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Review: regression

I compares result on two distinct tests, e.g., geographic and
phonetic distance of dialects

I regression for numerical variables only

I fits a straight line on the data

I is there an explanatory relationship between these variables?

I answer: hypothesis tests for regression coefficients

I regression is asymmetric (explanatory direction)

I regression fallacy: seeing causation in regression

I regression towards the mean (inevitable)
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Review: regression
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Review: correlation

I only for numeric variables x and y

I measures strength and direction of a linear relation between x
and y

I rxy = 1
n−1

n∑
i=1

zxi · zyi

I correlation coefficient symmetric: rxy = ryx

I −1 ≤ rxy ≤ 1 pure number, no scale

I related to the slope of the regression line: y = a + bx has
slope

b = r · σy

σx
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Review: correlation and regression
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Review: prediction with regression
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Today: multiple regression

Idea: Predict numerical variable using several independent
variables

Examples:

I university performance dependent on general intelligence, high
school grades, education of parents,...

I income dependent on years of schooling, school performance,
general intelligence, income of parents,...

I level of language ability of immigrants depending on
I leisure contact with natives
I age at immigration
I employment-related contact with natives
I professional qualification
I duration of stay
I accommodation
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Regression techniques attractive

I allows prediction of one variable value based on one or more
others

I allows an estimation of the importance of various independent
factors (cf. ANOVA)

y = ε

y = α + ε

y = α + β1x1 + ε

y = α + β2x2 + ε

y = α + β1x1 + β2x2 + ε

I which independent factors, taken together or separately,
explain the dependent variable the best?
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Multiple regression data

One dependent variable y, but several predictor variables x1, . . . , xp

N cases ci with i ∈ {1, . . . ,N}

Each case ci has the form ci = (xi1, . . . , xip, yi )

Data: Case 1: c1 = (x11, . . . , x1p, y1)
Case 2: c2 = (x21, . . . , x2p, y2)

...
...

Case N: cN = (xN1, . . . , xNp, yN)

Example: do geographic (x1) and phonetic distance (x2) predict
people’s intuitions about dialect distance (y)? (see
Bezooijen and Heeringa, 2006)
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Multiple regression model

Statistical model of multiple linear regression:

y1 = α + β1x11 + β2x12 + . . . + βpx1p + ε1
...

yN = α + β1xN1 + β2xN2 + . . . + βpxNp + εN

Mean response µy is linear combination of predictor variables:

µy = α + β1x1 + β2x2 + . . . + βpxp

Deviations εi are independent and normally distributed with mean
0 and standard deviation σ
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Multiple regression model

Need to estimate p + 1 model parameters a, b1, . . . , bp:

y = a + b1x1 + b2x2 + · · ·+ bpxp
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Multiple regression model

Need to estimate p + 1 model parameters a, b1, . . . , bp:

y = a + b1x1︸ ︷︷ ︸
simple linear
regression

+ b2x2 + · · ·+ bpxp
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Multiple regression model

Need to estimate p + 1 model parameters a, b1, . . . , bp:

y = a + b1x1 + b2x2 + · · ·+ bpxp

Predicted response for case i :

ŷi = a + b1xi1 + b2xi2 + · · ·+ bpxip

Residual of case i :

ei = observed response− predicted response

= yi − ŷi

= yi − a − b1xi1 − b2xi2 − · · · − bpxip
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Least squares regression

Find parameters that minimize sum of squared residuals (SSE):

N∑
i=1

e2
i =

N∑
i=1

(yi − a − b1xi1 − b2xi2 − · · · − bpxip)
2

But this time, let software do it for you...

As usual, we partition the variance:

SST = SSM + SSE
N∑

i=1

(yi − y)2 =
N∑

i=1

(ŷi − y)2 +
N∑

i=1

(yi − ŷi )
2

Total variance = Explained variance + Error variance
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Degrees of freedom in multiple regression

Multiple linear regression model has p + 1 parameters

Hence, model degrees of freedom (DFM): (p + 1)− 1 = p

Total degrees of freedom (DFT): (number of cases) −1 = N − 1

Error degrees of freedom (DFE): N − p − 1

As usual, DFT = DFM + DFE

Mean square model: MSM = SSM/DFM

Mean square error: MSE = SSE/DFE
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Multiple regression: example

Grade point average (GPA) of first-year computer science majors is
measured (A = 4.0, B = 3.0,...)

Questions:

(a) do high school grades predict university grades?

