T;EW;;_ - I‘,\.‘t (/‘(é’c' 2{»’;4:\14 {f’rj ) : /:;"C‘C 5/6’4464)4 6"{ ﬁft{ /‘73:? I\/(/qii (fi'ﬁf;rksfé‘;;
¢ ﬁxr‘(a{ AJ?M‘E%C’?‘ 44,4[ /:.,5;

14§

Accommodating Complex Applications

Masayo Iida, John Nerbonne, Derek Proudian, and Diana Roberts
Hewlett-Packard Laboratories
1501 Page Mill Road

Palo Alto, California

Abstract

APPLICATIONS in natural natural language pro-
cessing (NLP) need large lexicons; NLP needs
therefore to address the problem of providing
lexicons quickly and easily. The present contri-
bution focuses on a need to accommodate appli-
cations through specialized lexicons. We sketch
the need for these and then report on one op-
portunity for building them: at least databases
provide information which can be exploited to
produce specialized lexicons. We maintain that
the construction of such lexicons can be sig-
nificantly automated, and demonstrate this on
the basis of our own work in automated lexical
acquisition; we sketch significant difficulties as
well. Finally, we contrast the approach advo-
cated here of exploiting an application for lexi-
cal information with the approach of extending
and enhancing existing on-line lexicons. We re-
gard this as insufficient by itself, but important
and complementary to our own.

1 NLP Background

The development of lexicons for natural language pro-
cessing (NLP) applications has always been important,
and the turn of contemporary theory in linguistics and
computational linguistics has made it even more impor-
tant. Both in linguistics and in NLP the lexicon has tra-
ditionally been a locus of MORPHOLOGICAL and and SE-
MANTIC information. SYNTACTIC information was also
present, but in relatively attenuated form. Modern mod-
els, on the other hand, focus increasingly on the lexi-
con as a major repository of syntactic information as
well.l To cite a single example, whether a verb is used
in the passive was once viewed as purely syntactic in-
formation, so that little thought was devoted to its rep-
resentation outside of the grammar;? it is now generally

1Cf. [Hoekstra et al., 1981] and the references there
for linguistic documentation; [Flickinger et al., 1985} and
[Flickinger, 1990] and references there for natural language
processing.

?Nor does such information reliably appear in traditional
dictionaries. Cf. the entry for have in [Webster, 1984), which
omits any reference to the verb’s normal failure to participate
in passive constructions. I have a pencil. / *A pencil is had.
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accepted that such information requires lexical represen-
tation. This only increases the importance of lexicon de-
velopment for NLP and NLP applications. The advent
of structure-sharing in lexicons® has made the represen-
tation of extensive lexical information relatively efficient,
but presupposes that the information (fine-grained word-
class membership) is available.

How does one obtain all the lexical information needed
for the effective processing of natural language? Here’s
a model that many researchers seem to assume effective:
lexicon development for NLP applications is mainly a
matter of building a large application-independent lexi-
con, and then selecting a subset of words and word senses
that are used within the application domain. If this
model were generally sufficient, we should all concen-
trate on developing a single, huge MEGADICTIONARY—a
computational Ozford Advanced Learner’s or American
Heritage Dictionary, or perhaps something even larger.
As the IJCAI ’89 workshop on computational lexicons
demonstrates, work has already begun in earnest on ex-
tracting information from existing hand-held dictionar-
ies. We recognize the need for this effort. Indeed, some
application types (e.g. grammar checkers) are served
well here, and some sorts of information (e.g. part of
speech) are provided reliably, though perhaps impre-
cisely. Furthermore, we see little (realistic) alternative
to megadictionaries for obtaining morphological and syn-
tactic information, especially if this is to be detailed and
reliable.

We hold the megadictionary model to be insufficient,
however. Exclusive reliance on this model of lexicon de-
velopment has two shortcomings: First, applications in-
volving specialized vocabulary do not fare well. We dis-
cuss an effort to interface to a database of electrical and
electronic components below; a great deal of the vocab-
ulary employed by users of this database would not be
found in any standard dictionary. Some of the words—
J/K Flip Flop, OR-AND-INV, TTL LS, or Schmitt
Trigger—are unavailable in any dictionary, no matter
how appropriately specialized or how comprehensive.*
(Enlarging dictionaries to include all names and special-
ized vocabulary would result in a document too big to

3Cf. [Flickinger et al., 1985] and [Evans and Gazdar, 1989]
4Many words are found in appropriate electronics cata-
logues, but this is of little help.



