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Abstract

NLL is a semantic representation language which has been developed
for use in natural language processing (NLP). It has found use in inter-
face applications at Hewlett-Packard Labs—in natural language database
query and a natural language interface to a PC operating system—and at
the German Research Center for Artificial Intelligence (DFKI, Deutsches
Forschungszentrum fiir Kiinstliche Intelligenz)—in a natural language in-
terface to an agents system (appointment management) and in a speech
understanding system (train schedule information). The language is im-
plemented and has been described syntactically in some detail (in reports
in the literature references). There exist interfaces and indeed interface
tools both for interfacing to syntactic description systems and to applica-
tion systems, a number of inference rules (all of a simplifying type), and
documentation of these, too, may be found in the references section.

The present paper provides a model theory for the language, including
a mapping to the theory of relations, boolean combinations, quantified ex-
pressions, etc. It also tackles less traditional aspects of the language—role-
based predication, restricted parameters, complex determiners, variable-
binding term-forming operators, predicate operators expressing compara-
tive and superlative derivations, etc.—one at a time in order to state clearly
the impact of including these in the language. The purpose of developing
the model theory is the guarantee that this provides that the language is
consistent, the security it offers for future experimentation, and the inde-
pendent notion of validity it constitutes, against which inference rules may
be justified.

The development of A'LL is continuing at HP Labs and the DFKI and
the focus continues to be its use in natural language understanding.

Keywords: semantics, natural language understanding, natural language
processing, computational semantics, meaning representation.
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—¢ if(¢,9) |1 0 wu
170 1 1 0 u
0 {1 0 1 1 u
u u u u u u
AND{¢,%} |1 0 u OR{¢, %} |1 0 w
1 1 0 u 1 1 1 u
0 0 0 u 0 1 0 u
u u u u u u u u
iff{o, ¥} |1 0 wu X0R{¢, ¥} |1 0 wu
1 1 0 u 1 0 1 u
0 0 1 u 0 1 0 u
u u u u u u u u

The n-ary connectives are defined only for the n = 2 case above, but the
more general definitions are straightforward generalizations. Each of the
complex formulas is defined iff all of its components are. Otherwise,

[avD @], =1 <= Voe@[d], =1
Ry =1 <= Fpecd[oy=1
[IFF @]\ =1 <= V¢,¢' € @[]\ = [¢']n
[xor @], =1 < 3Fsecd[s]y, =1

4 Quantification and Variable-Binding

The N LL treatment of quantification is based on the theory of GENERAL-
IZED QUANTIFIERS (cf. Westerstahl 1989 and references there). The notion
of a generalized quantifier® is based on the relation between two sets—a
restriction set R and a scope set S. RN S is called the intersection set
I. The theory thus assumes a binary view of quantification in contrast to
the normal unary (first-order) view. The theory was developed at least in
part because of the realization that many natural quantification relations,
that expressed by most in Most men smoke could not be expressed using
unary quantification. This is appreciated if one considers the failure of
the unary rendering to be equivalent: Most things are men smokers. Cf.
Westerstahl 1989, p.16 for details.

4.1 Preliminaries

Syntactically, a generalized quantifier is expressed by {Quantifier) which
determines the restriction set (R). The (Scope) of a (Quantified WHf) de-

5We do not make any linguistic assumptions here about which natural language deter-
miners ought to be translated as “quantificational”; in particular, we do not wish to make
any claims here concerning possessives, vague quantifiers, and quantifiers expressing de-
faults (such as “usually”). Our concern is to provide a useful tool for computational
semantics, not to defend particular hypotheses about NL meaning.
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termines the scope set (S). The meaning of a (Quantified Wff) can be
expressed as a relation involving R and the intersection set I = RN S.°

(Quantified W) ::= ( (Quantifier) (Scope) )

(Quantifier) ::= (Determiner) (Variable) T (Restrictor)

(Quantifier) ::= (Ternary Quantifier)

(Ternary Quantifier) ::= (Order Relation) (Variable) *
(Restrictor) (Pole Restrictor)

(Restrictor) ::= (Wff)

(Pole Restrictor) ::= (Wff)

(Scope) ::= (W) '

{Determiner) ::= (Simple Determiner) | (Complex Determiner)

(Simple Determiner) ::= exists | forall | the | most | several | max | min

(Complex Determiner) ::= ( (Maximally Specified Measure) )

Before launching in, notes on strategy and extent: even though the logi-
cal syntax here assumes that quantified formulas have two parts, quantifier
and scope, and that the former in turn has three (or four), determiner,
variable, and restrictor (and perhaps pole restrictor), the definitions below
provide a semantics only for quantified formulas directly, without inter-
preting the quantifier. This strategy is technically simpler because vari-
able binding must be attended to in order to treat scope, but the vari-
able being bound is only “visible”, as it were, within the quantifier. Cf.
Dalrymple et al. 1991, 414fF for a discussion of alternatives here. Turning
to the intended extent of the present treatment, note that the definitions
above allow for POLYADIC QUANTIFICATION (cf. van Benthem 1989)—i.e.,
quantifiers which bind more than one variable. This is a syntactically sim-
ple extension, whose interpretation, moreover, is likewise a straightforward
generalization of the single-variable case (cf. below). But this possibility
has never undergone any real experimentation in N'LL, and there have
never been inference rules written based on it; we still regard it as an “ex-
perimental extension”. Accordingly, we provide definitions of the monadic
case and indicate how it generalizes to polyadic ones. On the other hand
we have employed more extensively a generalization of another sort—from
2-place relations on sets to 3-place relations. These are the “ternary” quan-
tifiers more and fewer (and closely related ones) as these are used in More
men than women smoke, as investigated by Keenan and Moss 1984.

4.2 Variable Binding

In order to formulate the semantics of variable binding, essential to quan-
tification, we make frequent reference to variable assignment functions 3,
which map variables to elements of U/, the domain of discourse, and occa-

SBelow we introduce the number-theoretic characterization of the quantifiers which we
employ instead of the set-theoretic ones.
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sionally to BZ, the assignment function like 3 except perhaps at z, where
it has the value a:

. n_] a fz' =z
’6};(‘” )= { B(z’) otherwise
We proceed now by placing further conditions on the interpretation
function I, and on the relation ‘=",

e for every n-place determiner name, D", I(D") is an n-place relation
on subsets of U, i.e.,

(a subset of 2V x ... x 2V).
e e

n

Then, for every 2-place determiner D, variable z, and formulas ¢ and ¢, we
first note the conditions under which the quantified proposition is defined—
we regard as undefined ONLY quantified formula in which there is no way
of satisfying the restrictor. N.B. this is recognition of a semantic source of
ill-formedness.

[(Dz ¢¢)]](Ql,p) is defined <<— {a”[qﬁ]](m’pf_) =1}#0

Given this, we may specify truth conditions.

[(D= ¢¢)]](Q1’p) =1 <= <{a”[¢]l(22(,p§) =1}, {GHW]](Q[,;;%) =1}) € l[D]](Ql,p)

(the generalization to 3-place determiners—ternary quantifiers—is the gen-
eralization from 2-place to 3-place relations on sets and is straightforward.
Cf. below.) The generalization to polyadic quantifiers (cf. above) is the
generalization from relations on sets to relations on relations. E.g., in the
dyadic case we examine, for restrictor ¢ (and scope ¥):

{<a,b> ”[45]}(%,,3%%) =1}

to see whether this stands in the proper relation to the relation provided
by [+#]. But as note above, we shall not provide complete definitions here.
Many generalized quantifiers Q may be defined as binary predicates:

Alr, 9)Q/(r, )
which are applied to the cardinality of the restriction set and the cardinal-

ity of the restriction set intersected with the scope set. L.e., for a quantified
formula of the form (Det ?x ¢1), let R = {a|[[¢]]Ql,p 2= = 1} (restriction
set), analogously S = {a”['/’]]ﬁl,ﬂk = 1} (scope set), r :ulR{ and ¢ = |[RNS|
(n.b., that this is the cardinalityaof the INTERSECTION set, and not simply
the scope set). We have in mind here those quantifiers which obey the
Axiom of Quantity (Westerstah! 1989, 66ff). This number-theoretic char-
acterization of generalized quantifiers is adequate for finite sets. There is
an equivalent formulation in terms of sets and relations among sets (for a
comparison see Westerstahl 1989), which, moreover generalizes to infinite
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cases—but we shall not be concerned with this elaboration. We shall em-
ploy this characterization in specifying the semantics of some of the logical
quantifiers, to which we now turn.

4.3 Logical Determiners

Although ALL determiners have semantics in keeping with the general def-
inition above, still several are important enough to warrant more exact
specification. N'LL fixes the denotation of the following. We provide both
the number-theoretic and the set-theoretic characterization for the first ex-
ample, and only the number-theoretic for the others. (We use [D]' to refer
to the number-theoretic characterization of the denotation.)

Existential Determiner: (exists 7x ¢v)
(number-theoretically) [exists] is {< r,i > | > 1}, i.e.,
[(exists ?x ¢ )y 5 =1iff [RNS| >0 (or RNB #0)
where R = {a||[¢]]m’p?7x =1}and S = {a”[z,b]}m’ﬁ%x =1}
Universal Determiner: (forall 7x ¢1)
[fora11]’ is {< r,i > |r =i}
Negative Existential Determiner: (no ?x ¢1)
[no]’ is {< r,i > |i = 0}
Negative Universal Determiner: (notall ?x ¢¢)
[nota11] is {< ri > |r > i}
4.4 Further Examples
Even if the following are not logical determiners, they are of some interest:
Most: (most 7x ¢t))
[most] is {< r,i> |i > r/2}
which, however, runs into difficulties over infinite domains, where we need:
Most: (most 7x ¢¢)
[(most 7x ¢ ¥)lg, =1iff [RNS| > |[RNS
where R, S as above.

This is a bit more precise than some would prefer to be with the natural lan-
guage most, but it is of interest as the source of early demonstrations that
even relatively simple natural language meanings resist first-order char-
acterization (Barwise and Cooper 1981). We are unable to represent most
without reference to cardinality—this would have been possible for the log-
ical quantifiers above (where we might have appealed to subset relations
between restrictor and scope, etc.).