I Mathematics

I English

I Science

(b) do ‘scholastic aptitude test’ (SAT) scores predict university grades?

I Mathematics

I Verbal

(c) do both sets of scores predict GPA?
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Multiple regression: example

Obs HS-M HS-S HS-E SAT-M SAT-V GPA

1 10 10 10 670 600 3.32
2 6 8 5 700 640 2.26
3 8 6 8 640 530 2.35
4 9 10 7 670 600 2.08
5 8 9 8 540 580 3.38
...

...
...

...
...

...
...

224 9 8 9 559 488 2.28

HS-M/S/E: high school grades mathematics/science/English
SAT-M/V: ‘scholastic aptitude test’ scores mathematics/verbal
GPA: grade point average
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Distribution of scores
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Regression does not require that variables be normally distributed!
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Multiple regression: predicted vs observed values
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Scatterplot of GPA against SAT scores with regression plane fitted
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Visualizing residuals
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Check normality of residuals
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Regression on high school grades

(a) do high school grades (HS-M, HS-S, HS-E) predict GPA?

Call: lm(formula = gpa ∼ hse + hsm + hss, data = gpa data)

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) 0.58988 0.29424 2.005 0.0462 *
hse 0.04510 0.03870 1.166 0.2451
hsm 0.16857 0.03549 4.749 3.68e-06 ***
hss 0.03432 0.03756 0.914 0.3619
—
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 .
Residual standard error: 0.6998 on 220 degrees of freedom
Multiple R-Squared: 0.2046, Adjusted R-squared: 0.1937
F-statistic: 18.86 on 3 and 220 DF, p-value: 6.359e-11
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Regression on high school grades

(a) do high school grades (HS-M, HS-S, HS-E) predict GPA?

Call: lm(formula = gpa ∼ hse + hsm + hss, data = gpa data)

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) 0.58988 0.29424 2.005 0.0462 *
hse 0.04510 0.03870 1.166 0.2451
hsm 0.16857 0.03549 4.749 3.68e-06 ***
hss 0.03432 0.03756 0.914 0.3619
—
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 .
Residual standard error: 0.6998 on 220 degrees of freedom
Multiple R-Squared: 0.2046, Adjusted R-squared: 0.1937
F-statistic: 18.86 on 3 and 220 DF, p-value: 6.359e-11

Regression equation: y = 0.59 + 0.04x1 + 0.17x2 + 0.03x3
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Regression on high school grades

(a) do high school grades (HS-M, HS-S, HS-E) predict GPA?

Call: lm(formula = gpa ∼ hse + hsm + hss, data = gpa data)

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) 0.58988 0.29424 2.005 0.0462 *
hse 0.04510 0.03870 1.166 0.2451
hsm 0.16857 0.03549 4.749 3.68e-06 ***
hss 0.03432 0.03756 0.914 0.3619
—
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 .
Residual standard error: 0.6998 on 220 degrees of freedom
Multiple R-Squared: 0.2046, Adjusted R-squared: 0.1937
F-statistic: 18.86 on 3 and 220 DF, p-value: 6.359e-11

Regression equation: y = 0.59 + 0.04x1 + 0.17x2 + 0.03x3
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F-statistics for multiple regression

F-statistics tests:

H0: b1 = b2 = . . . = bp = 0 against Ha: at least one of the bi 6= 0

ANOVA table:

Source Degrees of Sum of squares Mean square F
freedom

Model p
P

(ŷi − y)2 SSM/DFM MSM/MSE
Error N − p − 1

P
(yi − ŷi )

2 SSE/DFE

Total N − 1
P

(yi − y)2 SST/DFT

In the example: F (3, 220) = 18.86 and p < 0.001

Hence, we reject H0, at least one regression coefficient bi 6= 0 (but
we don’t know which one)
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Regression on high school grades

(a) do high school grades (HS-M, HS-S, HS-E) predict GPA?

Call: lm(formula = gpa ∼ hse + hsm + hss, data = gpa data)

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) 0.58988 0.29424 2.005 0.0462 *
hse 0.04510 0.03870 1.166 0.2451
hsm 0.16857 0.03549 4.749 3.68e-06 ***
hss 0.03432 0.03756 0.914 0.3619
—
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 .
Residual standard error: 0.6998 on 220 degrees of freedom
Multiple R-Squared: 0.2046, Adjusted R-squared: 0.1937
F-statistic: 18.86 on 3 and 220 DF, p-value: 6.359e-11

Regression equation: y = 0.59 + 0.04x1 + 0.17x2 + 0.03x3
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Hypothesis testing

Which of the high school grades significantly contributes to
predicting GPA?

