
30

Applying the espresso algorithm to large parsed corpora

Gosse Bouma and John Nerbonne, Center for Language and Cognition, Groningen

Abstract. Information extraction (IE) culls information from text including relations, our
focus here, such as head of(Sergej Brin, Google). The Espresso algorithm was developed to
do this (Pantel & Pennacchiotti 2006), and we extend their work here first by using as input
not raw text but rather syntactic analyses derived from the text, and second by applying
the algorithm to Dutch. This required parsing hundreds of millions of words of text, which
was regarded as infeasible only ten years ago.

1. Introduction

It is interesting to extract relations automatically from text to use in inference, to populate
ontologies and to study the history of ideas (Kizito et al. 2009). Information extraction may
be seen as an application of work in natural language semantics of the sort pioneered by
Frans Zwarts (Zwarts 1983). Information extraction systems learn patterns for extracting
pairs of words or phrases instantiating a given relation from text. For instance, for the
relation capital of, a system might learn extraction patterns such as `Arg1 is capital of
Arg2', or 'The ambassador of arg2 was called back to Arg1'. Lightly supervised information
extraction systems learn extraction patterns by means of a bootstrapping procedure,
where a set of seed pairs is used to find patterns associated with the seeds, and where the
patterns thus found are used in turn to find potential instantiations of the relation. The
process then iterates with the (best) new instantiations to find more patterns, until some
termination criterion is met.

Bootstrapping procedures like this require large text collections for learning
patterns, so it is not surprising that most work in this area has used unannotated corpora
and has been aimed at learning extraction patterns based on surface strings. In learning
patterns based on surface strings, one encounters a certain amount of morphological and
word order variation (i.e. present and past tense verbs, singular and plural forms of nouns,
presence of adjectival and adverbial modifiers) which may hinder identification of the
most general extraction patterns. Using parsed data can help here, as it allows the use of
syntactic patterns instead of surface patterns. Xu, Uszkoreit & Li (2007) argue that
abstract syntactic patterns, represented as attribute value matrices, may actually be used
to learn not just binary relations, but also relations with three or four arguments. In this
paper, we restrict ourselves to binary relations, and we use the shortest path between the

31

two arguments in a dependency graph as extraction pattern. Dependency paths abstract
over morphological and word order variation, and thus can be used to identify relevant
patterns more reliably than surface patterns.

We apply a well known information extraction algorithm, Espresso (Pantel &
Pennacchiotti 2006), to large, syntactically parsed, Dutch corpora (110M 700M words).
Although the experiments in Espresso are based on learning surface patterns, there is
nothing in the algorithm which requires this, and thus using dependency paths instead of
surface strings is relatively straightforward, except of course for the amount of additional
cpu time required for parsing large text collections.

We show that applying the Espresso algorithm to a parsed version of Dutch
Wikipedia (110M words) allows us to obtain state of the art results for learning the part
whole relation. Next, we discuss a number of experiments in learning relations between
named entities (politician political party, soccer player club, company owner company,
institute location) based on a large corpus of newspaper text and Wikipedia (700 M
words). Accuracies vary from 97% for the politicians political party relation to only 30%
for the soccer player club relation. In the latter case, accuracy can be improved
significantly by requiring that the arguments of extracted instance pairs must be
distributionally similar to seeds or previously extracted instance pairs.

2. Corpora and Parser

Alpino (Van Noord 2006) is a wide coverage, robust, parser for Dutch. Its grammar is
designed following ideas of Head driven Phrase Structure Grammar (Pollard & Sag 1994).
It uses a maximum entropy model for statistical disambiguation, and coverage has been
increased over the years by means of semi automatic extension of the lexicon based on
error mining (Van Noord 2004). Efficiency is improved by using a part of speech tagger to
filter out unlikely pos tags before parsing (Prins & Van Noord 2001) , and by means of a
technique which filters unlikely derivations based on statistics collected from
automatically parsed corpora (van Noord 2009).

Alpino has been used as a crucial component in Joost, a question answering
system for Dutch (Bouma et al. 2005). Joost has been used in the CLEF evaluation
campaigns, where it achieved the best results for Dutch, and it has also been used to
develop a QA system for Dutch Wikipedia, and as part of an interactive, multimodal,
medical QA system (Tjong Kim Sang, Bouma & de Rijke 2005; Fahmi 2009). Whereas most
QA systems only use parsing to analyze the question and sometimes to analyze text
snippets returned by the ir component, we used Alpino to parse the complete text
collections used for all of these systems (80M, 110M, and 2M words, respectively). The

32

benefits are that syntactic information can be used to optimize the ir process, and that
off line answer extraction can be based on dependency patterns. Jijkoun, Mur & de Rijke
(2004) show, for instance, that both the recall and the precision of patterns for extracting
answers off line improve if patterns are dependency paths, instead of surface strings.
Fahmi (2009) argues that syntactic information is crucial for identifying the complex noun
phrases that are the arguments of medical relations (cause, symptom, treatment).

