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Abstract

In this study we attempt to derive phonetic distances from alternative dialectal pronuncia-
tions used in different geographical varieties. We use two dialect atlases each containing the
phonetic transcriptions of the same set of words at hundreds of sites. We collect the sound
correspondences through alignment with the Levenshtein distance algorithm, and then apply
an information-theoretic measure, pointwise mutual information, assigning smaller segment
distances to segments which frequently correspond. We iterate alignment and information-
theoretic distance assignment until both stabilize and we evaluate the quality of the phonetic
distances obtained by comparing them to acoustic vowel distances. For both Dutch and Ger-
man, we find strong correlations between the induced phonetic distances and the acoustic
distances, illustrating the usefulness of the method in deriving valid phonetic distances from
dialectal pronunciations.

1 Introduction

In this study we attempt to automatically derive phonetic segment distances on the
basis of how frequently the segments correspond in different (dialectal) pronunci-
ations of the same words. We evaluate the success of the attempt by comparing
vowel distances we derive to independent acoustic characterizations.

There are several perspectives which motivate this work. First, we have con-
ducted a large number of studies using the Levenshtein distance (Levenshtein
1965) to assay pronunciation differences among dialects (Nerbonne and Heeringa
2009). The Levenshtein distance is implemented using an algorithm which sums
individual sound segment distances to determine the distance between two pronun-
ciations. For that reason we have experimented with a large number of segment
distance measures, but none have been shown to improve (much) on the very sim-
ple, binary measure which distinguishes only identical and non-identical segments
(Heeringa 2004, pp. 27-120, 186). Recently, however, Wieling et al. (2009) and
Wieling and Nerbonne (2011) found that using automatically derived segment dis-
tances (using the procedure explained in Section 3.1) improved alignment quality
considerably.1 The purpose of this study is to show that these segment distances
are linguistically sensible.

Second, the improved alignments, which make use of the induced segment dis-
tances are in turn useful in (automatically) identifying the sound correspondences
which historical linguistics relies on (Prokić 2010, Ch. 6). Indeed, historical exam-
ination normally relies on detecting regular sound correspondences. These need
not be similar sounds, naturally, but the procedure we describe below generalizes
to cases in which correspondences are less phonetically similar.

1For completeness, we have included previously published results illustrating the improved perfor-
mance of this algorithm with respect to alignment quality in Section 4.1.



Third, as Laver (1994, p. 391) notes, there is no widely accepted procedure for
determining phonetic similarity, nor even explicit standards: “Issues of phonetic
similarity, though underlying many of the key concepts in phonetics, are hence
often left tacit.” We wish to add a means of using distributions of variation in
pronunciation to other techniques for detecting and determining similarity.

1.1 Related work

Kernighan et al. (1990) examined the problem of suggesting intended spellings
once a misspelling has been detected. They derive the posterior chances of al-
ternative candidates that differed in just one insertion, deletion, substituition or
transposition by initially assuming uniform chances for each operation and then
updating estimates empirically based on words that were spelled incorrectly. We
share with their work the attempt to derive weights for edit operations empiri-
cally. They evaluated their work by noting how often they could select the intended
spelling from a list of alternatives (provided by UNIX spell). We shall embed the
weights we derive in a version of the Levenshtein algorithm and we evaluate the
results by examining the improvement in alignment quality and also by checking
the correlation of the weights we find with acoustically determined distances.

Wieling et al. (2007a) used a Pair Hidden Markov Model to align dialect pro-
nunciations and they evaluated their work by checking the correlation of the emis-
sion probabilities for pairs of sounds with acoustically determined weights. Wiel-
ing et al. (2009) also evaluated this technique with respect to alignment quality.
While the alignment performance was similar to the approach illustrated in the
present paper, the Pair Hidden Markov Model was computationally much more
expensive and less transparent in its errors (Wieling et al. 2007a).

