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Abstract

Structuralists famously observed that language is ”un systême oû tout se

tient” (Meillet, 1903, p. 407), insisting that the system of relations of lin-

guistic units was more important than their concrete content. This study

attempts to derive content from relations, in particular phonetic (acoustic)

content from the distribution of alternative pronunciations used in different

geographical varieties. It proceeds from data documenting language varia-

tion, examining six dialect atlases each containing the phonetic transcrip-

tions of the same sets of words at hundreds of different sites. We obtain

the sound segment correspondences via an alignment procedure, and then

apply an information-theoretic measure, pointwise mutual information, as-

signing smaller segment distances to sound segment pairs which correspond

relatively frequently. We iterate alignment and information-theoretic dis-

tance assignment until both remain stable, and we evaluate the quality of

the resulting phonetic distances by comparing them to acoustic vowel dis-

tances. Wieling et al. (in press) evaluated this method on the basis of Dutch

and German dialect data, and here we provide more general support for the

method by applying it to several other dialect datasets (i.e. Gabon Bantu,
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U.S. English, Tuscan and Bulgarian). We find relatively strong significant

correlations between the induced phonetic distances and the acoustic dis-

tances, illustrating the usefulness of the method in deriving valid phonetic

distances from distributions of dialectal variation.

Keywords: phonetic distance, pointwise mutual information, acoustic

vowel distance, confusion matrix, variation matrix

1. Introduction

As Laver (1994, p. 391) points out, there is no generally accepted proce-

dure to determine phonetic similarity, nor even specific standards: “Issues of

phonetic similarity, though underlying many of the key concepts in phonetics,

are hence often left tacit.”

It is clear that there has nonetheless been a great deal of work on related

topics in phonetics and laboratory phonology. In phonetics, Almeida and

Braun (1986) developed a measure of segment distance in order to gauge the

fidelity of phonetic transcriptions. It was used, e.g., to evaluate intra- and

intertranscriber differences. Cucchiarini (1993) refined this work and Hee-

ringa (2004) also experimented with Almeida & Braun’s segment distance

measure in dialectometry.

In laboratory phonology, Pierrehumbert (1993) experimented with a sim-

ple feature-overlap definition of similarity to which Broe (1996) added an

information-theoretic refinement discounting redundant features. Frisch (1996)

recast these definitions in terms of natural classes, rather than features, and

Frisch et al. (2004) demonstrate that the Arabic syllable is best described

as involving a gradient constraint against similar consonants in initial and
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final position, the so-called ‘Obligatory Contour Principle’. Bailey and Hahn

(2005) measure the degree to which Frisch’s (1996) definitions predict the fre-

quency of perceptual confusions in confusion matrices, obtaining fair levels

of strength (0.17 ≤ r2 ≤ 0.42).

In general, the work from phonetics and (laboratory) phonology has ex-

perimented with theoretically inspired definitions of similarity as a means of

explaining phonotactic constraints or potential confusions. Bailey and Hahn

(2005) contrasted theoretically inspired definitions of phonetic similarity to

empirical measures based on confusion matrices. A confusion matrix (Miller

and Nicely, 1955) normally records the outcome of a behavioral experiment.

It is a square matrix in which the rows represent sounds (or symbols) pre-

sented to subjects and the columns the sounds perceived. Each cell (r, c)

records the number of times the signal in row r was perceived as the signal

in column c. So cell (O,o) records how often [O] was perceived as [o], and the

diagonal then represents the non-confused, correctly perceived signals.

As opposed to confusion matrices which record variants in speech percep-

tion, we introduce variation matrices which record (dialectal) variants in

speech production. In our case the variation matrix is initiated not with a

behavioral experiment, but rather using distributional data available in di-

alect atlases. Based on alignments of dialectal pronunciations for a large set

of words, we obtain the frequency with which sound segments align. Contin-

uing with the example above, cell (O,o) in a variation matrix thus represents

the number of times [O] was used in the pronunciation of one variety, whereas

[o] was used at the corresponding position in the pronunciation of another

variety. We will use these variation matrices to directly extract information
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about sound segment similarity in a data-driven manner (as opposed to pro-

ceeding from a theoretical notion, see above). Specifically, we employ the

information-theoretic pointwise mutual information (PMI) measure of asso-

ciation strength to determine the final sound segment distances.1 Studies

involving (data similar to) confusion matrices have often applied MDS as

well (Fox, 1983), just as we will here.

The automatically derived sound segment distances are evaluated by com-

paring them to independent acoustic characterizations. Since there is a con-

sensus that formant frequencies characterize vowels quite well, we compare in

particular the phonetic segment distances of vowels generated by our method

to vowel distances in formant space. As we do not know how to measure

acoustic differences between consonants, we cannot evaluate these, but we

do examine them.