LEXICON

PERSONNEL ‘Ames’ proper name
- - - ‘HCID? proper name
Employee | Department Lexicon- ‘ 1 ,
Lisa Ames HCID = Extraction = employee common noun
153 ‘department’ common noun
P
‘personnel’  common noun

Figure 1: Extracting the Lexicon from the Application. DB table names, column headers and values are extracted
and are recorded in the NLP Lexicon together with syntactic and semantic specifications.

be useful.) A megadictionary would require extensive
supplementation in this and many other applications.
The second shortcoming of the megadictionary model
arises in applications in which NLP serves as a user in-
terface. These applications require a domain semantics
mapping which can’t be provided within the application-
independent model, but which must be appended to it.
In these applications it is insufficient to find e.g. em-
ployee in the dictionary, no matter how expertly and
comprehensively it is represented. One must in addi-
tion link the lexical entry to information in the ap-

plication; continuing the example above, we must link

the word employee to the appropriate database rela-
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tion (or relations). In Figure 1 this would be the
PERSONNEL .EMPLOYEE relation. Megadictionaries don’t
help here.

Opposed to the megadictionary model is the model
of APPLICATION-ACCOMMODATION: wherever possible,
this model extracts vocabulary from applications, rather
than predefined lexicons. This means that we define a
LEXICON EXTRACTION procedure for an application. In
database (DB) query, we have the scheme in Figure 1
above.

It is worth noting that even databases, which contain a
good deal of text, would be poor sources of lexicons if re-
lied on exclusively. Instead, we begin each application ef-
fort with the same BASE lexicon, whose task is to list and
cross-classify grammatically crucial words—all of what
linguists dub the “closed classes” —along with very com-
mon words and words which behave exceptionally. These
include determiners such as the, every, and five; auxiliary
verbs such as have, is, and isn’t; pronouns; prepositions;
question words; relative pronouns; etc. The application
accommodation model then seeks “open class” elements
in the application. For the database applications we’ve
examined, moreover, few verbs are present; the open
class elements are overwhelmingly common nouns, adjec-
tives and proper names. We consider just the construc-
tion of the application-specific lexicon here, the process
outlined in Figure 1.

This model of lexicon development uses the applica-
tion itself as a source for vocabulary, encountering jar-
gon and abbreviations along with standard words in the
application, and therefore including them in the appli-
cation lexicon. And because it uses the application as
a source of vocabulary, it partially establishes the map-
ping from natural language (NL) vocabulary to domain
semantics. We turn now to the description and analysis
of the application-accommodation model in interfacing
an NLP system to relational databases of technical and

financial information.

2 Interface to Application Domains

The NLP system used in these application efforts was
HP-NL.® It is a large LISP system, running in HP-UX
(UNIX) on Hewlett-Packard workstations. The system
was configured to function as a network server to client
application requests. HP-NL had been earlier demon-
strated as an interface to toy databases, but we report
here on the first attempts to interface to an independent
application.

Within the feld of NLP interfaces to DB guery, the

Within the field of NLP int tc DB gquery, the
difficulty of the tasks involved in interfacing between an
NL system and an application domain is often under-
estimated. Textbook examples—paradigmatically, per-
sonnel databases—involve small DB’s of well-understood
information, which serve to illustrate some points well,
but disguise significant problems. The problems that we
concentrate on below arise because we are trying to in-
terface software modules whose construction serves very
different needs—databases are constructed to record in-
formation reliably and consistently, and NLP systems
are constructed to process language. We could easily
extend the list of problems below if we wished to gripe
about poor database construction, since this can be a
significant factor. We surely can’t lose sight of the fact
real databases have flaws that interfaces must accommo-
date. We risk belaboring the obvious to emphasize an
important point: databases are artifacts of the imperfect
collaboration of human engineers in a developing tech-
nology. Their interfaces will be leaky. But our focus
below is interfaces problems that are likely to arise in
any significant database interface effort.

We targeted two rather different databases. The
first database we targeted contains information about
2.5 x 10% parts used in design, manufacturing, and in-
ventory and quality control; it contains information such
as price, supplier, usage, fault tolerance, size, and func-
tional and physical characteristics. We focused on a sub-
database of digital integrated circuits (IC’s) to exploit
the availability of cooperative users. The database was
an attractive target because its information was valu-
able; because non-NL access (available through some
menus and through the database query language SQL)
was incomplete and usually difficult; and because its
users needed the information crucially but infrequently

5HP-NL is described in [Nerbonne and Proudian, 1987],
and in [HP-NL, 1986].



(so that extensive training in the database query lan-
guage was not an attractive option). Moreover, the
database had design features that recommended it for
NLP interface experimentation. These features included
the support of SQL as a query language, availability of
DB partitions, and the use of a data dictionary glossary.®
In spite of these features, the NL interface was extremely
difficult to construct.”

