Statistiek II

John Nerbonne

Dept of Information Science
j.nerbonne@rug.nl

October 1, 2010

Course outline

1 One-way ANOVA.
2 Factorial ANOVA.
3 Repeated measures ANOVA.
4 Correlation and regression.
5 Multiple regression.
6 Logistic regression.

Lecture outline

Today: One-way ANOVA

1 General motivation
$2 F$-test and F-distribution
3 ANOVA example
4 The logic of ANOVA
Short break

5 ANOVA calculations
6 Post-hoc tests

What's ANalysis Of VAriance (ANOVA)?

- Most popular statistical test for numerical data
- Generalized t-test
- Compares means of more than two groups
- Fairly robust
- Based on F-distribution
- compares variances (between groups and within groups)
- Two basic versions:
a One-way (or single) ANOVA: compare groups along one dimension, e.g., grade point average by school class
b N -way (or factorial) ANOVA: compare groups along ≥ 2 dimensions, e.g., grade point average by school class and gender

Typical applications

- One-way ANOVA:

Compare time needed for lexical recognition in

1. healthy adults
2. patients with Wernicke's aphasia
3. patients with Broca's aphasia

- Factorial ANOVA:

Compare lexical recognition time in male and female in the same three groups

Comparing multiple means

- For two groups: use t-test
- Note: testing for p-value of 0.05 shows significance 1 time in 20 if there is no difference in population mean (effect of chance)
- But suppose there are 7 groups, i.e., we test $\binom{7}{2}=21$ pairs of groups
- Caution: several tests (on the same data) run the risk of finding significance through sheer chance

Multiple comparison problem

Example: Suppose you run $k=3$ tests, always seeking a result significant at $\alpha=0.05$
\Rightarrow probability of getting at least one false positive is given by:

$$
\begin{aligned}
\alpha_{F W} & =1-P(\text { zero false positive results }) \\
& =1-(1-\alpha)^{k} \\
& =1-(1-0.05)^{3} \\
& =1-(0.95)^{3} \\
& =0.143
\end{aligned}
$$

Hence, with only 3 pairwise tests, the chance of committing type I error almost 15% (and 66% for 21 tests!)
$\alpha_{\text {FW }}$ called Bonferroni family-wise α-level

Bonferroni correction for multiple comparisons

To guarantee a family-wise α-level of 0.05 , divide α by number of tests.

Example: $0.05 / 3(=\alpha / \#$ tests $)=0.017$ (note: $0.983^{3} \approx 0.95$)
\Rightarrow set $\alpha=0.017$ ($=$ Bonferroni-corrected α-level)

- If p-value is less than the Bonferroni-corrected target α : reject the null hypothesis.
- If p-value greater than the Bonferroni-corrected target α : do not reject the null hypothesis.

Analysis of variance

- ANOVA automatically corrects for looking at several relationships (like Bonferroni correction)
- Based on F-distribution: Moore \& McCabe, §7.3, pp. 435-445
- Measures the difference between two variances (variance σ^{2})

$$
F=\frac{s_{1}^{2}}{s_{2}^{2}}
$$

- always positive since variances are positive
- two degrees of freedom interesting, one for s_{1}, one for s_{2}

F-test vs. F-distribution

F-value: $\quad F=\frac{s_{1}^{2}}{s_{2}^{2}}$

- F-values used in F-test (Fisher's test)
H_{0} : samples are from same distribution ($s_{1}=s_{2}$)
H_{a} : samples are from different distributions $\left(s_{1} \neq s_{2}\right)$
- value near 1 indicates same variance
- value near 0 or $+\infty$ indicates difference in variance
- F-test very sensitive to deviations from normal
- ANOVA uses F-distribution, but is different: ANOVA \neq F-test!