Several: (several 7x ¢¢)

[several]’ is {< r,i > |i > 2}
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The: (the ?x ¢9)
[the] is {< r,i>|r=i=1}

Finally, we examine two determiners which have proven useful in com-
parative semantics. They have been applied in domains where there was
a need for quantification over an ordered set of measures of a property of
a finite set of individuals; thus they assume an antecedently specified or-
dering (<). We assume that measures (such as cardinality or weight) are
taken from the natural or real numbers, whose finite subsets are completely
ordered (so that maxima are always unique in these finite subsets). If we
wish to employ infinite domains, then we should use least upper bounds.
It is further noteworthy that these determiners have no number-theoretic
characterization.

Max: (max< 7m @)

I[(maxﬁ m ¢¢)]}Q[,p =1 = {[1:{)]]2[,5 =1

Mty
where R is, as usual, {a|[¢]y pim = 1} and maz is a function that selects
the greatest of a set of numbers, i.e.,
n=maz(R) <> n€ R A Vn' € R(n' <n)
Intuitively, max< finds the greatest value (with respect to <) which satisfies
the restrictor, and asserts it of the scope. min< is just parallel.
Min: (ming ?m ¢v)
[ming ™m ¢Y)lgr s =1 = [Wlyps_m =1
mzns(n)
where R is, as usual, {a|[8]y( 52 = 1} and min is a function that selects
the least of a set of numbers, i.e.,

n=min(R) < n€ R A Vn' € R(n' > n)
In employing these quantifiers we often drop the reference to the antecedently

specified order relation, since this is normally clear given the context (an
indeed given merely the entities involved).

4.5 Complex Determiners

Complex determination (At most five,...) is more properly treated as a
part of the N'LL extension for plurals and mass terms (cf. below)—but it
has a straightforward (and first-order definable) interpretation here, as the
availability of number theoretic definitions shows.

[(>n)] ={<ri>|i>n} morethann
[(<n)]) ={<ri>li<n} fewer thann
[(=n)] = {<ri>li=n} (exactly)n
(<=n)] ={<ri>|i<n} atmostn
[G=n)] ={<ri>|i>n} atleastn



DRAFT-20.July.92—Comments, no quotes 19

This may be generalized even further, as Nerbonne 1994 shows, but because
such quantification interacts so crucially with plural semantics, we shall
be content with the sketch here for present purposes. (This leaves some
complex determiners undefined—but the extension to plurals provides for
their definition.)

It is perhaps objectionable that the components of these complex de-
terminers remain undefined in isolation—but Nerbonne 1994 provides non-
syncategorematic treatments of these quantifiers, and several more complex
ones.

4.6 Ternary Quantifiers

As we noted above there is good semantic (and not merely mathematical)
motivation for examining 3-place relations amongsets. Cf. Keenan and Moss 1984,
764 for elaboration. N LL provides for five basic variants, and Nerbonne 1994
shows how each of these is subject to further (infinite) parametric exten-

sion. The five basic variants, together with an example of a sentence each

might symbolize, are as follows (the final variant is linguistically odd for
reasons we cannot deal with—it is included for symmetry):

More than
Fewer ?
(Exactly) as many boys as girls swim

At least as many
At most as many

>
<
( = ?xboy(inst:?x) girl(inst:?x) swim(inst:?x))
>=
<=
In analogy to the number-theoretic characterization above, we may de-
fine (for a ternary quantified formula of the form (D ?x ¢¢'+):

R1 = {al[8ly 5= = 1)

rl = |R1]

R2 = {a”[qﬁ']lm,ﬁ%c = 1}
r2 = |R2|

§ = {al[¥ly g2z = 1}
il =|R1NS]
i2=|R2N S|

Then we may provide number-theoretic characterizations of the ternary
determiner denotations, always specified as a relation between i1 and 42 as
defined above. We have:
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[>] = {<i1,i2 > |il > 42}
I<] = {<i1,i2 > |il < 2}
etc.

It appears that each of these quantifiers (except perhaps ‘=’) allows the
definition of the Rescher quantifier, which brings us beyond first-order (cf.
Westerstahl 1989, 22)—a step we took independently in earlier allowing
the quantifier directly (‘most’).

5 Substitution

We shall want a rule of substitution at any number of points in computa-
tional semantics: anaphora resolution, inference, perhaps even in semantics
construction. The SUBSTITUTION LEMMA guarantees that the substitution
of like-denoting terms preserves equivalences. Schematically:

Substitution Lemma For formulas ¢, terms t, and variables ?x:

[o07x— tllgp = [Pl , 7x
t
A

where ¢[?x — a] is the formula where all free occurrences of ?x are
replaced by t.

Given an inductive definition of ¢[?x — a], the substitution lemma is
normally proved through an induction on the construction of ¢. The only
point in A'LL at which this standard result could be in doubt would be at
the level of atomic formula, since the syntax and semantics are somewhat
novel.

But even here the substitution lemma must hold. The only applicable
case obtains when ?7x occupies an argument position in the list of role-
argument pairs, so that ¢ is of the formP(... r1:?x ... r,:?x ...) (where
7x does not otherwise occur freely in ¢}, and the right side of the lemma
equivalence is satisfied whenever there is an n-tuple in [P]y whose i,,- to
ir,-th projections are all |[?x]]m’ﬁ 7, 1€ ﬁ[ﬁ—‘—(?x), which is of course

Tela 2
just [t]g- Given a substitution [?x +— t], the formula on the left side of the
lemma equivalence holds iff there is an n-tuple whose relevant projections
are likewise all equal to [t]g[, which is what we wish to show. O

We shall not repeat the rest of the standard proof (¢f. Ebbinghaus et al. 1978,
65), since it transfers to N'/LL transparently.

Summary

This completes our treatment of the kernel of N'CL. The following sections
treat extensions of various sorts: § 6 treats function terms, variable-binding
term operators, and restricted parameters, and other complex terms; § 7
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provides a lambda operator and some further derived predicate operators.
§ 8 treats topics connected with plural semantics.

6 NLL Terms

We introduced constants and functions without added comment above in
§ 2 above. In this section we discuss function terms, skolem functions,
restricted parameters, variable-binding term-forming operators, and Term-
Forming Propositional Operators. We introduce further term types—group
terms and sigma terms—in the section on the treatment of plurals (§ 8),
we reserve remarks on locations terms until the fundamental ideas of struc-
tured ontologies are introduced (with plurals, again in § 8.

6.1 Function Terms

(Function Term) ::= (Function Name)({Term), ..)
(Function Name) ::= (Identifier)

The treatment of function terms is absolutely standard.

e for £ an n-place function name, t1,...,t, terms

E3SCPRPRIN Y] PYRESIN £ PVICCY FVRRRRTY LY PV

as long as [t1] o4, .- ., [tn] a4 are each defined, and is undefined wher-
ever one of them is.

We eschewed role-marking here even though it is used throughout atomic
formulas because there is little use for anadic functional terms {cf. § 2).
Once an argument is dropped from a function, we tend no longer to ob-
tain a unique value, so that this variability—a raison d’étre of role-based
predication—is therefore of little use.”

6.2 Skolem Functions

We intend to add skolem functions (including 0-place functions, i.e. skolem
constants) to N'LL at some time in the future. These are functions model-
theoretically—but ones which are constrained to yield values which satisfy
the open sentences they are used in (in place of selected bound variables)
Fitting 1990, 187-90. But the latter is a constraint in a theory formulated
in a logical language, not a constraint on the language itself. So nothing
needs to be added to the model theory.

6.3 Restricted Parameters

(Restricted Parameter) ::= ([(Determiner)] ?(Identifier) | (Restriction))
(Restriction) ::= (Wff)

7An interesting exploration might allow that missing arguments are supplied by de-
fault, in the way that functions in some role-based programming languages are. Cf.
Steele 1984, 61. But given the projection rule, § 2, an addition of this sort would make
N LL nonmonotonic.
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We ignore the case in which determiners are specified in this section—
that possibility is taken up in § 6.3.1.

Restricted parameters are introduced in Barwise 1987 and their lin-
guistic utility is developed in Gawron and Peters 1990, who together with
Westerstahl 1990 are at pains to interpret these as denoting a special class
of objects, PARAMETERS—which we, however, have not admitted to the
domain of discourse. One can provide very nearly parallel treatments (to
Gawron-Peters), by allowing that restricted parameters simply as terms
which indefinitely denote something satisfying a given restriction. In this
case they have a simple semantics:

e for 7x an individual variable, ¢ a formula

[C?x | ¢)]}Q[ﬁ = {

We note that the denotation function ‘[ ]’ is nondeterministic when
applied to restricted parameters.

if |[¢]]22(ﬁ "a_x =1
undefined otherwise

We note that Gawron and Peter’s ABSORPTION PRINCIPLE, which
would effectively forbid the occurrence of bound variables in restrictions
(we provide an example formulated in a syntactic way for the sake of
concreteness—Gawron and Peters formulation is semantic), is not enforced
here. It is trivial to show that, e.g., the following the formula is interpreted,
in violation of the absorption principle.

(forall 7x man(inst:?x)
love(source:?x theme:(?y | child(inst:?y of:?x)) ) )

This indicates that the absorption principle is either an independent no-
tion or that it depends on the nature of parameters as opposed to variables.?

6.3.1 Quasi-Logical Forms

But restricted parameters are used in another way as well, viz. to provide
a “quantifier-in-place” representation in N'LL, e.g., we may write:

walk(agt:(most ?x | man(inst:?x)))

This representation is a often convenient when decisions about quanti-
fier scoping are to be postponed—but it is an uninterpreted “quasi-logical”

80ne way to construe the absorption principle is to postulate (i) that restrictions on
bound and unbound variables are fundamentally different; and (ii) that any variable
binding—absorption—must respect whatever restrictions have accumulated on the vari-
ables being bound. In the example in the text, the restriction on 7y restricts equally 7x.
Thus, once ?x is bound, its restrictions (which include restrictions on ?y) are bound-
variable restrictions, and no longer unbound-variable-restrictions. Formally, this would
seem to commit us to binding neither ?x nor ?y independently—i.e., we require polyadic
variable-binding operators.
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extension of N'LL (cf. Alshawi and others July 1989 for its usefulness). If
one wished, one could interpret formulas ¢ in which terms such as ‘(most
?x | man(inst:?x))’ occur: we obtain these interpretations by examin-
ing the formulas in which all occurrences of the restricted parameter are
replaced by the variable ?x BOUND BY QUANTIFIERS OF THE FORM most
?x man{inst:7x). Note that we require only the the variable be somehow
properly bound—so that we obtain in general a set of formulas ¢’, whose
disjunction is equivalent to ¢.