The second database contains information about soft-
ware products and customers. The product information
includes a generic name and several options; the cus-
tomer information includes name, type of industry, etc.
Even though this database contains familiar information
and is relatively small and well-designed, it too proved
to have significant and challenging problems.

For presentation purposes we divide these into prob-
lems of recognizing grammatical information and prob-
lems of understanding database semantics—grammatical
and semantic underspecification problems. We discuss
solutions to some of these problems where the problems
are identified; for others, we propose general solutions in
a separate section (Section 4.3).

3 Grammar

HP-NL supports the automatic acquisition of lexical en-
tries within an elaborate word classification scheme, the
word class hierarchy.® The sophisticated word class hier-
archy aids in lexicon extension and acquisition by moving
the task of the application lexicon creator from lexical

entry specification to lexical entry classification within

the lexical hierarchy.

In an application-accommodation model, fully auto-
matic lexical acquisition would transform DB values into
lexical entries by creating a lexical entry with the same
spelling, and whose semantics is the database table entry.
This lexical entry would be a member of an automati-
cally determined word class. Qutside this ideal world,
several problems arise. Below, we sketch the problems
encountered. Where the problems seem difficult but not
insurmountable, we indicate some practical steps which
will permit at least partial automation of the lexicon ac-
quisition process.

‘Word Class Membership In some database applica-
tions, identifying the proper word class is a simple
task: the column in which the record appears pre-
dictably indicates word class. For instance, in a per-
sonnel database, the records filling the employee col-
umn are all associated with proper names, records in
the salary column are all numerals, etc. This conve-
nient correspondence between word class member-
ship and database column can not be expected from
all databases, however. For instance, in the digital
IC table, even experts admitted that the mapping of
part of speech to entries within particular columns

8Cf. [Loomis, 1987], pp.367-9 for an explication of glos-
sary functions.

"In fact, this interface effort was ultimately abandoned,
partly because of its difficulty.

8The lexical hierarchy of HP-NL is the special subject of
[Flickinger et al., 1985).
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was inconsistent. Further, it was not clear to non-
experts how the words associated with particular
records were used in speech, or which word classes
they belonged to. Only a few columns specified val-
ues using a single word class. Normally, more than
one word class was represented. For example, both
adjectives (ASYNCHRO and TRANSPARENT) and com-
mon nouns (IDENTITY and LED) were present within
one column; within another column, both common
nouns (EYBRID) and proper names (CMOS and HTL)
were represented.

Toward Some Solutions: We suggest two ways
through which word classification could be made
somewhat more automatic.

First, we can identify word class somewhat reliably
based on morphology. Words ending in -ent (trans-
parent) and -able (encodable) are normally adjec-
tives; words ending in -er (decoder), or -or (gen-
erator) are normally nouns, etc.

Second, the lexicon acquisition facility could use an
on-line dictionary to identify the word class of words
originating from the database. The word class found
in the dictionary would serve as the word class of
the new lexical entry. This approach will still be un-
able to assign a word class to specialized vocabulary
such as CMOS and HTL. As well, words with the
same spelling but a different meaning would cause
problems for this approach, such as the database-
specific word LED (light-emitting diode) and the
English past tense verb led.

Syntactically Structured Values Some entries con-
sist of more than a single linguistically atomic
piece of information; in both the digital IC
table and the software products database, en-
tries composed of more than one element were
common: These entries thus have internal
grammatical structure. Examples are: TTL-LS
compatible, COMMON RESET, FILTER (ACTIVE),
and PLASTIC PIN GRID ARRAY, from the digital IC
table; and ADVANCELINK-ARABIC, and END USER
from the software products database.

Toward Some Solutions: Any simple heuristic
for parsing syntactically complex database entries
will have a noticeable failure rate.

If a dictionary were used to identify the compo-
nent, words we could parse some syntactically com-
plex database entries. However, because of poten-
tial parse ambiguity and again because not all of the
domain-specific words would be found in the on-line
dictionary, this approach is also limited.

Spelling The database entries do not always corre-
spond to the commonly-used term. Simple record-
to-lexical-entry conversion in this case would create
an apparent lexical gap. For instance, the common
spelling for an exclusive-nor gate is “X-NOR”; in
the digital IC table, the record string is EXCL-NOR.

