Statistiek II

John Nerbonne

Dept of Information Science
j.nerbonne@rug.nl

October 1, 2010

Review: regression

- compares result on two distinct tests, e.g., geographic and phonetic distance of dialects
- regression for numerical variables only
- fits a straight line on the data
- is there an explanatory relationship between these variables?
- answer: hypothesis tests for regression coefficients
- regression is asymmetric (explanatory direction)
- regression fallacy: seeing causation in regression
- regression towards the mean (inevitable)

Review: regression

Regression line $y=a+b x$ minimizes the sum of squared residuals

Review: correlation

- only for numeric variables x and y
- measures strength and direction of a linear relation between x and y
- $r_{x y}=\frac{1}{n-1} \sum_{i=1}^{n} z_{x_{i}} \cdot z_{y_{i}}$
- correlation coefficient symmetric: $r_{x y}=r_{y x}$
- $-1 \leq r_{x y} \leq 1$ pure number, no scale
- related to the slope of the regression line: $y=a+b x$ has slope

$$
b=r \cdot \frac{\sigma_{y}}{\sigma_{x}}
$$

Review: correlation and regression

Coefficient of determination: $r^{2}=\frac{\text { Explained variation }}{\text { Total variation }}$

Review: prediction with regression

Today: multiple regression

Idea: Predict numerical variable using several independent variables

Examples:

- university performance dependent on general intelligence, high school grades, education of parents,...
- income dependent on years of schooling, school performance, general intelligence, income of parents,...
- level of language ability of immigrants depending on
- leisure contact with natives
- age at immigration
- employment-related contact with natives
- professional qualification
- duration of stay
- accommodation

Regression techniques attractive

- allows prediction of one variable value based on one or more others
- allows an estimation of the importance of various independent factors (cf. ANOVA)

$$
\begin{aligned}
y & =\epsilon \\
y & =\alpha+\epsilon \\
y & =\alpha+\beta_{1} x_{1}+\epsilon \\
y & =\alpha+\beta_{2} x_{2}+\epsilon \\
y & =\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+\epsilon
\end{aligned}
$$

- which independent factors, taken together or separately, explain the dependent variable the best?

Multiple regression data

One dependent variable y, but several predictor variables x_{1}, \ldots, x_{p}
N cases c_{i} with $i \in\{1, \ldots, N\}$
Each case c_{i} has the form $c_{i}=\left(x_{i 1}, \ldots, x_{i p}, y_{i}\right)$
Data: Case 1: $\quad c_{1}=\left(x_{11}, \ldots, x_{1 p}, y_{1}\right)$
Case 2: $\quad c_{2}=\left(x_{21}, \ldots, x_{2 p}, y_{2}\right)$

Case $\mathrm{N}: \quad c_{N}=\left(x_{N 1}, \ldots, x_{N p}, y_{N}\right)$
Example: do geographic (x_{1}) and phonetic distance (x_{2}) predict people's intuitions about dialect distance (y)? (see Bezooijen and Heeringa, 2006)

Multiple regression model

Statistical model of multiple linear regression:

$$
\begin{aligned}
y_{1} & =\alpha+\beta_{1} x_{11}+\beta_{2} x_{12}+\ldots+\beta_{p} x_{1 p}+\epsilon_{1} \\
& \vdots \\
y_{N} & =\alpha+\beta_{1} x_{N 1}+\beta_{2} x_{N 2}+\ldots+\beta_{p} x_{N p}+\epsilon_{N}
\end{aligned}
$$

Mean response μ_{y} is linear combination of predictor variables:

$$
\mu_{y}=\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{p} x_{p}
$$

Deviations ϵ_{i} are independent and normally distributed with mean 0 and standard deviation σ

Multiple regression model

Need to estimate $p+1$ model parameters a, b_{1}, \ldots, b_{p} :

$$
y=a+b_{1} x_{1}+b_{2} x_{2}+\cdots+b_{p} x_{p}
$$

Multiple regression model

Need to estimate $p+1$ model parameters a, b_{1}, \ldots, b_{p} :

$$
\underbrace{y=a+b_{1} x_{1}}_{\substack{\text { simple linear } \\ \text { regression }}}+b_{2} x_{2}+\cdots+b_{p} x_{p}
$$

