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Correlation and regression

We often wish to compare two different variables

Examples: compare results on two distinct tests

I age and ability

I education (in years) and income

I speed and accuracy

Methods to compare two (or more) variables:

I Correlation coefficient

I Regression analysis

Notice:

I Correlation and regression only for numeric variables!
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Background

Terminology: we speak of

I cases, e.g., Joe, Sam, etc. and

I variables, e.g., height (h) and weight (w)

I Then each variable has a value for each case; hj is Joe’s
height, and ws is Sam’s weight

We compare two variables by comparing their values for a set of
cases:

I hj versus wj

I hs versus ws

I etc.
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Tabular presentation

Example: Hoppenbrouwers measured pronunciation differences
among pairs of dialects. We compare these to the geographic
distance between places where they are spoken.

Dialect pair Phon. dist. Geogr. dist.
Almelo/Haarlem 0.58 100
Almelo/Kerkrade 1.18 200
Almelo/Makkum 0.90 250
Almelo/Roodeschool 0.81 220
Almelo/Soest 0.91 70
Haarlem/Kerkrad 1.06 230
...

...
...

Kerkrade/Soest 1.14 201
Makkum/Rodeschool 0.95 125
Makkum/Soest 1.00 216
Roodeschool/Soest 0.94 163

Two variables—phonetic and geographic distance, and 15 cases
(here, each pair is a separate case)
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Scatterplots

One useful technique is to visualize the relation by graphing it:
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Scatterplot shows the relationship between two quantitative
variables
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Scatterplots

Each dot is a case, whose x-value is geographic distance, and
y -value is phonetic distance.
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In general, we use x-axis for independent variables, and y -axis for
dependent ones. We don’t know whether phonetic distance
depends on geographic distance, but it might (while reverse is
implausible).
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Least squares regression

The simplest form of dependence is linear—the independent variable
determines a portion of the dependent value.

We can visualize this by fitting a straight line to the scatterplot:
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If the scatterplot clearly suggests not a straight line, but rather a curve of
another sort, you probably need to first transform one of the data sets.

This is an advanced topic, but something to keep in mind!
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Least squares regression
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Like every straight line, this has an equation of the form:
y = a + bx

a is the point where the line crosses the y -axis, the intercept, and
b the slope.
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Predicted vs observed values

The independent variable determines the dependent value
(somewhat); this is the predicted value ŷ—the value on the line.

Note also that the actual value y—the data dot—is not always the
same as ŷ
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Residuals

The difference between observed and predicted values

εi := (yi − ŷi )

is the residual—what the linear model does not predict. It is the
vertical distance between the data point and the regression line.

Least-squares regression finds the line which minimizes the
squared residuals—for all the data:

n∑
i=1

ε2i =
n∑

i=1

(yi − ŷi )
2
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Regression with R

Least squares regression finds the best straight line which models
the data (minimizes the squared error).

Call:
lm(formula = phonetic distance ∼ geographic distance)

Coefficients:
(Intercept) geographic distance
0.653292 0.001618

Regression line: y = 0.65 + 0.0016x
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Residuals

Regression finds the best line, but is sensitive to extreme values.
Examine residuals.
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Note: requirement in regression model that residuals be normally
distributed. Check with normal QQ-plot!
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Check normality of residuals
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Residuals look reasonably normal (Shapiro-Wilk test p = 0.18)
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R plot of residuals
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Save residuals as new variable, then graph against original x value

Watch out for extreme x values—influential, though residual may
be small. See example 2.12 in Moore & McCabe.

Also examine outliers—large residuals.
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Least squares regression

How does regression work?

Suppose we have a sample S = (xi , yi ) with i = 1, . . . , n.

Let x := (x1, . . . , xn) and y := (y1, . . . , yn)

We want to estimate the regression line y = a+bx for this data.

This amounts to optimizing the intercept a and slope b with
respect to the residuals:

Find a and b such that for a given sample S the
sum of squared residuals is minimized.
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Estimating the regression line

We express the sum of squared residuals as a function of the
(unknown) regression line:

n∑
i=1

ε2
i =

n∑
i=1

(yi − ŷi )
2

=
n∑

i=1

(yi − (a + bxi ))
2

=
n∑

i=1

(yi − a− bxi )
2

=
n∑

i=1

(a2 + 2abxi − 2ayi + b2x2
i − 2bxiyi + y2

i )

Thus,
∑n

i=1 ε2i is function f in x , y with unknown parameters a, b.
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Estimating the regression line

For a fixed sample S = (x , y), we want to minimize fab(x , y) with

fab(x , y) =
n∑

i=1

(a2 + 2abxi − 2ayi + b2x2
i − 2bxiyi + y2

i )

To minimize this function, find a and b such that f ′ab(x , y) = 0.

