following Diana, because his goal is to capture her.) This kind
of information will be present in the new fabula structures to be used as
input for the Narrator. If we add information about the personal goals of
the characters to the input document plan, we get text (3) in Figure 8.
Note that in this version of the example text we use past tense, because it
is more appropriate for fairy tales. The morphology component of the Nar-
rator allows for the use of different tenses, but originally, when the Virtual
Storyteller still used fixed sentences for language generation, everything was
expressed in present tense. Therefore, in text (2) we used present tense to
keep it similar to text (1).

Performing aggregation and ellipsis using discourse structures 19

(3)
Diana ging naar de woestijn en Brutus ging ook naar de woestijn, want hij
wilde de omgeving verkennen. Daardoor zag Diana Brutus. Diana wilde Brutus
vermoorden, maar was bang voor hem, dus zij wilde vluchten. Daarom ging zij
naar het bos. Brutus ging ook naar het bos, want hij wilde Diana gevangen nemen.

Diana went to the desert and Brutus went to the desert too, because he wanted

to explore the environment. Because of that, Diana saw Brutus. Diana wanted to

kill Brutus, but was afraid of him, so she wanted to flee. Therefore she went to

the forest. Brutus went to the forest too, because he wanted to capture Diana.

Fig. 8 Example output of the Narrator with character goals added.

Text (3) expresses why Brutus went to the desert, how this caused Diana
to see him (an Involuntary Cause relation), why Diana went to the forest and
why Brutus followed her there. Still, some flaws can be observed in the way
the story is expressed. For instance, in the first and last sentences the actions
of Brutus are similar to Diana’s, and the adverb ‘ook’ (too) is used to express
this parallelism, but not in connection with Stripping. Instead, the Narrator
has added this adverb to the Dependency Trees prior to aggregation, based
on the semantic similarity with the previous plot element being expressed.
However, in the first sentence of text (3) Stripping would have been more
appropriate, so we would get ‘Diana ging naar de woestijn en Brutus ook,
want hij wilde de omgeving verkennen’ (Diana went to the desert, and so did
Brutus, because he wanted to explore the environment).8 Currently, such a
construction cannot be produced by the aggregation algorithm, because the
example first expresses the causal relation between Brutus’ action (going
to the desert) and his goal (exploring the environment). The result is an
aggregated Dependency Tree that is not eligible for Stripping when it is
combined with the Dependency Tree that expresses Diana’s action, because
the two trees are only partly identical to each other. This means we need a
more permissive definition of Stripping to allow it in cases like this.

Another problem of the current aggregation algorithm is illustrated by
the first sentence of text (2): Diana and Brutus go to the desert. This sen-
tence is ambiguous between a distributive reading, where Diana and Brutus
went to the desert separately (which is correct in this case) and a collec-
tive reading, where they went together (which is incorrect). In real life,
such ambiguous sentences are quite common, but in systems like the Vir-
tual Storyteller it seems preferable to avoid ambiguity as much as possible.
So when two Dependency Trees that are identical apart from one node
(and thus are eligible for both Gapping and Constituent Coordination, see
Section 6.4), express separate, non-simultaneous events, the elliptic con-
struction that should be used is Stripping (Diana went to the desert and
so did Brutus) rather than Constituent Coordination, which should only
be used to express collective events. Adding such a restriction on the use
of Constituent Coordination should be no problem, because the required

20 Mariët Theune et al.

knowledge about Events is already available in the input of the Narrator.
An even better solution would be to use additional cue words such as both,
each or separately to disambiguate these cases, as in Dalianis (1999).

Our goal in designing the aggregation component of the Narrator was
to generate at least the six different constructions listed in Section 3. Three
of these constructions are present in the example texts: the first sentence
of text (3) combines a paratactic and a hypotactic construction, and the
third sentence has Conjunction Reduction as well as a combination of two
paratactic constructions. Right Node Raising, Gapping and Stripping do not
occur in the example texts, because the input Document Plans did not con-
tain any instances to which these constructions would apply. However given
applicable input, these elliptic constructions can be generated. For instance,
if Brutus’ initial action had been to go to the forest instead of the desert,
the first sentence of text (3) would have been Diana went to the desert and
Brutus to the forest, because he wanted to explore the environment, which
is an instance of Gapping.

8 Discussion

In the design of the Narrator and the algorithm for aggregation and ellip-
sis we have made some important choices. Here we discuss the choices we
made and add some critical remarks. We also discuss some of the remaining
problems with our algorithm, and possible solutions.