Although wide coverage, robust, statistical parsers exist for a number of
languages, it is often simply taken for granted that these are not fast or robust enough for
processing the large volumes of text that are required in ie applications. Pantel,
Ravichandran & Hovy (2004) observe that full parsing of a 15 GB corpus10 would require
54 days of processing by a dependency parser, and 5.8 years of processing for an
(unidentified) syntactic parser. Given the availability of a large cluster of CPU's (for
instance by means of a grid or a cloud computing service), this objection is beginning to
lose its force. The corpora used in the experiments below have all been parsed by the
Alpino parser. The high performance cluster of the University of Groningen11 was used to
run large numbers of jobs in parallel, thus making the task practically feasible.

3. The Espresso Algorithm

We adopted Espresso (Pantel & Pennacchiotti 2006), a lightly supervised algorithm that is
initialized using a small set of seed pairs as an ie algorithm. Pantel & Pennacchiotti (2006)
show that their method achieves state of the art performance when initialized with
relatively small seed sets over the Acquaint corpus (~ 6M words). Recall is improved with
web search queries as additional source of information. We adopt the Espresso method
for computing pattern and instance reliability. Instead of working with unannotated data,
we apply this method to parsed corpora.

In Espresso, the reliability of a pattern p, r (p), given a set of instance pairs I, is
computed as the average strength of association with each instance pair i, weighted by
instance reliability, r (i):

10 Corpus size is usually reported in number of words or sentences. We were not able to determine
the number of words in this corpus.
11 Accessible at http://www.rug.nl/cit/hpcv/faciliteiten/HPCCluster. It takes approximately 1 week
to parse 100M words of text on this 400 node cluster. Processing times fluctuate strongly,
depending on the number of scheduled jobs.

In thi
betw
the m
pairs
The t
insta

The r
repea

3.1 P

Wher
(shor
prope
entiti
imple
node

in Fig

(3) a.

b.

is equation,
ween a patte
maximum p
used to init
top k most
nce pair i, r

recursive dis
ated until a

Pattern Crea

reas Pantel
rtest) depen
er names) a
ies are conn
ementation
es themselve

For exam
gures (1) and

Begin v
Early n

. Alle de
All part

pmi(i,p) is t
ern, p (e.g.,
pmi score b
tialize the p
reliable pat
(i) is:

scovery of p
threshold n

ation

l & Pennac
ndency path
as patterns.
nected by m
is the shor
es are repla
mple, for the
d (2).

volgend jaar
ext year, th
len van de p
ts of the pla

the pointwi
part of), an
etween all
process is se
tterns are s

patterns fro
number of p

cchiotti (20
h between (
Given a de
means of a
rtest path t
ced by plac
e sentences

r treedt ook
e Spanish T
planten bev
ants contain

ise mutual i
nd an instan
patterns a

et to 1.
selected to

om instance
patterns and

06) use su
(the root fo
pendency t
dependenc
through the
ceholders Ar
in (3), Alpi

k het Spaans
Telefónica w
vatten alkalo
n alkaloids a

nformation
nce pair i (e
nd instance

find new in

pairs and in
d/or instanc

rface string
orm of) two
ree, we ext
cy pattern.
e tree conn
rg1 and Arg
no produce

se Telefónic
will also join
oïden en zij
nd therefor

score (Chu
.g., engine
es. The relia

nstances. Th

nstance pai
ce pairs bee

gs as patte
nominal w

tract the inf
A depende
ecting two
2.
es the depen

ca tot Uniso
Unisource
n daarmee
re are poiso

rch & Hank
car), and m
ability of th

he reliabilit

rs from pat
en extracted

erns, we us
ords (i.e. no
formation th
ncy pattern
nodes, whe

ndency tree

urce toe

giftig
onous

33

s 1990)
maxpmi is
he seed

y of an

terns is
d.

sed the
ouns or
hat two
n in our
ere the

es given

34

Figur

Figur

The d
respe

(4) a.
b.

