Statistiek II

John Nerbonne
Information Science, Groningen
j.nerbonne@rug.nl
Slides improved a lot by Harmut Fitz, Groningen!

March 24, 2010

Correlation and regression

We often wish to compare two different variables
Examples: compare results on two distinct tests

- age and ability
- education (in years) and income
- speed and accuracy

Methods to compare two (or more) variables:

- Correlation coefficient
- Regression analysis

Notice:

- Correlation and regression only for numeric variables!

Background

Terminology: we speak of

- cases, e.g., Joe, Sam, etc. and
- variables, e.g., height (h) and weight (w)
- Then each variable has a value for each case; h_{j} is Joe's height, and w_{s} is Sam's weight

We compare two variables by comparing their values for a set of cases:

- h_{j} versus w_{j}
- h_{s} versus w_{s}
- etc.

Tabular presentation

Example: Hoppenbrouwers measured pronunciation differences among pairs of dialects. We compare these to the geographic distance between places where they are spoken.

Dialect pair	Phon. dist.	Geogr. dist.
Almelo/Haarlem	0.58	100
Almelo/Kerkrade	1.18	200
Almelo/Makkum	0.90	250
Almelo/Roodeschool	0.81	220
Almelo/Soest	0.91	70
Haarlem/Kerkrad	1.06	230
\vdots	\vdots	\vdots
Kerkrade/Soest	1.14	201
Makkum/Rodeschool	0.95	125
Makkum/Soest	1.00	216
Roodeschool/Soest	0.94	163

Two variables-phonetic and geographic distance, and 15 cases (here, each pair is a separate case)

Scatterplots

One useful technique is to visualize the relation by graphing it:

Scatterplot shows the relationship between two quantitative variables

Scatterplots

Each dot is a case, whose x-value is geographic distance, and y-value is phonetic distance.

In general, we use x-axis for independent variables, and y-axis for dependent ones. We don't know whether phonetic distance depends on geographic distance, but it might (while reverse is implausible).

Least squares regression

The simplest form of dependence is linear-the independent variable determines a portion of the dependent value.

We can visualize this by fitting a straight line to the scatterplot:

If the scatterplot clearly suggests not a straight line, but rather a curve of another sort, you probably need to first transform one of the data sets.

This is an advanced topic, but something to keep in mind!

Least squares regression

Like every straight line, this has an equation of the form: $y=a+b x$
a is the point where the line crosses the y-axis, the intercept, and b the slope.

Predicted vs observed values

The independent variable determines the dependent value (somewhat); this is the predicted value \hat{y}-the value on the line.

Note also that the actual value y-the data dot-is not always the same as \hat{y}

Residuals

The difference between observed and predicted values

$$
\epsilon_{i}:=\left(y_{i}-\hat{y}_{i}\right)
$$

is the residual-what the linear model does not predict. It is the vertical distance between the data point and the regression line.

Least-squares regression finds the line which minimizes the squared residuals-for all the data:

$$
\sum_{i=1}^{n} \epsilon_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

Regression with R

Least squares regression finds the best straight line which models the data (minimizes the squared error).

Call:
Im(formula $=$ phonetic distance \sim geographic distance)
Coefficients:

$$
\begin{array}{ll}
\text { (Intercept) } & \text { geographic distance } \\
0.653292 & 0.001618
\end{array}
$$

Regression line: $y=0.65+0.0016 x$

Residuals

Regression finds the best line, but is sensitive to extreme values. Examine residuals.

Note: requirement in regression model that residuals be normally distributed. Check with normal QQ-plot!

Check normality of residuals

Normal Q-Q Plot: residuals

Residuals look reasonably normal (Shapiro-Wilk test $\mathrm{p}=0.18$)

R plot of residuals

Save residuals as new variable, then graph against original x value
Watch out for extreme x values-influential, though residual may be small. See example 2.12 in Moore \& McCabe.

Also examine outliers-large residuals.