8.1 Syntactic aggregation in the Surface Realizer

As we discussed above, there is no consensus on the proper location for
aggregation to take place in the architecture of an NLG system. This is
at least partly caused by the use of different definitions of aggregation,
which comprise processes quite different in level. Our focus is on syntac-
tic aggregation, which includes ellipsis. Since there is evidence that ellipsis
is language dependent (not all forms of ellipsis are permissible or realized
similarly in all languages) we have decided to situate aggregation in the Sur-
face Realizer, the module which traditionally deals with language-specific
grammatical processes. Here, all syntactic information that is relevant for
ellipsis is available. For instance, Gapping is sensitive to syntactic islands,
and Right Node Raising depends on linear word order, so it seems that the
aggregation process must have access to this type of syntactic information.
A consequence of locating aggregation in the Surface Realizer is that refer-
ring expression generation also has to be located there (after aggregation),
to avoid generating referring expressions that will be deleted during ellip-
sis. A positive side-effect of this is that it allows easy access to syntactic
information to check the binding constraints that hold for certain referring
expressions.

Performing aggregation and ellipsis using discourse structures 21

It might be argued9 that placing both aggregation and the generation
of referring expressions in the Surface Realizer, in addition to its ‘core’
surface generation tasks, may make the module unnecessarily complicated
and inefficient. However, apart from the (potential) sharing of syntactic
resources, the various processes included in the Surface Realizer work quite
independently from each other. The resulting architecture is as efficient as
one where aggregation is situated in the Microplanner, but retrieves the
syntactic information required for aggregation from the Surface Realizer.

Finally, it should be noted that although our argument for placing aggre-
gation in the Surface Realizer rests on relevant syntactic information being
available there, in practice, our aggregation algorithm does not make use
of this information yet. Currently, the Dependency Trees to be aggregated
only represent simple facts (Diana is afraid, Diana flees, etc.), so aggrega-
tion of these trees is relatively uncomplicated and does not require much
syntactic knowledge. However, in the future we would like to use more ad-
vanced constructions, for which access to detailed syntactic information is
indispensable.

8.2 Dependency Trees

Are Dependency Trees language independent? Mel’cuk (1988) designed De-
pendency Trees to be free of word order, to allow for languages where the
word order is vastly different from English. But is it only word order that
makes languages differ from one another? In languages such as Spanish or
Italian (so-called pro-drop languages), it is not always necessary to men-
tion the subject of a sentence - and that certainly shows in a Dependency
Tree. And all languages have some concepts that do not translate well,
though these might not crop up often in the telling of a simple fairy tale.
Still, even if the Dependency Trees that the Surface Realizer gets as input
are not completely language independent, the methods we use to process
them and turn them into Surface Forms are. Substituting the cue words
and grammatical rules should be sufficient to enable the Surface Realizer
to process Dependency Trees lexicalized to a different language. For this
reason alone, we think Dependency Trees are excellent input for a Surface
Realizer that tries not to commit itself to one language. Another advantage
of using Dependency Trees in syntactic aggregation is that they can easily
be manipulated, because the role a word or a constituent plays in a sentence
is given by a label (e.g., subject deletion is realized by deleting the node
labeled ‘subject’).

8.3 Rhetorical relations and cue words

Rhetorical relations can be used to determine which cue words should be
selected. They are a suitable mechanism to carry a certain meaning across to
the level when it is finally of use. And since the relations even influence the

22 Mariët Theune et al.

possibility or impossibility of ellipsis, the Surface Realizer certainly should
have access to them.

However, the relations that were used in this project are not the set that
was given by Mann and Thompson (1987). Only a few relations were selected
for the moment: those deemed of the most importance to the narrating of
a fairy tale. Cause and Contrast are very basic concepts, and Temporal
relations are vital for any narrative. These relation classes were then divided
into subclasses that correspond to groups of cue words, derived from the
small cue word taxonomy that was created for this purpose. The properties
that distinguish the subclasses are molded in terms of information that
is available to the story generation system. This way, rhetorical relations
can easily be added by the Document Planner, because the information is
already there. The rhetorical relations that we currently distinguish were
selected based on linguistic evidence, i.e., on the grouping of cue words
that we established using the substitution test. In the future, our cue word
grouping should be validated based on experiments with naive subjects,
along the lines of the experiments performed by Sanders et al. (1992). If the
taxonomy is not confirmed, it should be adapted according to the outcome
of the experiments. After all, as Reape and Mellish (1999) have claimed,
NLG systems should be based on linguistic theories and linguistic evidence
to be truly successful.