One
depe

re 1 Depend

re 2 Depend

dependency
ectively, are

Arg1+s
. Arg1+o

advantage o
ndency pat

dency tree fo

dency tree fo

y patterns c
e:

u treed_
obj1 beva

of using de
ths are able

or (3a).

or (3b)

connecting

toe pc+to
at su+dee

pendency p
e to deal wit

Telefónica

ot+obj1+Arg
el+mod+van

paths over p
th word ord

and Unisou

g2
n+obj1+Arg2

patterns bas
der variatio

urce and al

2

sed on surf
on. Note tha

kaloïde and

face strings,
at this is esp

d plant,

, is that
pecially

35

relevant for languages like Dutch or German, where there is considerable word order
freedom, as illustrated by the (somewhat abbreviated) grammatical variants of (3a) in (5).

(5) a. Ook Telefónica treedt begin volgend jaar tot Unisource toe
b. Ook Telefónica treedt begin volgend jaar toe tot Unisource
c. Telefónica treedt begin volgend jaar ook toe tot Unisource
d. Begin volgend jaar treedt Telefónica toe tot Unisource

For surface based approaches, each word order variant may lead to a separate pattern,
whereas our method extracts the same dependency path in each case. Another advantage
is that dependency paths often capture more of the relevant context than surface
patterns. Note, for instance, that the verb stem in (3a) (treedt) precedes the subject, while
a verbal particle (toe) follows the object. Surface based pattern extraction methods tend
to concentrate on the string between the two arguments in a relation, and not always
capture enough of the preceding or following context to obtain an accurate pattern.
Finally, note that the preceding context contains an adverb, ook, and the name Telefónica
is prefixed with a determiner and a modifier (het Spaanse), which most likely are not
relevant for formulating an accurate pattern, and thus would have to be ignored.

Though dependency paths are more abstract than surface patterns, some spurious
variation remains. One source of variation in dependency patterns is coordination:

(6) a. Unisource sloot eerder allianties met Telefónica en SITA
b. Arg1+su sluit obj1+alliantie+pc+met+obj1+en+cnj+Arg2
c. Unisource sloot eerder een alliantie met Telefónica
d. Arg1+su sluit obj1+alliantie+pc+met+obj1+Arg2

Note that (6a) and (6c) give rise to two different dependency patterns linking Unisource
and Telefónica. In many scenarios, it is safe to ignore the fact that in (6a) Telefónica is part
of a coordination inside a prepositional phrase which is a dependent of the verb.
Therefore, we normalize such dependency paths by removing coordinations embedded in
a longer dependency path. After normalization, the dependency pattern for sentence (6a)
is identical to that of (6c). Note that this normalization does not apply to entities that are
directly connected by means of a coordination, such as Telefónica en SITA in (6c). In those
cases, we preserve the pattern Arg1+cnj en cnj+Arg2. We observed that applying this
normalization step reduces the number of unique dependency patterns by over 20%.

Stevenson & Greenwood (2009) compare various methods for using dependency
tree information in pattern creation for ie. Methods extracting only subject verb object

36

tuples have limited coverage, whereas methods extracting the minimal subtree containing
both arguments suffer from lack of generality. Their linked chain method corresponds to
our shortest path pattern extraction method, and performs well in an evaluation using the
Wall Street Journal and biomedical data.

It should be noted that the Espresso algorithm requires that mutual information
scores be known for instance pairs and for dependency patterns connecting these pairs.
Thus, for any two entities (i.e. a noun or proper name) occurring in a given sentence in the
corpus, we need to determine the shortest path connecting the two. For a sentence
containing N entity denoting words, N*(N 1) patterns are extracted. Statistics on the
number of instance pairs, dependency patterns, and the combination of these two are
given in Table 1. Wikipedia refers to a parsed version of a dump of Dutch Wikipedia (from
June 2008). Wiki+News is a combination of the Wikipedia corpus with a large, 600M word,
newspaper corpus (Ordelman et al. 2007).

Table 1 Pairs and patterns extracted, in millions. The last three lines give statistics for the
data remaining after applying a minimum frequency cut off of 2.

Wikipedia Wikipedia + News
all unique all unique

words (approx.) 110 700
pairs 67.7 35.6 299.5 116.5
patterns 67.7 10.8 299.5 47.6
pair patterns 67.7 51.3 299.5 225.2
pairs (f 2) 38.7 6.6 211.4 28.3
patterns (f 2) 59.7 2.9 264.9 12.9
pair patterns (f 2) 20.0 3.6 96.6 22.2

As mutual information scores for low frequency events tend to be inaccurate, we
only considered instance pairs, dependency patterns, and combinations of these, with a
minimum frequency of 2. Pantel & Pennacchiotti (2006) use a discounting factor to correct
for the overestimation of infrequent events by pmi. Using a discounting factor did not
improve accuracy over using a frequency cut off in our experiments.

