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Today: logistic regression

Idea: predict categorical variable using regression

Examples:

I surgery survival dependent on age, length of surgery,...

I whether purchase occurs dependent on age, income, website
characteristics,...

I whether speech errors occur dependent on alcohol level

I when linguistic rules apply (final [t] in Dutch) dependent on
speed of utterance, stress, social group,...

Logistic regression very popular, especially in sociolinguistics
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Regression technique attractive

Logistic regression attractive technique because

I allows prediction of one variable value based on one or more
others

I allows prediction of the probability of the occurrence of an
event

I allows an estimation of the importance of various independent
factors (cf. χ2)

John Nerbonne Statistiek II



Outline logistic regression

Idea: predict categorical variable using regression

I core task: analyze dependency of categorical variable on
others using regression

I problem: translating regression techniques to categorical
domain

I key step: predict chance of categorical variable—transform
categorical to numeric variable

I note: independent variables may be numeric or
categorical—as in regression in general, simple or multiple
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Chance as dependent variable

Idea: Predict chance of categorical variable as dependent variable
using regression

I real chances p are positive numbers 0 ≤ p ≤ 1

I problem: how to keep predicted values in correct bounds

I solution: don’t use chances directly, but rather a more
complicated transformation
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The logit function

logit(p) = log( p
1−p )
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p 0.01 0.05 0.10 0.30 0.5 0.7 0.9 0.95 0.99
logit(p) -4.6 -2.9 -2.2 -0.8 0.0 0.8 2.2 2.9 4.6
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Logit vs logistic

I use of logit solves problems of bounds–we predict logit values
−∞ ≤ v ≤ ∞ (cf. chances 0 ≤ p ≤ 1)

I logit is easily interpretable as “odds”: the odds of Barcelona
against Man United are 4 to 1

I probability of Barcelona winning is 0.8, p
(1−p) = 0.8

0.2 = 4 : 1

I why the name logistic?
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Why ‘logistic’ regression?

Logistic function: f (x) = 1
1+e−x
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Note that values of logistic function are bounded: 0 < f (x) < 1
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Logit vs logistic

logit function is the inverse of the logistic function, i.e.,
logistic(logit(p)) = p:

ln( p
1−p ) = logit(p) ⇔

p
1−p = e logit(p) ⇔

p = e logit(p) · (1− p) ⇔
p = e logit(p) − p · e logit(p) ⇔

p + p · e logit(p) = e logit(p) ⇔
p(1 + e logit(p)) = e logit(p) ⇔

p = elogit(p)

(1+elogit(p))
⇔

p = elogit(p)

(1+elogit(p))
· e−logit(p)

e−logit(p)
⇔

p = e0

e−logit(p)+e0
⇔

p = 1

1+e−logit(p)
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Strategy: predict logit values

logit(p) = β0 + β1x1 + . . . + βpxp, where x1, . . . , xp are the
independent variables

I try to find optimal β0, . . . , βp for given data

I ‘optimal’ here does not mean minimizing the sum of squared
deviations

I logistic regression uses a maximum likelihood method;
maximizes probability of obtaining the observed results given
the fitted regression coefficients

I hence, significance statistics in logistic regression different
from linear regression

I note that we are seeking a non-linear relationship
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Example 1: predicting the dative alternation

Question: how does an English speaker determine which of the
alternative dative structures to choose to convey a given message
about a transfer event?

Choice between prepositional dative and the double object
structure.

prepositional dative: ... gave [toys] [to the children] V NP PP
double object dative: ... gave [the children] [toys] V NP NP

Bresnan, Cueni, Nikitina & Baayen (2005) try to predict the use of
the dative alternation with logistic regression model
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Example 1: predicting the dative alternation

Data: 2360 dative observations from the Switchboard collection of
recorded telephone conversations

All these datives were annotated for the explanatory variables

Regression model postulates 14 explanatory variables that might
influence the choice of alternative dative structures

Some variables were:

I accessibility of theme/recipient

I definiteness of theme/recipient

I animacy/person of recipient

I number/concreteness/definiteness of theme
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Example 1: predicting the dative alternation

After fitting the model to the data, the model fit was evaluated:

Hence, the logistic regression model correctly classifies 92% of the
data overall
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Example 2: Labov’s NYC /r/ study

William Labov examined variant pronunciations of syllable-final /r/
in American English ([r] vs [@]). New York used to be like Boston,
final /r/ is [@], but it started changing in the 1950’s and 1960’s.
Labov hypothesized a social basis for the change.

Method:

I Labov walked into 3 NYC department stores (Saks, Macy’s
and S. Klein)

I stores cater to distinct social classes (high, middle and low,
respectively)

I asked shop assistants for departments which were on the
fourth floor

I seeking repetition of ‘fourth floor’ by pretending not to
understand
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Example 2: Labov’s NYC /r/ study

Data from Labov’s study:

Percentage of r-use in three NYC department stores

Saks (%) Macy’s (%) S. Klein (%)

Cons. [r] 30 20 4
Vocalic [@] 6 74 50
Mixed /r/ 32 31 17

Number 68 125 71

Saks: high social class
Macy’s: middle class
S. Klein: low social class

Mixed /r/: mixed allophones [r,@]
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Analyzing social influence on /r/

What statistical test is needed to ask whether social status
influences pronunciation of /r/?