Punctuation Many entries in both the digital IC ta-
ble and the software products database include ar-
bitrary punctuation. For instance, in the digital
IC table we find: EXCL-ROR, R-S/T, LATCH INPUT,



METAL PACKAGE (1W OR LESS), and in the software
products database are ADVANCELINK-ARABIC and
ADVWRITE PL/GERM. A lexical acquisition plan must
include some appropriate treatment of this punctu-
ation which will assure that few queries will fail be-
cause of a trivial punctuation mismatch, such as an
input lafch-input rather than the database entry’s
spelling latch tnput.

Toward Some Solutions: The solution to this
problem would involve treating all punctuation
within a word equivalently. One approach would
be to incorporate a spelling checker into the natural
language system which could be loaded with entries
from the database. The spelling checker could then
be instructed to respond not only to common En-
glish misspellings, but also to common variations in
punctuation (for instance, substituting a “” for a
“/7), so that ezcl-nor would be considered to be the
same as ezcl nor or ezcl/nor.

Numeric and Mixed Numeric Records The digi-
tal IC table and the software products database
both use numerals in two distinct fashions. First,
the numeral may actually indicate a number; for
these entries, a lexical entry for the number should
already exist in the BASE lexicon (perhaps generated
by rule). Second, the numeral may be a code, and
may thus be used as a lexical item; for instance,

Does AdvanceLink run on a 3507

(where 350 is a kind of computer). In this case, the
database entry 350 should appear in the lexicon as
the word 330.

For those columns in which numeric entries are
used as numbers, the numeric entries sometimes
contain both numbers and words; for instance, a
column in the digital IC table includes the val-

ues .5-.99K cells, divide-by-12, 10 X 8, and .

12K AND UP. These entries contain some informa-
tion which should not be introduced into the lex-
icon: the numerals themselves. However, there is
information in these entries which should be in-
troduced into the lexicon. First, the non-numeric
parts of mixed numeric records contain useful lexi-
cal items such as cell and divide. We want to be able
to extract non-numeric words from the database en-
tries. And second, we may want to use patterns
found in the database entries to recognize similar
new words, such as deriving the divide-by-n rela-
tion based on the pattern of divide-by-12 and
divide-by-2, divide-by-8, etc.

Accidental Gaps Even a very large database only en-
codes values for items it contains, while users may
query about absent items.

4 Semantics

We continue to suppose that we have a software
application—here, a database— for which we’d like to
construct a natural language interface. We turn now to
the opportunities for extracting lexical semantic infor-
mation from the application. We first sketch two types of
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lexical semantic information that can be extracted from
database applications—the domain semantics mapping
and disambiguating sortal information. Neither of these
is at all available from dictionaries. We then turn to
difficulties that arose in attempting to automate the ex-
traction of lexical semantics from a complex database
application, and consider solutions to some of these dif-
ficulties.

4.1 Extracting Lexical Semantics

Our design strategy is to assume that DB names—table,
column, and value identifiers—would be used in natu-
ral language queries.® Let us call this the CORRESPON-
DENCE ASSUMPTION. It’s worth noting that there is no
reason why the assumption MUST hold. It’s quite pos-
sible to fill a database with representations of arbitrary
form from which no lexical extraction would be possi-
ble. The empirical fact seems to be that database de-
signers prefer words (and phrases) as DB names, how-
ever. It isn’t required that we explain this preference
here, but we suspect that using words is simply more
direct {which 1s related to a software engineering dictum
which 1s explicitly taught—that code shouid be “seif-
documenting”). If arbitrary forms were used, they’d
have to be interpreted somewhere; what’s more, they’d
probably have to be interpreted via words and phrases.
It’s also worth noting that our proposal doesn’t depend
on the correspondence assumption being valid across
databases, but only that it holds for some. In any case,
where it holds, we can systematize, sometimes even au-
tomate a great deal of the mapping between English and
the application domain. Let us examine a sketch of the
lexicon extraction procedure in some more detail.

Domain Semantics Mapping

In Figure 2 we see a felicitous instance of the corre-
spondence assumption: the column header employee
corresponds to a common noun whose application se-
mantics, in turn, is just the (virtual) db-relation consist-
ing of all the individuals in that column. (We include
other relations in Figure 2 in order to suggest general-
ity in treating e.g. the semantic relations specified by
compound nouns such as HCID employee.)

Roughly this same scheme works for several classes of
db-identifiers in the digital IC’s application. For exam-
ple, the functional family column contained the values
multiplexer and adder; in this case, the values, rather
than the column headers, correspond to common nouns,
but the semantic relation is quite similar:

Relations
multiplexer(x)

‘multiplexer’ DIGITAL-IC where
part-number=x %
function-family=

multiplexer

®Cf. [Harris, 1978] for suggestions on how to exploit com-
mon database facilities in order to obtain further semantic
information effectively.



