A Dialectological Yardstick

John Nerbonne and Peter Kleiweg

Rijksuniversiteit Groningen

Quantitative Linguistics Conference 2003 The University of Georgia May 29, 2003 **Dialectometry:** Measuring linguistic "distances"

- Seguy (1971), Goebl (1982, 1984, ...) alternative foundation for dialectology — inverse overlap in linguistic features, interpreted categorically.
- Kessler (1995), Nerbonne et al (1996, 1999, ...), Heeringa (2003) measure pronunciation distance using (metric) sequence distance measures.
- Palander et al. (2003), Speelman et al. (2003) frequency profiles of linguistic alternatives

Problem: Validity—When are measurements right?

- Many computational, mathematical alternatives
- Often no expert consensus, sometimes no opinion

Categorical Distance à la Seguy '71

Site	Vocabulary Item				
	dog	hat	horse	toilet	smallest finger
Brownsville	U				pinkie
White Plain	dog	cap	horse	bathroom	—

- Ignore items for which data is missing (*smallest finger*)
- Distance is (1 o), where o is proportional overlap
 - distance(Brownsville, White Plain) = 0.25
- Number of different items or proportion?
- Treatment of multiple responses, close variants (clear/clears)
- Frequency weighting à la Goebl?

Porter Stemming

- Poor man's lemmatizer (used in Information Retrieval)
- Public Domain versions available
- a hundr year a hundred year a hundr year a hundred years
- abat abated abat abating
- blew blew
- blew blewed
- ceas cease ceas ceased ceas ceases
- ceas ceasing

Goebl's Weighted Similarity

Goebl (1983) introduced *gewichteter Identitätswert*, a weighted similarity, counting overlap in infrequent words more heavily.

For concept *i* with *n* responses $w_1^i, w_2^i, \ldots, w_n^i$, we let $f(w_j^i)$ be the frequency of w_j as response to query about *i*.

$$S(w_{j}^{i}, w_{j'}^{i}) = 1 - \frac{f(w_{j}^{i}) - 1}{n \cdot w}$$

where Goebl foresees experimentation with w, always = 1 here

This *emphasizes* rather than ignores infrequent words. We try $1 - S(w_j^i, w_{j'}^i)$ as an alternative distance measure.

Nerbonne, Heeringa et al. on Pronunciation Differences

 Phonetics describes sounds using *features*, allowing distance measurement, e.g., as city-block distance

Example: d([i],[e]) < d([i],[u])

	i	е	U	i-e	i-u	
advancement	2(front)	2(front)	6(back)	0	4	
high	4(high)	3(mid high)	4(high)	1	0	
long	3(short)	3(short)	3(short)	0	0	
rounded	0(not rounded)	0(not rounded)	1(rounded)	0	1	
				1	5	

- Which feature system? Vieregge-Cucchiarini, Almeida-Braun, Ladefoged, Chomsky-Halle (SPE), ?
- City block distance or Euclidean distance? Information-Gain weighting on features?
- Ceiling on segment distance or logarithmic correction?

Sequence Distance

Idea: *lift* segment distance to sequence distance.

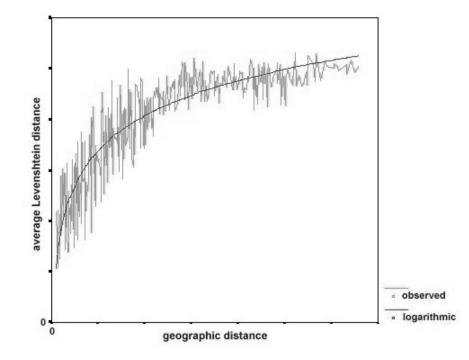
Standard American	scəglrl	delete r	0.5
	scəgll	replace I/3	0.1
	scag3l	insert r	0.8
Bostonian	sorəg3l		
		Sum distance	1.4

- L-distance = ^{df} minimal cost of operation to rewrite one string to another.
- Insertions and deletions compare segment to silence

Software at http://www.let.rug.nl/~kleiweg/lev/

Which Measurements are Probative?

