Statistiek II

John Nerbonne

Dept of Information Science j.nerbonne@rug.nl With thanks to Hartmut Fitz for a recent pass!

October 1, 2010

- < ≣ →

<ロ> <同> <同> <三> < 回> < 回> < 三>

æ

Factorial ANOVA:

- used when there are several independent variables (factors)
- allows to study interaction between factors
- assumptions like one-way ANOVA: homogeneity of variance, normality, independence

Today: repeated measures ANOVA (aka 'within-subjects'-design)

- one-way repeated measures ANOVA
- factorial repeated measures ANOVA
- mixed factors repeated measures ANOVA

Last week's 2×2 ANOVA: repetition accuracy of object-relatives

- two factors, two levels each
- factor A: animacy of head noun
- factor B: relative clause subject type
- factors induced four disjoint groups of items (four tokens per type)
- ▶ 48 children, dependent measure: averaged repetition accuracy

Conducted factorial ANOVA 'by item', measured whether there was a difference in repetition accuracy between four groups of sentence types (ANP, INP, APro, IPro)

A different way to look at the same data

Could also have looked at repetition accuracy 'by participant'

- same two factors, head noun animacy and relative clause subject type
- average over tokens per type for each participant

	Sentence type						
Child	ANP	ANP INP APro IPro					
1	0.00	0.00	0.00	0.00			
2	0.00	0.00	0.75	0.38			
3	0.00	0.50	0.88	0.75			
÷	:	:	:	:			
48	0.25	0.50	1.00	0.88			

Measure participants repeatedly in all conditions, perform 2×2 ANOVA 'by participant' (expect similar main effects)

Repeated measures ANOVA:

Like related-samples *t*-test, but for \geq 3 conditions A, B, C, etc.

Applications:

- same group of subjects measured under 3 or more conditions A, B, C,...
- matched k-tuples of subjects, one member measured under A, one under B, one under C,...
- in the latter case, matched tuples are treated as one subject
- Labels: 'repeated measures' or 'within-subjects design', 'randomized blocks design'

Characteristics:

- assumptions like standard ANOVA, but data points not independent (repeated measures)
- economical in design because each subject measured under all conditions
- often research question requires repeated measures, e.g., longitudinal studies: each sample member measured repeatedly at several ages
- example: children can discriminate many phonetic distinctions across languages without relevant experience; longitudinal study shows there is a decline in this ability (within first year)
- key idea: eliminate variation between sample members (reduces within-groups variance)

One-way independent samples ANOVA:

SST = SSG + SSETotal Sum of Squares = Group Sum of Squares + Error Sum of Squares

One-way repeated measures ANOVA:

- same subjects in each 'group' (i.e., condition)
- determine aggregate variance among subjects (SSS):

SSS = $I \cdot \sum_{j=1}^{N} (\overline{x_j} - \overline{x})^2$ where I number of conditions, $\overline{x_j}$ subject mean (across conditions), and \overline{x} total mean

- remove this effect of individual differences from SSE
- determine MSE from SSE*= SSE-SSS

(4回) (注) (注) (注) (注)

One-way repeated measures example

Experiment: Computational model learns to produce complex sentences from meaning (Fitz, Neural Syntax, 2008).

Task:

- model receives semantic structure of a sentence as input
- tries to produce sentence which expresses this meaning
- production by word-to-word prediction

Input:	A	gent	\rightarrow	[DOG]
	A	ction	\rightarrow	[CHASE]
	Pa	tient	\rightarrow	[CAT]
output:	the	dog		
	the	dog	chas	es
	the	dog	chas	es the cat
	Input: output:	Input: A A Pa output: the the the	Input: Agent Action Patient output: the dog the dog the dog	$\begin{array}{ccc} \text{Input:} & \text{Agent} & \rightarrow \\ & \text{Action} & \rightarrow \\ & \text{Patient} & \rightarrow \\ \text{output:} & \text{the dog} & \\ & \text{the dog} & \text{chas} \\ & \text{the dog} & \text{chas} \end{array}$

But how to represent semantic relations for multiple clauses?