Least squares regression

How does regression work?
Suppose we have a sample $\mathcal{S}=\left(x_{i}, y_{i}\right)$ with $i=1, \ldots, n$.
Let $x:=\left(x_{1}, \ldots, x_{n}\right)$ and $y:=\left(y_{1}, \ldots, y_{n}\right)$
We want to estimate the regression line $y=a+b x$ for this data.
This amounts to optimizing the intercept a and slope b with respect to the residuals:

Find a and b such that for a given sample \mathcal{S} the sum of squared residuals is minimized.

Estimating the regression line

We express the sum of squared residuals as a function of the (unknown) regression line:

$$
\begin{aligned}
\sum_{i=1}^{n} \epsilon_{i}^{2} & =\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2} \\
& =\sum_{i=1}^{n}\left(y_{i}-\left(a+b x_{i}\right)\right)^{2} \\
& =\sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right)^{2} \\
& =\sum_{i=1}^{n}\left(a^{2}+2 a b x_{i}-2 a y_{i}+b^{2} x_{i}^{2}-2 b x_{i} y_{i}+y_{i}^{2}\right)
\end{aligned}
$$

Thus, $\sum_{i=1}^{n} \epsilon_{i}^{2}$ is function f in x, y with unknown parameters a, b.

Estimating the regression line

For a fixed sample $\mathcal{S}=(x, y)$, we want to minimize $f_{a b}(x, y)$ with

$$
f_{a b}(x, y)=\sum_{i=1}^{n}\left(a^{2}+2 a b x_{i}-2 a y_{i}+b^{2} x_{i}^{2}-2 b x_{i} y_{i}+y_{i}^{2}\right)
$$

To minimize this function, find a and b such that $f_{a b}^{\prime}(x, y)=0$.
Treat a and b as variables and find partial derivatives $\frac{\partial}{\partial a} f, \frac{\partial}{\partial b} f$

$$
\begin{aligned}
\frac{\partial}{\partial a} f=f_{x y b}^{\prime}(a) & =\sum_{i=1}^{n}\left(2 a+2 b x_{i}-2 y_{i}\right) \\
\frac{\partial}{\partial b} f=f_{x y a}^{\prime}(b) & =\sum_{i=1}^{n}\left(2 a x_{i}+2 b x_{i}^{2}-2 x_{i} y_{i}\right)
\end{aligned}
$$

Regression-tiny example

Dialect pair	Phon. dist.	Geogr. dist.
Almelo/Haarlem	0.58	100
Almelo/Kerkrade	1.18	200
Kerkrade/Roodeschool	1.27	300

- plug these sample values into partial derivatives
- set them to zero
- solve pair of linear equations

$$
\begin{aligned}
f_{x y b}^{\prime}(a)= & \sum_{i=1}^{n}\left(2 a+2 b x_{i}-2 y_{i}\right) \\
= & 2 a+2 b \cdot 100-2 \cdot 0.58+ \\
& 2 a+2 b \cdot 200-2 \cdot 1.18+ \\
& 2 a+2 b \cdot 300-2 \cdot 1.27 \\
= & 6 a+1200 b-6.06
\end{aligned}
$$

Regression-tiny example

$$
\begin{aligned}
f_{x y a}^{\prime}(b)= & \sum_{i=1}^{n}\left(2 a x_{i}+2 b x_{i}^{2}-2 x_{i} y_{i}\right) \\
= & 2 a \cdot 100-2 b \cdot(100)^{2}-2 \cdot 100 \cdot 0.58+ \\
& 2 a \cdot 200-2 b \cdot(200)^{2}-2 \cdot 200 \cdot 1.18+ \\
& 2 a \cdot 300-2 b \cdot(300)^{2}-2 \cdot 300 \cdot 1.27 \\
= & 1200 a+280.000 b-1350
\end{aligned}
$$

Set to zero and solve:

$$
\begin{align*}
& 0=6 a+1200 b-6.06 \tag{I}\\
& \Leftrightarrow \quad 0=a+200 b-1.01 \\
& \Leftrightarrow \quad a=1.01-200 b
\end{align*}
$$

Regression-tiny example

$$
\begin{align*}
& a=1.01-200 b \tag{I}\\
& 0=1200 a+280.000 b-1350 \tag{II}
\end{align*}
$$

