Learning Phonotactics with Simple Processors*

John Nerbonne! and Ivilin Stoianov?
! Alfa-informatica, University of Groningen, The Netherlands
2 Department of Psychology, University of Padova, Italy

Abstract

This paper explores the learning of phonotactics in neural networks.
Experiments are conducted on the complete set of over 5,000 Dutch mono-
syllables extracted from CELEX, and the results are shown to be accurate
within 5% error. Extensive comparisons to human phonotactic learning
conclude the paper. We focus on whether phonotactics can be effectively
learned and how the learning which is induced compares to human behav-
10r.

1 Introduction

PHONOTACTICS concerns the organization of the phonemes in words and sylla-
bles. The phonotactic rules constrain how phonemes combine in order to form
larger linguistic units (syllables and words) in that language (Laver 1994). For
example, Cohen, Ebeling & van Holk (1972) describes the phonemes combina-
tions possible in Dutch, which will be the language in focus in this study.

Phonotactic rules are implicit in natural languages so that humans require
no explicit instruction about which combinations are allowed and which are
not. An explicit phonotactic grammar can of course be abstracted from the
words in a language, but this is an activity linguists engage in, not language
learners in general. Children normally learn a language’s phonotactics in their
early language development and probably update it only slightly once they have
mastered the language.

Most work on language acquisition has arisen in linguistics and psychology,
and that work employs mechanisms that have been developed for language,

*The authors are particularly pleased to offer this piece to a Festschrift honoring
Dr. Dr. h.c. Tjeerd de Graaf, who graciously agreed to cooperate in the supervision of
Stoianov’s Ph.D. project 1997-2001 at the University of Groningen. Even if Tjeerd is best
known for his more recent work on descriptive linguistics, minority languages and language
documentation, his early training in physics and earlier research on acoustic phonetics made
him one of the best-suited supervisors for projects such as the one reported on here involving
advanced learning algorithms. Tjeerd’s sympathy with Eastern Europe languages and cul-
tures is visceral and might have led him to agree in any case, but we particularly appreciated
his phonetic acumen.

typically, discrete, symbol-manipulation systems. Phonotactics in particular
has been modeled with n-gram models, Finite State Machines, Inductive Logic
Programming, etc. (Tjong Kim Sang 1998, Konstantopoulos 2003). Such ap-
proaches are effective, but a cognitive scientist may ask whether the same suc-
cess could be possible using less custom-made tools. The brain, viewed as
a computational machine, exploits other principles, which have been modeled
in the approach known as Parallel Distributed Processing (PDP), which were
thoroughly described in the seminal work of Rumelhart & McClelland (1986).
Computational models inspired by the brain structure and neural processing
principles are Neural Networks (NNs), also known as connectionist models.

Learning phonotactic grammars is not an easy problem, especially when
one restricts one’s attention to cognitively plausible models. Since languages
are experienced and produced dynamically, we need to focus on the processing
of sequences, which complicates the learning task. The history of research in
connectionist language learning shows both successes and failures even when one
concentrates on simpler structures, such as phonotactics (Stoianov, Nerbonne
& Bouma 1998, Stoianov & Nerbonne 2000, Tjong Kim Sang 1995, Tjong Kim
Sang & Nerbonne 1999, Pacton, Perruchet, Fayol & Cleeremans 2001).

This paper will attack phonotactics learning with models that have no specif-
ically linguistic knowledge encoded a priori. The models naturally do have a
bias, viz., toward extracting local conditioning factors for phonotactics, but
we maintain that this is a natural bias for many sorts of sequential behavior,
not only linguistic processing. A first-order Discrete Time Recurrent Neural
Network (DTRNN) (Carrasco, Forcada & Neco 1999, Tsoi & Back 1997) will
be used—the SIMPLE RECURRENT NETWORK (SRNs) (Elman 1988). SRNs
have been applied to different language problems (Elman 1991, Christiansen &
Chater 1999, Lawrence, Giles & Fong 1995), including learning phonotactics
(Shillcock, Levy, Lindsey, Cairns & Chater 1993, Shillcock, Cairns, Chater &
Levy 1997). With respect to phonotactics, we have also contributed reports
(Stoianov et al. 1998, Stoianov & Nerbonne 2000, Stoianov 1998).

SRNs have been shown capable of representing regular languages (Omlin
& Giles 1996, Carrasco et al. 1999). Kaplan & Kay (1994) demonstrated that
the apparently context-sensitive rules that are standardly found in phonological
descriptions can in fact be expressed within the more restrictive formalism of
regular relations. We begin thus with a device which is in principle capable of
representing the needed patterns.

We then simulate the language learning task by training networks to produce
context-dependent predictions. We also show how the continuous predictions
of trained SRNs—likelihoods that a particular token can follow the current
context—can be transformed into more useful discrete predictions, or, alterna-
tively, string recognitions.

In spite of the above claims about representability, the Back-Propagation
(BP) and Back-Propagation Through Time (BPTT) learning algorithms used
to train SRNs do not always find optimal solutions—SRNs that produce only
correct context-dependent successors or recognize only strings from the training
language. Hence, section 3 focuses on the practical demonstration that a realistic

language learning task may be simulated by an SRN. We evaluate the network
learning from different perspectives—grammar learning, phonotactics learning,
and language recognition. The last two methods need one language-specific
parameter—a threshold —that distinguishes successors/words allowed in the
training language. This threshold is found with a post-training procedure, but
it can also be sought interactively during training.

Finally, section 4 assesses the networks from linguistic and psycholinguis-
tic perspectives: a static analysis extracts acquired linguistic knowledge from
network weights, and the network performance is compared to humans’ in a
lexical decision task. The network performance, in particular the distribution
of errors as a function of string position, will be compared to alternative con-
struals of Dutch syllabic structure—following a suggestion from discussions of
psycholinguistic experiments about English syllables (Kessler & Treiman 1997).

1.1 Motivations for a Phonotactic Device

This section will review standard arguments that demonstrate the cognitive and
practical importance of phonotactics. English phonotactic rules such as:

‘/s/ may precede, but not follow /t/ syllable-initially’

(ignoring loanwords such as ‘tsar’ and ‘tse-tse’) may be adduced by judging
the well-formedness of sequences of letters/phonemes, taken as words in the
language, e.g. /stop/ vs. */tsop/. There may also be cases judged to be of
intermediate acceptability. So, even if all of the following are English words:

/mado1/ ‘mother’, /fadox/ ‘father’, /sistor/ ‘sister’
None of the following are, however:
* /mdoa/, * /faseoa/, * /tssio1/
None of these sound like English words. However, the following sequences:
/miden/, /fude1/, /santor/

“sound” much more like English, even if they mean nothing and therefore are
not genuine English words. We suspect that, e.g., /sante1/ ’santer’, could be
used to name a new object or a concept.

This simple example shows that we have a feeling for word structure, even
if no explicit knowledge. Given the huge variety of words, it is more efficient to
put this knowledge into a compact form—a set of phonotactic rules. These rules
would state which phonemic sequences sound correct and which do not. In this
same vein, second language learners experience a period when they recognize
that certain phonemic combinations (words) belong to the language they learn
without knowing the meaning of these words.

Convincing psycholinguistic evidence that we make use of phonotactics
comes from studying the information sources used in word segmentation

(McQueen 1998). In a variety of experiments, this author shows that word
boundary locations are likely to be signaled by phonotactics. The author rules
out the possibility that other sources of information, such as prosodic cues, syl-
labic structure and lexemes, are sufficient for segmentation. Similarly, Treiman
& Zukowski (1990) had shown earlier that phonotactics play an important role
in the syllabification process. According to McQueen (1998), phonotactic and
metrical cues play complementary roles in the segmentation process. In accor-
dance with this, some researchers have elaborated on a model for word seg-
mentation: THE POSSIBLE WORD CONSTRAINTS (Norris, McQueen, Cutler
& Butterfield 1997), in which likely word-boundary locations are marked by
phonotactics, metrical cues, etc., and in which they are further fixed by using
lexicon-specific knowledge.