F-distribution

Critical area for F-distribution at $p=0.05$ (df: 12,10)

Note the symmetry: $P\left(\frac{s_{1}^{2}}{s_{2}^{2}}<x\right)=P\left(\frac{s_{2}^{2}}{s_{1}^{2}}>\frac{1}{x}\right)$
(because $y<x \Leftrightarrow \frac{1}{y}>\frac{1}{x}$ for $x, y \in \mathbb{R}^{+}$)

F-test

Example: height

group	sample size	mean	standard deviation
boys	16	180 cm	6 cm
girls	9	168 cm	4 cm

Is the difference in standard deviation significant?
Examine $F=\frac{s_{\text {boys }}^{2}}{s_{\text {girls }}^{2}}$
Degrees of freedom: $\quad \mathrm{df}_{\text {boys }}=16-1$

$$
\mathrm{df}_{\text {girls }}=9-1
$$

F-test critical area (for two-tailed test with $\alpha=0.05$)

$$
\begin{aligned}
& P(F(15,8)>x)= \frac{\alpha}{2}=0.025 \\
& P(F(15,8)<x)= 1-0.025 \\
& P(F(15,8)<\underline{4.1})= 0.975 \text { Moore \& McCabe, Table E, p. } 706 \\
&\left(\text { no values directly for } P\left(F\left(d f_{1}, d f_{2}\right)>x\right)\right) \\
& P(F(15,8)<x)= 0.025 \\
& \Leftrightarrow \quad P\left(F(8,15)>x^{\prime}\right)= 0.025 \text { where } x^{\prime}=\frac{1}{x} \\
& \Leftrightarrow \quad P(F(8,15)>3.2)= 0.025 \text { (tables) } \\
& \Leftrightarrow \quad P\left(F(15,8)<\frac{1}{3.2}\right)=0.025 \\
& \Leftrightarrow P(F(15,8)<\underline{0.31})=0.025
\end{aligned}
$$

Reject H_{0} if $F<0.31$ or $F>4.1$
Here, $F=\frac{6^{2}}{4^{2}}=2.25$ (hence no evidence of difference in distributions)

ANOVA

Analysis of Variance (ANOVA) most popular statistical test for numerical data

- several types
- single, "one-way"
- factorial, "two-, three-,...., n-way"
- single/factorial repeated measures
- examines variation
- "between-groups"-gender, age, etc.
- "within-groups"—overall
- automatically corrects for looking at several relationships (like Bonferroni correction)
- uses F-distribution, where $F(n, m)$ fixes n typically at the number of groups (minus 1), m at the number of subjects, i.e., data points (minus number of groups)

Detailed example: one-way ANOVA

Question: Are exam grades of four groups of foreign students "Nederlands voor anderstaligen" the same? More exactly, are the four averages the same?
$H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}$
$H_{a}: \mu_{1} \neq \mu_{2}$ or $\mu_{1} \neq \mu_{3} \ldots$ or $\mu_{3} \neq \mu_{4}$
Alternative hypothesis: at least one group has a different mean
For the question of whether any particular pair is different, the t-test is appropriate.

For testing whether all language groups are the same, pairwise t-tests exaggerate differences (increase the chance of type I error)

We therefore want to apply one-way ANOVA

Data: Dutch proficiency of foreigners

Four groups of ten students each:
Group

	Europe	America	Africa	Asia
	10	33	26	26
	19	21	25	21
	\vdots	\vdots	\vdots	\vdots
	31	20	15	21
Mean	25.0	21.9	23.1	21.3
Samp. SD	8.14	6.61	5.92	6.90
Samp. Variance	66.22	43.66	34.99	47.57

ANOVA conditions

ANOVA assumptions:

- Normal distribution per subgroup
- Same variance in subgroups: least SD > one-half of largest SD
- independent observations: watch out for test-retest situations!

Check differences in SD's! (some SPSS computing)

	Valid		
Variable	Std Dev	N	Label
Europa	8.14	10	
America	6.61	10	
Africa	5.92	10	
Azie	6.90	10	

ANOVA conditions

Assumption: normal distribution per group, check with normal quantile plot, e.g., for Europeans below (repeat for every group)

Normal Q-Q plot of toets.nl voor anderstalige

Observed \vee alue

Visualizing ANOVA data

Is there a significant difference in the means (of the groups being contrasted)?

Take care that boxplots sketch medians not means.