Substitute a in (II) by (I):

$$
\begin{aligned}
& 0=1200 \cdot(1.01-200 b)+280.000 b-1350 \\
\Leftrightarrow & 0=1212-240.000 b+280.000 b-1350 \\
\Leftrightarrow & 40.000 b=1350-1212 \\
\Leftrightarrow & b=\frac{138}{40.000}=\underline{0.00345} \\
\Rightarrow & a=1.01-200 \cdot 0.00345=\underline{0.32}
\end{aligned}
$$

Hence, the regression line $y=0.32+0.00345 x$ minimizes the sum of squared residuals

Check calculations with R


```
Call:
Im(formula = phonetic distance ~ geographic distance)
Coefficients:
    (Intercept) }\quad\mathrm{ geographic distance
```


Linear regression

- Regression is asymmetric-appropriate when one variable might be 'explained' by a second
- Reading times on the basis of difficulty-negative!
- Child's ability on the basis of parents' ability
- Final grade based on class attendance, etc.
- No answer (yet) to how well does x explain y Correlation analysis provides an answer
- Correlation symmetric measure of extent to which variables predict each other
- Answer to how well does x explain y

Regression and correlation inappropriate when 'best fit' is not straight line (need data transformations)

Correlation coefficient

How do you know if you are going to do well in a stats course?
Suppose you spend a lot of time on the material—more than your average class mate-then you'll have a high z-score in the distribution of study time.

You know that, generally, study time predicts grades.
So you know that you should have a high z-score in the distribution of grades.

If your final grade is not so good, I would expect you didn't spend much time studying. You would be below the mean in both distributions and have negative z-scores.

Correlation coefficient

If $x=\left(x_{1}, \ldots, x_{n}\right)$ is study time, and $y=\left(y_{1}, \ldots, y_{n}\right)$ are grades, we can measure correlation between the two variables as

$$
r_{x y}=\frac{1}{n-1} \sum_{i=1}^{n} z_{x_{i}} \cdot z_{y_{i}}
$$

- compute everyone's z-score (study time and grades)
- multiply both z-scores and sum for everyone in class
- divide by the degrees of freedom (\# students -1)

Note: positive sum results from multiplying two positive or negative z-scores for x and y (positive correlation)

Negative sum (correlation) results from multiplying positive and negative z-scores (and vice versa)

No correlation results from mixed-sign z-scores with sum close to zero.

Correlation coefficient

Correlation coefficient aka "Pearson's product-moment coefficient"

$$
r_{x y}=\frac{1}{n-1} \sum_{i=1}^{n} z_{x_{i}} \cdot z_{y_{i}}=\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{\sigma_{x}}\right)\left(\frac{y_{i}-\bar{y}}{\sigma_{y}}\right)
$$

- $r_{x y}$ reflects the strength of the relation between x and y
- $r_{x y}=0$ no correlation
- $r_{x y}=1$ perfect positive correlation (all data points on a straight line with positive slope)
- $r_{x y}=-1$ perfect negative correlation
- no necessary dependence!
- shoe size and reading ability correlate-both dependent on age

Visualizing correlation

- data points lie close to the regression line
- correlation coefficient $r_{x y}=0.83$
- strong positive correlation

Visualizing correlation

- data points scatter in a cloud around regression line
- correlation coefficient $r_{x y}=0.1$
- no correlation (there might be correlation in both subsets)

Visualizing correlation

- data points close to regression line with negative slope
- correlation coefficient $r_{x y}=-0.77$
- correlation, but negative

Back to example: dialects

In our example: correlation coefficient for geographic and phonetic distance

In R simply call:
cor (phonetic-distance, geographic-distance) [1] 0.6574452

Hence, phonetic and geographic distance correlate at $r=0.66$

- r is a 'plain number'-no units
- insensitive to scale, percentages, etc.
E.g., correlation with temperature can ignore scale (Celsius vs Fahrenheit)
- symmetric $r_{x y}=r_{y x}$

Properties of correlation

$$
r_{x y}=\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{\sigma_{x}}\right)\left(\frac{y_{i}-\bar{y}}{\sigma_{y}}\right)
$$

- correlation requires that both variables be quantitative (numerical)
- correlation coefficient always between 1 and -1
- as $r \rightarrow 1$ (or -1), dots cluster near regression line
- r measures 'clustering' relative to standard deviations σ_{x}, σ_{y}
- correlation can be misleading in the presence of outliers or nonlinear association
- therefore...