Exploiting the specific phonotactics of Japanese, Dupoux, Pallier, Kakehi
& Mehler (2001) conducted an experiment with Japanese listeners who heard
stimuli that contained illegal consonant clusters. The listeners tended to hear an
acoustically absent vowel that brought their perception into line with Japanese
phonotactics. The authors were able to rule out lexical influences as a puta-
tive source for the perception of the illusory vowel, which suggests that speech
perception must use phonotactic information directly.

Further justification for the postulation of a neurobiological device that en-
codes phonotactics comes from neurolinguistic and neuroimaging studies. It is
widely accepted that the neuronal structure of the Broca area (in the brain’s left
frontal lobe) is used for language processing, and more specially that it repre-
sents a general sequential device (Stowe, Wijers, Willemsen, Reuland, Paans &
Vaalburg 1994, Reilly 2002). A general sequential processor capable of working
at the phonemic level would be a plausible realization of a neuronal phonotactic
device.

Besides cognitive modeling, there are also a number of practical problems
that would benefit from effective phonotactic processing. In speech recogni-
tion, for example, a number of hypotheses that explain the speech signal are
created, from which the impossible sound combinations have to be filtered out
before further processing. This exemplifies a LEXICAL DECISION task, in which
a model is trained on a language L and then tests whether a given string be-
longs to L. In such a task a phonotactic device would be of use. Another
important problem in speech recognition is word SEGMENTATION. Speech is
continuous, but we divide it into psychologically significant units such as words
and syllables. As noted above, there are a number of cues that we can use to
distinguish these elements—prosodic markers, context, but also phonotactics.
Similarly to the former problem, an intuitive strategy here is to split the pho-
netic/phonemic stream at the points of violation of phonotactic constraints (see
Shillcock et al. (1997) and Cairns, Shillcock, Chater & Levy (1997) for con-
nectionist modeling). Similarly, the constraints of the letters forming words in
written languages (GRAPHOTACTICS) is useful in word processing applications,
for example, SPELL-CHECKING.

There is another, more speculative aspect to investigating phonotactics.
Searching for an explanation of the structure of the natural languages, Carstairs-

McCarthy presented in his recent book (1999) an analogy between syllable struc-
ture and sentence structure. He argues that sentences and syllables have a sim-
ilar type of structure. Therefore, if we find a proper mechanism for learning
the syllabic structures, we might apply a similar mechanism to learning syntax
as well. Of course, syntax is much more complex and more challenging, but if
Carstairs-McCarthy is right, the basic principles of both devices might be the
same.

2 Simple Recurrent Networks

This section will briefly present Simple Recurrent Networks (Elman 1988, Robin-
son & Fallside 1988) and will review earlier studies of sequential, especially
phonotactic learning. Detailed descriptions of the SRN processing mechanisms
and the Back-Propagation Through Time learning algorithm that is used to
train the model are available elsewhere (Stoianov 2001, Haykin 1994), and will
be reviewed only superficially

Simple Recurrent Networks (SRNs) were invented to encode simple artificial
grammars, as an extension of the Multilayer Perceptron (Rumelhart, Hinton
& Williams 1986) with an extra input—a context layer that holds the hidden
layer activations at the previous processing cycle. After training, Elman (1988)
conducted investigations on how context evolves in time. The analysis showed
graded encoding of the input sequence: similar items presented to the input
were clustered at close, but different, shifting positions. That is, the network
discovered and implicitly represented in a distributed way the rules of the gram-
mar generating the training sequences. This is noteworthy, because the rules for
context were not encoded, but rather acquired through experience. The capac-
ity of SRNs to learn simple artificial languages was further explored in a number
of studies (Cleeremans, Servan-Schreiber & McClelland 1989, Gasser 1992).

SRNs have the structure shown in Figure 1. They operate as follows: Input
sequences ST are presented to the input layer, one element S’(¢) at a time.
The purpose of the input layer is just to transfer activation to the hidden layer
through a weight matrix. The hidden layer in turn copies its activations after
every step to the contert layer, which provides an additional input to the hidden
layer—i.e., information about the past, after a brief delay. Finally, the hidden
layer neurons output their signal through a second weight matrix to the output
layer neurons. The activation of the latter is interpreted as the product of the
network. Since the activation of the hidden layer depends both on its previous
state (the context) and on the current input, SRNs have the theoretical capacity
to be sensitive to the entire history of the input sequence. However, practical
limitations restrict the time span of the context information to, maximally 10-15
steps (Christiansen & Chater 1999). The size of the layers does not restrict the
range of temporal sensitivity.

The network operates in two working regimens—supervised training and
network use. In the latter, the network is presented the sequential input data
S1(t) and computes the output N (t) using contextual information. The training

Output /
Training Data:

S : Active
[Z : Non-active

|
QOutput Layer(t): 45 Neurons l
bcdfghklmnnpqrstvv .adeeopuoit... ¥

Tcstm g

SRN Hidden Layer (t):
distr. repr. of [[[11] - £] -]

Ve N

Input Layer(t): 45 Neurons] {Context(t) =HL{-1)
#

be...gqrst ..aegoun.. [([n]-£]

Input Data: \ t

netverk ..

Figure 1: Learning phonotactics with the SRNs. If the training data set con-
tains the words /net#/, /nets#/ and /netvork#/ then after the network has
processed a left context /ne/, the reaction to an input token /t/ will be active
neurons corresponding to the symbol '#’ and the phonemes /s/, and /v/.

regimen involves the same sort of processing as network use and also includes a
second, training step, which compares the network reaction N (t) to the desired
one ST(t), and which uses the difference to adjust the network behavior in a
way that improves future network performance on the same data.

The two most popular supervised learning algorithms used to train SRNs
are the standard Back-Propagation algorithm (Rumelhart et al. 1986) and the
Back-Propagation Through Time algorithm (Haykin 1994). While the earlier
is simpler because it uses information from one previous time step only (the
context activation, the current network activations, and error), the latter trains
the network faster, because it collects errors from all time steps during which
the network processes the current sequence and therefore it adjusts the weights
more precisely. However, the BPTT learning algorithm is also cognitively less
plausible, since the collection of the time-spanning information requires mecha-
nisms specific for the symbolic methods. Nevertheless, this compromise allows
more extensive research, and without it the problems discussed below would re-
quire much longer training time when using standard computers for simulations.
Therefore, in the experiments reported here the BPTT learning algorithm will
be used. In brief, it works in the following way: the network reaction to a given
input sequence is compared to the desired target sequence at every time step
and an error is computed. The network activation and error at each step are
kept in a stack. When the whole sequence is processed, the error is propagated

back through space (the layers) and time, and weight-updating values are com-
puted. Then, the network weights are adjusted with the values computed in
this way.

2.1 Learning Phonotactics with SRNs

Dell, Juliano & Govindjee (1993) showed that words could be described not
only with symbolic approaches, using word structure and content, but also by a
connectionist approach. In this early study of learning word structure with neu-
ral nets (NNs), the authors trained SRNs to predict the phoneme that follows
the current input phoneme, given context information. The data sets contained
100 - 500 English words. An important issue in this paper was the analysis and
modeling of a number of speech-error phenomena, which were taken as strong
support for parallel distributed processing (PDP) models, in particular SRNs.
Some of these phenomena were: phonological movement errors (reading list -
leading list), manner errors (department - jepartment), phonotactic regularity
violations (dorm - dlorm), consonant-vowel category confusions and initial con-
sonant omissions (cluster-initial consonants drop more often than non-initial
ones, so ‘stop’ is mispronounced [top]).