The PMI-based procedure we use to automatically derive phonetic seg-

ment distances was originally proposed by Wieling et al. (2009), who eval-

uated the induced distances by using them in an alignment procedure. The

results were evaluated against a gold standard (Wieling et al., 2009) and were

found superior to versions using a binary segment distance (0 or 1). A slightly

improved version of the induction procedure (Wieling and Nerbonne, 2011b)

played a supporting role in work aimed at removing the effects of inconsis-

tent transcription practices. Wieling et al. (in press) applied the procedure

to transcriptions from Dutch and German dialect atlases and compared the

results to acoustic vowel distances. In addition to investigating whether these

1Ohala (1997) calls for an information-theoretic perspective on confusion matrices, but

he is particularly interested in non-symmetric aspects of the matrices.
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results generalize to other dialect datasets, we will provide a more elaborate

discussion of the motivation and the consequences of the work.

Besides the phonetic perspective illustrated above, there are several other

research areas for which improved sound segment distances are valuable.

In dialectometry, obtaining pronunciation distances between different words

(e.g., using the Levenshtein distance algorithm; see Section 3) is of central

importance as these are used to compare dialectal pronunciations between

different varieties (Nerbonne and Heeringa, 2009). Using sensitive sound seg-

ment distances, instead of the standard binary segment distance, will likely

improve pronunciation distances between individual words. Improving seg-

ment distances also improves alignments (see Wieling et al., 2009) and will

likely improve the ability in (automatically) identifying the sound correspon-

dences which historical linguistics relies on (Hock and Joseph, 1996, Ch.4,

16).

Sequence alignment and sequence distance are central concepts in sev-

eral areas of computer science (Sankoff and Kruskal, 1999; Gusfield, 1999),

and the Levenshtein distance and its many descendants are used frequently,

not only for phonetic transcriptions, but also for comparing computer files,

macromolecules and even bird song (Tougaard and Eriksen, 2006). Kernighan

et al. (1990) induced segment distances from teletype data in order to better

predict the intended word when faced with a letter sequence that did not

appear in their lexicon.

Phonetic similarity also plays a role when discussing the comprehensibil-

ity of foreigners’ speech and how heavy their accents are (Piske et al., 2001;

Flege et al., 1995), when assessing the success of foreign language instruc-
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tion, or when discussing the quality of speech synthesizers (van Heuven and

van Bezooijen, 1995). Sanders and Chin (2009) measure the intelligibility of

the speech of cochlear implant bearers using a measure of phonetic similarity.

Kondrak and Dorr (2006) apply a measure of pronunciation distance to iden-

tify potentially confusing drug names. And, although we will not attempt

to make the argument in detail, we note that the many appeals to “natu-

ral” phonetic and phonological processes also seem to appeal to a notion of

similarity, at least in the sense that the result of applying a natural process

to a given sound is expected to sound somewhat like the original, albeit to

varying degrees.

Finally, we note that it was a major structuralist tenet that linguistics

should attend to the relations (distributions) among linguistic entities more

than to their substance proper (Meillet, 1903, p. 407). For example, a struc-

turalist attends more to phonemic distinctions, to sounds which fall in the

relation “potentially capable of distinguishing lexical meaning” than to the

details of how the sounds are pronounced, but also to sounds that fall in the

complementary distribution relation (not found in the same phonetic environ-

ment) or the free variation relation (found in the same phonetic environment,

but without an effect on lexical meaning).

In the present case we attend to sounds which participate in the relation

“potentially used as a dialect variant” (across different speakers) and we do

not privilege either phonemic or sub-phonemic variation. Some structural-

ists might well draw the line at considering variation outside a tightly defined

variety, and in that sense we are perhaps not merely developing structuralist

ideas. Other structuralists nonetheless recognized that the speech of “the
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whole community” was the proper concern of linguistics, in spite of the fact

that “every person uses speech forms in a unique way” (Bloomfield, 1933,

p.75). They did not advocate attention to the idiolects of speakers in “com-

pletely homogeneous speech communities” (Chomsky, 1965, p.3).

In suggesting a renewed focus on phonetic and phonological relations,

i.e. distributions, we are aware that phonetics — and to some extent phonol-

ogy (Cole, 2010) — has largely and successfully ignored the advice to con-

centrate on relations, in favor of examining the articulatory, acoustic and

auditory basis of sounds, and we do not presume to question the wisdom

of that development. It nonetheless remains scientifically interesting to see

how much information is present in (cross-speaker) distributions. As we note

above, the sort of distribution we examine below is perhaps of a different sort

than the ones many structuralists had in mind, but its key property is that

it is derived from a large number of alternative pronunciations.

2. Material

2.1. Dialect pronunciations

In this study we derive phonetic segment distances for several datasets. In

addition to the results on a Dutch and German dataset (reported by Wieling

et al., in press), we also report results on four additional dialect datasets

(i.e. U.S. English, Gabon Bantu, Bulgarian and Tuscan). In order to focus

on segmental distances we ignore suprasegmentals, and in order to limit the

number of distinct phonetic sounds in each dataset, we ignore diacritics.