...always plot your data

Four variables y have same mean, standard deviation, correlation and regression line (examples from Anscombe)

Relationship between correlation and regression

Recall we obtained two partial derivatives (when minimizing sum of squared residuals):

$$
\begin{align*}
& f_{x y b}^{\prime}(a)=\sum_{i=1}^{n}\left(2 a+2 b x_{i}-2 y_{i}\right) \tag{1}\\
& f_{x y a}^{\prime}(b)=\sum_{i=1}^{n}\left(2 a x_{i}+2 b x_{i}^{2}-2 x_{i} y_{i}\right) \tag{2}
\end{align*}
$$

Set (1) to zero:

$$
\begin{aligned}
& f_{x y b}^{\prime}(a)=0 \\
\Leftrightarrow & n \cdot 2 a+\sum_{i=1}^{n}\left(2 b x_{i}-2 y_{i}\right)=0 \\
\Leftrightarrow & n \cdot 2 a+2 b \sum_{i=1}^{n} x_{i}-2 \sum_{i=1}^{n} y_{i}=0 \\
\Leftrightarrow & n \cdot a=n \cdot \bar{y}-n \cdot b \bar{x} \\
\Leftrightarrow & a=\bar{y}-b \bar{x}
\end{aligned}
$$

Relationship between correlation and regression

Plug $a=\bar{y}-b \bar{x}$ into (2) and set to zero:

$$
\begin{aligned}
& f_{x y a}^{\prime}(b)=0 \\
\Leftrightarrow & \sum_{i=1}^{n}\left(2(\bar{y}-b \bar{x}) x_{i}+2 b x_{i}^{2}-2 x_{i} y_{i}\right)=0 \\
\Leftrightarrow & (\bar{y}-b \bar{x})(n \bar{x})+b \sum_{i=1}^{n} x_{i}^{2}-\sum_{i=1}^{n} x_{i} y_{i}=0 \\
\Leftrightarrow & n \overline{x y}-b \bar{x}^{2} n+b \sum_{i=1}^{n} x_{i}^{2}-\sum_{i=1}^{n} x_{i} y_{i}=0 \\
\Leftrightarrow & b\left(\sum_{i=1}^{n} x_{i}^{2}-\bar{x}^{2} n\right)=\sum_{i=1}^{n} x_{i} y_{i}-n \overline{x y} \\
\Leftrightarrow & b=\frac{\sum_{i=1}^{n} x_{i} y_{i}-n \overline{x y}}{\sum_{i=1}^{n} x_{i}^{2}-\bar{x}^{2} n}
\end{aligned}
$$

Relationship between correlation and regression

$$
\begin{aligned}
b=\frac{\sum_{i=1}^{n} x_{i} y_{i}-n \overline{x y}}{\sum_{i=1}^{n} x_{i}^{2}-\bar{x}^{2} n} & \Leftrightarrow b=\frac{\sum_{i=1}^{n} x_{i} y_{i}-n \overline{x y}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \\
& \Leftrightarrow b=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \\
& \Leftrightarrow b=\frac{1}{n-1} \frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\left(\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right)} \\
& \Leftrightarrow \quad b=\frac{1}{n-1} \sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sigma_{x}^{2}} \\
& \Leftrightarrow \quad b=\left(\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{\sigma_{x}}\right)\left(\frac{y_{i}-\bar{y}}{\sigma_{y}}\right)\right) \cdot \frac{\sigma_{y}}{\sigma_{x}} \\
& \Leftrightarrow b=r \frac{\sigma_{y}}{\sigma_{x}}
\end{aligned}
$$

Correlation and regression

Thus, the regression line $y=a+b x$ has

- slope $b=r \frac{\sigma_{y}}{\sigma_{x}}$ and
- intercept $a=\bar{y}-b \bar{x}$

Consequently:

- correlation and regression are related via the coefficient r
- regression line always flatter than SD line, the line with slope $\frac{\sigma_{y}}{\sigma_{x}}$ which passes through (\bar{x}, \bar{y})

What's the point of regression analysis?