Sketch of ANOVA

Group			
1	2	3	4
Eur.	Amer.	Africa	Asia
\vdots	\vdots	\vdots	\vdots
$x_{1 j}$	$x_{2 j}$	$x_{3 j}$	$x_{4 j}$
\vdots	\vdots	\vdots	\vdots
\bar{x}_{1}	\bar{x}_{2}	\bar{x}_{3}	\bar{x}_{4}

Notation:
Group index: $i \in\{1,2,3,4\}$
Sample index: $j \in N_{i}=$ size of group i
Data point $x_{i j}$: i th group, j th observation
Number of groups: $I=4$
Total mean: \bar{x}
Group mean: \bar{x}_{i}
For any data point $x_{i j}$:

$$
\begin{aligned}
\left(x_{i j}-\bar{x}\right) & =\left(\bar{x}_{i}-\bar{x}\right)+\left(x_{i j}-\bar{x}_{i}\right) \\
\text { total residue } & =\text { group diff. }+ \text { "error" }
\end{aligned}
$$

ANOVA question: does group membership influence the response variable?

Two variances

Reminder of high school algebra: $(a+b)^{2}=a^{2}+b^{2}+2 a b$

Two variances

Data point $x_{i j}$:

$$
\left(x_{i j}-\bar{x}\right)=\left(\bar{x}_{i}-\bar{x}\right)+\left(x_{i j}-\bar{x}_{i}\right)
$$

Want sum of squared deviates for each group:

$$
\left(x_{i j}-\bar{x}\right)^{2}=\left(\bar{x}_{i}-\bar{x}\right)^{2}+\left(x_{i j}-\bar{x}_{i}\right)^{2}+2\left(\bar{x}_{i}-\bar{x}\right)\left(x_{i j}-\bar{x}_{i}\right)
$$

Sum over elements in ith group:

$$
\sum_{j=1}^{N_{i}}\left(x_{i j}-\bar{x}\right)^{2}=\sum_{j=1}^{N_{i}}\left(\bar{x}_{i}-\bar{x}\right)^{2}+\sum_{j=1}^{N_{i}}\left(x_{i j}-\bar{x}_{i}\right)^{2}+\sum_{j=1}^{N_{i}} 2\left(\bar{x}_{i}-\bar{x}\right)\left(x_{i j}-\bar{x}_{i}\right)
$$

Two variances

Note that this term must be zero:

$$
\sum_{j=1}^{N_{i}} 2\left(\bar{x}_{i}-\bar{x}\right)\left(x_{i j}-\bar{x}_{i}\right)
$$

Because:
(a) $\sum_{j=1}^{N_{i}} 2\left(\bar{x}_{i}-\bar{x}\right)\left(x_{i j}-\bar{x}_{i}\right)=2\left(\bar{x}_{i}-\bar{x}\right) \underbrace{\sum_{j=1}^{N_{i}}\left(x_{i j}-\bar{x}_{i}\right)}_{0}$
(b)

$$
\sum_{j=1}^{N_{i}}\left(x_{i j}-\bar{x}_{i}\right)=0 \Leftrightarrow \bar{x}_{i}=\frac{\sum_{j=1}^{N_{i}} x_{i j}}{N_{i}}
$$

Two variances

So we have:

$$
\begin{aligned}
\sum_{j=1}^{N_{i}}\left(x_{i j}-\bar{x}\right)^{2}= & \sum_{j=1}^{N_{i}}\left(\bar{x}_{i}-\bar{x}\right)^{2}+\sum_{j=1}^{N_{i}}\left(x_{i j}-\bar{x}_{i}\right)^{2} \\
& \left(+\sum_{j=1}^{N_{i}} 2\left(\bar{x}_{i}-\bar{x}\right)\left(x_{i j}-\bar{x}_{i}\right)=0\right)
\end{aligned}
$$

Therefore:

$$
\sum_{j=1}^{N_{i}}\left(x_{i j}-\bar{x}\right)^{2}=\sum_{j=1}^{N_{i}}\left(\bar{x}_{i}-\bar{x}\right)^{2}+\sum_{j=1}^{N_{i}}\left(x_{i j}-\bar{x}_{i}\right)^{2}
$$

And finally we can sum over all groups:

$$
\sum_{i=1}^{I} \sum_{j=1}^{N_{i}}\left(x_{i j}-\bar{x}\right)^{2}=\sum_{i=1}^{I} \sum_{j=1}^{N_{i}}\left(\bar{x}_{i}-\bar{x}\right)^{2}+\sum_{i=1}^{I} \sum_{j=1}^{N_{i}}\left(x_{i j}-\bar{x}_{i}\right)^{2}
$$