Aiming at segmentation of continuous phonetic input, Shillcock et al. (1997)
and Cairns et al. (1997) trained SRNs with a version of the BPTT learning
algorithm on English phonotactics. They used 2 million phonological segments
derived from a transcribed speech corpus and encoded with a vector containing
nine phonological features. The neural network was presented a single phoneme
at a time and was trained to produce the previous, the current and the next
phonemes. The output corresponding to the predicted phoneme was matched
against the following phoneme, measuring cross-entropy; this produced a vary-
ing error signal with occasional peaks corresponding to word boundaries. The
SRN reportedly learned to reproduce the current phoneme and the previous
one, but was poor at predicting the following phoneme. Correspondingly, the
segmentation performance was quite modest, predicting only about one-fifth of
the word boundaries correctly, but it was more successful in predicting syllable
boundaries. It was significantly improved by adding other cues such as prosodic
information. This means that phonotactics might be used alone for syllable
detection, but polysyllabic word detection needs extra cues.

In another connectionist study on phonological regularities, Rodd (1997)
trained SRNs on 602 Turkish words; the networks were trained to predict the
following phonemes. Analyzing the hidden layer representations developed dur-
ing the training, the author found that hidden units came to correspond to
graded detectors for natural phonological classes such as vowels, consonants,
voiced stops and front and back vowels. This is further evidence that NN mod-
els can capture important properties of the data they have been trained on
without any prior knowledge, based only on statistical co-occurrences.

Learning the graphotactics and phonotactics of Dutch monosyllables
with connectionist models was first explored by Tjong Kim Sang (1995)
and Tjong Kim Sang & Nerbonne (1999), who trained SRNs to predict

graphemes/phonemes based on preceding segments. The data was orthogonally
encoded, that is, for each phoneme or grapheme there was exactly one neuron
activated at the input and output layers (see below § 3.1). To test the knowledge
learned by the network, Tjong Kim Sang and Nerbonne tested whether the acti-
vation of the neurons corresponding to the expected symbols are greater than a
threshold determined as the lowest activation for some correct sequence encoun-
tered during the training data. This resulted in almost perfect acceptance of
unseen Dutch words (generalization), but also in negligible discrimination with
respect to (ill-formed) random strings. The authors concluded that “SRNs are
unfit for processing our data set” (Tjong Kim Sang & Nerbonne 1999).

These early works on learning phonotactics with SRNs prompted the work
reported here. First, Stoianov et al. (1998) demonstrated that the SRNs in
Tjong Kim Sang and Nerbonne’s work were learning phonotactics rather bet-
ter than those authors had realized. By analyzing the error as a function of
the acceptance threshold, Stoianov et al. (1998) were able to demonstrate the
existence of thresholds successful at both the acceptance of well-formed data
and the rejection of ill-formed data (see below § 3.6.2 for a description of how
we determine such thresholds). The interval of high-performing thresholds is
narrow, which is why earlier work had not identified it (see Fig. 2 on how nar-
row the window is). More recently, Stoianov & Nerbonne (2000) have studied
the performance of SRNs from a cognitive perspective, attending to the errors
produced by the network and to what extent it correlates with the performance
of humans on related lexical decision tasks. The current article ties these two
strands of work and presents it systematically.

3 Experiments

The challenge in connectionist modeling is not only developing theoretical frame-
works, but also obtaining the most from the network models during experimen-
tation. This section focuses on experiments on learning the phonotactics of
Dutch syllables with Simple Recurrent Networks and discusses a number of re-
lated problems. It will be followed by a study on the network behavior from a
linguistic point of view.

3.1 Some implementation decisions

SRNs were presented in section 2. A first implementation decision concerns how
sounds are to be represented. A simple ORTHOGONAL strategy is to choose a
vector of n neurons to represent n phonemes, to assign each phoneme (e.g. /o/)
to a neuron (e.g., neuron 5 in a sequence of 45), and then to activate that one
neuron and deactivate all the others whenever the phoneme is to be represented
(so a /o/ is represented by four deactivated neurons, a single activated one,
and then forty more deactivated neurons). This orthogonal strategy makes
no assumptions about phonemes being naturally grouped into classes on the
basis of linguistic FEATURES such as consonant/vowel status, voicing, place of

articulation, etc. An alternative strategy exploits such features by assigning
each feature to a neuron and then representing a phoneme via a translation of
its feature description into a sequence of corresponding neural activations.

In phonotactics learning, the input encoding method might be feature-based
or orthogonal, but the output decoding should be orthogonal in order to ob-
tain a simple prediction of successors, and to avoid a bias induced from the
peculiarities of the feature encoding scheme used. The input encoding chosen
was also orthogonal, which also requires the network discover natural classes of
phonemes by itself.

The orthogonal encoding implies that we need as many neurons as we have
phonemes, plus one for the end-of-word ’#’ symbol. That is, the input and
output layers will have 45 neurons. However, it is usually difficult to choose
the right size of the hidden layer for a particular learning problem. That size
is rather indirectly related to the learning task and encoding chosen (as a sub-
component of the learning task). A linguistic bias in the encoding scheme,
e.g., feature-based encoding, would simplify the learning task and decrease the
number of the hidden neurons required to learn it (Stoianov 2001). Intuition tells
us that hidden layers that are too small lead to an overly crude representation of
the problem and larger error. Larger hidden layers, on the other hand, increase
the chance that the network wanders aimlessly because the space of possibilities
it needs to traverse is too large. Therefore, we sought an effective size in a
pragmatic fashion. Starting with a plausible size, we compared its performance
to nets with double and half the number of neurons in the hidden layer. We
repeated in the direction of the better behavior, keeping track of earlier bounds
in order to home in on an appropriate size. In this way we settled on a range
of 20-80 neurons in the hidden layer, and we continued experimentation on
phonotactic learning using only nets of this size.

However, even given the right size of the hidden layer, the training will not
always result in an optimal weight set W* since the network learning is non-
deterministic—each network training process depends on a number of stochastic
variables, e.g., initial network weights and an order of presentation of examples.
Therefore, in order to produce more successful learning, several SRNs with
different initial weights will be trained in a pool (group).

The back-propagation learning algorithm is controlled by two main
parameters—a learning coeflicient 1 and a smoothing parameter o. The first one
controls the speed of the learning and is usually set within the range (0.1...0.3).
It is advisable to choose a smaller value when the hidden layer is larger. Also,
this parameter may vary in time, starting with a larger initial value that de-
creases progressively in time (as suggested in Kuan, Hornik & White (1994) for
the learning algorithm to improve its chances at attaining a global minimum
in error). Intuitively, such a schedule helps the network approximately to lo-
cate the region with the global minima and later to make more precise steps in
searching for that minimum (Haykin 1994, Reed & Marks IT 1999). The smooth-
ing parameter a will be set to 0.7, which also allows the network to escape from
local minima during the search walk over the error surface.

The training process also depends on the initial values of the weights. They

are set to random values drawn from a region (—r...+r). It is also important
to find a proper value for r, since large initial weight values will produce chaotic
network behavior, impeding the training. We used r = 0.1.

The SRNs used for this problem are schematically represented in Fig. 1,
where the SRN reaction to an input sequence /ne/ after training on an exem-
plary set containing the sequences /net#/, /nets#/, /netvork#/ is given. For
this particular database, the network has experienced the tokens '#’, /s/ and
/v/ as possible successors to /nee/ during training and therefore it will activate
them in response to this input sequence.

3.2 Linguistic Data - Dutch syllables

A data base Lj; of all Dutch monosyllables—5, 580 words—was extracted from
the CELEX (1993) lexical database. CELEX is a difficult data source because it
contains many rare and foreign words among its approximately 350,000 Dutch
lexical entries, which additionally complicate the learning task. Filtering out
non-typical words is a formidable task and one which might introduce experi-
menter prejudice, and therefore all monosyllables were used. The monosyllables
have a mean length of 4.1(c = 0.94, min = 2, maz = 8) tokens and are built
from a set of 44 phonemes plus one extra symbol representing space (#) used
as a filler specifying end-of-word.