6.4 Complex Terms
N LL’s complex terms involve variable-binding term-forming operators; the
syntax of complex terms is:
(Complex Term) ::= ((VB-TF-Operation) (Variable), ...
| (Operand) | (W)

(VB-TF-Operation) ::= *sum | *product | *min | *max | *avg
(Operand) ::= (Term)

A variable-binding term former — (VB-TF-Operation) — is used to
construct aggregations over the domain.

Simple Example:

operation bound-vars operand restriction

(*sum 7z, 7y 7y | sales(agt:?z jan$:7y))
Assuming that the ‘sales’ relation holds of agent ?z and jan$ 7y iff
salesman 7z sells products worth 7y dollars in January, then the com-
plex term refers to the total dollar sales for all salesmen in January.
Suppose we model the relation ‘sales’ as a set of tuples, called “Sales”,
and jan$ is the accessor to the jan$ field of a tuple (similarly for
agent). Then this is equivalent to

Z jan$(s) | 3z agent(s) = z
seSales

We have assumed that sales(agt:?z jan$:7y) holds iff ?z’s Jan-
uary sales total ?y.

Complicated Example: The operand part of a {Complex Term) is not
limited to a single variable; instead, any (Term) can be used here as
the following example shows:

(Fsum 7z,7m1,7m2,?m3 plus(?m1,?m2,7m3) |
sales(agt:?z jan$:7m1 feb$:?m2 mar$:?m3))

with the meaning

Z jan$(s) + feb$(s) + mar$(s) | Iz agent(s) = z
seSales
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But note the the operand can always be reduced to a single variable if
we add a conjunction to the restriction requiring that a (new variable)
be equal to the operand. Thus the above could be reduced to:
(*sum 7z,7m1,7m2,7m3,%y 7y
AND { sales(agt:?z jan$:7m1 feb$:?m2 mar$:?7m3)
=(id1:?y id2:plus(?m1,7m2,7m3)) } )

We exploit this equivalence, providing a model theory only for the
latter form in which the operand is simple. This avoids technical
complications on variable bindings.

In order to introduce a general model theory of these terms it will
be useful to introduce the notion of a RELATION EXPRESSED BY AN OPEN
FORMULA. We present the definitions below first as if the bound-vars in the
complex term were exactly the variables occurring freely in the restriction.
This will make the presentation simpler, and there is a straightforward
generalization for cases with some variables bound in the complex term
and others elsewhere (or unbound).

e For ¢ a formula, and {?xy, ..., ?x,} the variables occurring freely in
¢ (taken in order of their occurrence), the relation expressed by ¢,
R¢

R¢ = {< a1y, 0n > ! I[(ﬁ]}mﬂ?—xl?—x& = 1}

We have suppressed an implicit dependency on the model M inter-
preting ¢. This will always be clear in context.

o When we generalize to cases where only some variables {?x1,. .., ?x;}
are being bound, we examine the RELATION EXPRESSED BY ¢ OVER
?x1,...,7%;. Weassume that 7x1, ..., 7x; occur freely in ¢, and define
the relation over 7xi, ..., 7x; expressed by ¢:

Ryrxs,.txe = A< a0 > [ [l rx, ox, = 1}

We need to be careful about one further point in the interpretation
of these expressions, viz. that our collection of operands may contain
duplicates—and these may not be ignored. Thus if I ask for the sum of
sales and the figure $10. appears twice, both occurrences must be included
separately in the sum. If there are no further figures, the sum should be
$20, and not $10. We need therefore to use operators defined not over sets
(as is customary), but rather over multisets.

e For R™ a n-place relation, ; the j-th projection function, let zj” (R™)

be the MULTISET of elements occurring in R"™ in the j-th position.

Le., a occurs in ¢ (R") with multiplicity m iff there are m distinct
tuples < @; >i<n in R" such that a; = a.

Given this notion, we intuitively obtain the denotation of the complex

term in two further steps: first we examine the multiset obtained by eval-
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uating the operand with respect to the relation expressed by ¢ over the
bound vars (effectively the (multiset) image of the relation under the op-
eration expressed by the operand); then the operator is applied to this
multiset. Our simplification (above) to operands consisting of simple vari-
ables allows us to simplify the first step: rather than examine the image
of R4 under a function supplied by the operand (where variable bindings
must be administered), we can examine the simpler (multiset) PROJECTION
of Ry onto the operand variable. This leads us to the following definition:

o for 7 a complex term of the form (OP ?xy,...,x,,7y 7y | ¢), 0P a
VB-TF-Operation, ¢ a formula:

-M
Irlos = [OPIy(inis(Ryp2x, . 7x.,7y)
Of course this formulation assumes that the definitions of sum, etc.
based on multisets are provided—but this is quite straightforward.

6.5 Measure Terms

(Measure Term) ::= (Specified Measure)

| (Unspecified Measure)
i {Maximally Specified Measure)
(Specified Measure) ::= { {Specifier) (Unspecified Measure) }
(Unspecified Measure) ::= (Variable) | (Simple Measure) i (Complex Measure)

(Simple Measure) ::= (Numeral)

NLL reserves a part of its domain for numbers, denoted by numerals—
we allow that numerals refer in N'/L£ (and thus require that the universe of
discourse include R, the reals). Thus 1, 1.5, 477.35,... are all SIMPLE
MEASURES and therefore N'LL terms. They denote transparently; they sat-
isfy (in pairs) the customary order relations (>, <, =, >=, <=), just asex-
pected; and they appears as arguments to the arithmetical functions addi-
tion ‘plus(n,m)’, subtraction ‘minus(n,m)’, multiplication ‘times(n,m)’,
and division ‘/(n,m)’. Instead of ‘=’ we normally write ‘=m’ to denote
equivalence between commensurate measures (for motivation, see below).

e for n a simple measure, [n]y € R

It will be useful to reserve ?n, ?ni, ..., 7m, ?mi, ... for variables
which are restricted to ranging over measures (simple or complex).
6.5.1 Complex Measure Terms

In addition to the simple measures, the numerals, N'LL also allows refer-
ence to COMPLEX MEASURE PHRASES such as [1.85m], in a sentence such
as Sam is 1.85 meters tall:

tall(theme:s measure:[1.85 m])

We shall take these to denote individuals, intuitively points on scales (of me-
ters, etc.). In this we follow inter alia Cresswell 1976 and Pinkal 1989. We
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furthermore take a very simple-minded view of these individuals—modeling
them as pairs of numbers and otherwise undenoted atoms.
We need to be able to refer to dimensional scales and to points on them.

e for s a scale—m (meter), kw (kilowatt), etc.

[sly € U
1.e., this is simply an atom.
e for [n s] a complex measure

[In s1lg s = ([nlop, [slar)

Given this construal of complex measure terms, we cannot express mea-
sure equivalences as identities. Thus statements such as the following are
logically false:

=(id1:[1 km] id2:[1000 m])

since the ordered pairs denoted must be distinct (which is forced, since the
second elements must be). The consequence here is that the equivalence
relation among measures will be denoted using a distinct relational symbol,
=m, at least when we are writing carefully. In place of the above, we shall
write:

=m(theme:[1 km] pole:[1000 m])
which we can generalize as

(forall ?ni number(inst:?ni)
=m(theme: [?7n1 km] pole: [times(1000,7n1) m])

where ‘times’ denotes the functional constant of multiplication.

There is of course an alternative development of the model theory in
which the identity relation might hold properly of measures such as [1
km] and [1000 m]. For this to be possible, we would need to postulate
an abstract dimension of length, of which km and m were alternative indi-
viduations. In this construal complex measure terms would be taken to
denote points within the abstract dimension, so that measures using alter-
nate scales might genuinely denote the same abstract point. And in this
case axioms such as the last equation would no longer need to be stated
IN NLL, instead they would be a part of the model theory. This would
be an interesting alternative as far as NLL is concerned—we present the
other version here because it is simpler, but not because it seems definitely
superior to the other.

We allow measures to serve as the arguments of the arithmetic functions,
with the expected definitions:

e for m = (n,s),m’ = (n/,s) measures ON THE SAME SCALE, n” a
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simple measure (number)

m+m' = ((n+n'),s)
m—m' = {((n—n'),s)
mxn’ = {((nxn"),s)

m/n” {(n/n"),s)

Note that we have not required that ‘plus’is SYNTACTICALLY restricted
to measures which mention the same scale. Thus it may make perfect sense
to refer to ‘plus([6 £t],[2 in])’—even though nothing will be derivable
from this in the absence of axioms showing how to link the £t and in scales.

application Before concluding this section we examine an important ap-
plication of measure terms—adjectival semantics, including comparatives—
let us note a perhaps nonobvious consequence of A'LL’s anadic pred-
ication (cf. § 2.4.2 as well). Suppose we take the semantics of the
adjectival phrase Im tall to be properly rendered as suggested above,
i.e., tall(theme:?x measure:[1 m]), then it is natural to ask how
this differs from that of adjectival phrases without degree specifica-
tion, e.g., tall as in Sam is tall. Within NLL the following must
hold:

tall(theme:j meas:[1 m])
tall(theme:j)

In fact, since N LL always validates projections, effectively everything
measurable will satisfy the theme-projection predicate of the relation
tall used above—even though it is certainly false, e.g., for j an adult
human being, that J s tall if J is 0.7m tall.

In order to use NLL for gradable adjectival semantics, we have to
do one of two things—either allow that the relations denoted by ad-
jectives with and without specifiers are distinct (which is counter-
intuitive), or allow that there may be a nonmonotonic step of sup-
plying a DEFAULT argument in cases where none is syntactically ex-
plicit. This indeed is the step that has been taken in using ANLL
for comparative semantics. In this case we represent the meaning
of tall as tall(theme:?x meas:(7m | >=(th:?m pole:[1.7 m]))).
Alternatively, we could attempt to use contextual information in or-
der to fill the measure role more satisfactorily. But these are both
techniques which are beyond N LL directly, and thus which require
auxiliary support.

