## Statistiek II

#### John Nerbonne

Dept of Information Science
 j.nerbonne@rug.nl
based also on H.Fitz's work

March 10, 2010



## Last week: one-way ANOVA

- generalized t-test to compare means of more than two groups
- example:
  - (a) compare frequencies of stylistic elements in three book reviews
  - (b) compare Dutch proficiency test results of four groups of foreigners
- assumptions of
  - (i) normality
  - (ii) and similar standard deviations in each group
  - (iii) independent samples
- partitioning of total variance (SST) into between-groups variance (SSG) and error variance (SSE): SST = SSG + SSE
- ▶ based on F-distribution:  $F = \frac{MSG}{MSE}$

Today: factorial ANOVA



Like one-way ANOVA, but more than one factor (aka n-way ANOVA)

- compares means of different groups
- ▶ based on *F*-distribution:

$$F=\frac{s_1^2}{s_2^2}$$

- always positive
- two kinds of degrees of freedom:  $df_{s_1}$ ,  $df_{s_2}$
- lacktriangle value of 1 indicates same variance, values near 0 or  $+\infty$  indicate difference
- uses F-distribution: compare variances among means with random variability inside the groups
- ▶ one-way ANOVA, *n*-way ANOVA  $\neq$  *F*-test!
- assumes near-normal distribution in all groups
- lacktriangle standard deviations in all groups roughly equal  $(rac{\mathsf{Sd}_i}{\mathsf{sd}_j} \leq 2)$



Why two-way ANOVA?—why not just two one-way ANOVAs?

efficient in the number of experiments and subjects needed

Why two-way ANOVA?—why not just two one-way ANOVAs?

efficient in the number of experiments and subjects needed

Suppose we want to measure effect of calcium and magnesium intake on blood pressure

## Two-way ANOVA:

|           | Calcium |   |   |
|-----------|---------|---|---|
| Magnesium | L       | М | Н |
| L         | 1       | 2 | 3 |
| M         | 4       | 5 | 6 |
| Н         | 7       | 8 | 9 |

- two-way design results in 9 groups
- assign 9 subjects to each group
- ▶ hence <u>81</u> subjects required

Why two-way ANOVA?—why not just two one-way ANOVAs?

efficient in the number of experiments and subjects needed

Suppose we want to measure effect of calcium and magnesium intake on blood pressure

Two one-way ANOVAs:

|           | Calcium |   |   |
|-----------|---------|---|---|
| Magnesium | L       | М | Н |
| M         | 1       | 2 | 3 |

|         | Magnesium |   |   |
|---------|-----------|---|---|
| Calcium | L         | М | Н |
| М       | 1         | 2 | 3 |

- two one-way designs result in 6 groups
- assign 15 subjects to each group
- ▶ hence <u>90</u> subjects required
- and: only 15 subjects per level compared with 27 in two-way design

Why two-way ANOVA?—why not just two one-way ANOVAs?

- efficient in the number of experiments and subjects needed
- combining two experiments into one improves accuracy:
  - increases number of data points per level
  - decreases SE (standard error of the mean):

standard deviation of sample mean: 
$$\frac{\sigma}{\sqrt{n}}$$
 in one-way ANOVA:  $\frac{\sigma}{\sqrt{15}}=0.26\sigma$  in two-way ANOVA:  $\frac{\sigma}{\sqrt{27}}=0.19\sigma$ 

Hence, sample mean responses are less variable in two-way design

Why two-way ANOVA?—why not just two one-way ANOVAs?

- efficient in the number of experiments and subjects needed
- combining two experiments into one improves accuracy (increases n, decreases SE)
- opportunity to study interaction:

E.g., age and subtype of cancer have independent effects on mortality:

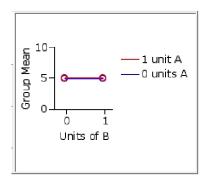
- breast cancer more treatable than other forms of cancer
- in general, cancer more treatable with young age

but these are **reversed** in some combinations, e.g., breast cancer in young women particularly aggressive and dangerous.

Interaction requires care!