The main dataset is split into a training (L') and testing (L?) databases in
proportion approximately 85% to 15%. The training database will be used to
train a Simple Recurrent Network and the testing one will be used for evaluating
the success of word recognition. Negative data also will be created for test
purposes. The complete database Lj; will be used for some parts of evaluation.

In language modeling it is important to explore the frequencies of word
occurrences which naturally bias humans’ linguistic performance. If a model
is trained on data in proportion to its empirical frequency, this focuses the
learning on the more frequent words and thus improves the performance of the
model. This also makes feasible a comparison of the model’s performance with
that of humans performing various linguistic tasks, such as a lexical decision
task. For these reasons, we used the word frequencies given in the CELEX
database. Because the frequencies vary greatly ([0...100,000]), we presented
training data items in proportion with the natural logarithms of their frequen-
cies, in accordance with standard practice (Plaut, McClelland, Seidenberg &
Patterson 1996). This approach resulted in frequencies in a range of [1...12].

3.3 Difficulty

One way to characterize the complexity of the training set is to compute the
ENTROPY of the distribution of successors, for every available left context. The
entropy of a language L viewed as a stochastic process measures the average
surprise value associated with each element (Mitchell 1997). In our case, the
language is a set of words and the elements are phonemes, hence the appropri-
ate entropy measures the average surprise value for phonemes ¢ preceded by a

10

context s. Entropy is measured for a given distribution, which in our case is the
set of all possible successors. We compute entropy Entr(s) for a given context
s with (1):

Entr(s) = — 3 pa(c)loga(ps(c)) (1)

cex

where « is the alphabet of segment symbols, and p(c) the probability of a given
context. Then the average entropy for all available contexts s € L, weighted
with their frequencies, will be the measure of the complexity of the words. The
smaller this measure, the less difficult are the words. The maximal possible value
for one context would be log2(45), that is, 5.49, and this would only obtain for
the unlikely case that each phoneme was equally likely in that context. The
actual average value of the entropy measured for the Dutch monosyllables, is
2.24, 0 =1.32. The minimal value was 0.0, and the maximal value was 3.96.
These values may be interpreted as follows: The minimal value of 0.0 means that
there are left contexts with only one possible successor (logz(1) = 0). A maximal
value of 3.96 means that there is a one context which is as unpredictable as one
in which 2396 = 16 successors were equally likely. The mean entropy is 2.24,
which is to say that in average 4.7 phonemes follow a given left context.

3.4 Negative Data

We noted above that negative data is also necessary for evaluation. Since we are
interested in models that discriminate more precisely the strings from L (the
Dutch syllables), the negative data for the following experiments will be biased
toward L.

Three negative testing sets were generated and used: First, a set Rjy; con-
taining strings with syllabic form [C]°*V[C]°3, based on the empirical ob-
servation that the Dutch syllables have up to four onset (initial) consonants
and up to three coda (final) consonants. The second group consists of three
sub-sets of Ryr: {R%;, R2,, R31}, with fixed distances of the random strings to
any existing Dutch word at 1, 2, and 3+ phonemes, respectively (measured by
edit distance (Nerbonne, Heeringa & Kleiweg 1999)). Controlling for the dis-
tance to any training word allows us to assess more precisely the performance
of the model. And finally, a third group: random strings built of concatena-
tions of n-grams picked randomly from Dutch monosyllables. In particular, two
sets—R% and R3,—were randomly developed, based on bigrams and trigrams,
correspondingly.

The latter groups are the most “difficult” ones, and especially R3;, because it
consists of strings that are closest Dutch. They are also useful for the comparison
of SRN methods to n-gram modeling. The corresponding n-gram models will
always wrongly recognise these random strings as words from the language.
Where the connectionist predictor recognises them as non-words, it outperforms
the correspondent n-gram models, which are considered as benchmark models
for prediction tasks such as phonotactics learning.

11

3.5 Training

This section reports on network training. We will add a few more details about
the training procedure, then we will present pilot experiments aimed at deter-
mining the hidden layer size. The later parts will analyse the network perfor-
mance.

3.5.1 Procedure

The networks were trained in a pool on the same problem, and independently of
each other, with the BPTT learning algorithm. The training of each individual
network was organised in epochs, in the course of which the whole training
data set is presented in accordance with the word frequencies. The total of
the logarithm of the frequencies in the training data base L}, is about 11,000,
which is also the number of presentations of sequences per epoch, drawn in a
random order. Next, for each word, the correspondent sequence of phonemes is
presented to the input, one at a time, followed by the end-of-sequence marker
‘#’. Each time step is completed by copying the hidden layer activations to the
context layer, which is used in the following step.

The parameters of the learning algorithm were as follows: the learning co-
efficient 7 started at 0.3 and dropped by 30% each epoch, finishing at 0.001;
the momentum (smoothing) term « = 0.7. The networks required 30 epochs to
complete training. After this point, very little improvement is noted.

3.5.2 Pilot experiments

Pilot experiments aiming at searching for the most appropriate hidden layer
size were done with 20, 40 and 80 hidden neurons. In order to avoid other non-
determinism which comes from the random selection of negative data, during
the pilot experiments the network was tested solely on its ability to distinguish
admissible from inadmissible successors. Those experiments were done with a
small pool of three networks, each of them trained for 30 epochs, which resulted
in approximately 330,000 word presentations or 1,300,000 segments. The total
number of individual word presentations ranged from 30 to 300, according to
the individual word frequencies. The results of the training are given in Ta-
ble 1, under the group of columns “Optimal phonotactics”. In the course of the
training, the networks typically started with a sharp error drop to about 13%,
which soon turned into a very slow decrease (see Table 2, left 3 columns).

The training of the three pools with hidden layer size 20, 40 and 80, resulted
in networks with similar performance, with the largest network performing best.
Additional experiments with SRNs with 100 hidden neurons resulted in larger
error than a network with 80 hidden neurons, so that we settled experimentally
on 80 hidden neurons as the likely optimal size. It is clear that this procedure
is rough, and that one needs to be on guard against premature concentration
on one size model.

12

Optimal Phonotactics ||[SRNL,TE||L,

Hidd Layer Size SRNl SRN2 SRNg SRNl SRN2 SRNg
20 10.57% | 10.65% | 10.57% || 0.0643 | 0.0642 | 0.0642
40 10.44% | 10.51% | 10.44% || 0.0637 | 0.0637 | 0.0637
80 10.00% | 9.97% | 10.02% || 0.0634 | 0.0634 | 0.0632

Table 1: Results of a pilot study on phonotactics learning by SRNs with 20,
40, and 80 (rows) hidden neurons. Each network is independently trained on
language Ljs three times (columns). The performance is measured (a, left
3 columns) using the error in predicting the next phoneme, and (b, right 3
columns) using Lo (semi-Euclidean) distance between the empirical context-
dependent predictions and the network predictions for each context in the tree.
Those two methods do not depend on randomly chosen negative data.

Epoch | 1 | 24 |510] 11-15 | 16-30
Error (%) | 15.0 | 12.0 | 10.8 | 10.7 | 10.5

Table 2: A typical shape of the SRN error during training. The error drops
sharply in the beginning and then slowly decreases to convergence.

3.6 Ewvaluation

The performance of a neural predictor trained on phonotactics may be evaluated
with different methods, depending on the particular task the network is applied
to. In this section we evaluate the neural networks performing best during the
pilot studies.

3.6.1 Likelihoods

The direct outcome of training the sequential prediction task is learning the suc-
cessors’ distribution. This will therefore be used as a basic evaluation method:
the empirical context-dependent successor distribution PL(C) will be matched
against the network context dependent predictions N PX(C). For this purpose,
the output of the network will be normalized and matched against the distribu-
tion in the language data.