2 Material

2.1 Dialect pronunciations

In this study we derive phonetic distances for two data sets, a Dutch and a German
dialect data set. The Dutch dialect data set contains phonetic transcriptions of 562
words in 613 locations in the Netherlands and Flanders. Wieling et al. (2007b) se-
lected the words from the Goeman-Taeldeman-Van-Reenen-Project (GTRP; Goe-
man and Taeldeman, 1996) specifically for an analysis of pronunciation variation
in the Netherlands and Flanders. The German data set contains phonetic tran-
scriptions of 201 words in 186 locations collected from the Phonetischer Atlas der
Bundesrepublik Deutschland (Göschel 1992) and was analyzed and discussed in
detail by Nerbonne and Siedle (2005).

2.2 Acoustic vowel measurements

For Dutch, we used vowel frequency (Hertz) measurements of 50 male (Pols
et al. 1973) and 25 female (van Nierop et al. 1973) speakers. In line with Wieling
et al. (2007a), we only included vowels which are pronounced as monophthongs



in standard Dutch, yielding measurements for nine vowels: /i, I, y, Y, E, a, A, O, u/.
For German, we used vowel frequency measurements of 69 male and 58 female
speakers (Sendlmeier and Seebode 2006) for fourteen vowels /i, I, y, Y, e, E, a, o,
O, u, U, 2, 9, @/. For both languages, we averaged the mean frequencies of men and
women in order to obtain a single set of frequencies.

3 Methods

In a nutshell, the procedure we describe first aligns different dialect pronunci-
ations, using a binary, same-different measure of segment difference. We keep
track of how often each sound correspondence occurs, applying an information-
theoretic measure of association strength, which in turn is used to provide a new
estimation of the segment distance. We then re-align the dialect pronunciations,
this time using the newly acquired segment distances. The process is repeated un-
til the segment distances (and alignments) stabilize. In the following section, we
describe these steps in more detail.

3.1 Obtaining sound distances based on dialect pronunciations

We automatically determine the sound segment distances on the basis of their co-
occurrence in different dialectal pronunciations of the same word. To identify
co-occurring sounds we generate alignments based on the Levenshtein distance
(Levenshtein 1965) which minimizes the number of insertions, deletions and sub-
stitutions to transform one string into the other.

For example, the Levenshtein distance between two Dutch variants of the word
‘to bind’, [bInd@n] and [bEind@], is 3:

bInd@n insert E 1
bEInd@n subst. i/I 1
bEind@n delete n 1
bEind@

3

The corresponding alignment is:

b I n d @ n
b E i n d @

1 1 1

The regular Levenshtein distance does not distinguish vowels and consonants
and therefore may align a vowel with a consonant. To enforce linguistically sensi-
ble alignments we added a syllabicity constraint such that vowels are not aligned
with consonants. This is the only information about phonetic content made avail-
able to the (basic) system.

Note that each point in the alignment in which non-identical sounds are aligned
is assigned a cost of 1. More sophisticated versions of the Levenshtein distance can



make use of more discriminating costs. In fact, one can define a table of segment
distances and use these in the algorithm.

It is, however, difficult to obtain (complete) segment distance tables to use in
conjunction with the Levenshtein algorithm, in particular if one’s goal is to char-
acterize (nearly) all the distinctions made in dialect atlases. For example, The
Linguistic Atlas of the Middle and South Atlantic States (Kretzschmar 1994) dis-
tinguishes over 1100 different vowels (combinations of base segments with one
or more diacritics) and nearly 1700 different segments in total. Nevertheless,
Heeringa (2004) experimented with three different segment distance tables, two
feature-based tables — one based on Chomsky and Halle’s Sound Pattern of En-
glish (Chomsky and Halle 1968), the other on Almeida and Braun’s system de-
signed to assess transcription accuracy (Almeida and Braun 1986) — as well as
a system derived from curve distance in canonical spectrograms (Heeringa 2004,
Ch. 4). The final results could not be shown to be superior to the binary sys-
tem of differences, however, at least not when validated in the aggregate as corre-
lates of dialect speakers’ judgments of how “different” other varieties sound (Hee-
ringa 2004, p. 186). Our inductive procedure seeks to bypass the need for an
expert’s specification of a segment distance table.

Since we are looking at dialectal pronunciations which are reasonably similar
to each other, it is conceivable that similar sounds like [i] and [y] will co-occur
more frequently than more distant sounds such as [a] and [i].