I χ2 test of independence:
I is one categorical variable dependent on another (or are they

‘randomly related’)?

I We employ logistic regression here for two reasons:
I to measure the degree of dependence
I to combine analysis with questions of further dependence
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Simplifying the question

Eliminate the ‘mixed-r’ reports:

Social Status Pronunciation of /r/
cons. ([r]) vocalic ([@]) mixed

high 30 6 32
medium 20 74 31

low 4 50 17

I now we are predicting a dichotomous (two-valued) variable
(instead of a polytomous one). Note that the predictor is still
polytomous.

I this step would be questionable if the category being
eliminated dominated
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Coding

We code /r/ as 0, vocalic and 1, consonantal

I SPSS offers several alternatives for the independent variable
(status)

I “dummy” coding (SPSS: “indicator”) is recommended:

Status explanation dummy-1 dummy-2

1 (high, Saks) 1 0
2 (mid, Macy’s) 0 1
3 (low, S. Klein) 0 0
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SPSS output

Variable B S.E. Wald df Sig Exp(B)

SOC STAT 43.90 2 .000
SOC STAT(1) 4.13 .69 36.38 1 .000 62.49
SOC STAT(2) 1.22 .58 4.44 1 .035 3.38

Constant -2.53 .52 23.63 1 .000

Recall that we’re finding the parameters to the following equation:

logit(p) = β0 + β1s1 + β2s2

= −2.5 + 4.1s1

= −2.5 + 1.2s2

= −2.5
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Interpreting SPSS output

logit(p) = −2.5 + 4.1s1 Saks, s1 = 1
= −2.5 + 1.2s2 Macy’s, s2 = 1
= −2.5 S. Klein, s1 = s2 = 0

= −2.5 + 4.1 = 1.6 Saks
= −2.5 + 12. = −1.3 Macy’s
= −2.5 S. Klein
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Checking interpretation of output

ln p
(1−p) = 1.6 Saks

= −1.3 Macy’s
= −2.5 S. Klein

p
(1−p) ln p

(1−p) p

30/6 1.6 ≈ 0.84 Saks
20/74 −1.3 ≈ 0.21 Macy’s
4/50 −2.5 ≈ 0.07 S. Klein

These indeed match the data to be predicted
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SPSS output

Variable B S.E. Wald df Sig Exp(B)

SOC STAT 43.90 2 .000
SOC STAT(1) 4.13 .69 36.38 1 .000 62.49
SOC STAT(2) 1.22 .58 4.44 1 .035 3.38

Constant -2.53 .52 23.63 1 .000

I Note that all variables are significant

I Exp(B) = eβ: e4.13 = 62.18
e1.22 = 3.38
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Hypothesis testing

We test each model parameter for significance, e.g.,

Null hypothesis H0: β1 = 0
Alternative hypothesis Ha: β1 6= 0

Compute the test statistic

z = b1
SEb1

Under H0, z2 has approximately χ2 distribution with 1 degree of
freedom.

Sometimes (e.g., in SPSS) called Wald statistics
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Confidence interval for the slope

A level C confidence interval for the slope β1 is

b1 ± z∗SEb1

z∗ is the value for the standard Normal density curve with area C
between −z∗ and z∗.

In the example (for C=95%):

4.13± (1.96) · 0.69 = 4.13± 0.14

We are 95% confident that the slope is between 3.99 and 4.27
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Predictions and correctness

Predicted
[@] [r]

Macy’s/ Saks
Klein Perc correct

Observed
[@] 124 6 95.38%

[r] 24 30 55.56%

83.70%

Table shows the prediction of the variable coded for status.

Note that we are predicting that Saks’ pronunciations should be all
[r] and the others all [@] (schwa).
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Log likelihood

Suppose there are n observations, where the positive value [r] was
seen k times and the null value [@] was seen (n − k) times.

Let p be the probability of observing [r].

Try to estimate p which makes observed data most likely.

Log likelihood L is given by

L = ln pk(1− p)(n−k) = k ln p + (n − k) ln(1− p)

We measure the quality of the model using log likelihood and
estimate the parameters to obtain optimal value.

−2L follows a χ2 distribution with (n − 1) degrees of freedom.
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Log probabilities
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Very likely events (p ≈ 1) contribute little to log likelihoods
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Log likelihood

We measure quality of the model using log likelihood and estimate
parameters to obtain optimal value.