This procedure resulted in a mean Lo (semi-Euclidean) distance of 0.063 —
0.064, where the optimal value would be zero (see Table 1, right 3 columns).!
These values are close to optimal but baseline models (completely random net-
works) also result in approximately 0.085 Ly distance.

IThe distance is related to Euclidean, but more exactly the distance between the two
n-dimensional vectors is La(Z,7) = \/1/nY 1, (w: — y;)2.

13

3.6.2 Phonotactic Constraints

To evaluate the network’s success in becoming sensitive to phonotactic con-
straints, we need first to judge how well it predicts individual phonemes. For
this purpose we seek a THRESHOLD above which phonemes are predicted to
be admissible and below which they are predicted to be inadmissable. This is
done empirically—we perform a binary search for an optimal threshold, i.e. the
threshold 6* that minimizes the network error E(6). The classification obtained
in this fashion constitutes the network’s predictions about phonotactics.

We now turn to evaluating the network’s predictions: the method to evaluate
the network from this point of view compares the context-dependent network
predictions with the corresponding empirical distributions. For this purpose,
the method described by Stoianov (2001) will be used. The algorithm traverses
a TRIE (Aho, Hopcroft & Ullman 1983, 163-169), which is a tree representing
the vocabulary where initial segments are the first branches. Words are paths
through this data structure. The algorithm computes the performance at the
optimal threshold determined using the procedure described in the last para-
graph, i.e., at the threshold which determines which phonemes are admissible
and which inadmissible (see also § 2.1). This approach compares the actual
distribution with the learned distribution, and we normally use the complete
database Ly, for training and testing.

Figure 2 shows the error of SRN{C at different values of the threshold.
The optimal threshold searching procedure resulted in 6.0% erroneous phoneme
prediction at a threshold of 0.0175. This means that if we want to predict
phonemes with this SRN, they would be accepted as allowed successors if the
activation of the correspondent neurons are higher than 0.0175.

3.6.3 Word Recognition

Using an SRN trained on phoneme prediction as a word recognizing device
shifts the focus from phoneme prediction to sequence classification. We wish
to see whether it can classify sequences of phonemes into well-formed words on
the one hand and ill-formed non-words on the other. To do this we need to
translate the phoneme (prediction) values into sequence values. We do this by
taking the sum of the phoneme error values for the sequence of phonemes in the
string, normalized to correct for length effects. But to translate this sum into a
classification, we again need to determine an acceptability threshold, and we use
a variant of the same empirical optimization described above. The threshold
arrived at for this purpose is slightly lower than the optimal threshold from
the previous algorithm. This means that the network accepts more phonemes,
which, however, is compensated for by the fact that a string is accepted only
if all its phonemes are predicted. In string recognition it is better to increase
the phoneme acceptance rate, because the chance to detect a non-word is larger
when more tokens are tested.

Since the performance measure here is the mean percentage of correctly
recognized monosyllables and correctly rejected random strings, we incorporate

14

Ertori{®) SIREMA: Metwork:DIndS,2 Fig: Error Distribution {(Thresholds,
30 T T T T T T T

: : : : : © Bl1/Mothing FR Err —
Elj. : -. ‘Hll.‘rﬂﬂthiﬂg‘FﬁEPr‘

0
B0
50
40
30
20

10

5 G 7 g 3 10 11 12 13 14 15
Threshold{*100

Figure 2: SRN error (in %) as a function of the threshold 6. The False Negative
Error increases as the threshold increases because more and more admissible
phonemes are incorrectly rejected. At the same time, the False Positive Error
decreases because fewer unwanted successors are falsely accepted. The mean of
those two errors is the network error, which finds its minimum 6.0% at threshold
0* = 0.0175. Notice that the optimal threshold is limited to a small range. This
illustrates how critical the exact setting of threshold is for good performance.

both in seeking the optimal threshold. The negative data is as described above
in § 3.4. Concerning the positive data, this approach allows us to test the
generalisation capacity of the model, so that the training L}, and testing L3,
subsets may be used here—the first for training the model and evaluating it
during training, and the second to test the generalisation capacity of the trained
network.

Once we determine the optimal sequence-acceptance threshold (0.016), we
obtain 5% error on the positive training dataset L}, and the negative strings
from Rjs, where the error varied +0.5% depending on the random data set
generated.

The model was tested further on the second group of negative data sets.
As expected, strings which are more unlike Dutch resulted in smaller error.
Performance on random strings from Rif is almost perfect. In the opposite
case, the strings close to real words (from R)) resulted in larger error.

The generalization capabilities of the network were tested on the L3, positive

15

data, unseen during training. The error on this test set was about 6%. An
explanation of the increase of the error will be presented later, when the error
will be studied by varying its properties.

Another interesting issue is how SRN performance compares to other known
models, e.g. n-grams. The trained SRN definitely outperformed bigrams and
trigrams, which was shown by testing the trained SRNs on the non-words from
R% and R3; sets, yielding 19% and 35% error, respectively. This means that
the SRN correctly rejected four out of five non-word strings composed of correct
bigrams and two out of three non-word strings made of trigrams. To clarify,
note that bigram models would have 100% error on R%;, and trigram models
100% error on R%;.

4 Network Analysis

The distributed representations in Neural Networks prevent the analysis of gen-
eralizations in trained models by simple observation, which symbolic learning
methods allow. Smaller NNs may be analyzed to some extent by examination,
but for larger networks this is practically impossible.

It is possible, however, to analyze trained networks to extract abstract knowl-
edge about their behavior. Elman (1988), for example, trained an SRN to learn
sentences and then analyzed the hidden layer activations of that SRN in vari-
ous contexts, from which he showed that the network had internally developed
syntactical categories. Similarly, we trained SRNs on phonotactics (Stoianov
et al. 1998), and then analyzed the network statically, by viewing the weight
vectors of each neuron as pattern classifiers. We showed that the SRN had in-
duced generalizations about phonetic categories. We follow that earlier work in
order to study network behavior, and we present the results of this study in the
first subsection.

Another approach to the analysis of connectionist models assumes that
they are black boxes and examines the variation of network performance while
varying some properties of the data (Plaut et al. 1996, Stoianov, Stowe &
Nerbonne 1999). For example, one can vary word frequency, length, etc., and
study the network error. When modeling human cognitive functions with this
approach one can compare the behavior of the cognitive system and its artificial
models. For example, in phonotactics modeling, one can compare results from
psycholinguistic studies of a lexical decision task with the network reaction.
This will be subject of study in the rest of the section.

4.1 Weight Analysis

The neurons of a neural network act as pattern classifiers. The inputs selectively
activate one or another neuron, depending on the weight vectors. This means
that information about network structure may be extracted from the weight
vectors.

16

In this section we will present a cluster analysis of the neurons in the output
layer. For that purpose, the weight vectors of the output layer of one of the
networks—S RNV (from table 1)—were clustered by using Pearson correlation
coefficients. Then, a dendrogram of the vectors was created by using a minimum
variance (Ward’s) method, and each vector was labeled with the phoneme it
corresponds to?. The resulting diagram is shown in Figure 3.

We can see that the weight vectors (and correspondingly, the phonemes)
cluster into known major natural classes—vowels (in the bottom) and conso-
nants (the upper part). The vowels are split into two major categories: low and
semi-low, front vowels (/q, €, a, /), and high, back ones. The latter, in turn,
are clustered into round+ and round— classes. Consonants appear to be cate-
gorized in a way less congruent with phonetics. But here, too, some established
groups are distinguished. The first subgroup contains non-coronal consonants
(/f, k, m, p, x/) with the exceptions of /l/ and /n/. Another subgroup con-
tains voiced obstruents (/y, d, j, (/it}/). The delimiter ’#’ is also clustered as a
consonant, in a group with /t/, which is also natural. The upper part of the
figure seems to contain phonemes from different groups, but we can recognize
that most of these phonemes are quite rare in Dutch monosyllables, e.g., /o/,
perhaps because they have been ’loaned’ from other languages, e.g. /g/.