Multiple regression model

Need to estimate $p+1$ model parameters a, b_{1}, \ldots, b_{p} :

$$
y=a+b_{1} x_{1}+b_{2} x_{2}+\cdots+b_{p} x_{p}
$$

Predicted response for case i :

$$
\hat{y}_{i}=a+b_{1} x_{i 1}+b_{2} x_{i 2}+\cdots+b_{p} x_{i p}
$$

Residual of case i :
$e_{i}=$ observed response - predicted response
$=y_{i}-\hat{y}_{i}$
$=y_{i}-a-b_{1} x_{i 1}-b_{2} x_{i 2}-\cdots-b_{p} x_{i p}$

Least squares regression

Find parameters that minimize sum of squared residuals (SSE):

$$
\sum_{i=1}^{N} e_{i}^{2}=\sum_{i=1}^{N}\left(y_{i}-a-b_{1} x_{i 1}-b_{2} x_{i 2}-\cdots-b_{p} x_{i p}\right)^{2}
$$

But this time, let software do it for you...
As usual, we partition the variance:

$$
\mathrm{SST}=\mathrm{SSM}+\mathrm{SSE}
$$

$$
\begin{aligned}
\sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2} & =\sum_{i=1}^{N}\left(\hat{y}_{i}-\bar{y}\right)^{2}+\sum_{i=1}^{N}\left(y_{i}-\hat{y}_{i}\right)^{2} \\
\text { Total variance } & =\text { Explained variance }+ \text { Error variance }
\end{aligned}
$$

Degrees of freedom in multiple regression

Multiple linear regression model has $p+1$ parameters
Hence, model degrees of freedom (DFM): $(p+1)-1=p$
Total degrees of freedom (DFT): (number of cases) $-1=N-1$
Error degrees of freedom (DFE): $N-p-1$
As usual, DFT = DFM + DFE
Mean square model: $\mathrm{MSM}=\mathrm{SSM} / \mathrm{DFM}$
Mean square error: $\quad \mathrm{MSE}=\mathrm{SSE} / \mathrm{DFE}$

Multiple regression: example

Grade point average (GPA) of first-year computer science majors is measured ($A=4.0, B=3.0, \ldots$)

Questions:
(a) do high school grades predict university grades?

- Mathematics
- English
- Science
(b) do 'scholastic aptitude test' (SAT) scores predict university grades?
- Mathematics
- Verbal
(c) do both sets of scores predict GPA?

Multiple regression: example

Obs	HS-M	HS-S	HS-E	SAT-M	SAT-V	GPA
1	10	10	10	670	600	3.32
2	6	8	5	700	640	2.26
3	8	6	8	640	530	2.35
4	9	10	7	670	600	2.08
5	8	9	8	540	580	3.38
\vdots						
224	9	8	9	559	488	2.28

HS-M/S/E: high school grades mathematics/science/English SAT-M/V: 'scholastic aptitude test' scores mathematics/verbal GPA: grade point average

Distribution of scores

gpa

Regression does not require that variables be normally distributed!

Multiple regression: predicted vs observed values

Scatterplot of GPA against SAT scores with regression plane fitted

Visualizing residuals

Residual-Fitted plot

No indication of non-linear relationship between variables

Check normality of residuals

Normal Q-Q Plot

No indication that residuals are distributed non-normal

Regression on high school grades

(a) do high school grades (HS-M, HS-S, HS-E) predict GPA?

Call: $\operatorname{Im}($ formula $=$ gpa \sim hse + hsm + hss, data $=$ gpa_data $)$

Coefficients:				
	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	0.58988	0.29424	2.005	0.0462 *
hse	0.04510	0.03870	1.166	0.2451
hsm	0.16857	0.03549	4.749	3.68e-06 ***
hss	0.03432	0.03756	0.914	0.3619
-				
Signif. codes:	0 ***	$0.001^{* *}$	0.01 *	0.05
Residual standard error:	0.6998 on 220 degrees of freedom			
Multiple R-Squared:	0.2046, Adjusted R-squared: 0.1937			
F-statistic:	18.86 on 3 and 220 DF, p-value: $6.359 \mathrm{e}-11$			

Regression on high school grades

(a) do high school grades (HS-M, HS-S, HS-E) predict GPA?