Pointwise mutual information (PMI; Church and Hanks, 1990) was used by
Wieling et al. (2009) to determine the distance between every pair of sounds on
the basis of their relative frequency of co-occurrence. Wieling et al. (2009) found
that using the Levenshtein distance with PMI-based sound distances resulted in
improved alignments of Bulgarian dialectal pronunciations compared to using the
Levenshtein algorithm with a syllabicity constraint (which does not distinguish
varying levels of sound similarity).

The PMI approach consists of obtaining initial string alignments for a corpus of
dialectal material by using the Levenshtein algorithm with syllabicity constraint.
After the initial run, the substitution cost of every sound segment pair is calculated
according to the PMI procedure assessing the statistical dependence between the
two sounds:

PMI(x, y) = log2

(
p(x, y)

p(x) p(y)

)
Where:

• p(x, y) is estimated by calculating the number of times sound segments x
and y occur at the same position in two aligned pronunciations X and Y ,
divided by the total number of aligned segments (i.e. the relative occurrence
of the aligned sound segments x and y in the whole data set).

• p(x) and p(y) are estimated as the number of times sound segment x (or y)
occurs, divided by the total number of segment occurrences (i.e. the relative
occurrence of sound segments x or y in the whole data set). Dividing by this



term normalizes the correspondence frequency with respect to the frequency
expected if x and y are statistically independent.

Positive PMI values indicate that sounds tend to co-occur in correspondences
(the greater the PMI value, the more two sounds tend to co-occur), while negative
PMI values indicate that sounds do not tend to co-occur in correspondences. Sound
distances (i.e. sound segment substitution costs) are generated by subtracting the
PMI value from 0 and adding the maximum PMI value (to ensure that the minimum
distance is 0).

Following Wieling and Nerbonne (2011), we ignore pairs of identical sounds,
as this modification improved the quality of the Bulgarian pronunciation align-
ments with respect to the original approach of Wieling et al. (2009). From the
perspective of string transformation, there can be no cost associated with retain-
ing a segment, and from the perspective of alignment, no cost accrues to aligning
identical sounds.

After the new sound segment substitution costs have been calculated for the
first time, the pronunciations are aligned anew based on the adapted sound dis-
tances. This process is repeated until the pronunciation alignments and sound
distances remain constant. How well these final sound distances correspond with
acoustic sound distances is discussed in Section 4.

3.2 Calculating acoustic distances

To obtain the acoustic distances between vowels, we calculate the Euclidean dis-
tance of the formant frequencies (in Bark). As our perception of frequency is
non-linear, calculating the Euclidean distance on the basis of Hertz values would
not weigh the first formant enough. We therefore convert the Hertz frequencies to
Bark scale (Traunmüller 1990) in better keeping with human perception.

4 Results

The Dutch dialect pronunciation data set contains 26 different vowels, some
of which occur relatively infrequently. To obtain a reliable set of vowel dis-
tances, we excluded all vowels (8) having a frequency lower than one percent
of the maximum vowel frequency. The final vowel set consisted of 18 vowels:
/a,A,6,2,æ,e,E,i,I,y,o,O,u,U,8,œ,ø,@/.

The German dialect pronunciation data set contains 28 vowels, of which 7
were excluded as they had a frequency lower than one percent of the maxi-
mum vowel frequency. The final German vowel set consisted of 21 vowels:
/a,A,6,2,5,æ,e,E,i,I,y,Y,o,O,u,U,W,8,œ,ø,@/.

Given a matrix of vowel distances, we can use multidimensional scaling (MDS;
Togerson, 1952) to place each vowel at the optimal position relative to all other
vowels in a two-dimensional plane. Figure 1(a) shows the relative positions of
the Dutch vowels on the basis of their acoustic distances (the complete variance is
visualized in the two dimensions), while Figure 1(b) shows the relative positions
of the Dutch vowels based on their PMI-based distances (76% of the variance is



visualized in two dimensions). Similarly, Figure 2(a) shows the relative positions
of the German vowels based on their acoustic distances (the complete variance is
visualized), while Figure 2(b) shows the positioning of the German vowels on the
basis of their PMI-based distances (70% of the variance is visualized). Note that
the number of vowels for which acoustic measurements were available was lower
than the number of vowels distinguished in the transcribed dialect pronunciations.
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(b) PMI distance visualization

Figure 1: Relative positions of Dutch vowels based on their acoustic (a) and PMI distances
(b). The visualization in (a) captures 100% of the variation in the original distances, while
the visualization in (b) captures 76% of the variation in the original distances.