2The cluster analysis in Figure 3 was produced by programs written by Peter Kleiweg,
available at http://www.let.rug.nl/alfa

17

i

vwEe P adae N Be 280 0<S €4 < o0

S

— 0 S o vaom R xo BB

[=]

p

1.0 2.0 3.0 4.0

o
o

Figure 3: Cluster analysis of the vector of the output neurons, labeled with the
phonemes they correspond to. The weight vectors are split into clusters which

roughly correspond to existing phonetic categories.
18

4.2 Functional analysis

We may also study NNs by examining their performance as a function of fac-
tors such as word frequency, similarity neighborhood, and word length. Such an
analysis relates computational language modeling to psycholinguistics, and we
submit that it is useful to compare the models’ performance with humans’. In
this section we introduce several factors which have played a role in psycholin-
guistic theorizing. We then examine the performance of our model as a function
of these factors.

4.2.1 Psycholinguistic Factors

FREQUENCY is one of the most thoroughly investigated characteristics of words
that affect performance. Numerous previous studies have demonstrated that
the ease and the time with which spoken words are recognized are monotoni-
cally related to the experienced frequency of words in the language environment
(Luce, Pisoni & Goldinger 1990, Plaut et al. 1996). The general tendencies
found are that the more frequent words are, the faster and the more precise
they are recognized.

Our perception of a word is likewise known to depend on its similarity to
other words. The SIMILARITY NEIGHBORHOOD of a word is defined as the col-
lection of words that are phonetically similar to it. Some neighborhoods are
dense with many phonetically similar words while others are sparse with few.

The so-called Colthearth-N measure of a word w counts the number of words
that might be produced by replacing a single letter of w with some other. We
modify this concept slightly to make it sensitive to similarity of sub-syllabic
elements, so that we regard words as similar when they share two of the sub-
syllables—onset, nucleus and coda. Empty onsets or codas are counted as same.
The word neighborhood is computed by counting the number of the similar
words. If implemented precisely, the complexity of the measuring process con-
strued as just explained is high, so we reduce it by probing for sub-syllables
rather than for units of variable size, starting from a single phoneme. This sim-
plifies and speeds up processing. The neighborhood size of the corpus we used
ranged from 0 to 77 and had mean value of y = 30,0 = 13.

For example, the phonological neighborhood of the Dutch word broeds
/bruts/ is given below. Note that the neighborhood contains only Dutch words.

/brits/, /brots/, /bruj/, /bruit/, /bruk/, /brur/, /brus/, /brut/, /buts/,
/kuts/, /puts/, /tuts/

These represent the pronunciations of Brits ‘British’, broods ‘bread’ (gen.sg.),
broei ‘brew’, broeit ‘brew’ (3rd. sg.), broek ‘pants’, broer ‘brother’, broes ‘spray
nozzle’, broed ‘brood’; boots ‘boots’ (Eng. loan), koets ‘coach’, poets ‘clean’ and
toets ‘test’. Among the words with very poor neighborhood are /[vuy/ schwung,
/borts/ boards, /djojnt/ joint, and /skvers/ squares, all of which are of foreign
origin. Words such as /hek/ hek, /bas/ bas, /laxt/ lacht, and /bakt/ bakt have
large neighborhoods.

19

It is still controversial how similarity neighborhood influences cognitive pro-
cesses (Balota, Paul & Spieler 1999). Intuitively, it seems likely that words with
larger neighborhoods are easier to access due to many similar items, but from
another perspective these words might be more difficult to access due to the
nearby competitors and longer selection process. However, in the more specific
lexical decision task, the overall activity of many candidates has been shown to
facilitate lexical decisions, so we will look for the same effect here.

The property WORD LENGTH might affect performance in the lexical decision
task in two different ways. On one hand, longer words provide more evidence
since more phonemes are available to decide whether the input sequence is a
word so that we expect higher precision for longer words, and lower precision
for particularly short words. On the other hand, network error accumulating
in iteration increases the error in phoneme predictions at later positions, which
in turn will increase the overall error for longer words. For these reasons we
expect a U-shaped patterns of dependence as word length increases. Such a
pattern was observed in a study on modeling grapheme-to-phoneme conversion
with SRNs (Stoianov et al. 1999). Static NNs are less likely (than dynamic
models such as SRNs) to produce such patterns.

So far we have presented three main characteristics of the individual words,
which we expect to affect the performance of the model. However, a statistical
correlation analysis (bivariate Spearman test) showed that they are not indepen-
dent, which means that an analysis of the influence of any single factor should
control for the rest. In particular, there is high negative correlation between
word neighborhood and word length (—0.476) , smaller positive correlation be-
tween neighborhood and frequency (0.223), and very small negative correlation
between frequency and word length (—0.107). Because of the larger amount of
data all these coefficients are significant at the 0.001 level.

Finally, it will be useful to seek a correlate in the simulation for REAC-
TION TIME, which psycholinguists are particularly fond of using as a probe to
understanding linguistic structure. Perhaps we can find an SRN correlate to
Reaction Time (RT) for the lexical decision task in NETWORK CONFIDENCE,
i.e., the amount of evidence that the test string is a word from the training
language. The less confident the network, the slower the reaction, which can
be implemented with a lateral inhibition (Haykin 1994, Plaut et al. 1996). The
network confidence for a given word might be expressed as the product of the
activations of the neurons corresponding to the phonemes of that word. A simi-
lar measure, which we call uncertainty U is the negative sum of (output) neuron
activation logarithms, normalized with respect to word length |w| (2). Note that
U varies inversely with confidence. Less certain sequences get higher (positive)
scores.

|w
U= infe))

|w] &

To analyze the influence of these parameters, the network scores and U-

20

Frequency | Low | Mid | High

(a) U 2.30 | 2.20 | 2.18
Error (%) | 86 | 4.1 | 1.5
Neighb. size | Low | Mid | High

(b) U 2.62 | 2.30 | 2.21
Error (%) 1271 39 | 08
Length | Short | Mid | Long

() U 263 | 2.20 | 2.13
Error (%) | 5.2 4.4 | 131

Table 3: Effect of (a) frequency, (b) neighborhood density and (c¢) length effect
on word uncertainty U and word error.

values were recorded for each monosyllabic word at the optimal threshold
0* = 0.016. The data was then submitted to the statistical package SPSS
for analysis of variance using SPSS’s General Linear Model (GLM). When ana-
lyzing network score, the analysis revealed main effects of all three parameters
discussed above: word neighborhood size (F' = 18.4,p < 0.0001), word fre-
quency (F = 19.2,p < 0.0001), word length (F = 11.5,p < 0.0001). There
was also interaction between neighborhood size and the other parameters: the
interaction with word frequency had an F-score 6.6 and the interaction of the
neighborhood with word length had and F-score of 4.9, both significant at 0.0001
level. Table 3 summarizes the findings. Error decreases both as neighborhood
size and as frequency increases, and error dependent on length shows the pre-
dicted U-shaped form (Table 3c).

Analysis of variance on the U-values revealed similar dependencies. There
were main effects of word neighborhood size (F' = 58.2,p < 0.0001), word
frequency (F' = 45.9,p < 0.0001), word length (F' = 137.5,p < 0.0001), as well
as the earlier observed interactions between neighborhood density and the other
two variables: word length (F' = 10.4,p < 0.001) and frequency (F = 5.235,p <
0.005).

The frequency pattern of error and uncertainty variance was expected, given
the increased evidence to the network for more frequent words. The displayed
length effect showed that the influence of error gained in recursion is weaker
than the effect of stronger evidence for longer words. Also, the pattern of
performance when varying neighborhood density confirmed the hypothesis of
the lexical decision literature that larger neighborhoods makes it easier for words
to be recognized as such.