The amount of data we have at our disposal exceeds the amount of data used by
other researchers who have explored parsed data for related tasks, such as paraphrase
learning or acquisition of taxonomic information. Lin & Pantel (2001), for instance, use 1
Gb of text parsed with Minipar (Lin 2003) from which they extract 7M dependency paths

37

and 200K unique paths, for learning paraphrases. Snow, Jurafsky & Ng (2005) use a
newswire corpus of 7M sentences, from which they extract 700K unique noun pairs, for
learning hypernyms. McCarthy, Koeling, Weeds & Carroll (2007) use 90M words from the
written portion of the British National Corpus, parsed with rasp (Briscoe & Carroll 2002) to
construct a thesaurus for learning predominant word senses. Padó & Lapata (2007),
finally, use all of the 100M words from the bnc parsed with Minipar for a range of lexical
semantic acquisition tasks.

4. Learning Part Whole Pairs

In our first experiment, we used the Espresso algorithm to extract pairs instantiating the
part whole relation from the parsed version of Dutch Wikipedia. Automatic extraction of
part whole pairs for English is well studied (Berland & Charniak 1999; Girju, Badulescu &
Moldovan 2006), and is also used by Pantel & Pennacchiotti (2006) for evaluating their
algorithm. The part whole relation is actually quite heterogeneous (Keet 2006), and covers
at least the following subcases: contained in, located in, member of, structural part of and
subquantity of. We were particularly interested in the question how the presence of
instance pairs representing the different subrelations influences the accuracy of results,
and more in general, in the question how the choice of seeds influences results.
The “general” seed list for learning the part whole relation contains instance pairs
representing each of the subtypes. Examples of the seeds we used are given in Table 2. In
addition, we constructed seed lists where all instance pairs were chosen from one subtype
of the part whole relation only. All seed lists contained 20 instance pairs.

Table 2 Sample seeds used for learning the part whole relation, and their frequency in the
corpus

Part Whole Frequency Type
beeld ‘statue’ kerk ‘church’ 120 contain
abdij ‘abbey’ gemeente ‘community’ 36 located
club ‘club’ voetbal_bond ‘soccer league’ 178 member
geheugen ‘memory’ computer ‘computer’ 14 structural
alcohol ‘alcohol’ bier ‘beer’ 28 subquantity

The results of learning the part whole relation on the Wikipedia corpus are given in Table
3. Espresso parameters were set as in Pantel & Pennacchiotti (2006), i.e. initially, the 10
most reliable patterns are selected, and one pattern is added per iteration. The instance
threshold (i.e. the number of instances preserved for the next round) is incremented by

38

100 in each round. We evaluated after each iteration, until the 5th round (i.e.
approximately 500 instances).

Table 3 Accuracy (per iteration) for learning the part whole relation using a seed list
composed of all types (general), and seed lists representing each of the subtypes.

general member subquantity contains structural location
1 0.705 0.627 0.571 0.645 0.598 0.723
2 0.758 0.623 0.608 0.624 0.608 0.752
3 0.739 0.650 0.632 0.635 0.633 0.739
4 0.723 0.662 0.621 0.623 0.624 0.722
5 0.710 0.680 0.601 0.602 0.600 0.704

Some examples (translated to English) of instance pairs found by the general seeds are:
island lake, protein membrane, recommendation report, actor movie, picture cover,
descendant family, altar chapel, bacteria digestive system, base player band and
batallion brigade.

The results in Table 3 suggest that the highest accuracy is achieved when the seed
list is mixed, but also that the member of and located in seeds give rise to almost equally
high accuracy figures. Note that for evaluating the results obtained by using a specialized
seed list, all part whole instances where counted as correct, not only instances
corresponding to the relation represented by the seed list. In fact, all seed lists lead to
results in which all subtypes are represented, although sometimes there is a strong bias
towards specific subtypes.

Closer inspection of these results showed that after 5 iterations, the runs initialized
with seeds representing the sub quantity of, contained in, and structural part of relation,
respectively, were highly similar. That is, 490 pairs were present in all three runs, and
were ranked in almost the same order (leading to a Spearman rank correlation in the
range of = 0.89 0.93 between the respective outputs). These three seed lists also led to
discovery of a substantial number of common and prototypical part whole dependency
patterns such as W bevat P (‘W contains P’), W omvat P (‘W comprises P’) and P is
onderdeel van W (‘P is part of W’). The most distinct results were obtained by the located
in and member of seeds, with hardly any overlap in instances with the other results. The
patterns learned by bootstrapping from the located in and member of seeds are more or
less characteristic for these relations only. Examples of such patterns for the located in
relation include: P bevindt zich in W (‘P is located in W’), P ligt in W (‘P lies in W’), P staat
in W (‘P stands in W’), P bouwt op W (‘P builds on W’) and for themember of relation: P is
lid van W (‘P is member of W’), P richt W op (‘P founds W’), and P verlaatW (‘P leaves W’).