It is clear that the visualizations on the basis of the acoustic distances resemble
the IPA vowel chart (shown in Figure 3) quite nicely. The visualizations on the
basis of the PMI distances are less striking. We certainly can identify many re-
semblances with the IPA vowel chart when examining the PMI-based graphs more
closely, however. The positions of [i], [u], [a] and similar sounds are quite accept-
able, considering the distances are based only on how frequently the sounds align
in dialect data.

In the Dutch PMI-based visualization, however, the position of the [@] (schwa)
deviates significantly from the position on the basis of the acoustic distances.
Investigating the alignments revealed that the schwa was frequently deleted
(i.e. aligned against a gap) and this resulted in relatively high distances between
the schwa and the other vowels (which were deleted less frequently) compared to
the other distances. Excluding the schwa increased the ability to visualize the re-
lations between the vowels adequately in two dimensions: the explained variance
increased from 76% to 85%. While the schwa was positioned better in Figure 2(b),
we found that the schwa was the most frequently deleted sound in the German data
set. Consequently, excluding the schwa from the visualization increased the ex-
plained variance of the two dimensional visualization from 70% to 83%. A second
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Figure 2: Relative positions of German vowels based on their acoustic (a) and PMI distances
(b). The visualization in (a) captures 100% of the variation in the original distances, while
the visualization in (b) captures 70% of the variation in the original distances.

striking deviation is the position of the [y] (and [Y] for the German data set), for
which we have no immediate explanation.

Besides looking at the similarities between the multidimensional scaling re-
sults, we can also measure how well the PMI distances correspond with the acous-
tic distances for sounds present in both sets. For the Dutch data, the correlation
between the acoustic and PMI distances was r = 0.657 (p < 0.001). Note that the
deviating position of the schwa did not have an effect on this correlation, as there
were no acoustic measurements for this sound (see Figure 1(a)). For the German
data, the correlation was r = 0.633 (p < 0.001). However, when the schwa was
excluded, the correlation increased to r = 0.785 (p < 0.001).2

4.1 A note on alignment quality

Wieling et al. (2009) evaluated the initial PMI-based Levenshtein algorithm with
respect to several other algorithms using a Bulgarian dialect data set. Wieling
and Nerbonne (2011) reported that when ignoring pairs of identical sounds in the
original PMI procedure the alignments improved, but they did not report the exact
improvement.

To illustrate the performance of the PMI-based Levenshtein algorithm at the
alignment level, Table 1 shows the number of misaligned segments and non-
identical alignments with respect to the (manually corrected) gold standard align-
ments of the Bulgarian dialect data set. A detailed description about this data, the

2We assessed the significance of the correlation coefficients by using the Mantel test (Mantel 1967), as
our sound distances are not completely independent.



Algorithm Segment errors Alignment errors (%)
Regular Levenshtein 490,703 191,674 (5.52%)
PMI-based Levenshtein (initial) 399,216 156,440 (4.50%)
PMI-based Levenshtein (improved) 387,488 152,808 (4.40%)

Table 1: Comparison to gold standard alignments. All differences are significant (p <

0.01).

creation of the gold standard alignments as well as the procedure to measure the
number of segment errors is given by Wieling et al. (2009).

The regular Levenshtein algorithm employs a binary same-different measure
and does not align vowels with consonants. The initial PMI-based Levenshtein
algorithm included pairs of identical sounds in the counts necessary for the PMI
calculation (Wieling et al. 2009), while the improved PMI-based Levenshtein algo-
rithm employed in the current study ignored these (Wieling and Nerbonne 2011).
Table 1 clearly illustrates that the PMI-based Levenshtein algorithms significantly
outperformed the regular Levenshtein algorithm, and the improved PMI-based
Levenshtein algorithm slightly but significantly outperformed the initial PMI-
based Levenshtein algorithm.