8.4 Aggregation and ellipsis

Although our results for syntactic aggregation and ellipsis are promising,
and certainly are a big improvement over the results of a system without ag-
gregation, the syntactic aggregation algorithm we use is still too simple and
inflexible in several respects. In Section 7 we have already discussed some
problems with Stripping and Constituent Coordination. For these problems,
fairly straightforward solutions are available, but they have not been incor-
porated in the system yet.

In our system, Gapping only applies to the main verb. However, in cer-
tain contexts it should be allowed to ellipt additional material along with the
verb. An example is Kuno’s John hit Mary with a stick and Bill with a belt,
where the ellipted sentence could be interpreted as and Bill hit Mary with
a belt in a context like the question With what did John and Bill hit Mary?
(Kuno, 1976). As shown by the example, this extended form of Gapping is
subject to several subtle contextual constraints: preferably, the ellipted ma-
terial should be contextually given, the remaining material should be new
or contrastive, and the non-Gapping interpretation should be less plausible.
These constraints (especially the latter) are currently impossible to check
in our system, so for the moment we leave this form of Gapping aside.

A more serious problem occurs with Right Node Raising. Adhering to
the standard NLG pipe-line (Reiter and Dale, 2000), in our system lineariza-
tion is performed after aggregation and ellipsis. This means that the final

Performing aggregation and ellipsis using discourse structures 23

ordering of the constituents in a sentence is still unknown when ellipsis is
performed. However, the Right Node Raising construction relies on word
order information, as it is the rightmost material that should be raised. In
the absence of this information, Right Node Raising is performed on nodes
that are expected to end up rightmost in the sentence. Unfortunately, this
expectation is not always met, occasionally leading to unwellformed cases of
ellipsis. An obvious solution to this problem would be to perform lineariza-
tion after aggregation, but before ellipsis. However, this would require a
substantial change in our algorithm, which we have not been able to make
yet.

Finally, the general strategy of our aggregation component is to find
a balance between keeping the generated texts from being ‘choppy’ and
repetitive on the one hand, and ensuring that they remain easy to read on
the other hand. We try to achieve this by applying coordination and ellip-
sis when this is possible while respecting certain constraints on complexity
(see Section 6.1). However, it is not clear if our strategy always results in
texts that are optimally suited for processing by a reader or listener. In the
Virtual Storyteller, texts are presented to the listener using text-to-speech.
Since understanding synthetic speech requires some concentration from the
listener, long and complex sentences may be less suitable for this mode
of presentation. This may also be the case for texts that are presented to
younger readers. (See Siddharthan (2006), who presents a method to re-
duce the syntactic complexity of texts while retaining cohesion, which is
essentially the opposite process of aggregation.) To investigate which is the
optimal balance between fluency and comprehensibility, reading and listen-
ing experiments should be performed in which processing speed is measured
for texts that differ with respect to the depth of aggregation.

9 Conclusion

In this article, we have described the generation of aggregated and elliptic
sentences in a story generation system, using Dependency Trees connected
by rhetorical relations (‘Rhetorical Dependency Graphs’) as input. For use
in our aggregation component we have developed a taxonomy of the most
common Dutch cue words, grouped according to the kind of discourse re-
lations they signal. Using this taxonomy, we are able to generate several
different sentences on the basis of a given Rhetorical Dependency Graph.
Each relation has several cue words by which it can be expressed. These
cue words lead to the use of different syntactic structures. The current sys-
tem can produce paratactic and hypotactic constructions, add an adverb
to individual trees, and use ellipsis to omit repeated constituents from the
surface structure. We were able to produce all the desired forms of ellip-
sis (see Section 1), including combinations of different structures, such as
Gapping and Conjunction Reduction simultaneously (e.g., Diana wants to
hug the prince but hit Brutus). Although many improvements to our aggre-
gation component are still possible, in its current form it already allows us

24 Mariët Theune et al.

to generate a variety of sentences far greater than the boring sequence of
fixed, simple sentences that were generated before.

We have claimed that the most appropriate place for syntactic aggre-
gation is at the level of the Surface Realizer, and that the combination
of Dependency Trees and rhetorical relations is excellent input for such
a Surface Realizer, because Dependency Trees are easily manipulated and
rhetorical relations can determine the syntactic constructions that can be
used. Moreover, Dependency Trees and rhetorical relations are assumed to
be largely language independent, which means that it should be relatively
easy to adjust our generation system to another language; only the grammar
rules specific to the generated language have to be replaced, the generation
algorithm remains the same. Currently, our system only generates texts in
Dutch, but we intend to put the claim of language-independence to the test
by porting our Surface Realizer to English in the near future.