39

It has been observed that the results of experiments involving bootstrapping from seeds
depend heavily on the choice of seeds (McIntosh & Curran 2009). We therefore also
compared the output of runs initialized with different general seed lists with the results
for specific subtypes. To this end, we created five sets of general seed lists for Dutch, each
time picking four seeds from each of the subtypes. In two cases, the resulting output
correlated very strongly with that of the run for located in (Spearman rank correlation of
=0.93), in the three other cases the output correlated with the output of the three runs

for contained in, subquantity of, and structural part of (rank correlations of =0.89 0.93).
We conclude from these findings that member of and located in are (linguistically) clearly
different from the other part whole relations. Furthermore, when starting from a mixed
seed list, it is unpredictable in which direction the outcome converges. This could be seen
as a subtle form of semantic drift, where it is not the case that the accuracy of results
decreases strongly, but where there nevertheless is a strong bias towards patterns and
instances representative for only a certain subtype of a given relation.

5. Learning Relations between Named Entities

Frequent question types for QA systems often ask for a named entity in a specific relation
to some other named entity, i.e. what is the capital of Togo?, for which club does David
Beckham play?, which company is owned by Ted Turner?, or in which city does one find the
Centre Pompidou? Some QA systems (Soubbotin & Soubbotin 2002; Fleischman, Hovy &
Echihabi 2003; Mur 2008) have used techniques for mining all potential instantiations of
such relations from a corpus beforehand, using hand crafted extraction patterns or ie
techniques similar to Espresso. In a second experiment, we concentrated on learning a
number of such relations between named entities. As named entities are more diverse
than nouns, and only a few pairs are expected to be highly frequent, we used the corpus
composed of Wikipedia and a large collection of newspaper text described in section 3.1
(above).

We created seed lists (with 9 14 instance pairs) for the (Dutch) politician (Dutch)
political party, soccer player club, company owner and institution city relations. The
frequency of seed instances varied strongly, from 5 (Carnegie Mellon Universiteit
Pittsburgh) to 672 (Concertgebouw Amsterdam). Results for the different relations are
given in Table 4.

40

Table 4 Accuracy (per iteration) for learning various relationships between named entities:
politician party, soccer player club, company owner, and institute city.

politics soccer owner institute
1 0.971 0.358 0.355 0.732
2 1.000 0.299 0.286 0.698
3 0.977 0.247 0.299 0.698
4 0.978 0.274 0.315 0.490
5 0.938 0.325 0.337 0.321

The politics relation leads to very accurate results. The reason for this appears to be that
there are a number of frequent, and non ambiguous dependency patterns associated with
this relation involving function names (i.e. parliamentary group leader, member of
parliament, opposition leader, and (vice) minister).

For the soccer relation, results are much less accurate. Initially, the system
acquires patterns that appear to be typical for the soccer relation, but which also admit
for a good deal of ambiguity: C(lub), club of P(layer), P plays for C, P is missing in C, P
scores for C, P returns in C, P knows, from his period with C but also the very general P (C)
(where C is analyzed as a modifier of P). After a number of rounds, patterns are added
that are clearly of lower quality: P, trainer of C, C, the organisation of P, C, the thinktank of
P and very general: P at C, P of C. It should be noted that in some settings, even low
accuracy results can be useful. Mur (2008), shows, for instance, that even an ie system
that is tuned only for recall, and which achieves a meager accuracy of 1% for learning the
soccer player club relation, can contribute positively to the performance of a QA system.
The reason for this somewhat surprising outcome is, we think, the fact that in a QA system
one of the arguments of the relation is always given in the question, and second, that a
QA system like Joost (Bouma et al. 2005) uses additional heuristics, such as the frequency
with which an answer is found, to pick the most promising answer.

For the owner relation, the system learns patterns like O(wner) is owner of
C(company), O is the mother/holding company of C, O takes over C, and O controls C.
Some of the international instance pairs found by the system are Stelios Haji Ioannou
EasyJet, Mohammed Al Fayed Harrods, Charles Saatchi Saatchi & Saatchi, Ted Turner
CNN and Richard Branson Virgin Atlantic. However, the system also finds many pairs in
which one of the arguments is a common noun, such as Al Fayed department store and
cable firm MTV. A similar situation arises with institutions. The system finds a reasonable
number of correct instances. For the location Paris, for instance, no fewer than 37
institutions are found, some of which are: Opéra Bastille, Musée du Louvre, Théâtre de
l'Odéon, Centre Pompidou, Jeu de Paume, Palais des Congrès, Institut du Monde Arabe and

41

Maison Européenne de la Photographie. However, many erroneous pairs involve a
predicate, such as consulate Rio de Janeiro or cultural heritage Bonaire.