Unfortunately we did not have gold standard alignments for either the Dutch
or the German dialect data set, but we have no reason to believe that results based
on these data sets would show a different pattern. We therefore conclude that the
PMI-based Levenshtein algorithm as outlined and evaluated here is highly suitable
to obtain good alignments with a strong linguistic basis.

Figure 3: Vowel chart of the International Phonetic Alphabet



5 Discussion and conclusion

Based on the results discussed in the previous section, we conclude that we are able
to characterize the phonetic distance between segments to a surprising extent on
the basis of the distribution of the segment’s pronunciation variants among closely
related varieties. Since we tested this conclusion based on an acoustic measure
for those segments where a measure is well established, we may conjecture that
the segment distances also correlate well in those cases for which we still lack
appropriate validating material.

The level of correlation was similar in the two independent dialect data sets,
an encouraging indication that the relation between functioning as an alternative
pronunciation and being similar in pronunciation is neither accidental nor trivial.
However, as German and Dutch are similar languages, it would be useful to inves-
tigate dialects from more distantly related languages.

The opportunity to exploit phonetic segment distances in string alignment and
string distance algorithms will allow us to assess word (string) distances more
accurately and to improve pronunciation alignments. This is valuable in dialec-
tometry and also in historical linguistics where the determination of regular sound
correspondences is important.

Since we evaluated the quality of the automatically obtained segment distances
with respect to acoustic vowel distances, it might seem that we could just have
used these instead in our alignment procedure. There are two problems with this
approach. First, acoustic sound distances are only available for vowels as it is
currently unclear how to obtain these for consonants. Second, acoustic vowel
measurements might not always be readily available for every language. As
our method automatically generates (acoustically sensible!) sound distances, our
method does not have this restriction.

An intriguing aspect of this work is that distributions (of variant pronuncia-
tions) contain enough information to gauge content (i.e. phonetic similarity) to
some extent. The only phonetic content made available to the algorithm was the
distinction between vowels and consonants, and yet the algorithm could assign a
phonetic distance to all pairs of vowel segments in a way that correlates strongly
with acoustic similarity.
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Göschel, Joachim (1992), Das Forschungsinstitut für Deutsche Sprache
“Deutscher Sprachatlas”. Wissenschaftlicher Bericht, Das Forschungsinsti-
tut für Deutsche Sprache, Marburg.

Heeringa, Wilbert (2004), Measuring Dialect Pronunciation Differences using
Levenshtein Distance, PhD thesis, Rijksuniversiteit Groningen.

Kernighan, Mark, Kenneth Church, and William Gale (1990), A spelling correc-
tion program based on a noisy channel model, Proceedings of the 13th
conference on Computational linguistics, Vol. 2, Association for Computa-
tional Linguistics, pp. 205–210.

Kretzschmar, William A., editor (1994), Handbook of the Linguistic Atlas of
the Middle and South Atlantic States, The University of Chicago Press,
Chicago.

Laver, John (1994), Principles of Phonetics, Cambridge Univeristy Press, Cam-
bridge.

Levenshtein, Vladimir (1965), Binary codes capable of correcting deletions, inser-
tions and reversals, Doklady Akademii Nauk SSSR 163, pp. 845–848.

Mantel, N. (1967), The detection of disease clustering and a generalized regression
approach, Cancer Research 27, pp. 209–220.

Nerbonne, John and Christine Siedle (2005), Dialektklassifikation auf der Grund-
lage aggregierter Ausspracheunterschiede, Zeitschrift für Dialektologie und
Linguistik 72, pp. 129–147.

Nerbonne, John and Wilbert Heeringa (2009), Measuring dialect differences, in
Schmidt, Jürgen Erich and Peter Auer, editors, Theories and Methods, Lan-
guage and Space, Mouton De Gruyter, Berlin, pp. 550–567.

Pols, Louis, H. Tromp, and R. Plomp (1973), Frequency analysis of dutch vowels
from 50 male speakers, The Journal of the Acoustical Society of America
43, pp. 1093–1101.
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