Proper Names

‘Ames’ employee
“Sort”- ‘Bay’  employee,
Extraction Coe’ supervisor
oe supervisor
‘HCID’ department

Figure 3: Extracting Disambiguation Information

DATABASE
Employee | Department | Supervisor
Ames HCID Bay
Bay HCID Coe
PERSONNEL
Employee | Department | Supervisor
Ames HCID Bay
Bay HCID Coe
4
Relation-
Extraction
4
Relations
Word NL Domain
Semantics Semantics
‘employee’ employee(x) PERSONNEL where

employee=x
” PERSONNEL where
employee=x
department=y

employee(x,y)

»

PERSONNEL where
employee=x
supervisorsy

employee(x,y)

Figure 2: Extracting Relational Information. Some
words are represented as logical relations, which in turn
map to database relations. NL Semantics and domain
semantics are in pseudo-notation.

Disambiguating Information

It turns out that some of the lexical semantics infor-
mation we extract from the application isn’t simply the
extension of a term in the application, but rather Dis-
AMBIGUATING information. The key insight exploited
here is simple: if we know that HCID is a kind of de-
partment, then predications involving HCID must refer
to relations involving departments. Since this is effec-
tively noting that HCID belongs to a SORT appropriate
for particular relations, we refer to this as the extraction
of disambiguating sortal information.

Given the sketch in Figure 2, we would assume that
the phrase HCID employees could refer to the objects
satisfying the DB relation DEPARTMENT . ENPLOYEE, where
DEPARTMENT is bound to HCID in that table. But an
NLP program must reason through several steps in or-
der to arrive at this domain semantics. To appreci-
ate the difficulty of selecting the correct domain se-
mantics, recall that employee can be translated into
several distinct database relations (cf. Figure 2 for
a simple illustration). For example, in a more com-
plete version of the Personnel Database, it may involve
any of the following relations: SUPERVISOR.EMPLOYEE
(Jones’s employee, cf. Figure 2), SEX.EMPLOYEE (fe-
male employee), NATIONALITY.EMPLOYEE (foreign em-
ployees), EAPLOYER . EMPLOYEE (Hewlett- Packard employ-
ees), BIRTHDATE.EMPLOYEE, HIREDATE.EMPLOYEE, etc.
To return to the HCID employees example, it is only by
identifying HCID as a possible department (and reject-
ing it as a possible supervisor) that we are able to settle
on the right relation for employee. Thus we pick out
the DEPARTMENT . EMPLOYEE relation and reject e.g. the
SUPERVISOR.EMPLOYEE relation, even though that rela-
tion is instantiated in the database. The extraction of
sortal information is sketched in Figure 3.

These two classes of lexical semantic information—
domain semantics mapping on the one hand, and poten-
tially disambiguating sortal information on the other—
may be systematically extracted from databases as a
part of a standard lexical extraction procedure. Since
they are both domain-dependent, there would seem no
way of obtaining similar information from any standard
dictionary, no matter how elaborate or comprehensive.

4.2 Semantics Underspecification

We turn now to difficulties we encountered. Some of
these indicated that the correspondence assumption was
too simplistic; others arose where the data model used
in the database was not explicit or systematic. In each
case below, we characterize the difficulty briefly, then
provide examples, usually from the Digital IC database.



We postpone discussing solutions until Section 4.3.

Implicit Categorizations Some information is poorly

labeled. E.g. several columns in the digital IC ta-
ble were simply labeled FUNCTIONAL_CHAR 1 (“func-
tional characteristic 17}, etc. The meaning of these
categories was obscure not only to the NL inter-
facers, but also to DB users. Since some values in
these columns were also obscure, it was not clear
how to interpret them, and therefore not clear how
questions concerning them would be phrased.

Other categorizations were implicit but recogniz-

able; this presents difficulties when the categoriza- -

tion involves knowledge not easily accessible to an
NLP system. Example: organizational structure in
the software products database followed geographi-
cal lines closely. Human database users could com-
bine DB information with geographical knowledge
to answer questions which NLP could not, such as
“Which offices outside of California had the high-
est sales?”. The database simply has no notion of
“California”.

Incomplete Categorization It was difficult to inter-

pret information when the information label didn’t
mesh with the range of alternatives available. E.g.
FUNCTION_FAMILY included multiplexer, but noth-
ing corresponding to demultiplezer. The informa-
tion that a component was a demultiplexer was not
represented explicitly, although it could be inferred
from values such as 2-T0-4~LINE in one of the func-
tional characteristics columns. (But note that this
occurred beside e.g. J-K, EIA, ADDRESSABLE, and
360/370, so that there was no immediate indication
that 2-T0-4-LINE referred to input/output specs,
rather than a range.)