To obtain a reliable set of vowel distances, we also exclude vowels having a

frequency lower than one percent of the maximum vowel frequency in each
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dataset.

The Dutch dialect dataset was included in the study of Wieling et al. (in

press) and contains phonetic transcriptions of 562 words in 613 locations in

the Netherlands and Flanders. The words were selected by Wieling et al.

(2007) from the Goeman-Taeldeman-Van-Reenen-Project (GTRP; Goeman

and Taeldeman, 1996) in order to conduct an aggregate analysis of dialectal

pronunciation variation in the Netherlands and Flanders. The Dutch dataset

differentiates 18 vowels (excluding the low-frequency vowels): /a, A, 6, 2, æ,

e, E, i, I, y, o, O, u, U, 8, œ, ø, @/.

The German dataset, also included in the study of Wieling et al. (in

press), contains phonetic transcriptions of 201 words in 186 locations ob-

tained from the Phonetischer Atlas der Bundesrepublik Deutschland (Göschel,

1992). Nerbonne and Siedle (2005) provide a detailed overview as well as a

dialectometric analysis of this dataset. The German dataset differentiates 21

vowels (excluding the low-frequency vowels):/a, A, 6, 2, 5, æ, e, E, i, I, y, Y,

o, O, u, U, W, 8, œ, ø, @/.

The U.S. English dataset contains phonetic transcriptions of 153 concepts

in 483 locations (1162 informants) collected from the Linguistic Atlas of the

Middle and South Atlantic States (Kretzschmar, 1994). We obtained the

simplified phonetic data from http://www.let.rug.nl/~kleiweg/lamsas/

download/, which in turn was created from data available at http://us.

english.uga.edu/lamsas/. The U.S. English dataset differentiates 17 vow-

els (excluding the low-frequency vowels): /i, I, e, E, u, U, æ, a, A, 6, 3, Æ, o,

O, 2, 5, @/.

The Bantu dataset consists of phonetic transcriptions of 160 words in 53
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locations and is equal to the subset of the Atlas Linguistique du Gabon ana-

lyzed and discussed in detail by Alewijnse et al. (2007). The Bantu dataset

is distinctive, because varieties of several different languages (e.g., Fang and

Tsogo) are included. In contrast to the Dutch, German and U.S. English

datasets, the Bantu dataset differentiates only eight vowels (excluding the

low-frequency vowels): /e, E, i, o, O, u, a, @/.

The Bulgarian dataset consists of phonetic transcriptions of 152 words in

197 locations equally distributed over Bulgaria. The dataset was analyzed

and discussed in detail by Prokić et al. (2009). Like the Bantu dataset, the

Bulgarian dataset is characterized by a relatively small number of vowels

(10): /i, e, E, u, U, a, A, o, 7, @/.

The Tuscan dataset, finally, consists of 444 words in 213 locations. In

every location on average 10 informants were interviewed. This dataset was

analyzed and discussed by Montemagni et al. (in press) and is a subset of

the Atlante Lessicale Toscane (Giacomelli et al., 2000). As this dataset was

compiled with a view to identifying lexical variation (note that we focused

on a single lexical form per word), transcriptions are quite crude and conse-

quently only a limited number of vowels were included. The Tuscan dataset

thus only differentiates eight vowels (excluding the low-frequency vowels): /i,

e, E, u, o, O, a, @/.

2.2. Acoustic vowel measurements

For every dialect dataset, we obtained formant measurements of the first

two formants, F1 and F2. The sources of the Dutch and German formant

frequency measurements were identical to those used by Wieling et al. (in

press), but we will repeat them here for completeness.
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For Dutch, we obtained average vowel formant frequency (Hertz) mea-

surements of 50 male (Pols et al., 1973) and 25 female (van Nierop et al.,

1973) speakers of standard Dutch. The formant frequency information was

obtained from the initial (stable) part of the stressed vowel waveform and

was based on 10 sampling points (i.e. 10 periods generated as a continuous

periodic waveform and input to the wave analyzer). In contrast to Wieling

et al. (in press), we also included the vowels generally pronounced as diph-

thongs in standard Dutch (i.e. /e/, /o/, and /ø/) yielding measurements for

twelve vowels: /i, I, y, Y, e, E, a, A, o, O, u, ø/. We averaged the mean

frequencies of men and women in order to obtain a single set of frequencies.

For German, we used average vowel formant frequency measurements of

69 male and 58 female standard German speakers (Sendlmeier and Seebode,

2006) for 14 vowels (stressed, except for the schwa): /i, I, y, Y, e, E, a, o,

O, u, U, 2, 9, @/. We averaged the mean frequencies of men and women in

order to obtain a single set of frequencies. Unfortunately, no information

was provided about where in the course of the vowel the measurements were

taken and how many time points were sampled.