6.5.2 Specified Measures

SPECIFIED MEASURES allow us to underspecify measure terms:
(Specified Measure) ::= { (Specifier) (Unspecified Measure) }
(Specifier) = < | < | = | # | > | >

Example:
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”Jones is at most 6 feet tall.”
tall(theme:Jones measure:{<= [6 footl})

Semantically, a specified measure should be just equivalent to a re-
stricted parameter, as the following examples illustrate:

{<= [4£ 1]} = (?m | <=(theme:?m pole:[4 11))
{>4 }=(m | >(theme:?m pole:4))
But specified measures do not introduce parameters to which further
reference is possible, and they are more compact in expression. We there-
fore find them a useful defined syntax.

o for R a specifier, m a measure, {R m } is a specified measure, with the
interpretation:

[{& m Yo = [(?n’ | R(theme:?m’ pole:m)],,
where ?m’ is a variable not used in the expression under evaluation.

We therefore regard specified measures (and maximally specified measures,
cf. § 6.5.3) as syntactically defined—and therefore in no need of special
model theoretic development.

6.5.3 Maximally Specified Measures

MAXIMALLY SPECIFIED MEASURES differ from specified measures only in
that they allow specifying a delta (e.g., ”2 more than”) or a factor (e.g.,
“twice as many as”). These have been employed primarily as the bases
from which plural and mass quantifiers have been derived (cf. § 8.4), and
their usefulness extends to adjectival comparison as well (cf. twice as tall
as z, 2 cm taller than z.

Examples:

”5 more X [than Sam hired consultants]” {> ?n delta:2}
”4 liters less X [than Sam drank water]” {< ?m delta:[4 11}
”twice as many as 3 kg” {= [3 kgl *:2}
(Maximally Specified Measure) ::=
{ (Specifier) (Unspecified Measure)
.[delta {:(Unspeciﬁed Measure) | :(Specified Measure) }]
i* { (Simple Measure) i(Variable) }] }

Note that the arguments to delta and * cannot be maximally specified
measures (no recursion).

o for R a specifier, m, d measures, {R m1 delta:d} is a maximally
specified measure with the interpretation:

[{ R m1 delta:d}],, = [(?w’ | AND{ R(th:?m’ pole:m1)
=m(th:d pole:abs-val(?m,m1))
}Im
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where ?m’ is a variable not used in the expression under evaluation.

The formulation ‘AND{R(th:7m’ pole:m1) =m(th:d pole:abs-val(?m,mi))}’
generalizes over the cases expressed by more on the one hand and less
or feweron the other. It is equivalent to ‘R(th:?m’ pole:plus(mi,d))’
for more, and ‘R(th:?m’ pole:minus(mi,d))’ for less or fewer. Cf.
Nerbonne 1994 for further discussion.

o for R a specifier, m a measure, n a simple measure (number) {R m1
*:n} is maximally specified measure, with the interpretation:

[{ R m1 *:n}],, =

[(7m’
[Crm’
&
[(7n’
[(7m’

=m(th:
=m(th:
=m(th:
| =m(th:

m’

m
m

/

R(th:7m’ pole:times(n,m1)))],,
pole:times(n,m1)))],,
pole:times(plus(1,n),m1)))],
! pole:times(/(1,n),m1)))],,

7m’ pole:times(minus(1,n),m1)))],,

for R = ‘=m’

forR=>",n
forR=>",n
forR=‘<,n
forR=‘<,n

where ?m’ is a variable not used in the expression under evaluation.
These last semantic definitions have been expressed through N LL,
rather than directly, in order to emphasize that they add only conve-
nience to the language, no new expressive capacity. The effects of the
definitions are summarized in the table below, from Nerbonne 1994,
which provides motivation:

Type | Factor Example Proportion Formula
= > 1 | three times as much zfy=3 zfy=f
<1 | one-third as much zfy=1/3 zfy=f
> > 1 | three times more z/y=3 zfy=1f
<1 | one-third more a;x>—yy/[\/:c ~1/3 tfy=1+f
< >1 | three times less z/y=1/3 cfy=1/f
' . z<yA
<1 one-third less zfy=1-
o—ylfa=1/3 |*VT1-T

6.6 Term-Forming Propositional Operators

The PROPOSITIONAL SENSE and STATE-OF-AFFAIRS operators are purely
experimental, but they are useful especially in applications where it is nec-
essary to reason about the intentions and goals of interlocutors in conversation—
the correct recognition of SPEECH ACTS depends on this. We even provide
alternative syntaxes for those who might wish to experiment with both
propositions and states of affairs, but we do not attempt to specify a model

theory.

>1
<1
>1
<1
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~¢ is intended to denote the proposition that ¢
<<¢>> is intended to denote the state of affairs denoted by ¢

7 Derived Predicates

We treat derived predicates in this section, both A-predicates and predi-
cates derived from predicate operators. In giving free rein to the definition
of DERIVED predicates, we of course allow relations to be denoted whose
projections need not be prominent in natural language—which is not prob-
lematic, but needs to be noted (cf. also § 2.4.2).

7.1 Lambda Abstraction

In many approaches to natural language semantics construction A, the
predicate-forming abstraction operator, is ultimately responsible for bind-

ing every argument to its position in a relation, and the operator seems in-
dispensable even in alternative semantics construction schemes (cf. Nerbonne 1992a
for elaboration).

N LL therefore provides a A-predicate. Because of the role-based nature
of predication in N'LL, and because we wished A-predicates to combine
with sets of role-argument pairs in a fashion exactly parallel to that in
which simple predicates combine, we need a role-based version of lambda.
Since we know of such thing in the literature, this N'£L extension probably
should be regarded as experimental, but it seems straightforward.

(A-Predicate) ::= (lambda arg,:(Variable), ...,arg,:(Variable) (Wff}))

There is a familiar theorem (Barendregt 1984, 63) about A-operators
which looks quite different in a role-based setting, namely n-reduction, i.e.,
for all predicates P

A P(z) = P
where z is not free in P. The problem arises because roles are required
when one asserts a relation in role-based formalisms. It would natural to
require that the role name used by the A abstraction operator be the same
as that used in the scope of the A abstraction, so that one could write:

Ar:x P(r:x) = P

And this would make the A-predicate appear similar to its simpler counter-
part: in particular, it would combine with the same sets of role-argument
pairs. But this tack cannot generalize to more complicated examples where
several argument positions are abstracted over, e.g.:

Ar:?x P(ri1:7x r2:7x)
Ar:?x AND{P(r1:7x) Q(z2:?x r3:7x)}
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We conclude from such examples that it is hopeless to attempt to identify
roles in A-predicates and their scopes. Indeed such examples suggest further
that no finite set of roles will suffice (if one generalizes to simultaneous
abstraction over several variables, as we do). We also accept the stronger
point, and provide for an unlimited number of nonce roles argi, arg2,...

A final qualifying remark: since N'LL does not have an identity relation
for predicates, the n-reduction theorem cannot be stated directly in NLL,
but we can guarantee that the expressions on either side of the equivalence
receive the same denotation, modulo permutations. Cf. below.

We turn then to the definition and interpretation of A-predicates:

(M-Predicate) ::= (lambda arg;:(Variable), ...,arg,:(Variable) {dist}
(WiD))

where the dotted braces indicate that ‘dist’ is optional; this is a distribu-
tion operator, whose interpretation will be provided for in the section on
plurals, § 8. The variant without distribution is interpreted in the following
manner:

o for all variables 7x; ... 7x,, and all formulas ¢

lambd 1:7 1%, CUx...xU
[(1ambda argl:?x; argn:?x, @), € UX...X

i.e., a relation on U™ (just as the denotation of any n-place atomic
predicate), where

(a1,...,a,) € [(lambda argl:?x; ... argn:?x, @)]g,; <« [florper za =1
and each role arg; is interpreted as j-th projection function.

«-REDUCTION in the A-calculus is the rule guaranteeing equivalence
under variable renaming. We account for o reduction (Barendregt 1984)
in the usual manner: the variable assignment function is irrelevant when we
examine the values of bound variables. This is obvious in the interpretation
of A specified above.

7-REDUCTION. The denotation specified for the A-predicates guarantees
that for ¢ an atomic formula of the form P?(x1:?x;, ..., r,:7x,),P" an
n-place predicate, then for every ¥, 5:

[(1ambda argi:?x; ... argn:?x, ¢, € H[[p"]]mﬁ

The denotation of the A-predicate is a permutation of the denotation of the
atomic predicate.
[-REDUCTION guarantees the validity of A-application.

B-Reduction For all formulas ¢, variables 7x1,...,7x,, and terms ty,...,t,

IFF { (lambda argl:?x; ... argn:?x, ¢) (argi:t; ... argn:t,)
¢ [7x1 — t1, ... 7%, — t,] }
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where ¢[z — a] is the formula where all free occurrences of = are
replaced by a.

We sketch a proof of this. The first (A-unreduced) formula is an atomic
formula which is therefore satisfied iff

I(ai)o<i<cn € [(lambda argl:?x; ... argn:?x, ¢)}I2[,p
such that for each t; in t1,...,t,, the arg—j-th projection of {a;)o<i<n is
[t;1, ie., iff

([t:Dogicn € [(lambda argl:?x; ... argn:7xn )]y,
And the A-clause of the model definition (above) tells us this holds iff

[[¢]] ?x ? =1
A, Bt
"Tly " Tnly
And it follows from the substitution lemma (§ 5) that this holds iff
ﬂ:¢ [?7%; — t1, ... 7%, — t,] ]lgl’ﬁ =1

which is just the second (A-reduced) formula. The demonstration that the
formulas are defined under the same circumstances is similar. O.

7.2 Questioners and Question-Wils

QUESTIONERS and QUESTION-WFFS are constructs which are used to rep-
resent the content of WH-phrases ( Which competitor) and WH-questions
(Which competitor won the race?) respectively. There is no distinctive
NLL construct used to represent ALTERNATIVE or YES-NO questions.

(Question W) ::= ((Questioner) (Scope})
(Questioner) ::= ?lambda (Variable), ... (Restriction)
(Scope) = (W)

(Restriction) ::= (Wff)

A questioner should be understood as parallel to a quantifier: each
consists of an operator, a variable and a wff restrictor. In the case of
questioners, the operator must be the lambda operator. Questioners and
quantifiers are further parallel in their supra-syntax—the environments in
which they function. Quantifiers are found in quantified wffs and ques-
tioners in question-wifs. The reasons for this parallelism are primarily the
striking similarity in the information which the two constructs convey, and
the parallel syntactic environments which give rise to them.