ANOVA terminology

$$
\begin{array}{ccccc}
\left(x_{i j}-\bar{x}\right) & = & \left(\bar{x}_{i}-\bar{x}\right) & + & \left(x_{i j}-\bar{x}_{i}\right) \\
\text { total residue } & = & \text { group diff. } & + & \text { "error"" }
\end{array}
$$

$$
\begin{array}{cccc}
\sum_{i=1}^{I} \sum_{j=1}^{N_{i}}\left(x_{i j}-\bar{x}\right)^{2} & =\sum_{i=1}^{l} N_{i}\left(\bar{x}_{i}-\bar{x}\right)^{2} & +\sum_{i=1}^{I} \sum_{j=1}^{N_{i}}\left(x_{i j}-\bar{x}_{i}\right)^{2} \\
\text { SST SSG } & & \text { SSE } \\
\text { Total Sum of Squares } & =\quad \text { Group Sum of Squares } & +\quad \text { Error Sum of Squares }
\end{array}
$$

$$
(n-1)
$$

DFT

Total Degrees of Freedom $=$ Group Degrees of Freedom + Error Degrees of Freedom

Variances are mean squared differences to the mean

Note that
SST/DFT: $\frac{\sum_{i=1}^{l} \sum_{j=1}^{N_{i}}\left(x_{i j}-\bar{x}\right)^{2}}{n-1}$ is a variance, and likewise SSG/DFG: labelled MSG ("Mean square between groups"), and SSE/DFE: labelled MSE ("Mean square error" or sometimes "Mean square within groups")

In ANOVA, we compare MSG (variance between groups) and MSE (variance within groups), i.e. we measure

$$
F=\frac{\mathrm{MSG}}{\mathrm{MSE}}
$$

If this F-value is large, differences between groups overshadow differences within groups.

Two variances

1) Estimate the pooled variance of the population (MSE):

$$
\text { MSE }=\frac{\mathrm{SSE}}{\mathrm{DFE}}=\frac{\sum_{i=1}^{1} \sum_{j=1}^{N_{i}}\left(x_{i j}-\bar{x}_{i}\right)^{2}}{n-l} \stackrel{\text { equiv }}{=} \frac{\sum_{i=1}^{l} \mathrm{DF}_{i} \cdot s_{i}^{2}}{\sum_{i=1}^{1} \mathrm{DF}_{i}}
$$

In our example (Nederlands for anderstaligen):

$$
\begin{aligned}
\frac{\sum_{i=1}^{1} \mathrm{DF}_{i} \cdot s_{i}^{2}}{\sum_{i=1}^{l} \mathrm{DF}_{i}} & =\frac{\left(N_{1}-1\right) s_{1}^{2}+\left(N_{3}-1\right) s_{2}^{2}+\left(N_{3}-1\right) s_{3}^{2}+\left(N_{4}-1\right) s_{4}^{2}}{\left(N_{1}-1\right)+\left(N_{3}-1\right)+\left(N_{3}-1\right)+\left(N_{4}-1\right)} \\
& =\frac{9 \cdot 66.22+9 \cdot 43.66+9 \cdot 34.99+9 \cdot 47.57}{9+9+9+9} \\
& =\frac{595.98+392.94+314.91+428.13}{36}=48.11
\end{aligned}
$$

Estimates the variance in groups (using DF), aka within-groups estimate of variance

Two variances

2) Estimate the between-groups variance of the population (MSG):

$$
\text { MSG }=\frac{\text { SSG }}{\text { DFG }}=\frac{\sum_{i=1}^{l} N_{i}\left(\bar{x}_{i}-\bar{x}\right)^{2}}{I-1}
$$

In our example (Nederlands for anderstaligen):
We had 4 group means: 25.0, 21.9, 23.1, 21.3, grand mean: 22.8

$$
\text { MSG }=\frac{10 \cdot\left((25-22.8)^{2}+(21.9-22.8)^{2}+(23.1-22.8)^{2}+(21.3-22.8)^{2}\right)}{4-1}=26.6
$$

The between-groups variance (MSG) is an aggregate estimate of the degree to which the four sample means differ from one another

Interpreting estimates with F-scores

If H_{0} is true, then we have two variances:

- Between-groups estimate: $s_{b g}^{2}=26.62$ and
- Within-groups estimate: $\quad s_{\text {wg }}^{2}=48.11$
and their ratio $\frac{s_{b g}^{2}}{s_{\mathrm{wg}}^{2}}$ follows an F-distribution with:
(\# groups -1) $=3$ degrees of freedom for $s_{b g}^{2}$ and (\# observations $-\#$ groups $)=36$ degrees of freedom for $s_{w g}^{2}$

In our example: $F(3,36)=\frac{26.62}{48.11}=0.55$
$\mathrm{P}(F(3,40)>2.84)=0.05$ (see tables), so there is no evidence of non-uniform behavior

SPSS summary

No evidence of non-uniform behavior

Other questions

ANOVA $H_{0}: \mu_{1}=\mu_{2}=\ldots=\mu_{n}$
But sometimes particular contrasts are important-e.g., are Europeans better (in learning Dutch)?

Distinguish (in reporting results):

- prior contrasts
questions asked before data is collected and analyzed
- post hoc (posterior) questions
questions asked after data collection and analysis
"data-snooping" is exploratory, cannot contribute to hypothesis testing

Prior contrasts

Questions asked before data collection and analysis-e.g., are Europeans better (in learning Dutch)?

Another way of putting this:

$$
\begin{aligned}
& H_{0}: \mu_{\text {Eur }}=\frac{1}{3}\left(\mu_{\mathrm{Am}}+\mu_{\mathrm{Afr}}+\mu_{\text {Asia }}\right) \\
& H_{a}: \mu_{\mathrm{Eur}} \neq \frac{1}{3}\left(\mu_{\mathrm{Am}}+\mu_{\mathrm{Afr}}+\mu_{\text {Asia }}\right)
\end{aligned}
$$

Reformulation (SPSS requires this):

$$
H_{0}: \quad 0=-\mu_{\text {Eur }}+0.33 \mu_{\text {Am }}+0.33 \mu_{\mathrm{Afr}}+0.33 \mu_{\text {Asia }}
$$

Prior contrasts in SPSS

- Mean of every group gets a coefficient
- Sum of coefficients is 0
- A t-test is carried out and two-tailed p-value is reported (as usual):

No significant difference here (of course)
Note: prior contrasts are legitimate as hypothesis tests as long as they are formulated before data collection and analysis

Post-hoc questions

Assume H_{0} is rejected: which means are distinct?
Data-snooping problem: in a large set, some distinctions are likely to be statistically significant

But we can still look (we just cannot claim to have tested the hypothesis)

We are asking whether $m_{i}-m_{j}$ is significantly larger, we apply a variant of the t-test

The relevant sd is $\sqrt{\frac{\text { MSE }}{n}}$ (differences among scores), but there is a correction since we're looking at a proportion of the scores in any one comparison

SD in post-hoc ANOVA questions

Standard deviation (among differences in groups i and j):
$s d=\sqrt{M S E \times \frac{N_{i}+N_{j}}{N}}=\sqrt{48.1 \times \frac{10+10}{40}}=4.9$
$t=\frac{\bar{x}_{i}-\bar{x}_{j}}{\mathrm{sd} \cdot \sqrt{\frac{1}{N_{i}}+\frac{1}{N_{j}}}}$

The critical t-value is calculated as $\frac{p}{c}$ where p is the desired significance level and c is the number of comparisons.

For pairwise comparisons: $c=\binom{1}{2}$

Post-hoc questions in SPSS

SPSS post-hoc 'Bonferroni'-searches among all groupings for statistically significant ones

But in this case there are none (of course)

How to win at ANOVA

Note the ways in which the F-ratio increases (i.e., becomes more significant):

$$
F=\frac{\mathrm{MSG}}{\mathrm{MSE}}
$$

1. MSG increases: differences in means between groups grow larger
2. MSE decreases: overall variation within groups grows smaller

Two models for grouped data

$$
\begin{aligned}
x_{i j} & =\mu+\epsilon_{i j} \\
x_{i j} & =\mu+\alpha_{i}+\epsilon_{i j}
\end{aligned}
$$

First model:

- no group effect
- each data point represents error (ϵ) around a mean (μ)

Second model:

- real group effect
- each data point represents error (ϵ) around an overall mean (μ), combined with a group adjustment $\left(\alpha_{i}\right)$

ANOVA asks: is there sufficient evidence for α_{i} ?

Next week

Next week: factorial ANOVA