For U.S. English, we used average vowel formant frequency measurements

of 45 men and 48 women speaking standard U.S. English (Hillenbrand et al.,

1995). The formant frequency information was obtained from the initial

(stable) part of the vowel waveform and was based on 7 sampling points. We

included acoustic measurements of 11 stressed vowels: /i, I, e, E, æ, A, O, o,

U, u, 2/ and we averaged the mean frequencies of men and women in order

to obtain a single set of frequencies.

The Bantu dataset consisted of different languages, but we were only
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able to find vowel formant measurements for the Fang language (Nurse and

Philippson, 2003, p. 22). We included acoustic measurements of 8 vowels: /i,

e, E, @, a, O, o, u/. Every measurement was based on six pronunciations of

the vowel by a single speaker. Unfortunately, no information was provided

about where in the course of the vowel the measurements were taken, if the

vowels were stressed or not, or how many time points were sampled.

For Bulgarian, we used the formant frequency measurements of a single

Bulgarian male speaker (a radio commentator speaking standard Bulgarian)

reported by Lehiste and Popov (1970) for 6 vowels: /i, e, @, a, o, u/. Every

measurement was based on 18 pronunciations of the stressed vowel by a

single speaker. Unfortunately, no information was provided about where in

the course of the vowel the measurements were taken and how many time

points were sampled.

For Tuscan, we averaged the formant frequency measurements for two

Tuscan dialects (the Pisan and Florentine varieties) reported by Calamai

(2003). The formant frequency information was obtained from the (stable)

vowel waveform and was based on 3 sampling points. For both dialects,

recordings of two male speakers for 7 stressed vowels (pronounced multiple

times) were used: /a, E, e, i, O, o, u/.

3. Methods

3.1. Obtaining sound distances based on dialect pronunciations

The automatic procedure we use to determine the segment distances is

identical to the approach of Wieling et al. (in press). The procedure first

aligns all dialect pronunciations of the same word using the Levenshtein dis-
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tance algorithm (minimizing the number of insertions, deletions and substi-

tutions to transform one string into the other; Levenshtein, 1965) employing

a binary same-different distinction between the sound segments. To enforce

linguistically sensible alignments, the Levenshtein algorithm we employ does

not align vowels with consonants.

As an example, consider the application of the Levenshtein distance al-

gorithm to two different dialectal pronunciations of the Dutch word auto’s,

‘cars’:

AUtos delete A 1

Utos subst. U/o 1

otos insert h 1

othos

3

The corresponding alignment is:

A U t o s

o t h o s

1 1 1

The alignment above clearly illustrates how corresponding segments are

identified. Note, however, that the Levenshtein algorithm using binary seg-

ment distances will also generate the following alternative alignment (having

the same cost):

A U t o s

o t h o s

1 1 1

12



Based on these initial alignments, the algorithm collects non-identical

correspondences such as the [A]:[o] and [U]:∅ (a deletion of [U]) in a large

segment × segment variation matrix. For example, the ([A],[o]) cell of the

table records how often the [A] aligned with the [o]. These counts are subse-

quently used in the pointwise mutual information (PMI; Church and Hanks,

1990) formula to determine the association strength between every pair of

(non-identical) sound segments:

PMI(x, y) = log2

(
p(x, y)

p(x) p(y)

)
Where:

• p(x, y) is calculated as the number of times [x] and [y] correspond in

aligned pronunciations, divided by the total number of non-identical

aligned segments (i.e. the relative occurrence of the aligned sound seg-

ments x and y in the whole dataset).

• p(x) and p(y) are calculated as the number of times sound segment x

(or y) occurs in non-identical segment correspondences, divided by the

total number of individual segments occurring in non-identical segment

pairs. Note that dividing by this term normalizes p(x, y) with respect

to the probability of x and y being statistically independent.

If x and y correspond more frequently than would be expected by chance,

then the PMI value will be positive; otherwise it will be negative. Higher PMI

values thus signify more similar sound segments. To convert these similarity

values to positive distances, we subtract the PMI value from zero and add
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the maximum PMI value. The PMI-based segment distance (i.e. PMI dis-

tance) between identical segments is always set to zero, as from an alignment

perspective no cost accrues to aligning identical sounds.

The procedure above thus assigns low distances to sound segments which

correspond relatively frequently in alignments (i.e. more frequently than

would be expected on the basis of the individual sound segment’s frequency)

and high distances to sound segments which correspond relatively infre-

quently. These sound segment distances are then used in a second iteration

of the Levenshtein algorithm (instead of the binary distinctions) to obtain

new alignments (and a new variation matrix).