Semantically Structured Values The values for a

given attribute may be semantically structured in
many ways, some obvious, some quite subtle. Nu-
merical values, dates and locations have obvious se-
mantic structure; we find less obviously structured
fields as well, e.g. a field (in the software products
database) specifying a generic name for the soft-
ware: DB2, Word-Star, AdvanceLink, etc. But
several values specified what were clearly subtypes
of other values, e.g. AdvancsLink-Arabic, which
is clearly a subtype of AdvancelLink, etc. All the
various subtypes should clearly be counted as one
(together with the simple AdvanceLink) if we are
to answer certain queries correctly (e.g. “How many
AdvanceLink programs were sold in 19887”, “Which
AdvanceLink ... 7).

A second type of semantic structure in values is ev-
ident in examples such as TTL-LS compatible, dis-
cussed in another comnection in Section 3 above.
Here TTL-LS specifies a parameter for the relation
compatible, disguising a recognized semantics prob-
lem, which we sketch now in outline. While En-
glish would normally represent a part as standing

merated value TTL-LS compatible. The database
represents the relation together with one argument
as a smgle value (eﬁ'ectlvely “Currymg at this one
instance), thus representing this chunk of informa-
tion more tersely than English does—in contrast
to the normal pattern, in which natural language
formulations are more terse than database formula-
tions. The normal pattern of translating from nat-
ural language to database queries thus involves the
expansion of concepts, which is easily reduced to
routine. In those cases where the database chooses
simpler representations, we encounter a new prob-
lem, that of recognizing the more verbose formu-
lations that have to be reduced to database terse-
ness. The problem has been discussed by Moore
and others at an ACL Panel where they consid-
ered a database of college applicants with a boolean
CHILD-OF-ALUMNUS field .10

As a third, and distinct, sort of structure, con-
sider the common practice of coding several dis-

tinct sorts of information into a2 single database field.

In our software products database, we encouniered

“standard industrial code” (for customers’ business
categorization). This is a four-digit field, whose
first two digits indicate general field of business—
electrical vs. mechanical, etc—and whose follow-
ing two single-digit fields indicate further special-
izations. A similar example is the usual practice of
coding dates as “MMDDYY” strings, using familiar
abbreviations.

“Other” Values This is a special case of the seman-

tically structured values, but one which occurs fre-
quently enough to warrant special mention. Exam-
ple: If part A’s function family is MISCELLANEOUS,
then it certainly is not an ACCUMULATOR, which
would be specified as such. It might be a demul-
tiplexer or an optical encoder, however. The use
of these values means that other value terms have
to be evaluated against the range of all the values
used. We found MISCELLANEQUS, OTEER, and N/A.

Records in Mixed Modes In Section 3 we discussed

grammatical difficulties these caused, but we also
encountered semantic problems wherever essentially
numeric information was entered in nonnumeric
fashion (usually for a reason). For example, gate ar-
rays’ logic size included .5-.99K CELLS, 10 X 10,
16 X 45 X 12, and 12K AND UP. String information
must be converted and normalized for correct pro-
cessing.

Unclear Semantics Some information in databases is

unclear, and some is poorly organized. We lump
these two difficulties together, because both are
valuable as cautions, and because they tend to be
difficult to distinguish in practice. The interpre-
tation of many fields in the digital IC database
was opaque to expert users, let alone NL interfac-
ers. Example: NARD was a value in the logic field,

in the compatible relation with TTL-LS, the Dlg“ ¢t [Moore, 1982] who sets the problems for the panel;

tal IC database represents the part as standmg Ina  our own approach falls somewhere between [Warren, 1982]
FUNCTIONAL_CHARACTERISTIC.3 relation to the enu- = and [Scha, 1982].

b



NL-Domain Correspondences

Domain Semantics

Type of
Semantic NL Semantics
Underspecification
Structured Values advancelink(x)
Structured Values june(x)

Mixed Modes logic-size(x)>4K

PRODUCTS where
generic-name=‘AdvLink’ OR
generic-name=‘AdvLink-Arabic’ OR
generic-name=‘AdvLink-Spanish’ OR
etc.

PRODUCTS where
date=y AND
substring(y,1,2)= “‘06°’

DIGITAL-IC where
logic-size=y AND
string2numeric(y)> 4000

Figure 4: Some Complex Domain Semantics Correspondences. The appeal to the specialized functions “substring”
and “string2numeric” probably disguises a mix of domain and interface processing.

and the number of inputs could be specified. But
there was a special ITEM_TYPE field that included
the value 2-IN NAND, apparently redundantly. We
suspect here that the information was simply poorly
recorded, but it is hard to be certain.