Three semantic conditions:

- (a) give more prominence to main clause (order-link) E.g., **the dog** that runs **chases the cat**
- (b) mark the topic and focus of both clauses (topic-focus)E.g., the dog that [the dog] runs chases the cat
- (c) features which bind topic and focus (binding) E.g., the dog that runs chases the cat, Agent-Agent

The model's learning behavior is tested in each of these conditions.

Question: Is model sensitive to different semantic representations?

Subjects:

- model is randomly initialized
- ► exposed to 10 different sets of randomly generated training items (⇒ 10 experimental subjects)
- subject = model + fixed parameters + training environment
- each subject tested in conditions (a)–(c) (repeated measures)

Dependent variable: mean sentence accuracy after learning phase (on 1000 test items)

Scoring: model produces target sentence *exactly*: 1 any kind of lexical or grammatical error: 0 sentence accuracy: percentage of correct utterances

・ 同・ ・ ヨ・

Data on modelling the acquisition of relative clauses:

Model-		Subject		
subject	order-link topic-focus		binding	mean
1	80	94	98	90.7
2	73	90	98	87
3	70	98	94	87.3
÷	:	:	:	÷
10	71	99	94	88
Mean	76.3	95.8	94.9	89

Note: subject means (across conditions) required to compute subject sum of squares (SSS).

Check normality and standard deviations

Normal Q-Q Plot: binding

SDs: order-link: 4.9, topic-focus: 2.66, binding: 3.03

Visualizing the data

Little skew, different medians, no overlap between (1) and (2) or (3), very likely significant

Computing the error sum of squares

Model-		Subject		
subject	order-link topic-focus		binding	mean
1	80	94	98	90.7
2	73	90	98	87
3	70	98	94	87.3
÷	:	:	:	÷
10	71	99	94	88
Mean	76.3	95.8	94.9	89

$$SSE = \sum_{i=1}^{I} \sum_{j=1}^{N_i} (x_{ij} - \overline{x}_i)^2 = (80 - 76.3)^2 + \ldots + (94 - 94.9)^2 = \underline{362.6}$$

< 4 → < 2

문 🕨 👘 문

Key idea of repeated measures

Because subjects are measured in all conditions: remove variability due to individual differences from SSE!

Repeated measures: Independent samples: SS SS SSE - SSS SSG SSG SSE MSG MSE MSG MSE **F-value** F-value

Subject Sum of Squares: aggregate measure of between-subjects variability

SSS =
$$I \cdot \sum_{j=1}^{N} (\overline{x_j} - \overline{x})^2$$

= $3 \cdot (90.7 - 89)^2 + 3 \cdot (87 - 89)^2 + \ldots + 3 \cdot (88 - 89)^2$
= $\underline{86}$

Adjust error sum of squares:

 $SSE^* = SSE - SSS = 362.6 - 86 = 276.6$

SSE*: usual SSE **minus** between-subjects sum of squares (SSS) Recall different degrees of freedom:

$$DFT = N - 1 = 30 - 1 = 29$$
 (total)

$$DFG = I - 1 = 3 - 1 = 2$$
 (group)

$$DFE = N - I = 30 - 3 = 27$$
 (error)

Subject degrees of freedom (corresponding to SSS):

DFS = Number of subjects in each group -1 = 10 - 1 = 9

Remove this component from DFE, and what remains is:

DFE* = DFE-DFS = 27 - 9 = 18

R output

Manually:
$$MSE^* = \frac{SSE^*}{DFE^*} = \frac{276.6}{18} = 15.37$$

F-value: $F = \frac{MSG}{MSE^*} = \frac{1211.7}{15.37} = 78.83$

R output:

Error: sub	ject				
	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Residuals	9	86.00	9.55		
Error: subj	ect:se	emantics			
	Df	Sum Sq	Mean Sq	F value	Pr(>F)
semantics	2	2423.40	1211.70	78.85	1.2428e-09 ***
Residuals	18	276.60	15.37		
	—				
Signif. coo	des:	0 ***	0.001 **	0.01 *	0.05 .