The procedure of obtaining sound segment distances on the basis of the

alignments and updating the alignments on the basis of the new sound seg-

ment distances is repeated until the alignments (and consequently sound seg-

ment distances) remain constant (on average after about 5 iterations). How

well these final obtained segment distances correspond with acoustic sound

distances is discussed in Section 4. Below we see the effect of the procedure

on the example alignment (there is no alternative alignment anymore):

A U t o s

o t h o s

0.035 0.019 0.027

To appreciate how the present attention to relations is several magnitudes

more encompassing than earlier structuralist work, we note that the proce-

dure always involves a large number of correspondences. A word has 4 or 5

segments on average, so an aligned pronunciation pair yields about 5 corre-

spondences. We work with word lists of minimally 152 and maximally 562
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words, meaning we obtain 760 to 2810 correspondences per pair of sites. As

our datasets contain data from between 53 and 613 sites, there are between

1378 and 187, 578 site pairs. Consequently, we collect between 1 × 106 and

5× 108 correspondences per dataset.

3.2. Calculating acoustic distances

Similar to Wieling et al. (in press) the acoustic distances between vowels

are calculated on the basis of the Euclidean distances of the average formant

frequencies (in Bark, to correct for our non-linear perception of formant

frequency; Traunmüller, 1990). Unfortunately, as we mainly obtained the

average formant frequencies from published research, we were not able to

apply speaker-based normalization (e.g., Lobanov, 1971).

We employ the acoustic distances to validate the corpus-based PMI pro-

cedure, but while the induced segmental distances are based on an entire

language area, the acoustic differences have normally been measured using

pronunciations according to the standard variety. One might object that we

should compare with the acoustics of each of the varieties we examine, but we

note that we induce distances from IPA (or other) transcriptions which are

used consistently across an entire language area. We therefore take it that

we can use the acoustic pronunciations of the relevant IPA vowels according

to the standard variety as validation material.

4. Results

For all datasets, Table 1 shows the correlation between the acoustic and

PMI distances. We assessed the significance of the correlation coefficients

by using the Mantel test (Mantel, 1967), as our sound distances are not
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Pearson’s r Explained variance (r2) Significance

Dutch 0.672 45.2% p < 0.01

Dutch w/o Frisian 0.686 47.1% p < 0.01

German 0.633 40.1% p < 0.01

German w/o /@/ 0.785 61.6% p < 0.01

U.S. English 0.608 37.0% p < 0.01

Bantu 0.642 41.2% p < 0.01

Bulgarian 0.677 45.8% p < 0.01

Tuscan 0.758 57.5% p < 0.01

Table 1: Correlations between the acoustic and PMI distances for all datasets. Significance

was assessed using the Mantel test (Mantel, 1967). The correlation for the German dataset

was also reported by Wieling et al. (in press). The correlation for the Dutch (including

Frisian) dataset differs slightly from the value of 0.657 reported by Wieling et al. (in press),

as we did not exclude diphthongs in the present study.

completely independent. It is clear that the acoustic and PMI distances

match reasonably well, judging by the correlation coefficients ranging from

0.61 to 0.76 (including all vowels).

As we obtain a matrix of vowel distances, we can use multidimensional

scaling (MDS; Togerson, 1952) to position each vowel at the optimal position

relative to all other vowels in a two-dimensional plane. Figure 1(a) visualizes

the relative positions of the Dutch vowels based on their acoustic distances

(since these are determined on the basis of the first two formants, the com-

plete variance is always visualized in two dimensions), while Figure 1(b)

shows the relative placement of the Dutch vowels on the basis of their PMI

distances (the latter figure was reprinted from Wieling et al., in press). Sim-
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ilarly, Figures 2 to 6 show the relative positions of the vowels based on the

acoustic distances (a) as well as the PMI distances (b) for German (both

reprinted from Wieling et al., in press), U.S. English, Bantu, Bulgarian and

Tuscan. As the MDS calculations did not allow for missing distances, some

sounds may be missing from the PMI distance visualizations. When the PMI

method did not yield a distance between a pair of sounds (i.e. the two sounds

did not align), we excluded one of these sounds from the MDS procedure.2 Of

course, all distances were included when calculating the correlation between

the acoustic and PMI distances (shown in Table 1).

The visualizations on the basis of the acoustic distances are all highly

similar to the IPA vowel chart. The visualizations on the basis of the PMI-

derived distances show more differences with the IPA vowel chart and will

be discussed for every figure separately.

In examining the MDS visualizations of the vowels, one should keep in

mind that they are visualizations of the relative distances of the vowels to

each other — and not simply visualizations of vowels in any absolute coordi-

nate system. So questions regarding the relative position of a certain vowel

compared to other vowels can be answered, while those about the absolute

position of a vowel (e.g., in the top-right) cannot.

The visualization of the Dutch PMI distances in Figure 1(b) captures

76% of the variation and was discussed briefly by Wieling et al. (in press).

