
Finite State Automata for morphological analysis
Exercise #4
Due: February 3, 2000

Problem 0: FSA Tutorial
If you haven’t used the Finite State Automata utilities much before, try working through
the tutorial for them that Gosse Bouma has prepared. You can find it on the web at
http://www.let.rug.nl/~gosse/tt/fsa.html. This is just a warm-up exercise, so you
don’t have to write up the answers. But, if you have any trouble using the FSA tools,
please let me know.

Problem 1: Esperanto
Based on the examples in Problem 3 of Exercise 3, construct a finite state automaton for
recognizing Esperanto word structure. Remember, since Esperanto morphology is com-
pletely regular, you don’t need to worry about morphophonemic rules. But, you will need
to construct letter trees for classes of morphemes and FSAs for assembling morphemes into
words.

To get started, first create a file called esperanto.pl with the following contents:

%%% esperanto.pl - Regular expressions for Esperanto word structure

:- multifile macro/2.

% A macro for constructing a letter tree from a list of words

macro(words(List0), set(List1)) :-

words(List0,List1).

words([],[]).

words([H0|T0], [word(H0)|T]) :-

words(T0,T).

% Letter trees for classes of roots

macro(noun_root, words([knab,patr])).

macro(verb_root, words([pov,est])).

% A noun is a noun root plus an optional "in" plus "o"

macro(noun, [noun_root,word(in)^,o]).

% A verb is a verb root plus "as" or "is" or "i"

macro(verb, [verb_root,{word(as),word(is),i}]).

% A word is either a noun, a verb, or a particle

macro(word, set([noun, verb, words([la,’c^u’])])).

1

This file defines a number of short-cuts that will make it easier to write a regular
expression describing Esperanto words. As you develop your analysis, you will want to
add additional macro definitions to this file.

To use these macros to build an FSA which recognizes Esperanto words which match
the regular expression word, use the command:

hagen% fsa -aux esperanto.pl -r word esperanto.fsa

Now you can use fsa to test the resulting FSA. To check whether your FSA recognizes a
particular word, use the -accepts option. You can also ask the program to generate all
the words recognized by the FSA using the -produce option:

hagen% fsa -accepts esperanto.fsa patrino

yes

hagen% fsa -accepts esperanto.fsa patra

no

hagen% fsa -produce esperanto.fsa

la

c^u

esti

povi

estas

estis

knabo

patro

povas

povis

knabino

patrino

For complete details about how to use the fsa command, see the documentation at http:
//odur.let.rug.nl/~vannoord/Fsa/Manual/.

Once you have things working they way you like it, please send me the recognizer
produced by the fsa program, along with any macro files you used and a script showing
the commands that you used to produce the recognizer.

Problem 2: Diminutives
Construct a transducer which will pair up Dutch nouns with their diminutive forms. As-
sume the underlying form is something like boek+je. Your transducer should map the
underlying form into the correct surface form, in this case boekje. At a minimum your
transducer should be able to handle pairs like the following:

2

aap+je aapje ding+je dingetje
huis+je huisje bel+je belletje
hand+je handje pan+je pannetje
ui+je uitje duim+je duimpje
kamer+je kamertje koning+je koninkje
tafel+je tafeltje leerling+je leerlingetje
vrouw+je vrouwtje auto+je autootje

However, feel free to try trickier pairs as well.
The easiest way to construct a transducer like this is to use the replace macro (de-

fined in ~malouf/nlp/replace.pl). This macro takes three arguments: a transducer, a
left context recognizer, and a right context recognizer. For example, the regular expres-
sion replace(d:x,c,e) produces a transducer that changes a d into an x just in case it
appears between a c and an e. (So, it would map the string abcdefedcba into the string
abcxefedcba). More complex mappings can be built up from a sequence of replace rules
using regular expression operations like composition, union, and intersection.

Here’s a start at a transducer for the diminutives. It has two rules, one which doubles
a long vowel at the end of a word just before a morpheme boundary, and one which deletes
morpheme boundary markers from the underlying forms:

%%% diminutive.pl - Regular expressions for Dutch diminutives

:- multifile macro/2.

% Define classes of letters

macro(vowel, {a, e, i, o, u}).

macro(consonant, {a..z-vowel}).

% Double a long vowel at the end of a word

macro(rule1, replace({[a, []:a], [e, []:e], [o, []:o], [u, []:u]},

consonant, escape(+))).

% Delete all morpheme boundary markers (since there is no left or right

% context, this rule applies everywhere)

macro(rule2, replace(escape(+):[])).

% Combine both rules into a single transducer

macro(dim, rule1 o rule2).

The two rules are then composed, so that the output of rule1 is the input of rule2. To
complete the transducer, compose addition rules so that the output of the transducer is
the correct surface form.

Since the transducer you write doesn’t include a list of valid nouns in Dutch (you
can assume that the underlying form will be a legitimate noun), you can’t sensibly test
the transducer by producing all the pairs of forms that it licenses, as you did to test the
Esperanto word recognizer. Instead, to test your transducer, create a file with a list of

3

underlying forms, one per line (and be careful that that aren’t any extra spaces at the ends
of lines), and use that as input to the fsa -ta (‘transduce all’) command:

hagen% fsa -aux replace.pl -aux diminutive.pl -r dim >diminutive.fsa

hagen% fsa -ta diminutive.fsa <test.txt

aapje

huisje

handje

uije

kamerje

tafelje

vrouwje

dingje

belje

kamje

panje

duimje

koningje

leerlingje

autooje

The output will be a list of surface forms computed from each underlying form. To
find bugs, compare the forms the transducer licenses to the actual correct surface forms
(obviously, this one still needs some work).

As with Problem 1, when you have a working transducer, please send me the output of
the fsa program, along with any macro files you used and a script showing the steps you
took to construct it.

4