Examples:

What did O’Brian sell?
(?lambda ?7x thing(inst:?x) sale(agent:0’Brian product:?x))

How many copies of Advancelink did IG-Farben buy in December?
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(?lambda 7n NatNum(inst:inst:?n)
sale(product:Advancelink
recipient:Ig-farben
date:December))

Which woman manages what department?

(?lambda ?x,%y
and{woman(inst:?x) department(inst:?y)}
manage(agt:7x pat:?y))

The general position in theoretical natural language semantics is that
a question ought to be analyzed as denoting the set of all true answers
(Groenendijk and Stokhof 1984, but cf. Ginzburg 1992 for an interesting
dissenting view). Thus, the meaning of (?lambda 7x ¢(?z) ¥(7z) ) should
be the set of propositions that arise from substituting some denoting term
n for ?x in

and{¢(7z)y(7z)}

The trouble with this view is just that A'LL has no notion of proposition
beyond truth-value, which is clearly much too coarse for the purposes here.

NLL therefore treats questions semantically as A operators—in fact
just as it treats A-predicates. This has the advantage that the charac-
terization of the relation between question and direct answer is clear: in
case the answer denotes an individual term, it may be understood as in-
directly expressing the proposition formed by applying the question to the
answer. In case the answer denotes a quantifier (Who left? —No one.), it
may be taken to indirectly express the proposition formed by applying the
quantifier to the question.

Who left? (7lambda ?x person(inst:?x) left(theme:?x))
No one no 7y person(inst:?y)
{(no ?y person(inst:?y)
(?lambda ?x person(inst:?x) left(theme:?x)) (?y))

Question Wils have a special status in the following sense: it is conve-
nient to treat these as parallel to quantified wifs—and in particular as a
kind of formula—in order to exploit the parallelism noted above. At the
same time they cannot be of the same semantic type as formulas according
to all the theories of the semantics of questions (cf. above). They form
a category by themselves with the semantics of A-predicates and a syntax
like quantified formulas.

o for all variables 7x; ... 7x,,, and all formulas ¢, ¢

?lambda 7x; ... 7%, cUx...
[(?1ambda ?x; X 0Py, C UX... XU

n

i.e., a relation on U™ (just as the denotation of n-place A-predicates),
where
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(a1,...,8,) € [(lambda 7x; ... 7x, ¢d’)}}2(,ﬁ -
[flpm =a = Lond [y pe =0 = 1

This is just a simpler version of the interpretation for A-predicates.
The simplification is possible because we need not interpret roles at
this point (since we do not need to combine these expressions in the
same manner as predicates).

There is a point in the AL L definition where question wffs serve as com-
ponents for more complex language constructs—and where therefore their
double status could be troublesome, and that is where they may serve as the
propositions in the propositional-sense and state-of-affairs constructs (cf.
§ 6.6)—in order to represent the meanings of indirect questions. But since
these constructs are semantically (still) undefined, we shall not attempt to
pursue all of the ramifications here.

7.3 Complex Predicates with Operators
(Complex Predicate) ::= (Predicate Operator) (Simple Predicate)
(Predicate Operator) ::= -er |-as |-less |-est |-least |-too alt
-enough

The predicate operators -er, -less, —est, -least, as, —too and
-enough may be applied to predicates which are GRADABLE—i.e., those
which express a two-place relation between an individual and a measure
(cf.§ 6.5 above). In what follows we shall assume that the individual and
measure places of the relation are denoted by the theme and measure roles,
respectively. In defining various COMPARISON operators, we should like to
allow for the ready expression of such relations as:

Example:

Jones is 2 inches taller than 6 feet.
~er(tall)(theme:Jones pole:[6 feet] spec:[2 inch]) =
tall(theme:Jones meas:plus([6 feet],[2 inchl))

There is some dispute—where N LL is decidedly agnostic—about whether
examples such as the one above should be read Jones is AT LEAST two
inches taller than 6 ft. or Jones is EXACTLY two inches taller than 6 ft.
(and similarly for Jones is 6 ft tall.) N LL allows the expression of either
meaning, and is in that sense agnostic. The NL system in which it has
been used has always assumed the latter meaning, because (among other
reasons) it is difficult to derived the further specified meanings (at most 2
in taller then 6 fi from bases with an opposite bias. We mention this here
because our examples assume the ezactly meanings throughout.
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7.3.1 -er—Positive Comparison

The meaning of the predicate operator —er is definable in N'LL:

(forall ?x thing(inst:7?x)
(forall ?m,?m’ AND { measure(inst:7m)
measure(inst:?n’) }
IFF { -er(P) (theme:?x pole:?m spec:?m’)
P(theme:?x
meas: (?m”| =m(th:?n” pole:plus(?m,?n’)))) }

) )

We arrive at the following schematic truth conditions for derived compar-
atives.

—er{P)(theme:x pole:p spec:d) =
Im € Mp p<mp mA:|m—p| = dA P(theme:z spec:m)

where Mp is the set of measures participating in the relation P, and <jps,
is the order relation defined on it.

We note in passing that the “specifier” position of the comparative
relation may be occupied by a specified measure (§ 6.5), allowing us repre-
sentations such as:
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Example:

Jones is at most 2 inches taller than 6 feet.
-er(tall)(theme:Jones pole:[6 feet] spec:<= [2 inch])

7.3.2 -less—Negative Comparison

Similarly, the meaning of the predicate operator “-less” is given by:

(forall ?x thing(inst:7x)
(forall 7?m,?m’ AND { measure(inst:7m)
measure(inst:?m’) }
IFF { -less(P) (theme:?x pole:?m spec:?m’)
P(theme:?x
meas: (?m”] =m(th:?m” pole:minus(?m,?m’)))) }

) )

whose schematic truth conditions are thus:

-less{P)(theme:z pole:p spec:d) =
Im € Mp m <m, pA|m —p|=dA P(theme:z spec:m)

where Mp and <7, are as above.

The natural language predicates which the —er(P) and the -less(P)
relations are designed to represent benefit from the anadic framework of
NLL in that (i) they are often used without filling the specifier roles (faller
than Smaith rather than ¢ c¢m taller than Smith); and (ii) when they are
so used, they denote projections (thus the latter parenthesized example
implies the former, for all ¢).

7.3.3 -est, -least—Superlative Derivation

The definition of —est anticipates the treatment of plurals to some extent.
The basic meaning of the superlative ‘-est(P)’ is postulated to be a rela-
tion between an individual z and a group of individuals Y which is defined
iff z is in Y and which obtains iff z stands in the —er(P) relation to every
other y in Y—this does not allow there may be more than one individual
standing in a given —est (P)-relation to a given group Y.

(forall ?x,?Y AND { thing(inst:?x)
thing(inst:?Y) }
IF( -est(P)(theme:?x wrt:?7Y)
(forall 7y’ AND { i-part(inst:?y’ in:?7Y)
~ =(id1:?y’ id2:7x) }
-er(P) (theme:7x pole:?y’)
)))

where the relation i-part is defined below. We employ the already defined
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comparative operator, but this amounts to the following schematic truth
conditions for derived superlatives:

-est(P)(theme:zwrt:Y) =
Im € Mp P(theme:xmeas:m) A Vy € Y,y # z P(theme:y pole:(m'|m’ < m))

The -least operator is defined in exactly paralle] fashion, requiring
that all individuals stand in the —1ess-P relation to any theme argument.
Both in the case of —est and in that of —least it is also interesting to define
a further superlative relation—holding between individuals and locations iff
the basic superlative relation holds of between individual and all others in
the location. This allows a fairly direct rendering of superlative predicates
such as tallest in Palo Alto. We omit the definitions here.

7.3.4 -as—Equatives

For the sake of completeness we include an equative comparison operator,
which, however, has never been used (as far as one can tell).

(forall 7?x thing(inst:?x)
(forall ?m measure(inst:?m)
IFF { -as(P) (theme:?x pole:?m)
P(theme:?x pole:7?m) }
))

This is a suspiciously uninteresting definition which was motivated
mainly by the desire to be able to modify these constructs freely, in par-
ticular to make sense of constructions such as ai most as tall as Tom [is
tall].

We should emphasize here that, in allowing the language construct in
NLL we wished to accommodate other potential definitions. The trivial
(identity-mapping) semantics is intended to provide a concrete proposal for
those who wish to use the language without experimenting in this area.

7.3.5 -too, enough (Experimental)

These were included only in order to support experimentation {cf. Flickinger and Nerbonne 1992).
Each is treated as relation between individuals and properties denoted
by open sentences. We examine the semantics of -too here; —enough is
quite analogous. The intention is roughly that an individual stands in the
-too-P relation to property P’ just in case he stands in the P-relation
to the measure m, and all individuals who stand in the P-relation to any
m' > m are such that they do not (or better cannot) satisfy the relation
P'. Consider Peter is too old for Mary to date. We would view old as P is,
date(source:Mary theme:x) as the open sentence defining the property
P’ of being an z such that Mary marries z, and regard the sentence as true
just in case Peter is n years old and Mary does not (cannot) stand in the
date relation to anyone n’ > n years old. I am waflling on the modality
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for the obvious reason: some nonextensional notion is needed, and N LL
does not support it. The expressive devices are included for the sake of
experimentation.

8 Lattice Structured Domains

This section draws on the now extensive literature on the logic of plu-
rals and mass terms (cf. especially Link 1983 and Link 1987)° in order to
include some of the more easily implementable ideas as an extension to
NLL. As useful as this literature has been, still it contains gaps—notably
in the extension of plural logic to multiplace relations—which prompted
some theoretical innovation here. This section assumes familiarity with
Link 1983.

8.1 Plurals

To deal with plural reference and predication, we need to represent and
reason about properties which hold of groups without holding of their in-
dividual members. Examples of such properties are be a threesome, nu-
merous, disperse, and meet—in all of their uses, but also write ¢ paper—in
some of its uses (e.g., write a paper together). We represent groups by
imposing algebraic structure on the domain of discourse, by common con-
sensus the structure of an atomic boolean algebra less the bottom element
(cf. Lgnning 1989 for discussion and justification of the steps from a join-
semilattice to a full atomic boolean algebra). The situation is similar for
mass-term ontologies but the condition of atomicity is dropped. Given the
isomorphism between powerset domains ordered by C and boolean algebras
with their partial orderings, it is also possible to use powersets to provide
the required structure—but this is felt to introduce a distracting question
as to the distinction between individuals and the singleton set containing
them.