Here we offer a more thorough discussion of these results. The visualiza-

tion reveals quite sensible positions of the [i], [u], [a] and similar sounds,

2We excluded the sound which maximized the number of sounds displayed in the MDS

visualization.
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Figure 1: Relative positions of Dutch vowels based on their acoustic (a) and PMI distances

(b). The visualization in (a) captures 100% of the variation in the original distances, while

the visualization in (b) captures 76% of the variation in the original distances. The right

figure was reprinted with permission from Wieling et al. (in press).

especially taking into account that the distances are based purely on how

frequently the sounds align in dialect data. Unfortunately, the position of

the [@] (schwa) in Figure 1(b) deviates to a great extent from the position

on the basis of the acoustic distances. Investigating the underlying align-

ments revealed that the schwa was frequently deleted, which resulted in rel-

atively high distances between the schwa and the other vowels (which were

not deleted as frequently) compared to the other distances. Consequently,

excluding the schwa improved the ability to visualize the distances between

the vowels adequately in two dimensions: the explained variance of the MDS

visualization (not shown) increased from 76% to 85%. A second striking

deviation for the Dutch dataset is the position of the front rounded vow-
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els, which are surprisingly back (i.e. [y], [ø] and [œ]). Unfortunately, we do

not have an immediate explanation for this, but it is likely that this reflects

the frequency with which [u] and [y], etc. correspond, which may ultimately

suggest a systematic limitation to the technique (i.e. sensitivity to umlaut).3

We initially excluded the Frisian dialects from the Dutch dataset as

Frisian is recognized as a different language politically and is generally recog-

nized as historically less closely related to Dutch than (for example) English.

In addition, Frisian and Dutch dialects have some sound correspondences

consisting of rather dissimilar sounds (Wieling and Nerbonne, 2011a), such

as [o]:[E] (e.g., bomen, ‘trees’: [bom@] vs. [bjEm@n]) and [a]:[I] (e.g., kamers,

‘rooms’: [kam@rs] vs. [kIm@s]). Including Frisian, however, resulted only in

a small reduction (0.014) of the correlation coefficient (see Table 1). This

illustrates that phonetically similar correspondences will outweigh dissimilar

correspondences, as the similar correspondences occur much more frequently.

Only if the dissimilar correspondences occurred more frequently than similar

ones, would our method generate inadequate phonetic distances. However,

as we generally include as much material as possible, it is unlikely that dis-

similar sound correspondences will dominate.

The visualization of the German PMI distances shown in Figure 2(b)

captures 70% of the variation and was discussed by Wieling et al. (in press).

In short, the visualization reveals quite acceptable positions of the [i], [u], [a]

3One referee suggested that we might look at the McGurk-effect (McGurk and Mac-

Donald, 1976) for an explanation of why the front rounded vowels group more closely with

the back vowels. We find this intriguing, but we see no opportunity to develop the idea

here.
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Figure 2: Relative positions of German vowels based on their acoustic (a) and PMI dis-

tances (b). The visualization in (a) captures 100% of the variation in the original distances,

while the visualization in (b) captures 70% of the variation in the original distances.

Reprinted with permission from Wieling et al. (in press).

and similar sounds. While the position of the schwa was more sensible than

in the Dutch visualization shown in Figure 1(b), it was the most frequently

deleted sound. Consequently, excluding the schwa increased the explained

variance of the visualization from 70% to 83% and also resulted in a higher

correlation between the acoustic and PMI distances (see Table 1).

The positions of the vowels based on the U.S. English PMI distances in

Figure 3(b) (capturing 65% of the variation) are much more chaotic than the

Dutch and German visualizations. If we ignore the [E], the positions of the

[I], [6] and [u] seem reasonable, however. The deviating position of the [E]

was likely caused by its relatively large distance (i.e. infrequent alignment)

from [o] and [u]. Note that [i], [e], [a] and [æ] were excluded from the MDS
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Figure 3: Relative positions of U.S. English vowels based on their acoustic (a) and PMI

distances (b). The visualization in (a) captures 100% of the variation in the original

distances, while the visualization in (b) captures 65% of the variation in the original

distances.

visualization, as these sounds did not align with all other vowels (and no

missing distances were allowed in the MDS procedure).

We turn now to the Bantu data. Similar to Dutch and German, the

visualization of the Bantu PMI distances (capturing 90% of the variation)

in Figure 4(b) reveals reasonable positions of the [i], [u] and [a]. The most

striking deviation is the position of the schwa, caused by its low distance

from the [a] and greater distance from [i] and [u].

Similar to the U.S. English visualization, the visualization of the Bulgar-

ian data in Figure 5(b) (capturing 86% of the variation) reveals a deviating

position of the [E], likely caused by its relatively large distance from [o] and

[u]. Note that the [O] was excluded from the MDS visualization, as this sound
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Figure 4: Relative positions of Bantu vowels based on their acoustic (a) and PMI distances

(b). The visualization in (a) captures 100% of the variation in the original distances, while

the visualization in (b) captures 90% of the variation in the original distances.

did not align with all other vowels (and no missing distances were allowed in

the MDS procedure).