Treat a and b as variables and find partial derivatives ∂
∂a f , ∂

∂b f

∂

∂a
f = f ′xyb(a) =

n∑
i=1

(2a + 2bxi − 2yi )

∂

∂b
f = f ′xya(b) =

n∑
i=1

(2axi + 2bx2
i − 2xiyi )
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Regression—tiny example

Dialect pair Phon. dist. Geogr. dist.
Almelo/Haarlem 0.58 100
Almelo/Kerkrade 1.18 200
Kerkrade/Roodeschool 1.27 300

I plug these sample values into partial derivatives

I set them to zero

I solve pair of linear equations

f ′xyb(a) =
n∑

i=1

(2a + 2bxi − 2yi )

= 2a + 2b · 100− 2 · 0.58 +

2a + 2b · 200− 2 · 1.18 +

2a + 2b · 300− 2 · 1.27

= 6a + 1200b − 6.06
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Regression—tiny example

f ′xya(b) =
n∑

i=1

(2axi + 2bx2
i − 2xiyi )

= 2a · 100− 2b · (100)2 − 2 · 100 · 0.58 +

2a · 200− 2b · (200)2 − 2 · 200 · 1.18 +

2a · 300− 2b · (300)2 − 2 · 300 · 1.27

= 1200a + 280.000b − 1350

Set to zero and solve:

0 = 6a + 1200b − 6.06 (I)

⇔ 0 = a + 200b − 1.01

⇔ a = 1.01− 200b
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Regression—tiny example

a = 1.01− 200b (I)

0 = 1200a + 280.000b − 1350 (II)

Substitute a in (II) by (I):

0 = 1200 · (1.01− 200b) + 280.000b − 1350

⇔ 0 = 1212− 240.000b + 280.000b − 1350

⇔ 40.000b = 1350− 1212

⇔ b =
138

40.000
= 0.00345

⇒ a = 1.01− 200 · 0.00345 = 0.32

Hence, the regression line y = 0.32 + 0.00345x minimizes the sum
of squared residuals
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Check calculations with R

0 50 100 150 200 250 300 350

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

geographical_distance

ph
on

ol
og

ic
al

_d
is

ta
nc

e

Call:
lm(formula = phonetic distance ∼ geographic distance)

Coefficients:
(Intercept) geographic distance
0.32000 0.00345
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Linear regression

I Regression is asymmetric—appropriate when one variable
might be ‘explained’ by a second

I Reading times on the basis of difficulty—negative!
I Child’s ability on the basis of parents’ ability
I Final grade based on class attendance, etc.

I No answer (yet) to how well does x explain y
Correlation analysis provides an answer

I Correlation symmetric measure of extent to which variables
predict each other

I Answer to how well does x explain y

Regression and correlation inappropriate when ‘best fit’ is not
straight line (need data transformations)
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Correlation coefficient

How do you know if you are going to do well in a stats course?

Suppose you spend a lot of time on the material—more than your
average class mate—then you’ll have a high z-score in the
distribution of study time.

You know that, generally, study time predicts grades.

So you know that you should have a high z-score in the
distribution of grades.

If your final grade is not so good, I would expect you didn’t spend
much time studying. You would be below the mean in both
distributions and have negative z-scores.
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Correlation coefficient

If x = (x1, . . . , xn) is study time, and y = (y1, . . . , yn) are grades, we can
measure correlation between the two variables as

rxy = 1
n−1

n∑
i=1

zxi · zyi

I compute everyone’s z-score (study time and grades)

I multiply both z-scores and sum for everyone in class

I divide by the degrees of freedom (# students −1)

Note: positive sum results from multiplying two positive or negative
z-scores for x and y (positive correlation)

Negative sum (correlation) results from multiplying positive and negative
z-scores (and vice versa)

No correlation results from mixed-sign z-scores with sum close to zero.
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Correlation coefficient

Correlation coefficient aka “Pearson’s product-moment coefficient”

rxy = 1
n−1

n∑
i=1

zxi · zyi =
1

n − 1

n∑
i=1

(
xi − x

σx

)(
yi − y

σy

)

I rxy reflects the strength of the relation between x and y

I rxy = 0 no correlation
I rxy = 1 perfect positive correlation (all data points on a

straight line with positive slope)
I rxy = −1 perfect negative correlation

I no necessary dependence!
I shoe size and reading ability correlate—both dependent on age
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Visualizing correlation
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I data points lie close to the regression line