Call: $\operatorname{Im}($ formula $=$ gpa \sim hse + hsm + hss, data $=$ gpa_data $)$

Coefficients:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	0.58988	0.29424	2.005	0.0462 *
hse	0.04510	0.03870	1.166	0.2451
hsm	0.16857	0.03549	4.749	3.68e-06 ***
hss	0.03432	0.03756	0.914	0.3619
Signif. codes:	0 ***	$0.001^{* *}$	0.01 *	0.05
Residual standard error:	0.6998 on 220 degrees of freedom			
Multiple R-Squared:	0.2046, Adjusted R-squared: 0.1937			
F-statistic:	18.86 on	and 220 D	p -value:	6.359e-11

Regression equation: $y=0.59+0.04 x_{1}+0.17 x_{2}+0.03 x_{3}$

Regression on high school grades

(a) do high school grades (HS-M, HS-S, HS-E) predict GPA?

Call: $\operatorname{Im}($ formula $=$ gpa \sim hse + hsm + hss, data $=$ gpa_data $)$

Coefficients:
(Intercept)

Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
0.58988	0.29424	2.005	0.0462 *
0.04510	0.03870	1.166	0.2451
0.16857	0.03549	4.749	$3.68 \mathrm{e}-06{ }^{* * *}$
0.03432	0.03756	0.914	0.3619
$0^{* * *}$	$0.001{ }^{* *}$	0.01 *	0.05
0.6998 on 220 degrees of freedom			
0.2046, Adjusted R-squared: 0.1937			
18.86 on 3	and 220 DF	p -value	6.359e-11

Regression equation: $y=0.59+0.04 x_{1}+0.17 x_{2}+0.03 x_{3}$

F-statistics for multiple regression

F-statistics tests:

$H_{0}: b_{1}=b_{2}=\ldots=b_{p}=0$ against $H_{a}:$ at least one of the $b_{i} \neq 0$
ANOVA table:

Source	Degrees of freedom	Sum of squares	Mean square	F
Model	p	$\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}$	SSM/DFM	MSM/MSE
Error	$N-p-1$	$\sum\left(y_{i}-\hat{y}_{i}\right)^{2}$	SSE/DFE	
Total	$N-1$	$\sum\left(y_{i}-\bar{y}\right)^{2}$	SST/DFT	

In the example: $F(3,220)=18.86$ and $p<0.001$
Hence, we reject H_{0}, at least one regression coefficient $b_{i} \neq 0$ (but we don't know which one)

Regression on high school grades

(a) do high school grades (HS-M, HS-S, HS-E) predict GPA?

Call: $\operatorname{Im}($ formula $=$ gpa \sim hse + hsm + hss, data $=$ gpa_data $)$

Coefficients:
(Intercept)

Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
0.58988	0.29424	2.005	0.0462^{*}
0.04510	0.03870	1.166	0.2451
0.16857	0.03549	4.749	$3.68 \mathrm{e}-06^{* * *}$
0.03432	0.03756	0.914	0.3619
$0 * * *$	$0.001^{* *}$	0.01^{*}	0.05.
0.6998 on 220 degrees of freedom 0.2046, Adjusted R-squared: 0.1937 18.86 on 3 and 220 DF, p-value: $6.359 \mathrm{e}-11$			

Regression equation: $y=0.59+0.04 x_{1}+0.17 x_{2}+0.03 x_{3}$

Hypothesis testing

Which of the high school grades significantly contributes to predicting GPA?

For each coefficient b_{1}, b_{2}, b_{3} we test: $H_{0}: b_{i}=0$ vs $H_{a}: b_{i} \neq 0$
Under H_{0} :

$$
t^{*}=\frac{b_{i}}{\mathrm{SE}_{i}}
$$

follows t-distribution with $N-p-1$ degrees of freedom, where

$$
\mathrm{SE}_{i}=\text { standard error of the estimated } b_{i}
$$

If $t^{*} \geq|t(N-p-1)|$ at $\alpha=0.05$, reject H_{0}

Hypothesis testing

Which of the high school grades significantly contributes to predicting GPA?

Coefficients:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
hse	0.04510	0.03870	1.166	0.2451
hsm	0.16857	0.03549	4.749	$3.68 \mathrm{e}-06 * * *$
hss	0.03432	0.03756	0.914	0.3619
-				
Signif. codes:	$00^{* * *}$	$0.001^{* *}$	0.01^{*}	0.05.

In this regression model, only high school grades in Mathematics (HS-M) are significant

BUT...