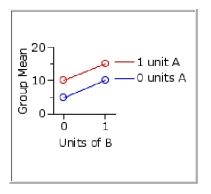


Two drugs A and B administered in doses 0 and 1.



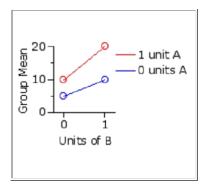
- drugs show no effect
- either separately or in combination
- no interaction
- null hypothesis true

Two drugs A and B administered in doses 0 and 1.



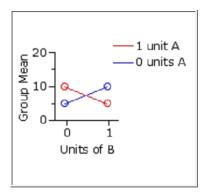
- both drugs have an effect
- combined effect is additive
- no interaction

Two drugs A and B administered in doses 0 and 1.



- both drugs have an effect
- combined effect is stronger than the sum of separate effects
- ▶ interaction

Two drugs A and B administered in doses 0 and 1.



- both drugs have the same effect as previously!
- when combined, the two drugs cancel each other out
- ▶ interaction

# Factorial ANOVA: partitioning the variance

As in one-way ANOVA:

$$\mathsf{SST} = \mathsf{SSG} + \mathsf{SSE}$$
Total Sum of Squares Group Sum of Squares Error Sum of Squares

SSG: aggregate measure of differences between groups SSE: aggregate measure of random variability inside groups

**But**: in *n*-way ANOVA **several** factors contribute to between-groups variance (SSG)

To measure the effect of different factors, we partition the SSG into **components** which correspond to these factors

# Factorial ANOVA: partitioning the variance

For example: two factors A & B, then SSG partitions into:

In one-way ANOVA: 
$$SSG = \sum_{i=1}^{I} N_i (\overline{x}_i - \overline{x})^2$$

In factorial ANOVA:  $SS_A = \sum_{i=1}^{I_A} N_i (\overline{x}_i - \overline{x})^2$  where  $I_A$  is the number of levels in factor A.

Note: three factors—A, B, C—induce four interaction sum of squares:  $SS_{A\times B}$ ,  $SS_{A\times C}$ ,  $SS_{B\times C}$ ,  $SS_{A\times B\times C}$ 

# Factorial ANOVA: degrees of freedom

Degrees of freedom are partitioned similarly:

$$\mathsf{DFT} = \underbrace{\left(\mathsf{DF}_A + \mathsf{DF}_B + \mathsf{DF}_{A \times B}\right)}_{\mathsf{DFG}} + \mathsf{DFE}$$

In one-way ANOVA: DFG = I-1 (I = number of groups)

In two-way ANOVA:

$$\mathsf{DFG} = \underbrace{(I_A - 1)}_{\mathsf{DF}_A} + \underbrace{(I_B - 1)}_{\mathsf{DF}_B} + \underbrace{(I_A - 1) \cdot (I_B - 1)}_{\mathsf{DF}_{A \times B}} = I_A I_B - 1 = \underline{I - 1}$$

# Factorial ANOVA: mean squares

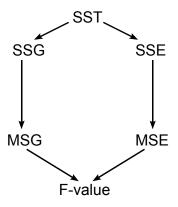
In factorial ANOVA we obtain several mean squares between groups (here 3):

$$\begin{array}{rcl} \mathsf{MS}_A & = & \dfrac{\mathsf{SS}_A}{\mathsf{DF}_A} & \text{(factor A)} \\ \\ \mathsf{MS}_B & = & \dfrac{\mathsf{SS}_B}{\mathsf{DF}_B} & \text{(factor B)} \\ \\ \mathsf{MS}_{A\times B} & = & \dfrac{\mathsf{SS}_{A\times B}}{\mathsf{DF}_{A\times B}} & \text{(interaction)} \end{array}$$

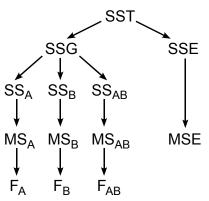
Hence, there are also **three** F-values— $F_A$ ,  $F_B$ , and  $F_{A \times B}$ —for which we test significance!