I correlation coefficient rxy = 0.83

I strong positive correlation

John Nerbonne Statistiek II



Visualizing correlation
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I data points scatter in a cloud around regression line

I correlation coefficient rxy = 0.1

I no correlation (there might be correlation in both subsets)
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Visualizing correlation
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I data points close to regression line with negative slope

I correlation coefficient rxy = −0.77

I correlation, but negative
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Back to example: dialects

In our example: correlation coefficient for geographic and phonetic
distance

In R simply call:

cor(phonetic-distance,geographic-distance)
[1] 0.6574452

Hence, phonetic and geographic distance correlate at r = 0.66

I r is a ‘plain number’—no units

I insensitive to scale, percentages, etc.
E.g., correlation with temperature can ignore scale (Celsius vs
Fahrenheit)

I symmetric rxy = ryx
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Properties of correlation

rxy = 1
n−1

n∑
i=1

(
xi − x

σx

)(
yi − y

σy

)

I correlation requires that both variables be quantitative
(numerical)

I correlation coefficient always between 1 and −1

I as r → 1 (or −1), dots cluster near regression line

I r measures ‘clustering’ relative to standard deviations σx , σy

I correlation can be misleading in the presence of outliers or
nonlinear association

I therefore...
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...always plot your data

Four variables y have same mean, standard deviation, correlation
and regression line (examples from Anscombe)
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Relationship between correlation and regression

Recall we obtained two partial derivatives (when minimizing sum of
squared residuals):

f ′xyb(a) =
n∑

i=1

(2a + 2bxi − 2yi ) (1)

f ′xya(b) =
n∑

i=1

(2axi + 2bx2
i − 2xiyi ) (2)

Set (1) to zero:
f ′xyb(a) = 0

⇔ n · 2a +
n∑

i=1

(2bxi − 2yi ) = 0

⇔ n · 2a + 2b
n∑

i=1

xi − 2
n∑

i=1

yi = 0

⇔ n · a = n · y − n · bx

⇔ a = y − bx
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Relationship between correlation and regression

Plug a = y − bx into (2) and set to zero:

f ′xya(b) = 0

⇔
n∑

i=1

(2(y − bx)xi + 2bx2
i − 2xiyi ) = 0

⇔ (y − bx)(nx) + b
n∑

i=1

x2
i −

n∑
i=1

xiyi = 0

⇔ nxy − bx2n + b
n∑

i=1

x2
i −

n∑
i=1

xiyi = 0

⇔ b(
n∑

i=1

x2
i − x2n) =

n∑
i=1

xiyi − nxy

⇔ b =

∑n
i=1 xiyi − nxy∑n
i=1 x2

i − x2n
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Relationship between correlation and regression

b =

∑n
i=1 xiyi − nxy∑n
i=1 x2

i − x2n
⇔ b =

∑n
i=1 xiyi − nxy∑n
i=1(xi − x)2

⇔ b =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2

⇔ b =
1

n − 1

∑n
i=1(xi − x)(yi − y)(
1

n−1

∑n
i=1(xi − x)2

)
⇔ b =

1

n − 1

n∑
i=1

(xi − x)(yi − y)

σ2
x

⇔ b =

(
1

n − 1

n∑
i=1

(
xi − x

σx

)(
yi − y

σy

))
· σy

σx

⇔ b = r
σy

σx
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Correlation and regression

Thus, the regression line y = a + bx has

I slope b = r
σy

σx
and

I intercept a = y − bx

Consequently:

I correlation and regression are related via the coefficient r

I regression line always flatter than SD line, the line with slope
σy

σx
which passes through (x , y)

What’s the point of regression analysis?

I analyze y as dependent on x (non-symmetric)

I determine how much of y ’s variance can be attributed to x
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Correlation and regression
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Partitioning the variance

As in ANOVA, we can partition the variance in regression model:

n∑
i=1

(yi − y)2 =
n∑

i=1

(yi − (a + bxi )︸ ︷︷ ︸
regression line

)2 +
n∑

i=1

((a + bxi )︸ ︷︷ ︸
regression line

−y)2

Total variance = Unexplained variance + Explained variance

To what extent does explanatory variable x explain variation in
response y? The quotient∑n

i=1((a + bxi )− y)2∑n
i=1(yi − y)2

=
explained variance

total variance

measures this precisely.
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Another relation between correlation and regression

explained variance

total variance
=

∑n
i=1((a + bxi )− y)2∑n

i=1(yi − y)2

=

∑n
i=1((y − bx + bxi )− y)2∑n

i=1(yi − y)2

=

∑n
i=1 b2(xi − x)2∑n

i=1(yi − y)2

= b2 ·
(

σx

σy

)2

= r2

(
σy

σx

)2

·
(

σx

σy

)2

= r2
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Coefficient of determination

explained variance
total variance = r2 (“coefficient of determination”)