- analyze y as dependent on x (non-symmetric)
- determine how much of y 's variance can be attributed to x

Correlation and regression

$$
y-\bar{y}=(y-(a+b x))+((a+b x)-\bar{y})
$$

Partitioning the variance

As in ANOVA, we can partition the variance in regression model:

$$
\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=\sum_{i=1}^{n}(y_{i}-\underbrace{\left(a+b x_{i}\right)}_{\text {regression line }})^{2}+\sum_{i=1}^{n}(\underbrace{\left(a+b x_{i}\right)}_{\text {regression line }}-\bar{y})^{2}
$$

Total variance $=$ Unexplained variance + Explained variance

To what extent does explanatory variable x explain variation in response y ? The quotient

$$
\frac{\sum_{i=1}^{n}\left(\left(a+b x_{i}\right)-\bar{y}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}=\frac{\text { explained variance }}{\text { total variance }}
$$

measures this precisely.

Another relation between correlation and regression

$$
\begin{aligned}
\frac{\text { explained variance }}{\text { total variance }} & =\frac{\sum_{i=1}^{n}\left(\left(a+b x_{i}\right)-\bar{y}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}} \\
& =\frac{\sum_{i=1}^{n}\left(\left(\bar{y}-b \bar{x}+b x_{i}\right)-\bar{y}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}} \\
& =\frac{\sum_{i=1}^{n} b^{2}\left(x_{i}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}} \\
& =b^{2} \cdot\left(\frac{\sigma_{x}}{\sigma_{y}}\right)^{2} \\
& =r^{2}\left(\frac{\sigma_{y}}{\sigma_{x}}\right)^{2} \cdot\left(\frac{\sigma_{x}}{\sigma_{y}}\right)^{2} \\
& =r^{2}
\end{aligned}
$$

Coefficient of determination

$$
\frac{\text { explained variance }}{\text { total variance }}=r^{2} \quad(\text { "coefficient of determination" })
$$

- r^{2} indicates proportion of variability in data set that is accounted for by regression model
- provides a measure of how well future outcomes are likely to be predicted by the model
- in our example (phonetic distance of dialects):

$$
r^{2}=0.66^{2}=\underline{0.435}
$$

Thus, 44% of the phonetic variation between dialects is accounted for by geographic distance

Interpretation of correlation via averages

Example: height, weight have correlation coefficient $r_{h w}=0.5$

$$
\mu_{h}=178 \mathrm{~cm}, \mu_{w}=72 \mathrm{~kg}, \sigma_{h}=6 \mathrm{~cm}, \sigma_{w}=6 \mathrm{~kg}
$$

Slope of regression line: $b=r \cdot \frac{\sigma_{w}}{\sigma_{h}}$, i.e., for every σ_{h}, predicted weight changes by $r \cdot \sigma_{w}$

What is the average weight of those 184 cm tall?

$$
\begin{aligned}
184 \mathrm{~cm} & =178 \mathrm{~cm}+6 \mathrm{~cm} \\
& =\mu_{h}+1 \cdot \sigma_{h} \\
\delta_{\sigma_{h}} & =1 \\
\bar{w}_{184 \mathrm{~cm}} & =\mu_{w}+r_{h w} \cdot \delta_{\sigma_{h}} \cdot \sigma_{w} \\
& =72 \mathrm{~kg}+0.5 \cdot 1 \cdot 6 \mathrm{~kg}=75 \mathrm{~kg}
\end{aligned}
$$

Regression toward the mean

In regression, for each σ_{x}, the predicted value of y changes by $r \sigma_{y}$
When there is less than perfect correlation, $0 \leq r<1$
Hence, a predicted z_{y} for y will be closer to (the mean) 0 than z_{x}
In the previous example:

$$
z_{x}=\frac{184 \mathrm{~cm}-178 \mathrm{~cm}}{6 \mathrm{~cm}}=1, z_{y}=\frac{75 \mathrm{~kg}-72 \mathrm{~kg}}{6 \mathrm{~kg}}=0.5
$$