We therefore add to our model definition the conditon that the universe
of discourse U be a boolean algebra less the bottom element. We now intro-
duce some metasemantic terminology we shall employ in giving the model
theory below. We use ‘C;’ to denote the inclusion relation (partial order)
on U, and ‘U;’ for the join operation which returns the least upper bound
of pairs in U (under ‘C;’). ‘C;’ is the relation that holds both between
subgroups and groups, and also between individuals and groups contain-
ing them. The atoms in the plural lattice satisfy the predicate atom(z),
and they correspond to individuals; the nonatomic elements correspond to
groups of individuals. Cf. Figure 2. Since boolean algebras are complete,
there exists a supremum for every arbitrary set A, i.e., VA; this is just the
lub (under ;) of the atoms in A.

9The (relatively straightforward) generalization to mass reference will not be dealt with
in detail because time prohibits examining it separately.
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tU;dU; h
tUd tUsh dU;h
" d h

Figure 2: Sample of semilattice for plural reference (for 3-individuals). ‘U;’
is lattice join; ‘a C;b’ holds if one can travel from a up to b along U;-lines.
E.g. d C;d U;t U;h.

(Group Term) ::= +{(Term), (Term)}

(sigma [(Determiner)] (Variable) | (Restricting Wff))

(The optional determiner serves the same purpose here it did with restricted
parameters—it allows experimentation with quasi-logical form. In the case
of measure determiners—cf. § 8.4.3—an interpreted as restriction would
be straightforwardly justified. But we shall not attempt a general model-
theoretical interpretation.) We stipulate that the meanings of i-part,
atom, and atomic-i-part receive the obvious interpretation; we let ‘+{
}’ denote a generalized U;; and we use ‘(sigma ?x | ¢)’ to designate the
supremum of z satisfying ¢). Thus we require that every model M =
(2, 8),U = (U, I) satisfy the following requirements:

o [i-part]; = {<a,b> |aC;b}
e [atom], = {a|atom(a)}
o [atomic-i-part], = {< a,b > |atom(a) A aC;b}
o for all terms #4,...,1,,
|I+{ ty,.. )tn}]]M = |[t1]]MUZ( .. -UilItn:ﬂM)

o for all variables z, and all formulas ¢
[(sigma 7x |¢ Do, = V{all¢lys= = 1}

This model theory already justifies two important inference rules con-
cerning plurals, which we provide instances of here:

% "Tom, Dick, and Harry ... one of them"
%
% atomic-i-part(th: ?x in: +{ T, D, H})
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9,
%
% OR{=(ID1: ?x ID2: H) =(IDi: ?x ID2: D)

% =(ID1: ?x ID2: T)}

% "one of the men"

%

% atomic-i-part(th: ?x in: (sigma ?7Z MAN(inst/i: ?7Z)))
o,
A
% MAN(inst: ?7x)

We shall have more to say about the ROLE MEREOLOGY ‘/i’ below (§ 8.3),
and the careful reader will have noted that the first rule’s validity turns on
the constants’ (T, D, H) all denoting atomic individuals. The NLL defi-
nition does not require that individual constants be restricted to denoting
atomic individuals, but indeed always been respected. If this restriction
were relaxed, the rule would need to be constrained.

8.2 Distributivity Operators

Furthermore, it is useful to be able to use an analogue of Link’s distributive
predicate operator, D ; As Link defines this, for any predicate P, DP(:(:) —
Ve'(z'atom-Tiz — P(2')), i.e. DP is true of objects whenever P is true
of their component atoms. The operator is useful in natural language
semantics at least for the representation of the adverbial particle each, as
in They each spoke, and for the representation of the ANTIQUANTOR each
as it They read a book each. For reasons detailed further in § 8.3, we have
implemented this as variation of A-abstraction. In A'LL we therefore have:
(A-Predicate) ::= (lambda arg;:(Variable), ...,arg,:(Variable) {dist}
(Wit))
where the dotted braces indicate that ‘dist’ is optional; the variation with
distributive operator is interpreted here:

o for all variables ?x; ... 7x,, and all formulas ¢

[(lambda argl:?x; ... argn:7x, dist #)fg; C U Xx...xU
n

i.e., a relation on U” (just as the denotation of any n-place atomic
predicate), where

<ay,...,0p > € [(lambda argl:?x; ... argn:?x, qS)]]Q[ﬁ

- VaiGiay ... VapCian [dlgss =p =1
1 %n

a
o

4

and each role arg; is interpreted as j-th projection function.

Thus, for an entity to satisfy lambda argi:?x dist child(inst:?x)
each of its parts must likewise satisfy child(inst:?x). The version with
the distributive operator is satisfied by groups of children, i.e., entities all
of whose subparts are children.
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All of the above is fairly standard machinery in plural logics. On the
other hand, we have not yet said anything about Link’s plurality operators
“* and ‘4+’ which are definable within A/LL extension provided thus far.
For P a one-place predicate on atoms, for all ?x, we define *P, +P:

IFF { *P(inst:?x)

i-part(inst:?x in:(sigma ?yIP(inst:?y))) }
IFF { +P(inst:7x)

AND { *P(inst:?x) ~atom(inst:?x) } }

We shall therefore not provide separately for it as a primitive. We are
somewhat unsure about how these operators should generalize to multiplace
relations in any case, a topic we turn to now.

8.3 Distributive Relations

The language extension discussed in this section is clearly experimental—
indeed, it appears to be novel. But it arises naturally in N'LL (because of
the importance of roles and anadic predication, which figured prominently
above (§ 2)), the extension is worth some special discussion.

The innovation concerns distributivity and the closure properties of
predications over plurals. As discussed above (§ 8.2) there are several
means of expressing distributivity in A'LL, and there are various natural
generalizations to the case of many-place relations. I should warn that I
believe that the generalization from the treatment of distributivity in pred-
icates to that in multiplace relations has not been examined linguistically.
Link 1983 and subsequent authors allow for this in allowing a distributiv-
ity operator for one-place predicates, and a A-abstraction operator (which
creates one-place predicates from arbitrary formulas, including relational
ones subject to further abstraction). The possibilities of these systems are
illustrated in the following A'LL formula, followed by its equivalent in the
Link LP logic:

(lambda arg2:?y
dist (lambda argi:?x dist chase(agt:?x theme:7y))
(sigma 7u | boy(inst:?u)))
(sigma ?7v | girl(inst:?v))

D)y DAz chase(z, y) (o uboy(u))] (o v girl(v))

which, as may be verified, hold iff each boy and girl stand in the chase
relation. Thus the expressive means provided in N'LL are already as gen-
eral as is normally provided for in plural logics. l.e., given the distribu-
tive operator, we can describe whatever distributivity is normally provided
elsewehere.

There are two points at which these mechanisms seem inadequate to the
task of modeling plural meanings in natural language, “distributivity” in
group-based predications and so-called CUMULATIVE QUANTIFICATION. By
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the first I refer to the well-known observation that one sees a kind of “dis-
tributivity” in predications involving groups essentially (Scha and Stallard 1988).
Thus meet is taken to denote a predicate which cannot be true of individ-
uals, and thus cannot be distributive in the technical sense above (which
would have the consequence that the predicate would then necessarily hold
of individuals). But a sentence such as Several groups met is interpreted
very naturally as meaning either that the groups met separately or that
they convened together in a kind of plenary session. A kind of upward
closure on predicates seems more appropriate to modeling this kind of phe-
nomenon.

Scha 1981

noted that a kind of cumulative quantification seems to underlie the in-
terpretation of 100 Dutch firms bought 5,000 American computersin which
there is a group of 100 Dutch firms and similarly a group of 5,000 Amer-
ican computers, and where each firm is involved in a purchase of one of
the computers and each computer is likewise involved. Scha 1981 proposes
a modeling in terms of a kind of polyadic quantifier, discussed further in
van Benthem 1989.

It would be more in the spirit of NLL to seek a solution, not in a
particular kind of quantification, but rather in the underlying theory of
relations. This prompts one postulate and one generalization of the usual
notion of distributivity. We postulate first that relations are closed under
i-sums, l.e.,

Relations closed under U; For ay,...,a,,b1,...,b,, R an n-place rela-
tion, R is closed under Li;, i.e.

(al,...,an) ERA (bl,...,bn> €R = ((aluz—bl),...,(anuibn)) €R

Note immediately that this accounts for the example above of Several
groups met. But it also generalizes beyond simple predicates to cases in-
volving relations. For example the following would be predicted to hold:

Dan read Stuart Little to Chris.

Dan read Stuart Little to Matt.

Dan read Stuart Little to Andrea.

Dan read Stuart Little to Chris, Matt and Andrea.

This could be modeled without the closure postulate, but only by proposing
that a distributive operator is at play somewhere. But the closure postulate
is not sufficient for explanations of how one can infer properties of atoms
from properties of groups, only vice versa. This is the issue of distributivity,
which is discussed above in connection with distributive operators (§ 8.2),
and which is fundamental in the logic of plurals. This is the inference from
the premise that a (potentially relational) predication holds of a group to
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one or more predications about the individuals in the group. It is generally
interpreted by the *P complex predicate mentioned in § 8.2 above.
We turn now to the treatment of distributive roles.

(Complex Role) ::= (Individual Role) l (Group Role)
(Individual Role) ::= (Simple Role) /i
(Group Role) ::= (Simple Role) /g

What we need is a generalization from one-place predicates to many-
place predicates. The following achieves this in terms of the projection
functions which proved so useful in allowing anadic predication:

Role Mereology The j-th projection of relation R is INDIVIDUAL-BASED
iff for all n-tuples (A1,...,4j,...,An) € R, there areatomsa; 1, ..., a;
such that

k

V{ajll, ceey a]"k} = Aj
and there exist a; ; i-parts of A;, such that
(aik)ici<n € R
and such that
V{aip |1 <K <k} = A
Note that the a; ; need be neither (i) proper i-parts of A; (they may
each be A;), nor (ii) atomic nor (iii) distinct from one another.

To see how this condition can work, we unpack beginning with the last
clause, which requires that

(@11, ... @j_1,1, @j1, @j41,1, ..., Gni) € R
(a1 ... @j_1k, @ik, Gjgi1k, ---, Gnk) € R
(Al Aj_l, Aj, A.i+1a ey An) € R

That is, the components must form n-tuples of R horizontally and must
sum (U;) vertically to the original tuple.