The visualization of the Tuscan PMI distances in Figure 6(b) captures

97% of the variation and shows a reasonably good placement of all sounds.

Of course, this is not so surprising as there are only five sounds included in

the visualization (i.e. the [@], [O] and [E] were excluded as these sounds did

not align with all other sounds and the MDS procedure did not allow missing

distances).

As there are no acoustic distance measurements for consonants, we were

not able to evaluate the quality of the automatically generated consonant dis-

tances explicitly. To illustrate that the consonant distances also seem quite

sensible, Figure 7 shows the MDS visualization of several Dutch consonants
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Figure 5: Relative positions of Bulgarian vowels based on their acoustic (a) and PMI

distances (b). The visualization in (a) captures 100% of the variation in the original

distances, while the visualization in (b) captures 86% of the variation in the original

distances.

(50% of the variance is captured in the visualization). Note that consonants

having a frequency lower than one percent of the maximum consonant fre-

quency were excluded, as well as consonants which did not align with all

other consonants (no missing distances are allowed in the MDS procedure).

Figure 7 clearly shows sensible groupings of the velar consonants [x], [X],

[G], [g], [N] in the upper-left, the rhotics [ö], [r], [R] in the upper-right, the

alveopalatal consonants [j], [s], [n], [t], [d] in the center, the laterals [l], [ë] to

the right and the bilabial and labiodental consonants [V], [w], [b], [p], [v] at

the bottom. In contrast, the position of the [z] close to the velars is not easy

to explain. The visualization of these consonantal distances seem to indicate

that place and manner characteristics dominate over voicing.
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Figure 6: Relative positions of Tuscan vowels based on their acoustic (a) and PMI distances

(b). The visualization in (a) captures 100% of the variation in the original distances, while

the visualization in (b) captures 97% of the variation in the original distances.

Figure 7: Relative positions of Dutch consonants based on their PMI distances. The

visualization captures 50% of the variation in the original distances.
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5. Discussion and conclusion

In this paper, we have introduced variation matrices and showed that

their structure reflects phonetic distance. So one contribution has been to

add to the range of phenomena that fall within the purview of phonetics.

We have gone on to show that the degree to which variation matrices

reflect phonetic distance may be calculated by exploiting the dependency of

alignment algorithms on segment distances. We used acoustic distances in

formant space as an evaluation of the claim that we could derive information

about phonetic distances from cross-speaker distributions of variation. The

level of correlation between the automatically determined phonetic distances

and acoustic distances was similar in six independent dialect datasets and

ranged between 0.61 and 0.76, a good indication that the relation between be-

ing similar in pronunciation and functioning as an alternative pronunciation

is not accidental or trivial.

Of course, one might argue that these results are perfectly in line with

what one would expect. Indeed, it is more likely that dialectal pronunciations

will be similar, rather than completely different and, consequently, similar

sounds will align more frequently than dissimilar sounds. However, we would

like to emphasize that this study has quantified how much information is

implicit in (cross-speaker) distributions, something which has largely been

lacking. Whether or not one is surprised at how much information is found

in these distributions undoubtedly depends on one’s theoretical convictions,

but the present paper has quantified this.

In line with this, the MDS visualizations of the automatically obtained

segment distances were never completely identical to the visualizations based
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on the acoustic data. In some cases, this was caused by the frequency with

which a particular sound segment (e.g., the schwa in Dutch and German) was

deleted in the alignments (which consequently affected the other distances),

but in other cases acoustically similar sounds simply aligned infrequently.

So, while there is a clear connection between acoustic distances and the in-

formation about phonetic distances present in the distribution of alternative

pronunciations, it is by no means perfect. It would be interesting to see if

there is some kind of structure in these deviations. Unfortunately, we do not

yet have a clear approach toward investigating this.

Clearly, we first need phonetic events in order to study their distributions.

In this sense, our study has demonstrated how to detect phonetic relations

from (cross-speaker) distributions, but we concede that it would be overeager

to imagine that these distributions “cause” the phonetics. We would like to

note, however, that there have been demonstrations that distributions within

acoustic space do influence children’s learning of categories (Maye et al.,

2002). There is room in linguistic theory to imagine that distributions in

fact do influence phonetics.