4.3 Toward Some Solutions

We feel that some of the problems above will be with us '

for some time: the problems caused by implicit catego-
rization and unclear semantics, and the problem of sim-
ply not obtaining all the terms that “other” may stand
for in a given context. But we are more sanguine about
addressing other issues. What we next report is essen-
tially work in progress; we are just now implementing
some of the ideas below. The crucial point here is that
we recognize semantic structure where it exists, and that
we allow for complex relations between natural language
expressions and database relations. We illustrate this
general thesis with some formulations of the complex
mappings required to handle the examples in Section 4.2
above. These are shown in Figure 4. In each case we
identify a natural language semantic relation and a do-
main semantics correspondence. Our research tack is to
suppose that we can identify a limited number of corre-
spondence TYPES, so that a mapping can be systemati-
cally specified, and perhaps partially automated.

The important points here are: first, apparent diffi-
culties in obtaining domain semantics mappings are not
insuperable; and second, that genuinely complex domain
semantics mappings are required. These are available
when lexical semantics are obtained in tandem with in-
terfacing to an application, and they may be system-
atically available. But they require something like the
application-accommodation model in order to be estab-
lished at all.

5 Incomplete Lexicons

A lexicon acquired automatically will be incomplete.
Some information about lexical entries will be incorrect,
and some lexical entries may be underspecified. Addi-
tionally, the user may use a domain-appropriate word
which, because of an accidental gap in the database, does
not exist in the derived lexicon. There must be some
facility within the NLP system which can accommodate
unrecognized words to allow graceful failure and possibly
even to provide a sensible answer from the application.

ERRORS in lexical acquisition must be corrected by
hand. Underspecified lexical entries may be accommo-
dated in processing by exploiting syntactic and seman-
tic well-formedness constraints; in fact, the technique
may be generalized to unknown words, the maximally
underspecified lexical entries. In order to parse a sen-
tence containing an underspecified word, we invoke uni-
fication as employed in grammar rules and subcatego-
rization restrictions; this may succeed in providing more
exact specifications for a word.

Given a domain model, we can similarly assign a par-
tial semantic interpretation to the unknown word based
on sortal restrictions imposed on it by the semantic prop-
erties of the other known words in the sentence.

6 Application Accommodation

Before turning to the general question of models for lex-
ical acquisition in NLP, it is worth summarizing our
view of the prospects for automating lexical acquisi-
tion using application information. When—and to what
extent—can vocabulary acquisition be automated in nat-
ural language interfaces to DB query applications? This
is clearly easier with small databases of familiar informa-
tion than with large databases of specialized information.
But we can isolate other factors as well:



1. Vocabulary acquisition is easier where the database
uses real terms in common parlance (abbreviations
in common use are unproblematic). This simplifies
determining information such as spelling and punc-
tuation. Alternatively, a systematic specification of
such terms is required.

2. Internally consistent databases with explicit data
models eliminate problems of unclear semantics and
implicit or incomplete categorization; they reduce
reliance on 1mplicit information.

3. An elaborated view of DB/NL correspondence is re-
quired to handle problems of syntactically and se-
mantically structured values, including “other” val-
ues, mixed modes in value specifications, and the
problems of accidental gaps.

Some of the properties which NL requires of DBs would
also facilitate the construction of other user interfaces,
e.g. menu systems or “forms” interfaces.
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Models of Lexical Acquisit
We posed the question above in Section 1: How does
one obtain all the lexical information needed for the ef-
fective processing of natural language? In asking this
question, it is important to distinguish methods that
promise SOME INCREMENT OF useful lexical information
from those which promise some sort of CLOSURE on the
lexical acquisition problem—in the case of database in-
terfaces, for example, we’d like to provide the common
NL formulations of each significant database relation.
This would guarantee that users could ask whatever they
liked. Several sources for this lexicon immediately sug-

gest themselves:

Potential Resources for Lexical Acquisition
& users (through corpus studies)

e database experts (through interviews)

e linguistics

e dictionaries

Any corpus of appropriate material will be useful to NLP -

application builders—whether it be sessions logged from
similar work or the results of specific studies. Indeed,
we have benefited from user studies performed by col-
leagues; Hewlett-Packard Laboratories has reported on
this work elsewhere.!! It is unclear how one should sys-
tematically obtain any semantics from such studies, and
how much material is required for closure. But the stud-
ies are useful.