Since $r<1$, averages of correlated variables must regress toward the mean $\left(z_{y}=r \cdot z_{x}\right)$

Regression toward the mean is a mathematical inevitability

Regression fallacy

Regression fallacy: seeing causation in regression
Examples:
(1) height correlation between parents and children $(r=0.4)$ due to regression toward the mean, very tall parents tend to have less tall children (still taller than average)

Regression fallacy: tall father concludes his wife must have cheated
(2) motivation correlates with exam scores $(r=0.5)$ test-retest situations show extremes (high and low scores) closer to mean on second test (regression toward mean)

Regression fallacy: bad students improved because I punished them

Correlation

Properties:

- only for numeric variables
- measures strength of a linear relation
- symmetric $r_{x y}=r_{y x}$
- related to the slope of the regression line

Caution needed:

- non-linear associations, i.e., curved patterns
- individual points with large residuals (outliers)
- influential observations (large deviation in \times direction)
- "ecological correlations", i.e., correlations based on averages, popular in politics, overstate size of r
- correlation \nRightarrow causation (e.g., shoe size and reading ability)

Inference for regression

Test whether regression yields significant association of variables:
Residual standard error: estimated standard error about the regression line

$$
s=\sqrt{\frac{\sum_{i}^{n} e_{i}^{2}}{n-2}}
$$

Standard error of the regression slope:

$$
\mathrm{SE}_{b}=\frac{s}{\sqrt{\sum_{i}^{n}\left(x_{i}-\bar{x}\right)^{2}}}
$$

We test:

$$
H_{0}: b=0, \quad H_{a}: b \neq 0
$$

Calculate t-statistic:

$$
t=\frac{b}{\mathrm{SE}_{b}}
$$

Compare with critical t^{*} from $t(n-2)$

Inference for regression

In our example (phonetic variation in dialects):

$$
\begin{gathered}
s=\sqrt{\frac{0.3056}{13}}=0.1533 \\
\mathrm{SE}_{b}=\frac{0.1533}{\sqrt{298.2}}=0.000514 \\
t=\frac{0.001618}{0.000514}=3.148
\end{gathered}
$$

Critical value $t^{*}=2.16$ (for $\left.\mathrm{t}(\mathrm{df}=13), \alpha=0.05\right)$, hence reject H_{0} :
The data provides evidence in favor of a relationship between geographic and phonetic distance

Check with R

Call:
Im(formula $=$ phonetic distance \sim geographic distance)
Residuals:

Min	$1 Q$	Median	3Q	Max
-0.2496	-0.1015	0.0288	0.1129	0.2032

Coefficients:
(Intercept)
geographic distance
Signif. codes:

Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
0.653292	0.104245	6.27	$2.9 \mathrm{e}-05^{* * *}$
0.001618	0.000514	3.15	$0.0077^{* *}$
$0 * * *$	$0.001^{* *}$	0.01^{*}	0.05.

Residual standard error:
Multiple R-Squared:
0.153 on 13 degrees of freedom

F-statistic:
0.432 , Adjusted R-squared: 0.389
9.9 on 1 and 13 DF, p-value: 0.00773

Confidence intervals

What is the mean phonetic distance of dialects for $x^{*}=150 \mathrm{~km}$ geographic distance?

$$
\hat{y}=0.65+0.0016 \cdot 150=0.89
$$

Standard error for mean response \hat{y} (for fixed x^{*}):

Here:

$$
\mathrm{SE}_{\hat{y}}=0.1533 \cdot \sqrt{\frac{1}{15}+\frac{(150-187.5)^{2}}{88914}}=0.04403
$$

Confidence: $\quad \hat{y} \pm t^{*} \mathrm{SE}_{\hat{y}}=0.89 \pm 2.16 * 0.04403=0.89 \pm 0.0951$
Hence, with 95\% certainty, mean phonetic distance (for $\left.x^{*}=150 \mathrm{~km}\right)$ lies in the interval $\mathrm{Cl}=(0.795,0.985)$

Visualizing confidence intervals

Next week

Next week: multiple regression