4.3 Syllabic structure

Phonotactic constraints might hint at how the stream of phonemes is organized
in the language processing system. The popular phoneme, syllable and word

21

Word Position | 2 | 3 | 4 | 5 | 6 | 7| 8

®) Frror @) 43171406] 03] 0.3 | 0.00
Sub-syllables | Onset | Nucleus | Coda
(b) Relative Position | 2 3 1 1 2 3 | 4
Error(%) 26 (00| 45 |1.0]15]20]26

Table 4: Distribution of phoneme prediction error at a threshold of 0.016 by (a)
phoneme position within words and (b) phoneme position within sub-syllables.
Word and Onset positions start from 2, because the prediction starts after the
first phoneme.

entities may not be the only units that we use for lexical access and production.
There are suggestions that in addition, some sub-syllabic elements are involved
in those processes, that is, the syllables might have not linear structure, but
more complex representations (Kessler & Treiman 1997). For that purpose, we
will analyze how the phoneme prediction error at a threshold of 0.016—where
the network resulted in best word recognition—is located within words with
respect to the following sub-syllabic elements—onset, nucleus and coda. The
particular hypothesis that will be tested is whether Dutch monosyllables follow
structure below that was found in English as well (Kessler & Treiman 1997).

(Onset - Rhyme (Nucleus - Coda))

The distribution of phoneme error within words (Table 4a) shows that the
network makes more mistakes at the beginning than at the end of words, where
SRN becomes more confident in its decision. This could be explained with
increasing contextual information that more severely restricts possible phonemic
combinations. A more precise analysis of the error position in the onset, the
nucleus and the coda further reveals other interesting phenomena (Table 4b).

First, error within the coda increases at the coda’s end. We attribute this to
error accumulated toward the end of the words, as was predicted earlier. The
mean entropy in the coda (1.32,0 = 0.87) is smaller than the mean entropy
in the onset (1.53,0 = 0.78), where we do not observe such effects. So looser
constraints are not the reason for the relatively greater error in the coda.

Next, the error at the transition onset-nucleus is much higher than the error
at the surrounding positions, which means that the break between onset and
rhyme (the conjunction nucleus-coda) is significant. This distribution is also
consistent with the statistical finding that the entropy is larger in the body (the
transition point onset-nucleus) (3.45,0 = 0.39), than in the rhyme (1.94,0 =
1.21). All this data support the hypothesis that onset and rhyme play significant
roles in lexical access and that the syllabic structure confirmed for English by
Kessler & Treiman (1997) is valid for Dutch, too.

22

5 Conclusions

Phonotactic constraints restrict the way phonemes combine in order to form
words. These constraints are empirical and can be abstracted from the lexicon—
either by extracting rules directly, or via models of that lexicon. Existing lan-
guage models are usually based on abstract symbolic methods, which provide
good tools for studying such knowledge. But linguistic research from a connec-
tionist perspective can provide a fresh perspective about language because the
brain and artificial neural networks share principles of computations and data
representations.

Connectionist language modeling, however, is a challenging task. Neural
networks use distributed processing and continuous computations, while lan-
guages have a discrete, symbolic nature. This means that some special tools
are necessary if one is to model symbolic problems with connectionist models.
The research reported in this paper attempted to provide answers to two basic
questions: First, whether phonotactic learning is possible at all in connectionist
systems, which had been doubted earlier (Tjong Kim Sang 1995, Tjong Kim
Sang 1998). In the case of a positive answer, the second question is how NN
performance compares to human ability. In order to draw this comparison, we
needed to extract the phonotactic knowledge from a network which has learned
the sequential structure. We proposed several ways of doing this.

Section 3 studied the first question. Even if there are theoretical results
demonstrating that NNs have the needed finite-state capacity for phonotactic
processing, there are practical limitations, so that we needed experimental sup-
port to demonstrate the practical capability of SRNs to learn phonotactics. A
key to solving the problems of earlier investigators was to focus on finding a
threshold that optimally discriminated the continuous neuron activations with
respect to phoneme acceptance and rejection simultaneously. The threshold
range at which the network achieves good discrimination is very small (see Fig-
ure 2), which illustrates how critical the exact setting of the threshold is. We also
suggested that this threshold might be computed interactively, after processing
each symbol, which is cognitively plausible, but we postpone a demonstration
of this to another paper.

The network performance on word recognition—word acceptance rate of 95%
and random string rejection rate of 95% at a threshold of 0.016—competes with
the scores of symbolic techniques such as Inductive Logic Programming and
Hidden Markov Models (Tjong Kim Sang 1998), both of which reflect low-level
human processing architecture with less fidelity.

Section 4 addressed the second question of how other linguistic knowledge
encoded into the networks can be extracted. Two approaches were used. Sec-
tion 4.1 clustered the weights of the network, revealing that the network has
independently become sensitive to established phonetic categories.

We went on to analyze how various factors which have been shown to play a
role in human performance find their counterparts in the network’s performance.
Psycholinguistics has shown, for example, the ease and the time with which
spoken words are recognized are monotonically related to the frequency of words

23

in the language environment (Luce et al. 1990). The model likewise reflected
the importance of neighborhood density in facilitating word recognition, which
we speculated stems from the supportive evidence which more similar patterns
lend to the words in their neighborhood. Whenever network and human subjects
exhibit a similar sensitivity to well-established parameters, we see a confirmation
of the plausibility of the architecture chosen.

Finally, the distribution of the errors within the words showed another lin-
guistically interesting result. In particular, the network tended to err more often
at the transition onset-nucleus—which is also typical for transitions between
adjacent words in the speech stream and used for speech segmentation. Analog-
ically, we can conclude from this that the conjunction nucleus-coda—rhyme—is
a significant linguistic unit for the Dutch language, a result suggested earlier for
English (Kessler & Treiman 1997).

We wind up this conclusion with one disclaimer and a repetition of the central
claim. We have not claimed that SRNs are the only (connectionist) model
capable of dynamic processing, nor that they are biologically the most plausible
neural network. Our central claim is to have demonstrated that relatively simple
connectionist mechanisms have the capacity to model and learn phonotactic
structure.

References

Aho, Alfred, John Hopcroft & Jeffrey Ullman (1983), Data Structures and Al-
gorithms, Addison Wesley.

Balota, David, Stephen Paul & Daniel Spieler (1999), Attentional control of lexi-
cal processing pathways during word recognition and reading, in S. Garrod
& M. Pickering, eds, ‘Studies in cognition: Language processing’, UCL
Press, London,England, pp. 15-57.

Cairns, Paul, R. Shillcock, Nick Chater & Joe Levy (1997), ‘Bootstrapping word
boundaries: A bottom-up corpus-based approach to speech segmentation’,
Cognitive Psychology 33(2), 111-153.

Carrasco, Rafael, Mikel Forcada & Ramon Neco (1999), ‘Stable encoding of
finite-state machines in discrete-time recurrent neural networks with sig-
moid units’, Neural Computations 12(9), 2129-2174.

Carstairs-McCarthy, Andrew (1999), The Origins of Complex Language, Oxford
Univ Press.

CELEX (1993), ‘The celex lexical data base (cd-rom)’, Linguistic Data Consor-
tium. URL = http://www.kun.nl/celex.

Christiansen, Morton H. & Nick Chater (1999), ‘Toward a connectionist model
of recursion in human linguistic performance’, Cognitive Science 23, 157—
205.

24

Cleeremans, A., D. Servan-Schreiber & J.L. McClelland (1989), ‘Finite state
automata and simple recurrent networks’, Neural Computation pp. 372—
381.

Cohen, A., C. Ebeling & A.G.F. van Holk (1972), Fonologie van het Nederlands
en her Fries, Martinus Nijhoff, The Hague.

Dell, Gary, Cornell Juliano & Anita Govindjee (1993), ‘Structure and content in
language production: A theory of frame constraints in phonological speech
errors’, Cognitive Science 17, 145-195.