# Factorial ANOVA schematically

One-way ANOVA:

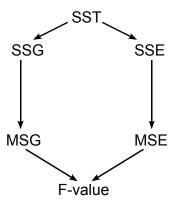


Two-way ANOVA:

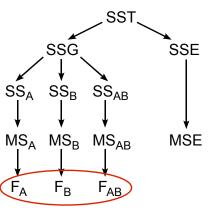


# Factorial ANOVA schematically

One-way ANOVA:



Two-way ANOVA:



# Factorial ANOVA example

Many studies with children and adults (across languages) show:

**Object**-relative clauses are more difficult to produce/comprehend than **subject**-relative clauses.

#### For example:

Obj-Rel: There is the man [that the dog bit  $\_$  at the park yesterday]. Subj-Rel: There is the boy [that  $\_$  hit the cricket ball over the fence].

Kidd, Brandt, Lieven & Tomasello (*Language and Cognitive Processes*, 22(6), 2007) investigated what makes object-relative clauses **easier** to process.

# Factorial ANOVA example

**Task**: 3–4 year-old children had to repeat sentences with relative clauses from an experimenter ('parrot game')

Two kinds of lexical manipulations:

Pronominal subjects versus full NPs:

This is the boy that <u>you</u> saw at the shop on Saturday.

This is the boy that <u>the man</u> saw at the shop on Saturday.

Animate versus inanimate head nouns:

This is the <u>football</u> that he kicked in the garden yesterday. This is the <u>dog</u> that he kicked in the garden yesterday.

## Animacy, pronouns and repetition accuracy

**Design**: Four kinds of sentences shown:

|            | Head noun              |                        |  |
|------------|------------------------|------------------------|--|
| RC-subject | Animate                | Inanimate              |  |
| pronominal | pronoun + anim. head   | pronoun + inanim. head |  |
| full NP    | $NP + animate \; head$ | NP + inanimate head    |  |

**Extras**: KBLT controlled test sentences for length in words and syllables. Each child saw four different items of each type.

Measure: exact repetitions were scored as 1 minor modifications (e.g., tense/aspect) as 0.5 ungrammatical or different syntax as 0

## KBLT data and design

| Label | Head noun | RC-subject | Score | , |
|-------|-----------|------------|-------|---|
| ANP   | animate   | NP         | 0.23  | - |
| ANP   | animate   | NP         | 0.19  |   |
| ANP   | animate   | NP         | 0.14  |   |
| ANP   | animate   | NP         | 0.14  |   |
| INP   | inanimate | NP         | 0.25  |   |
| :     | :         | :          | :     |   |
| APro  | animate   | pronoun    | 0.63  |   |
| :     | :         | :          | :     |   |
| IPro  | inanimate | pronoun    | 0.58  |   |
|       |           |            |       |   |

There are four sentence types, and four different tokens per type.

```
Examples: ANP: ...the dog that the man kicked...
INP: ...the toy that the man kicked...
APro: ...the dog that he kicked...
IPro: ...the toy that he kicked...
```

## KBLT data and design

| Label | Head noun | RC-subject | Score |
|-------|-----------|------------|-------|
| ANP   | animate   | NP         | 0.23  |
| ANP   | animate   | NP         | 0.19  |
| ANP   | animate   | NP         | 0.14  |
| ANP   | animate   | NP         | 0.14  |
| INP   | inanimate | NP         | 0.25  |
| :     | :         | :          | ÷     |
| APro  | animate   | pronoun    | 0.63  |
| :     | :         | :          | :     |
| IPro  | inanimate | pronoun    | 0.58  |

Two-way ANOVA "by item" with head noun animacy and RC-subject type as **factors**.