- Choice of linguistic probes (material)
- Frequency weightings (Goebl)
- Individual variation (multiple responses)
- Status of inflectional variants (stemming/lemmatizing)
- Choice of phonetic features, distance measures
- Phonetics vs. lexicon vs. other


Proposal: prefer measures to maximize local linguistic coherence.

Fundamental Dialectological Postulate

- Neighboring varieties are linguistically similar
 - Exception: border areas
 - Exception: some distributed varieties (migration, trade)
- Campbell: "[...] neighboring languages often turn out to be related.", referring to Dyen (1956), Sapir (1916)
- Experience in Dialectometry:
 - Very remote varieties show little correlation linguistic/geographic distance.
 - Therefore uninteresting for choice of measurement.
 - Emphasize closest varieties

Need to Ignore Distant Varieties

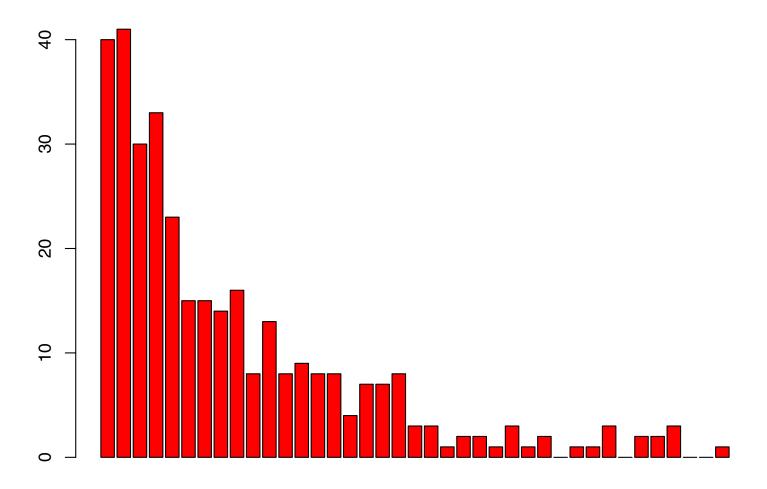
Phonetic distance as function of geography ($r \approx 0.75$) —Heeringa & Nerbonne *LVC* 13, 2002

Toward a Measure of Incoherence

Idea: Measure linguistic distance in a number of varieties, then examine how far the closest varieties are (geographically).

$$D_i^L = \sum_{j=1}^k d_{i,j}^L$$

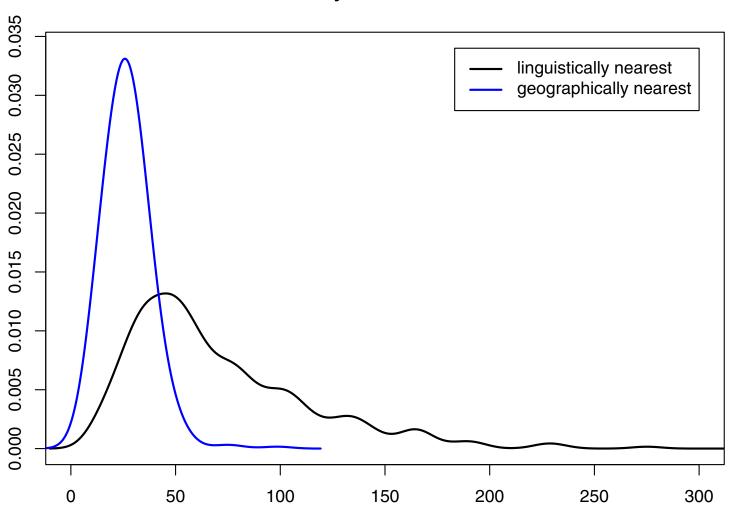
 $d_{i,1\cdots n-1}^L$: geographical distances sorted by increasing linguistic difference


• Prefer measures which show linguistically closest varieties to be geographically closest, i.e., minimize D_i^L

Refinements

$$D_i^L = \sum_{j=1}^k d_{i,j}^L \cdot 2^{-0.5j}$$

- 1. Limit, e.g., k = 8 to avoid letting distant measurements confound local (in)coherence
- 2. Let linguistically more distant measures weigh exponentially less $(\cdot 2^{-0.5j})$
- 3. Compare to optimum (still not shown)


Why Limit to 8 Nearest Sites?