Hypothesis testing

...if we regress Science grades (HS-S) only on GPA:
Call: $\operatorname{Im}($ formula $=$ gpa \sim hss, data $=$ gpa_data $)$
Coefficients:

(Intercept)	1.41325	0.24017	5.884	$1.46 \mathrm{e}-08$
hss	0.15106	0.02906	5.198	$4.55 \mathrm{e}-07$ *
Signif. codes:	0 ***	0.001 **	0.01 *	0.05
Residual standard error:	0.7375 on 222 degrees of freedom			
Multiple R-Squared:	0.1085 , Adjusted R-squared: 0.1045			
F-statistic:	27.02 on	and 222 D	-val	4.552e-07

We find that HS-S is a significant predictor of GPA!

Hypothesis testing

Explanation: look at correlation between explanatory variables

$$
\begin{aligned}
r_{\text {HSM }, \text { HSE }} & =0.47 \\
r_{\text {HSM, HSS }} & =0.58 \\
r_{\text {HSE,HSS }} & =0.58
\end{aligned}
$$

Hence, Maths and Science grades strongly correlated

- HSS does not add to explanatory power of HSM and HSE (in full model)
- HSS alone, though, predicts GPA (to some extent)
- be careful: always compare several multiple regression models and determine correlation before drawing conclusions

Visualizing multiple regression

- regress Y on X_{1} (simple linear regression)
- shaded area r^{2} (squared Pearson correlation coefficient)
- r^{2} measures amount of variation in Y explained by X_{1}

Visualizing multiple regression

- regress Y on X_{1} and X_{2} (multiple linear regression)
- dark grey areas: uniquely explained variance ("squared semi-partial correlation")
- light grey area: commonly explained variance (due to correlation of X_{1} and X_{2})

Visualizing multiple regression

- regress Y on X_{1} and X_{2} and X_{3} (multiple linear regression)
- dark grey areas: uniquely explained variance ("squared semi-partial correlation")
- light grey area: commonly explained variance (due to correlation of X_{1} and X_{2})
- note: X_{1} and X_{3} uncorrelated

Visualizing multiple regression

- regress Y on X_{1} and X_{2} and X_{3} (multiple linear regression)
- black area R^{2} : "squared multiple correlation coefficient"
- R^{2} measures total proportion of variance in Y accounted for by X_{1}, X_{2} and X_{3}

Squared multiple correlation

$$
R^{2}=\frac{S S M}{S S T}=\frac{\sum_{i=1}^{N}\left(\hat{y}_{i}-\bar{y}\right)^{2}}{\sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2}}
$$

Regression of GPA on HS-S, HS-M and HS-E:
Residual standard error: 0.6998 on 220 degrees of freedom
Multiple R-Squared: $\quad 0.2046$, Adjusted R-squared: 0.1937
F-statistic: $\quad 18.86$ on 3 and 220 DF, \quad p-value: $6.359 \mathrm{e}-11$

- High school grades explain 20.5\% of variance in GPA
- Not a whole lot, despite highly significant p-value for HS-M coefficient
- Once again, small p-values do not entail a large effect!

Squared multiple correlation

$$
R^{2}=\frac{S S M}{S S T}=\frac{\sum_{i=1}^{N}\left(\hat{y}_{i}-\bar{y}\right)^{2}}{\sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2}}
$$

Regression of GPA on HS-S only:

| Residual standard error: | 0.7375 on 222 degrees of freedom |
| :--- | :--- | :--- |
| Multiple R-Squared: | $0.1085, \quad$ Adjusted R-squared: 0.1045 |
| F-statistic: | 27.02 on 1 and 222 DF, p-value: $4.552 \mathrm{e}-07$ |

- p-values in both models comparable, but
- High school grades in Science explain only 10.8\% of variance in GPA
- Adding more variables (HS-M, HS-E) to model adds explanatory power

Refining the model

In full model (HS-S/E/M), HS-S had largest p-value (0.3619); drop HS-S from model:

Coefficients:				
	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	0.62423	0.29172	2.140	0.03355^{*}
hse	0.06067	0.03473	1.747	0.0820.
hsm	0.18265	0.03196	5.716	$3.51 \mathrm{e}-08 * *$
-				
Signif. codes:	$0 * * *$	$0.001^{* *}$	$0.01 *$	0.05.
Residual standard error:	0.6996 on 221 degrees of freedom			
Multiple R-Squared:	$0.2016, \quad$ Adjusted R-squared: 0.1943			
F-statistic:	27.89 on 2 and 221 DF,	p-value: $1.577 \mathrm{e}-11$		

- $R^{2}=0.2016$ versus $R^{2}=0.2046$ in the bigger model
- In this (precise) sense HS-S does not add to explanatory power

What about SAT scores?