Four aspects of this definition are worth special mention. First, given
that relations are closed under C;, it is a generalization of Link’s original
+P and *P operators, so that it covers the distributivity inferences cov-
ered by them. This is of course just the case of 1-place R—whose single
projection may be seen to be individual-based just in case, where any A
satisfies R, its component atoms do as well. Second, the proposal will have
distinct linguistic consequences from treatments via polyadic quantifiers,
since e.g., we need not assume that the terms involved here have scope.
But the detailed examination of these consequences will have to await a
more linguistically oriented work. Third, the definition will have the effect
of the “cumulative quantifiers”, so that, e.g., if The three men danced with
the two women, then there must be groups of three men and two women
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such that each of the men danced with one or more of the women and each
of women danced with one or more of the men. In particular, it need not
be the case that “all pairs” are found in the dance-with relation.

Fourth and finally, the definition is based on a property of particular
projections on roles, so that it licenses a notation in which distributivity is
noted on roles, to which we may now turn. We begin with an example of
an N LL distributivity inference.

Example: The natural language predicate secretary is best modeled dis-
tributively, so that if Tom, Dick, and Harry are secretaries, then each
of them is a secretary.

IFF { secretary(inst/i: +T,D,E)

AND { secretary(inst/i:T)

secretary(inst/i:D)
secretary(inst/i:H) } }

The notation ‘rolename/i’ is introduced formally below. It is intended
to designate an INDIVIDUAL-BASED role, i.e., one which, if played by a
group, is played by all its members. This sort of role licenses distributive
inferences like the one above. It is worth emphasizing that roles which are
marked as ”individual-based” may nonetheless be filled by a group-denoting
arguments in virtue of their applicability to the individual members of that
group. Hence marking an argument position ”individual-based” may be
regarded as tagging it for a ”distributivity” inference.

Individual-based roles may be contrasted with GROUP-BASED roles,
which may never be occupied by atomic individuals, and which are des-
ignated ‘rolename/g’:

couple(inst/g:?7x) be a couple

And some roles are neither group- nor individual-based. They indifferently
allow either interpretation. E.g., one can write music individually or in
collaboration.

We provide the formal definitions now. For all relation names P, all
rolenames r,

e a rolename is marked r/i iff the projection associated with it is in-
dividually based.

e arolename is marked r/g iff the projection associated with it includes
no atomic individuals

Given our earlier definition of what is for an individual to occupy a role
in a given situation, and given our wish to guarantee the projective in-
ference property (§ 2.4.1), it is also important to note that the mereo-
logical role-markings “individual-based” and group-based are preserved in
projections—they in no way depend on the constellation of roles in a pred-
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ication. On the contrary, if a role is marked as “individual-based”, then
the projection it defines must hold distributively of any argument.'?
There are of course roles which are neither individual- nor group-based,
those which may contain both, e.g. the agent role of carry—both individ-
uals and groups may participate in carrying.
We conclude this section with an example from the implemented dis-
tributive inference rule DISTRIBUTE-PREDICATIONS-IN-ATOMS-EQUIV.

% "The three men hit the two dogs"
%
% HIT(agt: (sigma ({>= 3})

% ?X | MAN(imst: 7X))
% pat: (sigma ({>= 2})
% ?Y | DOG(inst: ?Y)) loc: ?Z)

%

% we infer:

%

% (exists 7ISUM-4

% AND{MAN(inst: ?ISUM-4)

% size(th: ?ISUM-4 meas: ({>= 3}))}

% (exists 7ISUM-3

% AND{DOG(inst: ?ISUM-3)

% size(th: ?7ISUM-3 meas: ({>= 2}))}

% AND{(for-all ?X i-part(th: ?X in: ?ISUM-4)

% (exists 7Y i-part(th: ?Y in: 7ISUM-3)

% HIT(agt: 7X pat: 7Y loc: 7Z)))

% (for-all ?Y i-part(th: ?Y in: ?ISUM-3)

% (exists ?X i-part(th: 7X in: ?ISUM-4)
% HIT(agt: ?X pat: ?Y loc: ?2)))}))

8.4 Quantification
Link 1987

discusses the need for genuinely quantifying over the plural entities, which
he sees in sentences like the following:

Any two engineers could solve that problem.

NLL follows Link in viewing this sort of quantification as peripheral. One
can formulate such meanings, but we have not worked on supporting infer-
ences connected with it.

10But the reverse need not’t hold, i.e. the fact that a given projection is distributive
does NOT imply that it is individual-based (in the sense defined). In particular, given
that a relation R holds of an n-tuple of groups G, ...,Gn, the mere fact that one of
R’s projections is distributive does not’t guarantee that the atomic i-parts of a given
group G; stand in the R relation to i-parts of other groups G1,...,Gi—1,Git1,...,Gn
etc. This is what is required for the cumulativity.
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It is of course fine for there to be (determined) NP’s which are inter-
preted not as generalized quantifiers, but rather as simple referring expres-
sions, i.e., restricted parameters. Cf. Nerbonne et al. 1990 for a develop-
ment along of plural logic with indefinite referring expressions. But this
complication will not concern us below.

We turn now to plural (and other) quantification, which, although it
can be reduced to quantification over individuals, interacts with assump-
tions about the plural domain in crucial ways. The general N LL tack here
is to show how measure terms can function as determiners, and we shall
sketch the developments need here. The section below is of necessity fairly
dense, focusing on issues which arise in embedding this sort of quantifica-
tion in N'LL, but the general issues are discussed at much greater length in
Nerbonne 1994. I should also note that the background for the treatment
below is furnished by Krifka 1991. See Nerbonne 1994 and Krifka 1991 for
further references.

8.4.1 Plurals, Mass Terms and Measure Determiners

Plural and mass objects are MEASURABLE; for plural objects, cardinality
is the salient measure, for mass objects, weight and volume are normally
the more useful measures. Figure 3 illustrates the function of measur-
ing: mapping a structured domain onto a set of MEASURES. The measures
are of course expressed by NLL measure terms (cf. § 6.5). It is clear
that measure mappings should respect (homomorphically) the plural/mass
structure, e.g., that the measure of the sum of (nonoverlapping) objects
should be the sum of the component measures. The relevant requirement
(cf. Krantz et al. 1971) is that the measure be EXTENSIVE or ADDITIVE.
We assume an ordered set of measures MEAS, and formulate the require-
ments as follows:

. . def
p is a measure function =

p: E— MEAS e.g. MEAS =N, Rt U0
eNy=0 — plzUy) = pz) + p(y) Additive
cCyAp()#0 — In>0 n-p(e)> p(y) Multiplicative

(Archimedean)

It is worth noting that these requirements cannot be placed on relations
between individuals and measures in general—not even on those relations
which in some sense “measure” individuals. There are any number of mea-
sures of individuals which do not obey these axioms, e.g., temperature or
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Figure 3: Measure functions g maps elements of the domain, E, onto or-
dered measures (of various dimensions). Cardinality is a measure function
over the plural lattice.

height. But relations which give rise to determiners appear to be exclu-
sively extensive.

Cardinality is a measure function in the sense defined above. It maps
the plural domain to N, and is additive and multiplicative in the required
senses. The requirement that measures be additive and multiplicative was
needed in particular to treat some of the complex measure phrases we
examined above § 6.5.

It is useful to specify object-language expressions for the measure func-
tions just introduced.

o f-card, f-size-1b, f-size-kg, f-size-liter,... are extensive
measure functions with values are in N bzw. R.

e size is a functional relation between objects and measures. I.e. for
all objects 7x, measures ?m, ?m’

IF(AND{ size(th:?x meas:7m)
size(th:?x meas:?m’)}, =m(th:?m pole:7m’))

e card denotes a functional relation between individuals and their car-
dinalities. For all ?x

card(th:?x meas:f-card(?x))

Our general strategy in this section will be to show how a theory of
plural (and mass term) quantification arises from the theory of extensive
measurement of plural (and mass term) measurement. This is largely inde-
pendent of NLL particulars, which therefore play a mere facilitating role
once the theoretical background is clear.

8.4.2 Deriving Determiners from Measures—Problems

In general, measures contribute to quantifiers by providing RESTRICTORS.
The basic idea is simple: given a measure m we wish to derive a determiner
Dy,. This is accomplished by obtaining the inverse image of m under a
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Figure 4: p=({2,3}), image of {2, 3} under the inverse measure function.

measure function g, i.e. g~ (m), which is then in turn available to restrict
an (existential) determiner. Thus e.g.

(DET,, 7x ¢¢) iff (exists ?x AND { in(th:?x loc:p~(m))
¢}
)

This simple basic picture is complicated (i) by comparatives and other
modifiers of measurement phrases, which lead us to consider not just single
measures, but variously specified SETS of measures; and (ii) by the plural
structure on the domain of discourse E, in particular the conditon on (dis-
tributive) predicates that they be closed under Ll;. We take up these issues
in turn.

Comparatives {more than one or more than one ounce) refer not to a
single measure, but to specified sets of measures (those greater than one
or those greater than one ounce). Allowing reference to sets of measures
is straightforward, however. Figure 4 illustrates the obvious generalization
from taking the inverse of a single measure to taking the image of a set of
measures under the inverse measure function. The definitions below map
SETS of measures onto determiners. For example, we can now generalize
the definition above:

For M C MEAS define binary DETyy:

(DETy ?x o) iff (exists ?x AND { in(th:?x loc:p~ (M))
¢}
¥)

The N LL category of MEASURE TERM includes specified measures (§ 6.5.2)
and maximally specified measures (§ 6.5.3), which refer indefinitely to mea-
sures fulfilling a given description. Thus a general scheme allowing the
derivation of a determiner from a measure term will be general enough for
these purposes.

We turn then to the second problem, i.e., the interaction of plural struc-
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Figure 5: Inverse image of complement of {m € MEAS|m < 2}, down-
wardly closed measure set. Derived determiner “fewer than 2” lives on this
image.

ture and comparative determiners. The rough construal of measure-based
determiners (as providing restrictors on quantifiers), needs further general-
1zation to deal with non-upwardly-closed measure specifications. This may
be seen in examples such as the following:

(1) Fewer than 3 children sang.