Reject null hypothesis H_0 , i.e., conclude that difference in semantic representations **does** affect the model's learning behavior

Tukey's Honestly Significant Differences test

- suitable for multiple comparisons when ANOVA is significant
- requires equal group sizes!
- based on Studentized range statistic Q

SPSS doesn't do HSD for repeated measures (use Bonferroni)

Compute HSD manually:
$$q^* = \frac{\mu_i - \mu_j}{\sqrt{\frac{MSE^*}{N}}}$$

Null-hypothesis $H_0: \mu_i = \mu_j$ Alternative hypothesis $H_a: \mu_i \neq \mu_j$

Reject H_0 if $q^* \ge q$ (check table)

Test difference between 'topic-focus' and 'binding' condition in the example:

$$q^* = \frac{95.8 - 94.9}{\sqrt{\frac{15.37}{10}}} = \frac{0.9}{\sqrt{1.537}} = 0.73$$

q has two degrees of freedom: group size (here 9), and DFE* (here 18)

q(9, 18) = 6.08 (from table for Studentized range statistic)

Hence, $q^* \leq q$, do not reject H_0 (at $\alpha = 0.01$).

Conclude: the model learns complex sentences equally well in the 'topic-focus' and 'binding' condition

(日) (同) (E) (E) (E)

Test difference between 'binding' and 'order-link' condition in the example:

$$q^* = \frac{94.9 - 76.3}{\sqrt{\frac{15.37}{10}}} = \frac{0.9}{\sqrt{1.537}} = 15.0$$

q has two degrees of freedom: group size (here 9), and DFE* (here 18)

q(9, 18) = 6.08 (from table for Studentized range statistic)

Hence, $q^* \ge q$, reject H_0 (at $\alpha = 0.01$).

Conclude: the model learns complex sentences more reliably in the 'binding' than in the 'order-link' condition.

Note: repeated measures—i.e., within-subjects factors—can also be used in factorial ANOVA

Example:

- in previous experiment include time as another within-subjects factor
- test whether model learns better (averaged over time) with any one semantics
- test whether model learns faster with any one semantics

A positive answer is strongly suggested when looking at the model's performance over time, the learning trajectories

Repeated measures in factorial design

Model performance over time (for the three semantics)

< 🗇 🕨

Normal Q-Q Plot: topicfocus80

Check normality and standard deviations for 2×5 subgroups!

A ■

Э

Repeated measures in factorial design

We compare the 'binding' with 'topic-focus' semantics

Conduct a 2×5 repeated measures ANOVA with **time** and **semantics** as within-subjects factors

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
epoch	4	120875.740	30218.935	646.14094	2.22e-16 ***
Residuals	36	1683.660	46.768		
	Df	Sum Sa	Mean So	E value	Pr(>F)
semantics	1	3856.4100	3856.4100	13.41262	0.0052167 **
Residuals	9	2587.6900	287.5211		
					- (-)
	Df	Sum Sq	Mean Sq	F value	Pr(>F)
epoch:semantics	4	1785.14000	446.28500	9.49397	2.3996e-05 ***
Residuals	36	1692.26000	47.00722		
Signif. codes:	0 ***	0.001 **	0.01 *	0.05 .	

Visualizing interaction

Interaction: Although with both semantics model reaches similar proficiency, it learns significantly faster in the topic-focus condition

Often, subjects divided into separate groups, e.g.,

- gender: male/female
- ► age: 3/4-year old children
- type of language impairment: Wernicke/Broca aphasia
- mother tongue: Dutch, English, German

but subjects in each group are tested in several conditions

Mixed-factors: *n*-way ANOVA with between-subjects **and** within-subjects factors

In fact, perhaps the most common ANOVA design (see next example)

Mixed factor ANOVA: example

Withaar & Stowe investigated effects of **syntax** and **phonology** on processing time of relative clauses

Task: read sentences word-by-word on computer screen, press button to see following word. Times between button presses are measured (reading times)

Syntax: difference between relative clause types where

relative pronouns are understood subjects:

de bakker die de tuinmannen verjaagt

relative pronouns are understood objects:

de bakker die de tuinmannen verjagen

Phonology: rhyming vs. non-rhyming words in relative clause (Longoni, Richardson & Aiello showed that word lists with rhyming elements take longer to process)

回 と く ヨ と く ヨ と

Design: Four kinds of sentences shown, one group of participants per rhymed/non-rhymed, both syntactic structures shown to each group.