We emphasize that we tested our inductive procedure against the ground

truth of acoustics, and that we restricted our test to comparisons of vowels

only because there is phonetic consensus about the characterization of vowels

in a way that supports a measure of distance. While we did not investigate

the automatically generated consonantal distances in this paper extensively

(as these cannot be validated easily), a visual inspection of Dutch consonantal

distances (see Figure 7) suggests that the method also yields satisfying results

for consonants.
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It is promising that the good performance of the PMI method with re-

spect to the alignment quality (Wieling et al., 2009) is also supported by

a relatively strong correlation between the PMI distances and the acoustic

distances. Obtaining improved alignments and assessing pronunciation and

sound segment distances more accurately is valuable in dialectometry (see,

e.g., Wieling et al., 2011, who attempt to predict PMI-based dialectal word

pronunciation distances on the basis of several word-related and sociolinguis-

tic factors) and also in historical linguistics where the identification of regular

sound correspondences is important.

Of course, we have not tried to demonstrate that improved segment dis-

tance measures lead to genuine improvements in all the various areas dis-

cussed in the introduction, including not only historical linguistics and di-

alectometry, but also second-language learning (foreign accents), spelling cor-

rection, and the study of speech disorders. We note merely that there is broad

interest in measures of phonetic segment similarity, the focused issue to which

we contribute. We are well aware that potential and genuine improvements

are two very different matters.

Finally, we suggest that the results be viewed as vindicating the struc-

turalists’ postulate that the sound system of a language is of central impor-

tance, as this is reflected in the relations among variant pronunciations. We

have shown that distributions (of alternative dialectal pronunciations) con-

tain enough information to gauge content (i.e. phonetic similarity) to some

extent. The only phonetic content made available to the algorithm was the

distinction between vowels and consonants, and yet the algorithm could as-

sign a phonetic distance to all pairs of vowel segments in a way that correlates
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fairly well with acoustic similarity. We know of no work in the strict struc-

turalist tradition that attempted to analyze corpora of 108 segment pairs,

nor of attempts to analyze entire tables reflecting pronunciation relations.

We nonetheless find it appropriate to emphasize that our focus in this paper

is very much in the structuralist tradition of understanding the systems by

studying relations within it.

As noted in the introduction, the modern study of pronunciation often

emphasizes the need to go beyond the distributions of sounds, and therefore

the need to interpret pronunciation physically. From this perspective, it is

interesting that this study has shown that we are able to characterize the

phonetic distance between segments (in a data-driven manner) fairly well on

the basis of the distribution of the segment’s pronunciation variants among

closely related varieties.
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Prokić, J., Nerbonne, J., Zhobov, V., Osenova, P., Simov, K., Zastrow, T.,

Hinrichs, E., 2009. The computational analysis of Bulgarian dialect pro-

nunciation. Serdica Journal of Computing 3, 269–298.

Sanders, N., Chin, S. B., 2009. Phonological distance measures. Journal of

Quantitative Linguistics 16 (1), 96–114.

Sankoff, D., Kruskal, J. (Eds.), 1999. Time Warps, String Edits and Macro-

molecules: The Theory and Practice of Sequence Comparison. CSLI, Stan-

ford, 11983, with a foreword by John Nerbonne.

Sendlmeier, W., Seebode, J., 2006. Formantkarten des deutschen

33



Vokalsystems. TU Berlin, http://www.kgw.tu-berlin.de/forschung/

Formantkarten (accessed: November 1, 2010).

Togerson, W., 1952. Multidimensional scaling. I. Theory and method. Psy-

chometrika 17, 401–419.

Tougaard, J., Eriksen, N., 2006. Analysing differences among animal songs

quantitatively by means of the Levenshtein distance measure. Behaviour

143 (2), 239–252.

Traunmüller, H., 1990. Analytical expressions for the tonotopic sensory scale.

The Journal of the Acoustical Society of America 88, 97–100.

van Heuven, V. J., van Bezooijen, R., 1995. Quality evaluation of synthe-

sized speech. In: Paliwal, K. (Ed.), Speech coding and synthesis. Elsevier

Science, Amsterdam, pp. 707–738.

van Nierop, D., Pols, L., Plomp, R., 1973. Frequency analysis of Dutch vowels

from 25 female speakers. Acoustica 29, 110–118.

Wieling, M., Heeringa, W., Nerbonne, J., 2007. An aggregate analysis of

pronunciation in the Goeman-Taeldeman-Van Reenen-Project data. Taal

en Tongval 59, 84–116.

Wieling, M., Margaretha, E., Nerbonne, J., in press. Inducing phonetic dis-

tances from dialect variation. Computational Linguistics in the Nether-

lands Journal 1.

Wieling, M., Nerbonne, J., 2011a. Bipartite spectral graph partitioning for

34



clustering dialect varieties and detecting their linguistic features. Computer

Speech & Language 25 (3), 700–715.

Wieling, M., Nerbonne, J., 2011b. Measuring linguistic variation commensu-

rably. Dialectologia Special Issue II: Production, Perception and Attitude,

141–162.

Wieling, M., Nerbonne, J., Baayen, R. H., 2011. Quantitative social dialec-

tology: Explaining linguistic variation geographically and socially. PLoS

ONE 6 (9), e23613.
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