For each coefficient b1, b2, b3 we test: H0: bi = 0 vs Ha: bi 6= 0

Under H0: t∗ = bi

SEi

follows t-distribution with N − p − 1 degrees of freedom, where

SEi = standard error of the estimated bi

If t∗ ≥ |t(N − p − 1)| at α = 0.05, reject H0
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Hypothesis testing

Which of the high school grades significantly contributes to
predicting GPA?

Coefficients:
Estimate Std. Error t value Pr(> |t|)

hse 0.04510 0.03870 1.166 0.2451
hsm 0.16857 0.03549 4.749 3.68e-06 ***
hss 0.03432 0.03756 0.914 0.3619
—
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 .

In this regression model, only high school grades in Mathematics
(HS-M) are significant

BUT...
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Hypothesis testing

...if we regress Science grades (HS-S) only on GPA:

Call: lm(formula = gpa ∼ hss, data = gpa data)

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) 1.41325 0.24017 5.884 1.46e-08 ***
hss 0.15106 0.02906 5.198 4.55e-07 ***
—
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 .
Residual standard error: 0.7375 on 222 degrees of freedom
Multiple R-Squared: 0.1085, Adjusted R-squared: 0.1045
F-statistic: 27.02 on 1 and 222 DF, p-value: 4.552e-07

We find that HS-S is a significant predictor of GPA!
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Hypothesis testing

Explanation: look at correlation between explanatory variables

rHSM,HSE = 0.47

rHSM,HSS = 0.58

rHSE,HSS = 0.58

Hence, Maths and Science grades strongly correlated

I HSS does not add to explanatory power of HSM and HSE (in
full model)

I HSS alone, though, predicts GPA (to some extent)

I be careful: always compare several multiple regression models
and determine correlation before drawing conclusions
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Visualizing multiple regression

Y

X1 I regress Y on X1 (simple linear
regression)

I shaded area r2 (squared
Pearson correlation coefficient)

I r2 measures amount of
variation in Y explained by X1
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Visualizing multiple regression

Y

X1

X2

I regress Y on X1 and X2

(multiple linear regression)

I dark grey areas: uniquely
explained variance (“squared
semi-partial correlation”)

I light grey area: commonly
explained variance (due to
correlation of X1 and X2)
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Visualizing multiple regression

Y

X1

X2

X3

I regress Y on X1 and X2 and X3

(multiple linear regression)

I dark grey areas: uniquely
explained variance (“squared
semi-partial correlation”)

I light grey area: commonly
explained variance (due to
correlation of X1 and X2)

I note: X1 and X3 uncorrelated

John Nerbonne Statistiek II



Visualizing multiple regression

Y

X1

X2

X3

I regress Y on X1 and X2 and X3

(multiple linear regression)

I black area R2: “squared
multiple correlation coefficient”

I R2 measures total proportion of
variance in Y accounted for by
X1, X2 and X3
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Squared multiple correlation

R2 =
SSM

SST
=

∑N
i=1(ŷi − y)2∑N
i=1(yi − y)2

Regression of GPA on HS-S, HS-M and HS-E:

Residual standard error: 0.6998 on 220 degrees of freedom
Multiple R-Squared: 0.2046, Adjusted R-squared: 0.1937
F-statistic: 18.86 on 3 and 220 DF, p-value: 6.359e-11

I High school grades explain 20.5% of variance in GPA

I Not a whole lot, despite highly significant p-value for HS-M
coefficient

I Once again, small p-values do not entail a large effect!
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Squared multiple correlation

R2 =
SSM

SST
=

∑N
i=1(ŷi − y)2∑N
i=1(yi − y)2

Regression of GPA on HS-S only:

Residual standard error: 0.7375 on 222 degrees of freedom
Multiple R-Squared: 0.1085, Adjusted R-squared: 0.1045
F-statistic: 27.02 on 1 and 222 DF, p-value: 4.552e-07

I p-values in both models comparable, but

I High school grades in Science explain only 10.8% of variance
in GPA

I Adding more variables (HS-M, HS-E) to model adds
explanatory power
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Refining the model

In full model (HS-S/E/M), HS-S had largest p-value (0.3619);
drop HS-S from model:

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) 0.62423 0.29172 2.140 0.0335 *
hse 0.06067 0.03473 1.747 0.0820 .
hsm 0.18265 0.03196 5.716 3.51e-08 ***
—
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 .
Residual standard error: 0.6996 on 221 degrees of freedom
Multiple R-Squared: 0.2016, Adjusted R-squared: 0.1943
F-statistic: 27.89 on 2 and 221 DF, p-value: 1.577e-11

I R2 = 0.2016 versus R2 = 0.2046 in the bigger model

I In this (precise) sense HS-S does not add to explanatory power
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What about SAT scores?