**Dependent variable**: score, represents average repetition accuracy of 48 kids (3–4 years of age).

## Data: means and SDs of four groups

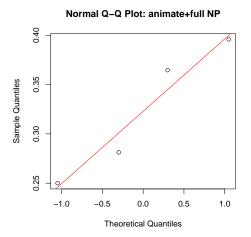
| Dependent Variable:score |         |      |                |    |
|--------------------------|---------|------|----------------|----|
| Animacy                  | Subject | Mean | Std. Deviation | N  |
| animate                  | NP      | .172 | .045           | 4  |
|                          | pro     | .633 | .026           | 4  |
|                          | Total   | .402 | .249           | 8  |
| inanimate                | NP      | .323 | .069           | 4  |
|                          | pro     | .625 | .091           | 4  |
|                          | Total   | .474 | .178           | 8  |
| Total                    | NP      | .247 | .097           | 8  |
|                          | pro     | .629 | .062           | 8  |
|                          | Total   | .438 | .212           | 16 |

Note: SDs not approximately equal (because data is streamlined):  $2\times(animate+NP) \leq (inanimate+pro)$ 

Factorial ANOVA question: are means significantly different?



# Check normality of data



Check normality assumption for all groups!

# Multiple questions

Two-way ANOVA asks **two/three** questions simultaneously:

- 1. Is head noun animacy affecting repetition accuracy?
- 2. Does lexical type of subject NP affect repetition accuracy?
- 3. Do the two effects interact, or are they independent?

Questions 1 & 2 might have been asked in separate one-way ANOVA designs (but these would have been more costly in number of subjects)

Question 3 is new to two-way ANOVA

# Multiple null hypotheses in n-way ANOVA

In our example: each of the two factors has two levels

Factor A: animacy of the head noun

Levels in A: animate or inanimate

Factor B: lexical type of relative clause subject

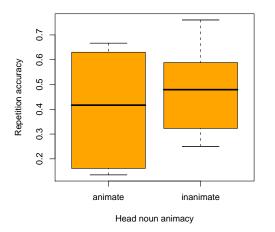
Levels in B: pronoun or full NP

#### Three null hypotheses:

- 1. There is no difference in the means of factor *animacy*
- 2. There is no difference in the means of factor *subject type*
- 3. There is no interaction between factors *animacy* and *subject type*

# Visualizing factorial ANOVA questions

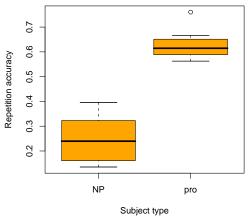
Question 1: Is head noun animacy affecting repetition accuracy?



Little skew, similar medians, large overlap: probably not significant

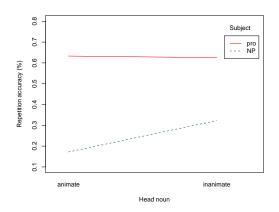
# Visualizing factorial ANOVA questions

Question 2: Does lexical type of subject NP affect repetition accuracy?



Little skew, different medians, no overlap: very likely significant

## Visualizing interaction



If **no** interaction, lines should be roughly parallel.

It looks like inanimate head nouns facilitate the processing of object-relative clauses with full-NP RC-subjects. Two-way ANOVA will measure this exactly.

## Factorial ANOVA results

Calculations compare mean group variance and mean individual variance as ANOVA

$$F = \frac{\mathsf{MSG}}{\mathsf{MSE}}$$

SPSS terminology:

|          | ſ          | between-subjects |                    |  |
|----------|------------|------------------|--------------------|--|
| between- | RC-subject | Animate head     | Inanimate head     |  |
| subjects | full NP    | animate, NP      | inanimate, NP      |  |
|          | pronoun    | animate, pronoun | inanimate, pronoun |  |

Invoke: General linear model o Univariate o fixed factors



## Factorial ANOVA results

| Response: Pe | rc       |          |         |          |               |  |
|--------------|----------|----------|---------|----------|---------------|--|
|              | Df       | Sum Sq   | Mean Sq | F value  | Pr(>F)        |  |
| Anima        | cy 1     | 0.02051  | 0.02051 | 5.2065   | 0.04154 *     |  |
| N            | P 1      | 0.58220  | 0.58220 | 147.7608 | 4.188e-08 *** |  |
| Animacy:N    | P 1      | 0.02523  | 0.02523 | 6.4045   | 0.02639 *     |  |
| Residua      | ls 12    | 0.04728  | 0.00394 |          |               |  |
| -            | _        |          |         |          |               |  |
| Signif. code | s: 0 *** | 0.001 ** | 0.01 *  | 0.05 .   |               |  |
|              |          |          |         |          |               |  |

- 1. Animacy of the head noun has a significant effect on repetition accuracy of object-relative clauses (despite the boxplot earlier)
- 2. The type of RC-subject noun phrase has a profound effect on repetition accuracy
- 3. Significant interaction: the difference in repetition accuracy between object-relatives with pronominal and full-NP subjects is significantly smaller when head nouns are inanimate.