	(Syntax: within-subjects			
between-	Phonology	Object Relative	Subject Relative		
subjects	non-rhym.	non-rhym. objrel.	non-rhym. subjrel.		
	rhym.	rhym. object-rel.	rhym. subject-rel.		

Extras: W&S also controlled for subject's attention span, and for which sentences were shown (no similar sentences shown to same subject)

Measurement: time needed for the last word in relative clause

Data: means and SDs of four groups

	process time	process time
rhyming(y/n)	obj-rel.	subj-rel.
non-rhyming		
Mean	1581.86	1265.90
StdDev	341.82	316.89
rhyming		
Mean	1494.51	1250.55
StdDev	382.45	198.30
Grand Total		
Mean	1538.19	1258.23
StdDev	360.75	261.03

Note: no SD is twice as large as another (but it's close...) Factorial ANOVA question: are means significantly different?

Normality assumption

Look at data: are distributions normal?

Rhymed and unrhymed object-relatives

Normal Q-Q Plot of recog. time obj. relative clauses

Normality assumption

Rhymed and unrhymed subject-relatives

Normal Q-Q Plot of recog. time subj. relative clauses

Remark: longest reaction time good candidate for elimination (worth checking on)

Again, we ask **two/three** questions simultaneously:

- 1. Is rhyme affecting word processing time?
- 2. Do relative clause types affect processing time?
- 3. Do the effects interact, or are they independent?

Questions 1 & 2 might have been asked in separate one-way ANOVA designs (but these would have been more costly in number of subjects)

Question 3 can only be answered with factorial ANOVA

Visualizing ANOVA questions

Question 1: Is rhyme affecting processing time?

Note: similar box plots for rhyme in subject-relatives

Visualizing ANOVA questions

Question 2: Does relative clause type affect processing time?

Little skew, different medians, large overlap: difficult to tell

Visualizing interaction

If **no** interaction, lines should be parallel. In fact, rhyming speeds processing of object relatives. Multiple ANOVA will measure this exactly.

A ■

Syntax: within-subjects factor (repeated measures) Phonology: between-subjects factor

	(Syntax: within-subjects			
between-	Phonology	Object Relative	Subject Relative		
subjects	non-rhym.	non-rhym. objrel.	non-rhym. subjrel.		
	rhym.	rhym. object-rel.	rhym. subject-rel.		

Invoke: repeated measures \rightarrow define distinct factors \rightarrow take care not to mix them up!

(日) (同) (E) (E) (E)

Between-subjects (row) effects (rhyme/no rhyme):

* * * * * * Analysis of Variance -- design 1 * * * * * *

Tests of Between-Subjects Effects.

Tests of Significance	e for T1	using	UNIQUE	sums	of squa	res
Source of Variation	SS	DF	MS	F	Sig of	F
WITHIN+RESIDUAL	6332920	38	166656			
RIJM	52734	1	52734	.32	2.577	

Hence, rhyme does not significantly affect processing speed

Within-subjects (column) effects (object- vs subject-relatives):

Tests involving 'SYNTAX' Within-Subject Effect.

Tests of Significance	e for T2	using	UNIQUE	sums of	squares	
Source of Variation	SS	DF	MS	F	Sig of	F
WITHIN+RESIDUAL	1321219	38	34769			
SYNTAX	1567532	1	1567532	45.08	.000	
RIJM BY SYNTAX	25917	1	25917	.75	.393	

Hence, syntax has a profound effect on processing speed; no interaction (in spite of graph!)

Repeated measures ANOVA:

- generalized related-samples t-test
- assumptions like standard ANOVA except for independence
- required whenever a group of subjects measured under different conditions
- eliminates between-subjects variance from MSE
- typical applications:
 - linguistic ability of children measured over time
 - cognitive function in same group of subjects tested under different conditions
 - computational learning models compared for different input environments
- advantage over independent samples: efficient in experimental design

・ 同・ ・ ヨ・

- ★ 臣 ▶ - - 臣

Next week: correlation and regression

・ロン ・四と ・日と ・日と

æ