Question (b) do SAT scores predict GPA?

Call: lm(formula = gpa ∼ satm + satv, data = gpa data)

Coefficients: Estimate Std. Error t value Pr(> |t|)
(Intercept) 1.289e+00 3.760e-01 3.427 0.000728 ***
satm 2.283e-03 6.629e-04 3.444 0.000687 ***
satv -2.456e-05 6.185e-04 -0.040 0.968357
—
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 .
Residual standard error: 0.7577 on 221 degrees of freedom
Multiple R-Squared: 0.06337, Adjusted R-squared: 0.05498
F-statistic: 7.476 on 2 and 221 DF, p-value: 0.0007218

Regression on SAT scores also significant, but less explanatory
power than high school grades
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What about adding SAT scores?

Question (c) do high school grades and SAT scores predict GPA?

Call: lm(formula = gpa ∼ hse + hsm + hss + satm + satv, data = gpa data)

Coefficients: Estimate Std. Error t value Pr(> |t|)
(Intercept) 0.3267187 0.3999964 0.817 0.414932
hse 0.0552926 0.0395687 1.397 0.163719
hsm 0.1459611 0.0392610 3.718 0.000256 ***
hss 0.0359053 0.0377984 0.950 0.343207
satm 0.0009436 0.0006857 1.376 0.170176
satv -0.0004078 0.0005919 -0.689 0.491518
—
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 .
Residual standard error: 0.7 on 218 degrees of freedom
Multiple R-Squared: 0.2115, Adjusted R-squared: 0.1934
F-statistic: 11.69 on 5 and 218 DF, p-value: 5.058e-10
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ANOVA for multiple regression

I How do we formally compare different regression models?

I For example, do SAT scores significantly add to explanatory
power of high school grades?

Compare
lm(formula = gpa ∼ hse + hsm + hss, data = gpa data)

with
lm(formula = gpa ∼ hse + hsm + hss + satm + satv, data = gpa data)

Use ANOVA to test:

H0: bsatm = bsatv = 0 versus Ha: at least one of these b′s 6= 0
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ANOVA for multiple regression

ANOVA F-score:

F = [(SSEshorter − SSElonger)/#new variables]/MSElonger

In the example:

Analysis of Variance Table

Model 1: gpa ∼ hse + hsm + hss
Model 2: gpa ∼ hse + hsm + hss + satm + satv

Res.Df SSE Df Sum of Sq F Pr(> F )
1 220 107.750
2 218 106.819 2 0.931 0.9503 0.3882

Hence, SAT scores not significant predictors of GPA in regression
model which already contains high school scores
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Analyses summary

What can we conclude from all these analyses?

I High school grades in Maths are a significant predictor of GPA

I High school grades in Science are a significant predictor of GPA

I High school grades in Science and English do not add to the
explanatory power of Math grades

I SAT scores do not add explanatory power to the model either

Can we ignore SAT scores and Science/English grades then?

I No, because we only looked at GPA of computer science majors

I at one university
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Problems with multiple regression

I Overfitting: The more variables, the higher the amount of variance
you can explain. Even if each variable doesn’t explain much, adding
large number of variables can result in high values of R2

I Interaction: Multiple regression is logically more complicated than
simple regression applied several times for different variables

I Collinearity: Independent variables may correlate themselves,
competing in their explanation

I Suppression: An independent variable may appear not to be
explanatory, but becomes significant in combined model
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Summary multiple regression

I generalization of simple linear regression

I allows prediction of one variable value based on one or more
others

I test hypotheses about the predictive power of variables
(t-test for coefficients)

I measure the proportion of variance in dependent variable
explained by predictors (R2)

I allows an estimation of the importance of various
independent factors (model comparison with ANOVA)

I which independent factors, taken together or separately,
explain the dependent variable the best?
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Next week

Next week: logistic regression
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