At early stages of the interface effort we relied prac-
tically on interviewing database experts—meaning not
necessarily database administrators, but rather “power”
users, i.e. the de facto consultants for typical users.
They were able to provide a useful sense of the sort of in-
formation normal users wanted and the way they wished

11¢0f. [Whittaker and Stenton, 1989] for an explanation of
their work on NLP using the “Wizard of Oz” methodology.
Our own natural language system was befuddled by the eti-
quette vocabulary found in users in Whittaker and Stenton’s
study—we hadn’t thought to provide “please” and “thank

you”,

to ask for it. But interviews with database experts are
even less capable (than user studies) of providing more
than anecdotal information about the required applica-
tion lexicon. Experts navigate adroitly in restricted wa-
ters, but they don’t pretend to know the entire map.

The usefulness of theoretical linguistics is precisely its
systematic view of the lexicon within grammar and vis-
a-vis semantics representation. But linguistics sacrifices
breadth for depth. Linguistic studies do not provide
large lexicons, even if we may be encouraged by recent
efforts to create more general purpose lexicons.!?

The contribution of dictionaries, once they become
available in a fashion usable to NLP systems, is poten-
tially enormous: they are the repository of millenia of
scholarly work. By “usable” we mean that the dictionar-
ies should have the functionality, say, of databases. If an
NLP system encounters the word “cathodic” for the first
time, then it needs to know at least that “cathodic” is an
attributive adjective, preferably also that it is unlikely
to form a comparative or combine with a degree speci-
fier, and that it refers to an electrical process. On-line
dictionaries are just now approaching this level of func-
tionality. There is, moreover, still work to be done to link
them systematically to other language facilities—it isn’t
clear what sorts of grammars, parsers, etc. they are com-
patible with. Furthermore, and this has been the focus
of the present paper, DICTIONARIES NECESSARILY EX-
CLUDE ALMOST ALL SPECIALIZED TERMS AND PROPER
NAMES; AND THEY PROVIDE NO SYSTEMATIC CONNEC-
TION TO ANY REFERENCE OF LEXICAL ITEMS—DOMAIN
SEMANTICS.

We hasten to reiterate that we don’t advocate avoid-
ing the use of any good resource for lexical acquisition,
and we believe that user studies, linguistics and lexi-
cography may each have a valuable role to play. Since
they appear to be insufficient, even in combination, it is
encouraging that another source of lexical information
is available for many NLP applications—the application
itself. Databases are good examples of the possibilities
here, since they normally contain an abundance of tex-
tual material.

A Further Resource for Lexical Acquisition
e applications

As Sections 3 and 4.2 demonstrate, the recommenda-
tion to employ applications in lexical acquisition can-
not be made without qualification. But the digital IC
database example is valuable as a “worst-case” scenario.
It was a difficult interface task. Even there, however,
there was no question but that lexical extraction from
the database was the only realistic possibility. Lexical in-
formation was wrung from the application at some cost,
but there was no realistic alternative.

We’ve argued above for two positive benefits of ex-

tnnoting lavianng fanmn annlicatiang: Brat thic nrasediive
traciing 1€XiCons iromi appiications: iirsy, Liais proceaure

provides specialized terminology that CANNOT be ob-
tained elsewhere; and second, the procedure links vocab-

12¢f. [Russell et al., 1986], which reports on work within
the Alvey IKBS project. But note that even this project
reached only a lexicon size of approximately 3,500 — 10, 000.
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Figure 5: The Lexicon Required for Interfacing to Applications

ulary to application semantics—something no competing
methodology can hope to accomplish.

Advantages of Application Accommodation

e includes specialized vocabulary, names
e provides domain semantics

The disadvantages of this methodology are also worth
repeating: not all applications provide text from which
to derive lexicons; the text wasn’t provided for this pur-
pose, and therefore is of variable utility; and there is no
guarantee of completeness.

7.1 Lexical Acquisition for NLP Interfaces

Figure 5 sketches our view of the lexical acquisition pro-
cess for NLP interfaces to databases. A base lexicon,
the repository of extensive linguistic knowledge, is sup-
plemented by a data base lexicon which has been ex-

tracted from a particular database application. These -

cover a good deal of the required vocabulary, but not
all of it. Moore’s “child-of-alumnus” example is useful
here:!3 the base lexicon together with the database lex-
icon would not contain all the vocabulary users would
likely employ. Our own base lexicon lacks ALL kinship
terminology, for example, and no available linguistically
capable lexicon contains all of the information needed to
recognize semantic equivalences.!* The ideal application
lexicon—containing just that vocabulary that users will

13Gee Section 4.2 above for discussion.
4 Even though some may contain the required words—the
semantic problem will remain.

employ about a domain—must be further supplemented.
We surely welcome the resources of computational lexi-
cography in filling the gaps.
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