Histogram of linguistically nearest sites

Rank of geographic distance

Distribution of Nearest Sites

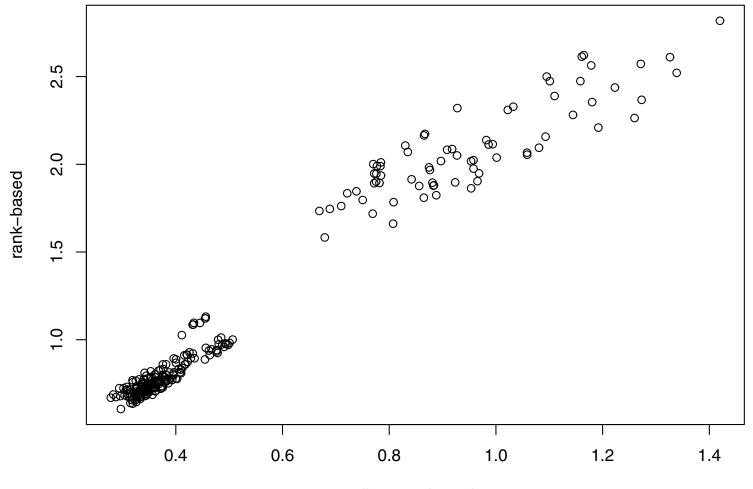
Density of nearest sites

geographic distance (km)

Minimize Local Incoherence (I_L)

$$I_{L} = \frac{1}{n} \sum_{i=1}^{n} \frac{D_{i}^{L}}{D_{i}^{G}} - 1$$
$$D_{i}^{L} = \sum_{j=1}^{k} d_{i,j}^{L} \cdot 2^{-0.5j}$$
$$D_{i}^{G} = \sum_{j=1}^{k} d_{i,j}^{G} \cdot 2^{-0.5j}$$

 $d_{i,j}^L$, $d_{i,j}^G$: geographical distance between locations i en j $d_{i,1\cdots n-1}^L$: sorted by increasing linguistic difference $d_{i,1\cdots n-1}^G$: sorted by increasing geographical distance

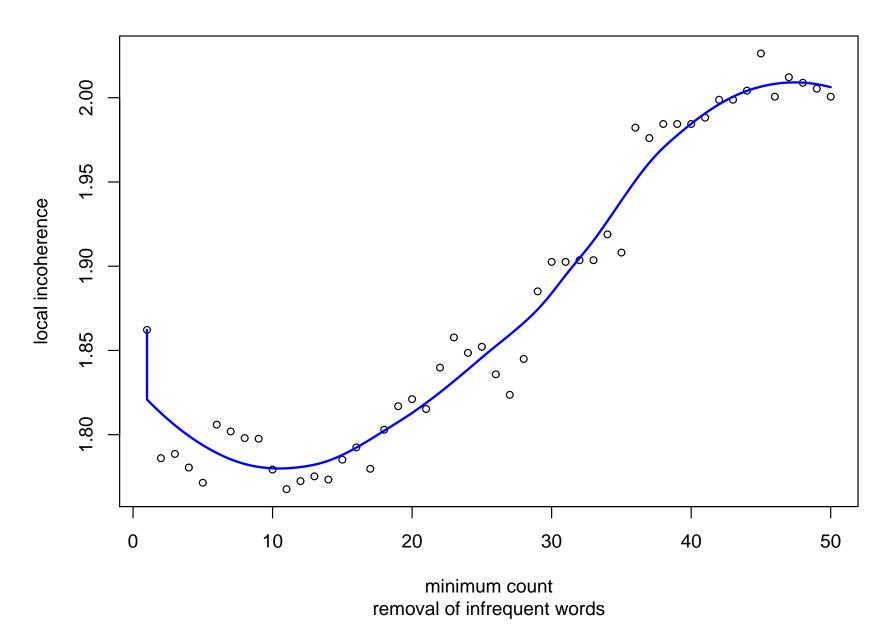

Local Incoherence (I_L)