Dupoux, Emmanuel, Christophe Pallier, Kazuhiko Kakehi & Jacques Mehler
(2001), ‘New evidence for prelexical phonological processing in word recog-
nition’, Language and Cognitive Processes 5(16), 491-505.

Elman, Jeffrey L. (1988), Finding structure in time, Technical Report 9901,
Center for Research in Language, UCSD, CA.

Elman, Jeffrey L. (1991), ‘Distributed representations, simple recurrent net-
works, and grammatical structure’, Machine Learning 7(2/3), 195-226.

Gasser, Michael (1992), Learning distributed representations for syllables, in
‘Proc. of 14th Annual Conference of Cognitive Science Society’, pp. 396—
401.

Haykin, Simon (1994), Neural Networks, Macmillian Publ, NJ.

Kaplan, Ronald & Martin Kay (1994), ‘Regular models of phonological rule
systems’, Computational Linguistics 20/3, 331-378.

Kessler, Brett & Rebecca Treiman (1997), ‘Syllable structure and the distribu-
tion of phonemes in english syllables’, Journal of Memory and Language
37, 295-311.

Konstantopoulos, Stasinos (2003), Using Inductive Logic Programming to Learn
Local Linguistic Structures, PhD thesis, Rijksuniversiteit Groningen.

Kuan, Chung-Ming, Kurt Hornik & Halbert White (1994), ‘A convergence result
for learning in recurrent neural networks’, Neural Computations 6, 420-440.

Laver, John (1994), Principles of Phonetics, Cambridge Univeristy Press, Cam-
bridge.

Lawrence, Steve, C. Lee Giles & S. Fong (1995), On the applicability of neural
networks and machine learning methodologies to natural language process-
ing, Technical report, Univ. of Maryland.

Luce, Paul L., David B. Pisoni & Steven D. Goldinger (1990), Similarity neigh-
borhoods of spoken words, in G. T. M. Altmann, ed., ‘Cognitive Models
of Speech Processing’, A Bradford Book, Cambridge, Massachusetts, USA,
pp- 122-147.

25

McQueen, James (1998), ‘Segmentation of continuous speech using phonotac-
tics’, Journal of Memory and Language 39, 21-46.

Mitchell, Thomas (1997), Machine Learning, McGraw Hill College.

Nerbonne, John, Wilbert Heeringa & Peter Kleiweg (1999), Edit distance and
dialect proximity, in D. Sankoff & J. Kruskal, eds, ‘Time Warps, String
Edits and Macromolecules: The Theory and Practice of Sequence Com-
parison, 2nd ed.’, CSLI, Stanford, CA, pp. v—xv.

Norris, D., J.M. McQueen, A. Cutler & S. Butterfield (1997), ‘The possible-word
constraint in the segmentation of continous speech’, Cognitive Psychology
34, 191-243.

Omlin, Christian W. & C. Lee Giles (1996), ‘Constructing deterministic
finite-state automaya in recurrent neural networks’, Journal of the ACM
43(6), 937-972.

Pacton, S., P. Perruchet, M. Fayol & A. Cleeremans (2001), ‘Implicit learning
in real world context: The case of orthographic regularities’, Journal of
Ezperimental Psychology: General 130(3), 401-426.

Plaut, D.C., J. McClelland, M. Seidenberg & K. Patterson (1996), ‘Under-
standing normal and impaired word reading: Computational principles in
quasi-regular domains’, Psychological Review 103, 56-115.

Reed, Russell D. & Robert J. Marks II (1999), Neural Smithing, MIT Press,
Cambridge, MA.

Reilly, Ronan (2002), ‘The relationship between object manipulation and lan-
guage development in broca’s area: A connectionist simulation of green-
field’s hypothesis’, Behavioral and Brain Sciences 25, 145-153.

Robinson, A. J. & F. Fallside (1988), Static and dynamic error propagation
networks with application to speech coding, in D. Z. Anderson, ed., ‘Neural
Information Processing Systems’, American Institute of Physics, NY.

Rodd, Jenifer (1997), Recurrent neural-network learning of phonological regular-
ities in Turkish, in ‘Proc. of Int. Conf. on Computational Natural Language
Learning’, Madrid, pp. 97-106.

Rumelhart, David E. & James A. McClelland (1986), Parallel Distributed Pro-
cessing - Explorations of the Microstructure of Cognition, The MIT Press,
Cambridge, MA.

Rumelhart, D.E., G.E. Hinton & R.J. Williams (1986), Learning internal repre-
sentations by error propagation, in D. E. Rumelhart & J. A. McClelland,
eds, ‘Parallel Distributed Processing - Explorations of the Microstructure
of Cognition, Volume 1, Foundations’, The MIT Press, Cambridge, MA,
pp- 318 — 363.

26

Shillcock, R., Paul Cairns, Nick Chater & Joe Levy (1997), Statistical and con-
nectionist modelling of the development of speech segmentation, in Broeder
& Murre, eds, ‘Models of Language Learning’, MIT Press.

Shillcock, Richard, Joe Levy, Geoff Lindsey, Paul Cairns & Nick Chater (1993),
Connectionist modelling of phonological space, in T. M. Ellison & J. Scob-
bie, eds, ‘Computational Phonology’, Edinburgh, pp. 179-195. Edinburgh
Working Papers in Cognitive Science 8.

Stoianov, Ivelin Peev (1998), Tree-based analysis of simple recurrent network
learning, in ‘36 Annual Meeting of the Association for Computational Lin-
guistics and 17 Int. Conference on Compuational Linguistics’, Vol. 2, Mon-
treal, Canada, pp. 1502-1504.

Stoianov, Ivelin Peev (2001), Connectionist Lexical Modellinig, PhD thesis, Uni-
versity of Groningen, the Netherlands.

Stoianov, Ivelin Peev & John Nerbonne (2000), Exploring phonotactics with
simple recurrent networks, in F. van Eynde, I. Schuurman & N. Schelkens,
eds, ‘Computational Linguistics in the Netherlands, 1998’, Rodopi, Ams-
terdam, NL, pp. 51-68.

Stoianov, Ivelin Peev, John Nerbonne & Huub Bouma (1998), Modelling the
phonotactic structure of natural language words with simple recurrent net-
works, in P.-A. Coppen, H. van Halteren & L. Teunissen, eds, ‘Compu-
tational Linguistics in the Netherlands, 1997’, Rodopi, Amsterdam, NL,
pp. 77-96.

Stoianov, Ivelin Peev, Laurie Stowe & John Nerbonne (1999), Connectionist
learning to read aloud and correlation to human data, in ‘21 Annual Meet-
ing of the Cognitive Science Society, Vancouver, Canada’, Lawrence Eurl-
baum Ass., London, pp. 706-711.

Stowe, Laurie, Anton Wijers, A. Willemsen, Eric Reuland, A. Paans & Wim
Vaalburg (1994), ‘Pet studies of language: An assessment of the reliability
of the technique’, Journal of Psycholinguistic Research 23(6), 499-527.

Tjong Kim Sang, Erick (1995), The limitations of modeling finite state gram-
mars with simple recurrent networks, in ‘Proc of 5-th CLIN’, pp. 133-143.

Tjong Kim Sang, Erick (1998), Machine Learning of Phonotactics, PhD thesis,
University of Groningen.

Tjong Kim Sang, Erik & John Nerbonne (1999), Learning simple phonotactics,
in ‘Proceedings of the Workshop on Neural, Symbolic, and Reinforcement
Methods for Sequence Processing, ML2 workshop at IJCAT'99’, pp. 41-46.

Treiman, R. & A. Zukowski (1990), ‘Toward an understanding of english syllab-
ification’, Journal of Memory and Language 34, 66-85.

27

Tsoi, Ah Chung & Andrew Back (1997), ‘Discrete time recurrent neural network
architectures: A unifying revew’, Neurocomputing 15, 183-223.

28