Acknowledgements The authors would like to thank Nanda Slabbers for her use-
ful suggestions and for her work on improving the syntactic aggregation algorithm.
Thanks are also due to our two anonymous reviewers for their helpful comments on
the first version of this paper, and to Rieks op den Akker and Dennis Reidsma for
their help with the implementation of the aggregation algorithm and the Rhetor-
ical Dependency Graphs. Mariët Theune and Petra Hendriks gratefully acknowl-
edge the Netherlands Organisation for Scientific Research, NWO (grant numbers
532.001.301 and 015.001.103 respectively). The work of Mariët Theune was partly
carried out within the IMIX project, sponsored by NWO.

Notes

1We use the term ‘cue word’ to refer both to single words and to cue phrases
that consist of more than one word. An alternative term often used in linguistic
literature is ‘discourse marker’.

2Lit.: Diana left the desert, because she Brutus saw.
3Lit.: Diana entered the desert and Brutus too.
4Given this Rhetorical Dependency Graph as input, a possible output of the

Surface Realizer is ‘Diana ziet Brutus en wordt bang. Daarom gaat ze naar de
woestijn.’ (Diana sees Brutus and gets scared. Therefore she goes to the desert.)

5Examples: Mary fell and broke her leg (Causal), Mary is an architect and

John is a lawyer (Additive), Mary got into the car and drove off (Temporal),
Mary was pleased and Sue was angry (Contrast).

6Currently, when the recency and complexity constraints allow more than one
cue word, one of the permissible cue words is selected at random. Obviously, this is
not a perfect solution since there will always be subtle differences in meaning and
usage between the cue words. However, making a proper choice between possible
cue words would require more semantic and pragmatic knowledge than is currently
available in our system.

7Shaw (2002) uses directional constraints to achieve the same effect: if a recur-
rent element appears at the beginning or in the middle of the aggregated clauses,

Performing aggregation and ellipsis using discourse structures 25

Shaw’s system performs ‘forward deletion’, removing the element from the sec-
ond conjunct; if the element is at the end of the clause, ‘backward deletion’ is
performed, removing the element from the first conjunct.

8Lit.: Diana went to the desert, and Brutus too, because he wanted to explore

the environment.
9This argument was raised by one of our reviewers.

References

H.C. Andersen. Sprookjes en Vertellingen. Van Holkema en Warendorf,
Bussum, 1975. Translated by W. van Eeden.

G. Bouma, G. van Noord, and R. Malouf. Alpino: Wide coverage computa-
tional analysis of Dutch. In W. Daelemans, K. Sima’an, J. Veenstra, and
J. Zavrel, editors, Computational Linguistics in the Netherlands 2000,
pages 45–59. Rodopi, 2001.

L. Cahill and M. Reape. Component tasks in applied NLG systems.
Technical Report ITRI-99-05, Information Technology Research Institute,
Brighton, UK, 1999.

C. Callaway and J. Lester. Evaluating the effects of natural language gen-
eration. In Proceedings of the 23rd Annual Conference of the Cognitive
Science Society (CogSci 2001), pages 164–169, August 2001.

H. Dalianis. Aggregation in natural language generation. Computational
Intelligence, 15(4):384–413, 1999.

K. Harbusch and G. Kempen. ELLEIPO: A module that computes coordi-
native ellipsis for language generators that don’t. In Proceedings of the
11th Conference of the European Chapter of the Association for Compu-
tational Linguistics (EACL 2006), pages 115–118, April 2006.

K. Hartmann. Right Node Raising and Gapping: Interface Conditions on
Prosodic Deletion. John Benjamins, Philadelphia, 2000.

P. Hendriks. Coherence relations, ellipsis, and contrastive topics. Journal
of Semantics, 21(2):133–153, 2004.

F. Hielkema. Performing syntactic aggregation using discourse struc-
tures. Master’s thesis, Artificial Intelligence, University of Gronin-
gen, Groningen, The Netherlands, 2005. Available at http://www-
home.cs.utwente.nl/˜theune/VS/.

E. Hovy. Automated discourse generation using discourse structure rela-
tions. Artificial Intelligence, 63(1-2):341–385, 1993.

A. Knott and R. Dale. Using linguistic phenomena to motivate a set of
rhetorical relations. Discourse Processes, 18(1):35–62, 1994.