We experimented with two methods for improving accuracy. In both cases, we
filter the results of the Espresso algorithm by imposing additional constraints on what
counts as a reliable instance pair. For the owner and institutions relation it seems most
important to ensure that both arguments are proper names. As we did not preserve part
of speech tags in our dependency patterns (so as to avoid spurious variation), the system
has no means to learn that patterns apply to proper nouns only. As a simple remedy, we
require that both arguments of an instance pair must start with an upper case letter.
For the soccer relation, the problem is that the quality of the learned patterns decreases,
which leads to more incorrect instance pairs being ranked high, which in turn leads to
even lower quality patterns. McIntosh & Curran (2009) observe a similar problem when
trying to learn biomedical terms within a given semantic class. They propose to use
distributional similarity to reduce the effect of semantic drift. New candidates are ranked
higher if they are distributionally more similar to terms learned early (i.e. terms that are
more likely to be correct) than to terms learned later.

We applied distributional similarity to filter unlikely instance pairs. We used the
thesaurus described in van der Plas and Bouma (2005) and van der Plas (2008) to find
distributionally similar terms. The thesaurus was built using the same 700M word parsed
corpus we used in our ie experiments. For each noun and proper name, the syntactic
context (the lexical head on which the nominal is dependent, and its syntactic relation)
was stored in a feature vector. Counts were weighted using pointwise mutual information
(Church & Hanks 1990). Two nominals are distributionally similar if the distance between
their vectors is small, according to the cosine metric. The twenty most similar terms for
keywords Bayern München and David Beckham, for instance, are:

(7) a. Bayern München: Borussia Dortmund, AC Milan, Juventus, Real Madrid,
Manchester United, Chelsea, Lazio Roma, Celtic, Arsenal, AS Roma, Glasgow
Rangers, Bayer Leverkusen, Olympique Marseille, Anderlecht, Inter, Lazio,
Liverpool, Werder Bremen, Galatasaray

b. David Beckham: Roy Keane, Zinedine Zidane, Michael Owen, Ryan Giggs,
Alan Shearer, Paul Scholes, Beckham, Raúl, Luis Figo, Diego Maradona, Andy
Cole, Eric Cantona, Figo, Zidane, Ronaldo, Raul, Rivaldo, Jaap Stam, Romario

Van der Plas (2008) reports results for several alternative methods, and shows that
combining mutual information and cosine gives the best results in terms of coverage and
accuracy when evaluating against Dutch WordNet (Vossen 1998).

42

For filtering, we used the 100 most similar words for each noun or proper name that was
found at least 10 times in the corpus. The filter works by accepting only new instance pairs
for which each argument is distributionally similar to the corresponding argument of at
least one of seeds or a previously found instance pair. In particular, a pair Figo Barcelona
is only accepted if the list of similar names for Figo contains at least one name which is
also the first argument of a previously seen instance pair, or when the list of similar items
for a first argument in a previously seen instance pair contains the name Figo, and
similarly for the second argument Barcelona. Note that if a term T is among the N most
similar terms of T’, it is not necessarily the case that T’ is among the N most similar terms
of T.

Table 5 Accuracy per iteration for learning the owner and institution relation using the
upper case filter, and the soccer relation using the distributional similarity filter.

Owner Institution Soccer
no filter filtered no filtered filtered no filter filtered
N Acc N Acc N Acc N Acc N Acc N Acc

1 107 0.355 45 0.844 112 0.732 93 0.882 109 0.358 40 0.650
2 210 0.286 70 0.829 212 0.698 168 0.881 211 0.299 74 0.527
3 311 0.299 108 0.824 311 0.698 242 0.897 312 0.247 88 0.375
4 409 0.315 150 0.853 412 0.490 278 0.723 412 0.274 176 0.409
5 501 0.872 195 0.872 514 0.321 291 0.560 511 0.325 290 0.452

Table 5 shows the results for the system with and without filtering. We give both the
accuracy and the number of instances that remained after filtering (N). The upper case
filter leads to an increase in accuracy of around 50% for the owner relation and 20% for
the institution relation. One might argue that this increase in accuracy is only due to the
fact that fewer elements are acquired per iteration. However, if we compare the accuracy
of the second round without filtering (210 pairs) with that of the 5th round with filtering
(195 pairs),12 we still see that accuracy has gone up by almost 60%. The situation is a bit
less clear for the institution relation, where the third iteration with filtering (242 pairs) is
20% more accurate than the second iteration without filtering (211 pairs), but where the

12 The number of pairs per iteration in the system without filtering bootstrapped with S seeds is
100N + S. We evaluate only on pairs not present in the seed list. This is why the number of
instances given per iteration does not always go up with 100 exactly.