$$I_L = \frac{1}{n} \sum_{i=1}^n \frac{D_i^L}{D_i^G} - 1$$

- Dependent on geographical distribution of fieldwork sites
 - Density of site sampling
 - Informants at same site (dist= 0) noise
- Simple notion of geographic distance used, others possible
- Using geographic distance is preferable to using geographic *ranks* because these vary in real distance

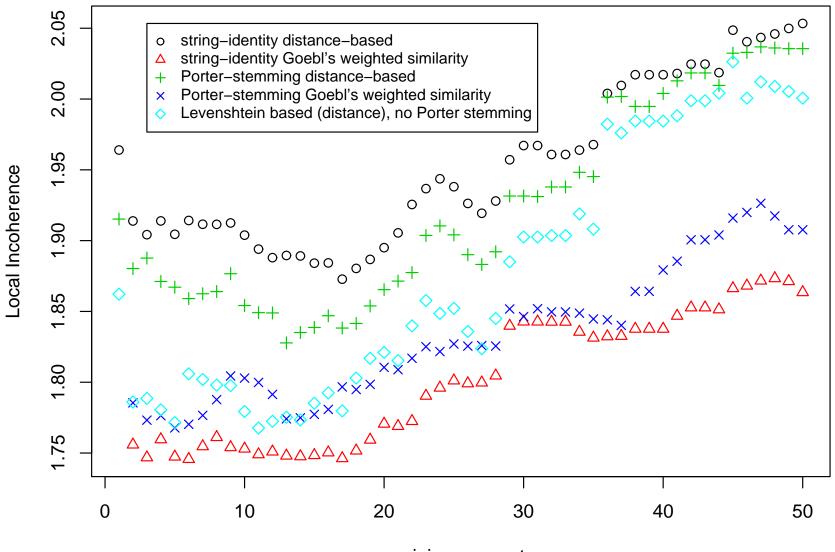
Geographic Distance vs. Ranks (I_L)

distance-based


Data from LAMSAS: Linguistic Atlas of the Middle and South Atlantic States

- "If the sun comes out after a rain, you say the weather is doing what?"
 - clearing up
 - fairing off $[\dots 40 \text{ variants}]$
- 1162 interviews conducted 1933–1974
- 71% of data collected by Guy Lowman 1933–1941
- digitized data avail. from Bill Kretzschmar
- focus on lexical overlap here, just as elsewhere (Kurath, ...)
 - later goal: relation to pronunciation

Focus: Infrequent Words


- Common remark: very infrequent words are *noise*, not evidence of linguistic coherence
 - Carver, American Regional Dialects, p.17
- But exactly where should the cut off be?
 - Words that occur twice, three times, ...
 - Words that occur with less than 1% of the frequency of the most frequent words
- Tension between this and Goebl's "Weighted Similarity"

Focus: Infrequent Words

Lowman lexical

Lowman, lexical

minimum count removal of infrequent words

LAMSAS Results

Local incoherence

measure	Lowman	LAMSAS
lexical	2.15	2.69
phonetic (symbols)	1.44	1.62
phonetic (features)	1.95	2.00

Conclusions

- Reanalyzing existing atlas materials is "data mining"— search for valuable ores in a huge area
- Wealth of computational techniques now really applicable
 - linguistic level, representation, detail, psychological fidelity, frequency, microvariation, ...
- Need "investigative" techniques
 - But also rigorous validation (see Heeringa, Nerbonne & Kleiweg in *Proc. of Gesellschaft für Klassifikation*, 2002)
- Leading "Dialectological Postulate"—which techniques expose geographic coherence?