A. Knott and R. Dale. Choosing a set of coherence relations for text genera-
tion: A data-driven approach. In G. Adorni and M. Zock, editors, Trends
in Natural Language Generation: an Artificial Intelligence Perspective,
pages 47–67. Springer-Verlag, Berlin, 1996.

A. Knott and T. Sanders. The classification of coherence relations and
their linguistic markers: An exploration of two languages. Journal of
Pragmatics, 30:135–175, 1998.

26 Mariët Theune et al.

S. Kuno. Gapping: A functional analysis. Linguistic Inquiry, 7:300–318,
1976.

B. Lavoie, R. Kittredge, T. Korelsky, and O. Rambow. A framework for
MT and multilingual NLG systems based on uniform lexico-structural
processing. In Proceedings of the 6th Conference on Applied Natural Lan-
guage Processing (ANLP/NAACL 2000), pages 60–67, April-May 2000.

W.C. Mann and S. Thompson. Rhetorical Structure Theory: A theory
of text organization. Technical Report ISI/RS-87-190, ISI: Information
Sciences Institute, Los Angeles, USA, 1987.

I. Mel’cuk. Dependency Syntax: Theory and Practice. State University of
New York Press, Albany, 1988.

A. Neijt. Gapping: A Contribution to Sentence Grammar. Foris Publica-
tions, Dordrecht, 1979.

M. Reape and C. Mellish. Just what is aggregation anyway? In Proceedings
of the 7th European Workshop on Natural Language Generation, pages
20–29, May 1999.

E. Reiter and R. Dale. Building Natural Language Generation Systems.
Cambridge University Press, Cambridge, 2000.

T. Sanders and L. Noordman. The role of coherence relations and their
linguistic markers in text processing. Discourse Processes, 29(1):37–60,
2000.

T. Sanders, W. Spooren, and L. Noordman. Toward a taxonomy of coher-
ence relations. Discourse Processes, 15:1–35, 1992.

D. Scott and C.S. de Souza. Getting the message across in RST-based
text generation. In R. Dale, C. Mellish, and M. Zock, editors, Current
Research in Natural Language Generation, pages 47–73. Academic Press,
New York, 1990.

J. Shaw. Segregatory coordination and ellipsis in text generation. In Pro-
ceedings of the 17th COLING and the 36th Annual Meeting of the ACL,
pages 1220–1226, August 1998.

J. Shaw. Clause Aggregation: An Approach to Generating Concise Text.
PhD thesis, Columbia University, New York, NY, USA, 2002.

A. Siddharthan. Syntactic simplification and text cohesion. Research on
Language and Computation, 4:77–109, 2006.

N. Slabbers. Narration for virtual storytelling. Master’s thesis, Human Me-
dia Interaction, University of Twente, Enschede, The Netherlands, 2006.
Available at http://wwwhome.cs.utwente.nl/˜theune/VS/.

M. Taboada and W.C. Mann. Applications of Rhetorical Structure Theory.
Discourse Studies, 2006. Accepted for publication.

J.H. Tai. Coordination Reduction. PhD thesis, Indiana University, Bloom-
ington, IN, USA, 1969.

M. Theune, S. Rensen, R. op den Akker, D. Heylen, and A. Nijholt. Emo-
tional characters for automatic plot creation. In S. Göbel, A. Hoffmann,
I. Iurgel, O. Schneider, J. Dechau, A. Feix, and U. Spierling, editors, Tech-
nologies for Interactive Digital Storytelling and Entertainment (TIDSE
2004), Lecture Notes in Computer Science 3105, pages 95–100. Springer-

Performing aggregation and ellipsis using discourse structures 27

Verlag, 2004.
M. Theune, K. Meijs, D. Heylen, and R. Ordelman. Generating expressive

speech for storytelling applications. IEEE Transactions on Audio, Speech
and Language Processing, 14(4):1137–1144, 2006.

T. van der Wouden, H. Hoekstra, M. Moortgat, B. Renmans, and I. Schuur-
man. Syntactic analysis in the Spoken Dutch Corpus. In Proceedings of
the 3rd International Conference on Language Resources and Evaluation
(LREC), 2002.

R. van Oirsouw. The Syntax of Coordination. Croom Helm, London, 1987.
M. White. Efficient realization of coordinate structures in combinatory

categorial grammar. Research on Language and Computation, 4:39–75,
2006.

F. Zwarts. Categoriale Grammatica en Algebräısche Semantiek. PhD thesis,
Groningen University, Groningen, The Netherlands, 1986.