43

fifth iteration with filtering (291 instances) is 13% less accurate than the third iteration
without filtering (311 pairs). This suggests that the upper case filter by itself may not be
sufficient, if the quality of the patterns has deteriorated too much.

For the soccer relation, we used distributional similarity as a filter. Accuracies per
iteration increase by 13 30%. If we compare the 5th iteration of the system with filter (290
pairs) with the 2nd (211 pairs) or 3rd (312 pairs) iteration of the unfiltered results, we still
see an increase in accuracy of 16 and 21%, respectively.

6. Conclusion

In this paper, we have shown that the Espresso algorithm can be used to perform ie on
parsed corpora, using dependency paths instead of surface strings as extraction patterns.
In particular, we argue that available corpora are large enough to obtain interesting and
accurate results. In two experiments, we investigated both the possibility of learning a
very general, taxonomic, relation (part whole) and the possibility of learning narrowly
defined relations between named entities. The first type of relation is representative for
work that aims at (semi)automatically extending wordnets or other taxonomic resources,
while the second type of relation can be used as a component in automatic QA systems.

Except for normalizing patterns involving an embedded conjunction, we extracted
dependency paths from dependency trees without applying any rules that might be useful
for the ie process. In our QA system for Dutch, the set of dependency triples (i.e.
dependency paths of length 1) for a given sentence is automatically expanded with
additional triples that deal with appositions, coordination, relative clauses, passives
(Bouma, Mur & van Noord 2005), adjectival forms of geographical names, and compounds
such as Fiat topman (Fiat director) (i.e., where the first element is a name) are
decomposed. Xu, Uszkoreit & Li (2007) observe that many ie methods tend to ignore the
information in non verbal patterns, such as the 2005 Nobel Peace Prize. The example
above illustrates that for compounding languages such as Dutch and German, one also
needs to take into account patterns that arise from decompounding to learn, for instance,
the director company relation.

While filtering on the basis of distributional similarity worked well for the soccer
player club relation, it turned out to be too restrictive for the other relations between
named entities. This suggests that other methods for combining distributional similarity
and the scores assigned by Espresso should be explored. Another option would be to
cluster similar names and to filter on the basis of (reasonably large) clusters of names.

44

7. References

Berland, M., & Charniak, E. (1999). Finding parts in very large corpora. Proceedings of the
37th annual meeting of the Association for Computational Linguistics on
Computational Linguistics, 57 64.

Bouma, G., Fahmi, I., Mur, J. van Noord, G. van der Plas, L. & Tiedeman, J. (2005).
Linguistic knowledge and question answering. Traitement Automatique des
Langues, 46(2), 15 39.

Bouma, G., Mur, J. & van Noord, G. (2005). Reasoning over dependency relations for QA.
In: F. Benamara and P. Saint Dizier (eds.), Proceedings of the IJCAI workshop on
Knowledge and Reasoning for Answering Questions (KRAQ), Edinburgh, 15 21.

Briscoe, T. & Carroll, J. (2002). Robust accurate statistical annotation of general text.
Proceedings of the 3rd International Conference on Language Resources and
Evaluation, 1499 1504.

Church, K. W. & Hanks, P. (1990). Word association norms, mutual information and
lexicography. Computational Linguistics, 16(1), 22 29.

Fahmi, I. (2009). Automatic Term and Relation Extraction for Medical Question Answering
Systems. Ph.D. thesis, University of Groningen.

Fleischman, M., Hovy, E. & Echihabi, A. (2003). Off line strategies for online question
answering: Answering questions before they are asked. Proc. 41st Annual Meeting
of the Association for Computational Linguistics, 1 7, Sapporo, Japan.

Girju, R., Badulescu, A. & Moldovan, D. (2006). Automatic discovery of part whole
relations. Computational Linguistics, 32(1), 83 135.

Jijkoun, V., Mur, J. & de Rijke, M. (2004). Information extraction for question answering:
Improving recall through syntactic patterns. Proceedings of the 20th International
Conference on Computational Linguistics, 1284 1290, Geneva.