Question (b) do SAT scores predict GPA?
Call: $\operatorname{Im}($ formula $=$ gpa \sim satm + satv, data $=$ gpa_data $)$

Coefficients:	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	$1.289 \mathrm{e}+00$	$3.760 \mathrm{e}-01$	3.427	$0.000728 * * *$
satm	$2.283 \mathrm{e}-03$	$6.629 \mathrm{e}-04$	3.444	$0.000687^{* * *}$
satv	$-2.456 \mathrm{e}-05$	$6.185 \mathrm{e}-04$	-0.040	0.968357
-				
Signif. codes:	$0 * * *$	$0.001^{* *}$	0.01^{*}	0.05.
Residual standard error:	0.7577 on 221 degrees of freedom			
Multiple R-Squared:	$0.06337, \quad$ Adjusted R-squared: 0.05498			
F-statistic:	7.476 on 2 and 221 DF,	p-value: 0.0007218		

Regression on SAT scores also significant, but less explanatory power than high school grades

What about adding SAT scores?

Question (c) do high school grades and SAT scores predict GPA?
Call: Im (formula $=$ gpa \sim hse + hsm + hss + satm + satv, data $=$ gpa_data $)$

Coefficients:	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	0.3267187	0.3999964	0.817	0.414932
hse	0.0552926	0.0395687	1.397	0.163719
hsm	0.1459611	0.0392610	3.718	$0.000256^{* * *}$
hss	0.0359053	0.0377984	0.950	0.343207
satm	0.0009436	0.0006857	1.376	0.170176
satv	-0.0004078	0.0005919	-0.689	0.491518
Signif. codes:	0 ***	0.001 **	0.01 *	0.05
Residual standard error:	0.7 on 218 degrees of freedom			
Multiple R-Squared:	0.2115, Adjusted R-squared: 0.1934			
F-statistic:	11.69 on 5 and 218 DF, p-value: $5.058 \mathrm{e}-10$			

ANOVA for multiple regression

- How do we formally compare different regression models?
- For example, do SAT scores significantly add to explanatory power of high school grades?

Compare
$\operatorname{lm}($ formula $=$ gpa \sim hse + hsm + hss, data $=$ gpa_data $)$
with
$\operatorname{lm}($ formula $=$ gpa \sim hse + hsm + hss + satm + satv, data $=$ gpa_data $)$

Use ANOVA to test:
$H_{0}: b_{\text {satm }}=b_{\text {satv }}=0$ versus $H_{a}:$ at least one of these $b^{\prime} s \neq 0$

ANOVA for multiple regression

ANOVA F-score:

$$
F=\left[\left(\mathrm{SSE}_{\text {shorter }}-\mathrm{SSE}_{\text {longer }}\right) / \# \text { new variables }\right] / \mathrm{MSE}_{\text {longer }}
$$

In the example:

Analysis of Variance Table						
Model 1: gpa \sim hse + hsm + hss						
Model 2: gpa \sim hse + hsm + hss + satm + satv						
	Res.Df	SSE	D	Sum of Sq	F	$\operatorname{Pr}(>F)$
1	220	107.750				
2	218	106.819	2	0.931	0.9503	0.3882

Hence, SAT scores not significant predictors of GPA in regression model which already contains high school scores

Analyses summary

What can we conclude from all these analyses?

- High school grades in Maths are a significant predictor of GPA
- High school grades in Science are a significant predictor of GPA
- High school grades in Science and English do not add to the explanatory power of Math grades
- SAT scores do not add explanatory power to the model either

Can we ignore SAT scores and Science/English grades then?

- No, because we only looked at GPA of computer science majors
- at one university

Problems with multiple regression

- Overfitting: The more variables, the higher the amount of variance you can explain. Even if each variable doesn't explain much, adding large number of variables can result in high values of R^{2}
- Interaction: Multiple regression is logically more complicated than simple regression applied several times for different variables
- Collinearity: Independent variables may correlate themselves, competing in their explanation
- Suppression: An independent variable may appear not to be explanatory, but becomes significant in combined model

Summary multiple regression

- generalization of simple linear regression
- allows prediction of one variable value based on one or more others
- test hypotheses about the predictive power of variables (t-test for coefficients)
- measure the proportion of variance in dependent variable explained by predictors $\left(R^{2}\right)$
- allows an estimation of the importance of various independent factors (model comparison with ANOVA)
- which independent factors, taken together or separately, explain the dependent variable the best?

Next week

Next week: logistic regression