Let’s assume that [sang] is closed under U;, so that if z,y € [sang]
then zU;y € [sang]. This means e.g. that if the 2-sets in Figure 4 are
in [sang], so is their join, the 3-set. But, by the simple derivation of
measure determiners proposed above, sentence last (1) could be true, since
there’s a 2-set with the required properties! This is is clearly incorrect,
and, moreover, it’s the direct result of working in the plural structure.
This structure must inform the derivation of determiners from measures
and measure sets. In this case, we’d like the result that fewer than n holds
of P, Q) just in case there’s no entity of size n or greater such that P and
() may be predicated of it.

8.4.3 Determiners Derived from Measure Sets
The general scheme for deriving determiner meanings from the specification

of measure sets is as follows:

Measure Determiners Let MEAS be the range of a measure function,
ordered by <pygAs, and let M C MEAS. We obtain the deter-
miner based on M, DETy,:

(DETy ?x ¢9) iff (max< ?m  AND{ measure(inst:?m)
(exists ?x size(th:?z meas:?m)

} AND{¢ ¥})

in(th:?m loc: M) )
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Given this definition of the effects of the measure determiners depend
only on their denoting a set of measures. We attend to this in the
following.

I.e., among the measures in M is the maximal measure of objects satisfying
the predicates ¢ and 3. Note that this handles the “fewer than 3” as well as
the “more than 3” cases. The “fewer than 3” case comes out right because
the definition here requires that the maximal measure (max) satisfying the
properties involved falls within the measure set.!!
Nerbonne 1994

demonstrates logical and algebraic properties of these determiners and
how they depend on the properties of the sets of measures M they’re based
on, especially whether M is upwardly (downwardly) closed, or convex. In
particular, upwardly closed measure sets give rise to existential quantifiers
and downwardly closed ones to negative existentials. The significance of
the reductions is twofold. On the one hand, they are useful when it comes
to adducing monotonicity properties, because existential and negative ex-
istential quantifiers are well-studied. More interestingly, from the point of
view of design for meaning representation languages, the reductions show
that the properties of complex determiners (“more than 3”) arise from
the (closure) properties of the measures sets they are derived from. Since
these in turn are inherent in comparison, we have an opportunity to derive
complex determiner meanings from the type of comparison involved.

8.4.4 Language Definitions

(Determiner) ::= (Simple Determiner) I (Complex Determiner)
(Complex Determiner) ::= ( (Maximally Specified Measure) )

In this section we wish to stipulate how measure terms may be uniquely
associated with a set of measures in order to take advantage of the very
general relationship developed above—between any set of measures and
an associated determiner. The intuitive relation is quite straightforward:
simple measures such as 5, [5 kgl, and [500 ml] are associated with the
singleton set whose only member is their own denotation (wrt (%, 8)). In
examining specified measures such as {> 5}, {>= [5 kgl}, and {< [500
ml]}, it is more convenient to examine the basic restricted parameter form,
ie., (?x] >(th:?x pole:5)), and (?x| >(th:?x pole:[5 kgl)).

Let us furthermore use the notation ‘CD(f, M)’ to denote the set of
possible denotations of a term wrt a model. (This is a bit similar to the
notion of a relation expressed by an open formula we introduced above, in
§ 6.4, but we shall abstract away from variables in the term under evalua-
tion) .

11For measure sets in the reals, maxima may not exist, so that we should prefer to
use suprema (least upper bounds) rather than maxima. On the other hand, we'll never
measure such suprema, so that this may be a nicety. The proof of reduction for the case
of {-closed M (Nerbonne 1994) requires that maxima, not suprema be available.
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e For all models M = (2, 8), and ¢ a term, the possible denotations of
t with respect to (2, 3) is given by the formula below.

{aH[¢]]Q1ﬁ;_x = 1} if¢ a restricted parameter w. form (?x|¢)

OD(EA, M) = { {Itl} ’ otherwise

For constants c, this is simply the singleton {[c],,}, while for re-
stricted parameters—the fundamental means of expressing specified mea-
sure phrases such as more than five ‘[>5] (= (?x] >(th:?x pole:5)))’,
the set of possible denotations is

{al[>(th:?x pole:B)]g; . = 1}

which is of course just {6,7,...}. Note that the set of measures associ-
ated with every measure term is a subset of MEAS. We need this for the
deployment of the ‘CD’ sets as measure determiners.

We have thus stipulated the semantics of formulas which employ mea-
sure terms as determiners. The final step is simply the combination of
the definition of the possible denotations of a measure term (immediately
above) with the definition of measure determiners (in § 8.4.3 above).

It is clear that we are now employing measure terms polymorphically—
both in order to denote measures, which we have construed as numbers or
pairs consisting of numbers and scales, and also as determiners, roughly as
existential or negative existential determiners with an additional assertion
about the size of the maximal satisfying instance.

8.4.5 Simple Examples

The discussion above shows that determiner definitions follow once mea-
sure sets are provided. This is quite general; the definitions are available
not only for measure sets provided by comparative phrases, but for mea-
sure sets quite generally. It is now time to provide some examples, both for
the sake of further clarification, and in order to illustrate how the closure
properties of measure sets can be put to use. In each case, we assume infor-
mation about closure properties in order to provide reasonable determiner
definitions.

We consider first upwardly closed measure sets M, e.g., those associated
with the measure terms more than two, more than two liters, and at least
two lLiters. Given the treatment above, these will hold of ?x, ¢, iff the
greatest /(?x) has a measure in M. If we examine relations on ¢ and
% which are more inclusive, then the largest element must be > £(?x in
measure, thus also in M. Thus the derived determiner must be upwardly
monotonic in both the left and right positions (¢f. van Benthem 1983 for
discussion of the monotonicity properties of determiners). By a similar
argument we can show that downwardly closed measure sets give rise to
(left and right) downwardly monotonic determiners (cf. Nerbonne 1994 for
details).
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Upwardly closed measure sets Natural language examples include: More
than 2 children sang, More than 2 liters of water spilled, At least 2
children sang, etc.

(({> [211}) 7?x water(inst:?x) spill(th:?7x))

Downwardly-closed measure sets (that are not also upwardly-closed)
Natural language examples include: Fewer than 2 children sang, Less
thaen 2 liters of water spilled, At most 2 children sang, Not more than
seven children sang, etc.l?

(({<= 2}) ?x child(inst/i:?x) sang(th/i:?x))

8.5 Location Terms

NLL implements a version of the theory of locative reference detailed in
Creary et al. 1989, according to which locative expressions such as south of
Page Mill Rd. denote regions, which may stand in relations to nonregional
individuals (frequently playing a location role), and which are organized
in a lattice structure, in which simple juxtaposition normally denotes the
lattice meet operation.

We thus require that a subset of the universe of discourse be R, the
set of regions, and that these have the structure of a meet-semilattice. Let
‘Mz’ denote the lattice meet operation, and ‘Cy’ the subsumption relation.

(Location Term) ::= reg-X{({Term), ...}

Location expressions are functional terms denoting regions. These are
of two general sorts, simple—locative function terms—and intersective—
location terms. The simple ones consist of a locative function applied to
an appropriate argument, while the intersective ones consist of a regional
intersection functor reg-X applied to a set of regions. As an example,
consider the following location term, which might serve as the translation
(in a given context) of the iterated locatives on the Ohio in Kentucky near
1llinots:

reg-X{f-on(the-ohio),f-in{kentucky),f-near(illinois)}

This is a location term whose components are locative function terms.
f-near should denote (e.g.) a function that maps Illinois onto a region
beginning at its borders and extending out a short distance.

The functor of an intersective location term denotes the regional in-
tersection function, which maps rq, ry, ..., r, onto their intersection 7.
The commutativity and associativity of the lattice meet operation justify
specifying its arguments via sets. The order-indifference of set specifi-
cation accounts for the permutability of locative component arguments

12Cf. Nerbonne 1994 for discussion of apparent counterexamples to the downward
monotonicity of these determiners.
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(Creary et al. 1989). We will also make use of the familiar lattice theorem:
riNzry Cx r1, according to which location terms must denote subregions
of their component arguments.

This is codified in two further requirements on A'LL models:

e for all locative functions, £-1loc,
[£-10c] — R
. {[reg—X]] = Mg
8.5.1 Located Predications

This is a fact about {most) situations being located in space: if an event
or state occurs or obtains within a region r, then it occurs or obtains
within any region r’ containing r, i.e. there is an upward monotonicity for
the location arguments of relations. This accounts for the correctness of
locative-simplifying inferences, such as:
Al works in NY on 5th Ave Al works in NY on 5th Ave
Al works in NY .. Al works on 5th Ave
On the other hand, there are relations between individuals and regions in
which the region argument is not upwardly monotonic—e.g., the relation
of being the tallest individual in a given region. In N LL we reserve the
location role (loc) for the designation of location argument positions
which ARE upwardly monotonic.

e for all relations R, the argument position denoted by the location
role is upwardly monotonic: for all » tuples (a1 ...a;...a,),1 <1<n
in R, where a; is the value of the locative projection, 74, then for
all a] > aiCra; {(a1...4]...a,) €R

This concludes our presentation of N'LL models.

9 Conclusions and Prospects

Although N LL contains no profound expressive novelty, still it contains a
great enough range of logical devices normally studied in isolation for its
model theory to be nontrivial. The point of laying it out here was to provide
a firm foundation for work in inference and in interfacing A'LL both to
natural language grammars and to applications, knowledge representation
components, and speech act representation.

Although we see need for improvement in the model-theoretic treat-
ment of questions, in the introduction of sorts, and especially in allowing
some nonextensionality—each of which would probably imply a need for
modifications in the model theory, nonetheless further development of the
expressive capabilities of NLL is NOT a focus of current work.

Instead, our current work (1992) focuses on making N'LL easier to use
in concrete NLP applications.
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e provision of a high-level language for the specification of interfaces
and inference (Joachim Laubsch).

e development of a concrete theory of temporal reference (along Quinian
lines, i.e., without introducing propositional operators). This could
prompt minor modifications to the model theory. (joint work with
Walter Kasper).

e investigation of issues in sortal disambiguation, especially the ex-
tent to which an integration with semantic representation is desirable
(Nerbonne 1992b)

o provision of interface tools for use in connection with feature-based
grammars (Diagne and Nerbonne 1992).

These foci arise from a conviction that good software should not only
be theoretically well-understood, but that it must meet the demands of
practice as well. We hope that NLL can contribute both to a better
understanding and to better application of computational semantics.!3
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