We obtain optimal value by using the overall frequencies as a best
guess:

Pronunciation of /r/
Social status cons [r] vocalic [@]

high 30 6
medium 20 74

low 4 50

total 54 130
best guess 0.293 0.707
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Simplest model—no social class

Simplest model without social class:

L = k ln p + (n − k) ln(1− p)

= 54 ln(0.293) + 130 ln(0.707)

= 54(−1.23) + 130(−0.35)

= −66.4− 45.1 = −111.5

−2L = 223

We then turn to the model which distinguishes Saks from
everything else.
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Parameters in new model

We examine the new model which distinguishes two classes for
which distinct best guesses are obtained, again using the empirical
frequencies:

Pronunciation of /r/
Social status cons [r] vocalic [@] prob. [r]

high 30 6 0.833
non-high 24 124 0.162
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−2L in new (two-class) model

L = k ln p + (n − k) ln(1− p)
= 30 ln(0.833) + 6 ln(0.167)
= 30(−0.183) + 6(−1.79)
= −5.5− 10.7 = −16.2

L = k ln p + (n − k) ln(1− p)
= 24 ln(0.162) + 124 ln(0.838)
= 24(−1.82) + 124(−0.177)
= −43.7− 21.9 = −65.6

sum = −81.8
×(−2)

−2L = 161.6
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SPSS report on explained variance

Reduction in −2L: 222.7− 158.3 = 64.4 is the best measure of the
quality of the model.

64.4 is 29% of the variance (222.7)
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Analysis of residuals

I Just as in linear regression, useful in order to see where
predictions go wrong, where other/additional ideas might be
useful

I SPSS can save residuals as new variable

I Labov’s data is not available except in the tabular form used,
so we cannot examine residuals here
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Example 3: predicting admission to Grad school

Question: How do variables such as

I GRE (Graduate Record Exam scores)

I GPA (grade point average)

I prestige of the program

affect admission into graduate school?

The response variable—admit/don’t admit (1/0)—is a binary
variable.

We use logistic regression to predict the odds of being admitted
based on three predictors: GRE score, GPA, and quality of program
(high = 1, low = 0)
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Example 3: predicting admission to Grad school

Admission data:

Obs admit gre topnotch gpa

1 0 380 0 3.61
2 1 660 1 3.67
3 1 800 1 4.00
4 1 640 0 3.19
5 0 520 0 2.93
6 1 760 0 3.00
...

...
...

...
...

400 0 600 0 3.89

Note that two predictors are numerical, one categorical
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Check for empty cells

Check if any cells (created by cross-tabulation of categorical and
response variables) are empty.

If this occurs, there may be difficulties running the logit model.

admit

topnotch 0 1

0 238.00 97.00
1 35.00 30.00

None of the cells are too small or empty (has no cases), so we can
use logistic regression
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R output

We regress admission on GRE, GPA and quality of program

Estimate Std. Error z value Pr(>|z|)
(Intercept) −4.6008 1.0964 −4.20 0.0000 ***

gre 0.0025 0.0011 2.31 0.0207 *
gpa 0.6676 0.3253 2.05 0.0401 *

topnotch 0.4372 0.2919 1.50 0.1341

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’

Table of coefficients shows that both GRE and GPA are
statistically significant while topnotch is not.
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Odds-ratios

To interpret the coefficients as odds-ratios we exponentiate them

(Intercept) gre gpa topnotch
0.01004366 1.00247990 1.94946627 1.54840220

and determine the 95% confidence intervals:

2.5 % 97.5 %
(Intercept) 0.00 0.08

gre 1.00 1.00
gpa 1.04 3.72

topnotch 0.87 2.74

For a one unit increase in GPA, the odds of being admitted to
graduate school increase by a factor of 1.94 (but note that GPA
confidence interval is large)
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Log-likelihood test

Want to test whether difference between current model (three
predictors) and null model (only intercept) is statistically
significant.

We compare the log-likelihoods (−2L) of the null model and the
current model with χ2 test for 3 degrees of freedom (= #
predictors)

Obtain a χ2 of 21.85, with a p-value of less than 0.00004

Indicates that our model as a whole fits significantly better than an
‘empty’ model
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Predict probabilities to interpret logistic regression results

Q: What is the probability of getting accepted into grad school
based on the quality of the undergrad program only?

Fix GRE and GPA at mean, and predict probabilities based on
‘topnotch’ variable only (using our model)

gre gpa topnotch topnotchP

1 587.70 3.39 0.00 0.29
2 587.70 3.39 1.00 0.39

Table shows: predicted probability of being accepted into the
graduate program is 0.29 if the undergraduate institution was not
”top notch” (topnotch = 0) and 0.39 if it was (topnotch = 1).
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Predict probabilities to interpret logistic regression results

Q: What is the probability of getting accepted into grad school
based on the GRE scores only?

Fix GPA and topnotch at mean, and predict probabilities based on
GRE only (using our model)

gre greP

1 200.00 0.15
2 300.00 0.18
3 400.00 0.22
4 500.00 0.26
5 600.00 0.31
6 700.00 0.37
7 800.00 0.43

The probability of getting
admitted into grad school is 0.15
with a GRE of 200 and increases
to 0.43 with a GRE of 800.
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Logistic regression wrapped up

Idea: predict categorical variable using regression

I example: whether linguistic rules apply, e.g., syllable-final [r]
in NYC

I key step: predict chance of categorical variable
I transforming categorical to numeric variable
I logit (log-odds) transformation used

logit(p) = ln( p
1−p )

I independent variable may be numeric or categorical
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End of course material

Good luck with preparing for the exam!

Come see me if you have questions
(make appt. at j.nerbonne@rug.nl)
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