# Measuring effect size

We found significant main effects for both factors, and an interaction effect.

Note: because factors only have two levels here, no need to do post-hoc tests.

Additional question: How **large** are the effects we found, i.e. how meaningful are the results?

**Effect size** indicates the amount of variability in the dependent variable that can be accounted for by the independent variable.

Note: effect size is **not** the same as the ANOVA p-value: Smaller p-value does not mean a bigger effect, because p depends on the sample size (as well as the effect size).

# Measuring effect size

Effect size for one-way ANOVA:  $\eta^2 = \frac{SSG}{SST}$  ('eta-squared')

 $\eta^2$  indicates proportion of variance in the dependent variable accounted for by differences between the levels of the factor.

 $\eta^2$  not suitable for *n*-way ANOVA because SST depends on presence of other factors!

Effect size for two-way ANOVA: 
$$\eta_p^2 = \frac{SS_A}{SS_A + SSE}$$
 ('partial etasquared')

In other words: from SSG we take the portion of the variance that can be attributed to factor A, and from SST we take that same portion plus the random within-groups variability.



# Measuring effect size

In our example:

$$\eta_p^2 = \frac{\text{SS}_{animacy}}{\text{SS}_{animacy} + \text{SSE}} = \frac{0.021}{0.021 + 0.04} = \underline{0.3}$$

$$\eta_p^2 = \frac{\text{SS}_{subject}}{\text{SS}_{subject} + \text{SSE}} = \frac{0.582}{0.582 + 0.04} = \underline{0.925}$$

$$\eta_p^2 = \frac{\text{SS}_{interaction}}{\text{SS}_{interaction} + \text{SSE}} = \frac{0.025}{0.025 + 0.04} = \underline{0.348}$$

Rule of thumb: 
$$\eta_p^2 < 0.1 \quad \text{weak effect} \\ 0.1 \leq \eta_p^2 < 0.6 \quad \text{medium-sized effect} \\ \eta_p^2 \geq 0.6 \quad \text{large effect}$$

# Factorial analysis of variance

#### Factorial analysis of variance:

- "generalized t-test"—compares means
- compares groups along > 1 dimensions, e.g., school classes and gender
- assumes normal distributions, similar SDs in each group
- typical application: compare processing times for two syntactic structures under two phonological conditions (factorial design)
- compares variance among means vs. general variance (F-score)
- efficient in the use of subjects and experiment time
- allows (and forces!) attention to potential interaction



# Factorial ANOVA: another perspective

Recall that ANOVA seeks evidence for  $\alpha_i$  (in comparison of models):

$$x_{ij} = \mu + \epsilon_{ij}$$
  
$$x_{ij} = \mu + \alpha_i + \epsilon_{ij}$$

Similarly, factorial ANOVA asks **separately** for significance of  $\alpha_i, \beta_j$ , and **interaction**  $(\alpha \beta)_{ij}$ , comparing models:

$$x_{ij} = \mu + \epsilon_{ij}$$
  

$$x_{ij} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \epsilon_{ij}$$

## Factorial ANOVA models

$$x_{ij} = \mu + \epsilon_{ij}$$
  
$$x_{ij} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \epsilon_{ij}$$

#### First model:

- no group effects
- lacktriangle each data point represents error  $(\epsilon)$  around a mean  $(\mu)$

#### Second model:

- real group effect(s)
- each data point represents error  $(\epsilon)$  around an overall mean  $(\mu)$ , combined with one or two group adjustments  $(\alpha_i$  and  $\beta_j)$
- **>** possibly group effects involve interaction  $(\alpha \beta_{ij})$



#### Next week

#### Next week we will look at

- repeated measures ANOVA with one factor
- factorial ANOVA with one within-subjects factor