Keet, C.M. (2006). Part whole relations in object role models. In On the Move to
Meaningful Internet Systems 2006: OTM 2006 Workshops, Berlin & Heidelberg:
Springer Lecture Notes in Computer Science. 1118 1127.

Kizito, J., Fahmi, I., Tjong Kim Sang, E., Nerbonne, J. & Bouma, G. (2009) Computational
Linguistics and History of Science. In: Dibattista, L. (ed.) Storia della Scienza e
Linguistica Computationale (History of Science and Computational Linguistics),
Milan: FrancoAngeli, 55 73

Lin, D. (2003). Dependency based evaluation of MINIPAR. In: Abeille, A. (ed.) Treebanks:
building and using parsed corpora, 317 329.

Lin, D. & Pantel, P. (2001). Discovery of inference rules for question answering. Natural
Language Engineering, 7, 343 360.

45

McCarthy, D., Koeling, R., Weeds, J. & Carroll, J. (2007). Unsupervised acquisition of
predominant word senses. Computational Linguistics, 33(4), 553 590.

McIntosh, T. & Curran, J.R. (2009). Reducing semantic drift with bagging and distributional
similarity. Proceedings of the Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on Natural Language Processing of
the AFNLP. 396 404.

Mur, J. (2008). Off line Answer Extraction for Question Answering. Ph.D. thesis, University
of Groningen.

Ordelman, R., deJong, F., van Hessen, A. & Hondorp, H. (2007). TWNC: a multifaceted
Dutch news corpus. ELRA Newsletter, 12(3/4), 4 7.

Padó, S., & Lapata, M. (2007). Dependency based construction of semantic space
models. Computational Linguistics 33(2), 161 199.

Pantel, P., Ravichandran, D., & Hovy, E. (2004). Towards terascale knowledge acquisition.
Proceedings of the 20th international conference on Computational Linguistics,
771 777.

Pantel, P., & Pennacchiotti, M. (2006). Espresso: Leveraging generic patterns for
automatically harvesting semantic relations. Proceedings of the 21st International
Conference on Computational Linguistics and the 44th annual meeting of the
Association for Computational Linguistics, 113 120.

Pollard, C. & Sag, I.A. (1994). Head driven phrase structure grammar. Stanford, USA:
Center for the Study of Language and Information.

Prins, R., & Van Noord, G. (2001). Unsupervised POS Tagging Improves Parsing Accuracy
and Parsing Efficiency. In IWPT: International Workshop on Parsing Technologies.

Snow, R., Jurafsky, D. & Ng., A.Y. (2005). Learning syntactic patterns for automatic
hypernym discovery. Proc. of the 17th Annual Conference on Neutral Information
Processing Systems. 1297 1304.

Soubbotin, M. M., & Soubbotin, S. M. (2002). Use of Patterns for Detection of Likely
Answer Strings: A Systematic Approach. TREC 11.

Stevenson, M., & Greenwood, M. A. (2009). Dependency pattern models for information
extraction. Research on Language and Computation 7(1), 13 39.

Tjong Kim Sang, E., Bouma, G., & de Rijke, M. (2005). Developing offline strategies for
answering medical questions. Proceedings of the AAAI 05 Workshop on Question
Answering in Restricted Domains, Pittsburgh, PA, USA. 41 45.

Van der Plas, L. (2008). Automatic lexico semantic acquisition for question answering.
Ph.D. thesis, University of Groningen.

46

Van der Plas, L., & Bouma, G. (2005). Automatic acquisition of lexico semantic knowledge
for QA. Proceedings of the IJCNLP workshop on Ontologies and Lexical Resources,
76 84.

Van Noord, G. (2004). Error mining for wide coverage grammar engineering. Proceedings
of the 42nd Annual Meeting on Association for Computational Linguistics, 446 453.

Van Noord, G. (2006). At last parsing is now operational. TALN ‘06. Verbum Ex Machina.
Actes de la 13e conference sur le traitement automatique des langues naturelles,
20 42.

Van Noord, G. (2009). Learning efficient parsing. Proceedings of the 12th Conference of the
European Chapter of the Association for Computational Linguistics, 817 825.

Vossen, P. (1998). A multilingual database with lexical semantic networks. Dordrecht:
Kluwer.

Xu, F., Uszkoreit, H. & Li, H. (2007). A seed driven bottom up machine learning framework
for extracting relations of various complexity. Proceedings of the 45th Annual
Meeting of the Association for Computational Linguistics, 584 591.

Zwarts, F. (1983). Determiners: a relational perspective. Studies in model theoretic
semantics, 37 62.