I r2 indicates proportion of variability in data set that is
accounted for by regression model

I provides a measure of how well future outcomes are likely to
be predicted by the model

I in our example (phonetic distance of dialects):

r2 = 0.662 = 0.435

Thus, 44% of the phonetic variation between dialects is accounted
for by geographic distance
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Interpretation of correlation via averages

Example: height, weight have correlation coefficient rhw = 0.5

µh = 178cm, µw = 72kg, σh = 6cm, σw = 6kg

Slope of regression line: b = r · σw
σh

, i.e., for every σh, predicted

weight changes by r · σw

What is the average weight of those 184cm tall?

184cm = 178cm + 6cm

= µh + 1 · σh

δσh
= 1

w184cm = µw + rhw · δσh
· σw

= 72kg + 0.5 · 1 · 6kg = 75kg
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Regression toward the mean

In regression, for each σx , the predicted value of y changes by rσy

When there is less than perfect correlation, 0 ≤ r < 1

Hence, a predicted zy for y will be closer to (the mean) 0 than zx

In the previous example:

zx = 184cm−178cm

6cm
= 1, zy = 75kg−72kg

6kg
= 0.5

Since r < 1, averages of correlated variables must regress toward
the mean (zy = r · zx)

Regression toward the mean is a mathematical inevitability
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Regression fallacy

Regression fallacy: seeing causation in regression

Examples:

(1) height correlation between parents and children (r = 0.4)

due to regression toward the mean, very tall parents tend to have
less tall children (still taller than average)

Regression fallacy: tall father concludes his wife must have cheated

(2) motivation correlates with exam scores (r = 0.5)

test-retest situations show extremes (high and low scores) closer to
mean on second test (regression toward mean)

Regression fallacy: bad students improved because I punished them
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Correlation

Properties:

I only for numeric variables

I measures strength of a linear relation

I symmetric rxy = ryx
I related to the slope of the regression line

Caution needed:

I non-linear associations, i.e., curved patterns

I individual points with large residuals (outliers)

I influential observations (large deviation in x direction)

I “ecological correlations”, i.e., correlations based on averages,
popular in politics, overstate size of r

I correlation 6⇒ causation (e.g., shoe size and reading ability)
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Inference for regression

Test whether regression yields significant association of variables:

Residual standard error: estimated standard error about the
regression line

s =

√Pn
i e2

i
n−2

Standard error of the regression slope:

SEb = s√Pn
i (xi−x)2

We test: H0 : b = 0, Ha : b 6= 0

Calculate t-statistic: t = b
SEb

Compare with critical t∗ from t(n − 2)
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Inference for regression

In our example (phonetic variation in dialects):

s =
√

0.3056
13 = 0.1533

SEb = 0.1533√
298.2

= 0.000514

t = 0.001618
0.000514 = 3.148

Critical value t∗ = 2.16 (for t(df=13), α = 0.05), hence reject H0:

The data provides evidence in favor of a relationship between
geographic and phonetic distance
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Check with R

Call:
lm(formula = phonetic distance ∼ geographic distance)

Residuals:
Min 1Q Median 3Q Max
-0.2496 -0.1015 0.0288 0.1129 0.2032

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) 0.653292 0.104245 6.27 2.9e-05 ***
geographic distance 0.001618 0.000514 3.15 0.0077 **
—
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 .

Residual standard error: 0.153 on 13 degrees of freedom
Multiple R-Squared: 0.432, Adjusted R-squared: 0.389
F-statistic: 9.9 on 1 and 13 DF, p-value: 0.00773
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Confidence intervals

What is the mean phonetic distance of dialects for x∗ = 150km
geographic distance?

ŷ = 0.65 + 0.0016 · 150 = 0.89

Standard error for mean response ŷ (for fixed x∗):

SEŷ = s ·
√

1
n + (x∗−x)2Pn

i (xi−x)2

Here: SEŷ = 0.1533 ·
√

1
15 + (150−187.5)2

88914 = 0.04403

Confidence: ŷ±t∗SEŷ = 0.89±2.16∗0.04403 = 0.89±0.0951

Hence, with 95% certainty, mean phonetic distance (for
x∗ = 150km) lies in the interval CI=(0.795,0.985)
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Visualizing confidence intervals
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95% CI mean phonetic distance
95% CI future observations
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Next week

Next week: multiple regression
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